Patient-Active Control of a Powered Exoskeleton Targeting Upper Limb Rehabilitation Training
Robot-assisted therapy affords effective advantages to the rehabilitation training of patients with motion impairment problems. To meet the challenge of integrating the active participation of a patient in robotic training, this study presents an admittance-based patient-active control scheme for re...
Saved in:
Published in | Frontiers in neurology Vol. 9; p. 817 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
11.10.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 1664-2295 1664-2295 |
DOI | 10.3389/fneur.2018.00817 |
Cover
Loading…
Abstract | Robot-assisted therapy affords effective advantages to the rehabilitation training of patients with motion impairment problems. To meet the challenge of integrating the active participation of a patient in robotic training, this study presents an admittance-based patient-active control scheme for real-time intention-driven control of a powered upper limb exoskeleton. A comprehensive overview is proposed to introduce the major mechanical structure and the real-time control system of the developed therapeutic robot, which provides seven actuated degrees of freedom and achieves the natural ranges of human arm movement. Moreover, the dynamic characteristics of the human-exoskeleton system are studied via a Lagrangian method. The patient-active control strategy consisting of an admittance module and a virtual environment module is developed to regulate the robot configurations and interaction forces during rehabilitation training. An audiovisual game-like interface is integrated into the therapeutic system to encourage the voluntary efforts of the patient and recover the neural plasticity of the brain. Further experimental investigation, involving a position tracking experiment, a free arm training experiment, and a virtual airplane-game operation experiment, is conducted with three healthy subjects and eight hemiplegic patients with different motor abilities. Experimental results validate the feasibility of the proposed scheme in providing patient-active rehabilitation training. |
---|---|
AbstractList | Robot-assisted therapy affords effective advantages to the rehabilitation training of patients with motion impairment problems. To meet the challenge of integrating the active participation of a patient in robotic training, this study presents an admittance-based patient-active control scheme for real-time intention-driven control of a powered upper limb exoskeleton. A comprehensive overview is proposed to introduce the major mechanical structure and the real-time control system of the developed therapeutic robot, which provides seven actuated degrees of freedom and achieves the natural ranges of human arm movement. Moreover, the dynamic characteristics of the human-exoskeleton system are studied via a Lagrangian method. The patient-active control strategy consisting of an admittance module and a virtual environment module is developed to regulate the robot configurations and interaction forces during rehabilitation training. An audiovisual game-like interface is integrated into the therapeutic system to encourage the voluntary efforts of the patient and recover the neural plasticity of the brain. Further experimental investigation, involving a position tracking experiment, a free arm training experiment, and a virtual airplane-game operation experiment, is conducted with three healthy subjects and eight hemiplegic patients with different motor abilities. Experimental results validate the feasibility of the proposed scheme in providing patient-active rehabilitation training. Robot-assisted therapy affords effective advantages to the rehabilitation training of patients with motion impairment problems. To meet the challenge of integrating the active participation of a patient in robotic training, this study presents an admittance-based patient-active control scheme for real-time intention-driven control of a powered upper limb exoskeleton. A comprehensive overview is proposed to introduce the major mechanical structure and the real-time control system of the developed therapeutic robot, which provides seven actuated degrees of freedom and achieves the natural ranges of human arm movement. Moreover, the dynamic characteristics of the human-exoskeleton system are studied via a Lagrangian method. The patient-active control strategy consisting of an admittance module and a virtual environment module is developed to regulate the robot configurations and interaction forces during rehabilitation training. An audiovisual game-like interface is integrated into the therapeutic system to encourage the voluntary efforts of the patient and recover the neural plasticity of the brain. Further experimental investigation, involving a position tracking experiment, a free arm training experiment, and a virtual airplane-game operation experiment, is conducted with three healthy subjects and eight hemiplegic patients with different motor abilities. Experimental results validate the feasibility of the proposed scheme in providing patient-active rehabilitation training.Robot-assisted therapy affords effective advantages to the rehabilitation training of patients with motion impairment problems. To meet the challenge of integrating the active participation of a patient in robotic training, this study presents an admittance-based patient-active control scheme for real-time intention-driven control of a powered upper limb exoskeleton. A comprehensive overview is proposed to introduce the major mechanical structure and the real-time control system of the developed therapeutic robot, which provides seven actuated degrees of freedom and achieves the natural ranges of human arm movement. Moreover, the dynamic characteristics of the human-exoskeleton system are studied via a Lagrangian method. The patient-active control strategy consisting of an admittance module and a virtual environment module is developed to regulate the robot configurations and interaction forces during rehabilitation training. An audiovisual game-like interface is integrated into the therapeutic system to encourage the voluntary efforts of the patient and recover the neural plasticity of the brain. Further experimental investigation, involving a position tracking experiment, a free arm training experiment, and a virtual airplane-game operation experiment, is conducted with three healthy subjects and eight hemiplegic patients with different motor abilities. Experimental results validate the feasibility of the proposed scheme in providing patient-active rehabilitation training. |
Author | Wang, Xingsong Chen, Bai Wu, Hongtao Wu, Qingcong |
AuthorAffiliation | 1 College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics , Nanjing , China 2 College of Mechanical Engineering, Southeast University , Nanjing , China |
AuthorAffiliation_xml | – name: 2 College of Mechanical Engineering, Southeast University , Nanjing , China – name: 1 College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics , Nanjing , China |
Author_xml | – sequence: 1 givenname: Qingcong surname: Wu fullname: Wu, Qingcong – sequence: 2 givenname: Xingsong surname: Wang fullname: Wang, Xingsong – sequence: 3 givenname: Bai surname: Chen fullname: Chen, Bai – sequence: 4 givenname: Hongtao surname: Wu fullname: Wu, Hongtao |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30364274$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kt1vFCEUxYmpsXXtu09mHn2ZlY8ZdngxaTa1NtnExrRvJuTCXLbUWVgZtrX_veyHTWsiLxA453fhct6SoxADEvKe0akQnfrkAm7SlFPWTSnt2OwVOWFSNjXnqj16tj4mp-N4R8sQSgkp3pBjQYVs-Kw5IT-uIHsMuT6z2d9jNY8hpzhU0VVQXcUHTNhX57_j-BMHzDFU15CWmH1YVjfrNaZq4Vem-o63YPzgc4FtNQl8KJJ35LWDYcTTwzwhN1_Or-df68W3i8v52aK2jeS5bjvqGKITAAIo0H5msTPAuOxFA0yA4o7K1rZcGQfcSda1aCxVvZgJaZmYkMs9t49wp9fJryA96ghe7zZiWmpI2dsBdTHT1hauQtaYpu8YCGtFY1rO0LRdYX3es9Ybs8Lelt4kGF5AX54Ef6uX8V5LpgQtDZ6QjwdAir82OGa98qPFYYCAcTNqXt6lGKV8W-vD81pPRf5-TxHQvcCmOI4J3ZOEUb0Ngd6FQG9DoHchKBb5j8UevqXc1g__N_4B2kO43A |
CitedBy_id | crossref_primary_10_1007_s00170_024_14830_y crossref_primary_10_54105_ijpmh_B1005_091421 crossref_primary_10_1002_rob_22455 crossref_primary_10_1016_j_robot_2023_104555 crossref_primary_10_1109_ACCESS_2019_2949197 crossref_primary_10_35940_ijpmh_B1005_091421 crossref_primary_10_1109_ACCESS_2019_2938566 crossref_primary_10_3389_fnbot_2021_692562 crossref_primary_10_1109_LRA_2020_3043197 crossref_primary_10_1155_2020_8814460 crossref_primary_10_1109_OJEMB_2024_3363137 crossref_primary_10_7717_peerj_15095 crossref_primary_10_1109_ACCESS_2019_2941973 crossref_primary_10_3389_frobt_2021_745018 crossref_primary_10_3390_math11071598 crossref_primary_10_1007_s10209_022_00929_0 crossref_primary_10_1177_0959651819825984 crossref_primary_10_2196_19071 crossref_primary_10_1109_JBHI_2024_3414291 crossref_primary_10_1007_s11370_024_00558_x crossref_primary_10_3390_machines11040447 crossref_primary_10_3390_s22103747 crossref_primary_10_1080_10447318_2022_2050545 crossref_primary_10_1186_s12984_022_01058_8 crossref_primary_10_1016_j_aei_2024_102482 crossref_primary_10_3390_s18113611 crossref_primary_10_4103_joss_joss_6_23 |
Cites_doi | 10.1682/JRRD.2010.04.0062 10.1016/j.asoc.2011.06.005 10.1177/1545968309338191 10.1109/TMECH.2016.2559799 10.1109/TSMC.2015.2497205 10.1161/STR.0000000000000098 10.1161/STROKEAHA.109.567438 10.1109/TNSRE.2012.2225073 10.1161/STROKEAHA.110.606442 10.1109/TSMC.2017.2771227 10.3389/fneur.2018.00084 10.1161/cir.0000000000000366 10.1016/S0140-6736(11)60325-5 10.1115/1.4005436 10.1023/A:1024436732030 10.1142/S0219843614500042 10.1142/S0219843616500316 10.1109/TSMCB.2012.2214381 10.1142/S0219843615500425 10.5772/59991 10.1109/TFUZZ.2014.2317511 10.1016/j.mechatronics.2015.06.007 10.1109/TRO.2010.2052170 10.1109/TMECH.2006.878550 10.1109/TMECH.2016.2618888 10.1109/TIE.2014.2360062 10.1016/j.mechatronics.2015.04.005 10.1016/j.neucom.2014.03.038 10.3389/fneur.2017.00107 10.1056/NEJMcp043511 10.1002/14651858.CD010820.pub2 10.3389/fneur.2017.00646 10.3389/fneur.2017.00654 10.1109/TBME.2012.2192116 10.1310/bljx-m89n-ptpy-jdkw 10.1177/154596802401105171 10.1109/TNSRE.2009.2033061 10.1109/TBME.2012.2198821 10.3389/fneur.2017.00679 10.1177/0954406216668204 10.3389/fneur.2017.00447 10.1109/TNSRE.2005.847354 10.1177/0954406215616415 10.1109/BIOROB.2008.4762885 10.3389/fneur.2017.00284 10.1177/0278364917706743 10.1016/j.mechatronics.2016.03.002 |
ContentType | Journal Article |
Copyright | Copyright © 2018 Wu, Wang, Chen and Wu. 2018 Wu, Wang, Chen and Wu |
Copyright_xml | – notice: Copyright © 2018 Wu, Wang, Chen and Wu. 2018 Wu, Wang, Chen and Wu |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3389/fneur.2018.00817 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1664-2295 |
ExternalDocumentID | oai_doaj_org_article_f6105cd349e14b4d81a3cc34b521eb58 PMC6193099 30364274 10_3389_fneur_2018_00817 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Natural Science Foundation of Jiangsu Province grantid: BK20170783 – fundername: Aeronautical Science Foundation of China – fundername: National Natural Science Foundation of China grantid: 51705240 |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK E3Z EMOBN F5P GROUPED_DOAJ GX1 HYE KQ8 M48 M~E O5R O5S OK1 P2P PGMZT RNS RPM IAO IEA IHR IHW IPNFZ NPM RIG 7X8 5PM |
ID | FETCH-LOGICAL-c462t-580f1eef3aa3a0a0d7ce8ba126d34a13a92f065c529bfa2f6185ebc09d3736c13 |
IEDL.DBID | M48 |
ISSN | 1664-2295 |
IngestDate | Wed Aug 27 01:04:31 EDT 2025 Thu Aug 21 17:40:01 EDT 2025 Sun Aug 24 04:05:08 EDT 2025 Thu Jan 02 23:10:51 EST 2025 Tue Jul 01 03:19:23 EDT 2025 Thu Apr 24 23:02:54 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | patient-active control intention-driven rehabilitation training robot-assisted upper limb exoskeleton virtual environment |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c462t-580f1eef3aa3a0a0d7ce8ba126d34a13a92f065c529bfa2f6185ebc09d3736c13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Reviewed by: Denise Taylor, Auckland University of Technology, New Zealand; Ru-Lan Hsieh, Shin Kong Wu Ho-Su Memorial Hospital, Taiwan Edited by: Nicola Smania, Università degli Studi di Verona, Italy This article was submitted to Stroke, a section of the journal Frontiers in Neurology |
OpenAccessLink | https://doaj.org/article/f6105cd349e14b4d81a3cc34b521eb58 |
PMID | 30364274 |
PQID | 2126910028 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f6105cd349e14b4d81a3cc34b521eb58 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6193099 proquest_miscellaneous_2126910028 pubmed_primary_30364274 crossref_primary_10_3389_fneur_2018_00817 crossref_citationtrail_10_3389_fneur_2018_00817 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-10-11 |
PublicationDateYYYYMMDD | 2018-10-11 |
PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-11 day: 11 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in neurology |
PublicationTitleAlternate | Front Neurol |
PublicationYear | 2018 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Jiang (B33) 2012; 7 Wilkins (B14) 2017; 8 Duschauwicke (B37) 2010; 18 Wagner (B13) 2011; 42 Klein (B27) 2010; 26 Dobkin (B4) 2005; 352 Banala (B40) 2009; 17 Writing Group (B1) 2016; 133 Kong (B49) 2006; 11 Jones (B21) 2018; 9 Winstein (B7) 2016; 47 Guzmán-Valdivia (B19) 2015; 30 Wu (B42) 2016; 230 Lenzi (B24) 2012; 59 Huang (B6) 2013; 60 Conti (B23) 2016; 35 Wu (B45) 2017; 231 Wu (B16) 2018; 48 Keller (B36) 2016; 21 Kim (B35) 2017; 36 Li (B30) 2015; 23 Gladstone (B47) 2002; 16 Meng (B10) 2015; 31 Rui (B20) 2003; 15 Harris (B11) 2010; 41 Langhorne (B2) 2011; 377 Lo (B48) 2014 Niu (B5) 2017; 8 Huang (B28) 2016; 46 Nam (B22) 2017; 8 Wu (B41) 2015; 62 Cui (B25) 2017; 22 Qian (B17) 2017; 8 Morris (B8) 2001; 8 Mefoued (B29) 2014; 140 Vanbellingen (B3) 2017; 8 Ye (B38) 2017; 14 Wu (B43) 2016; 13 Pollock (B9) 2014; 11 Lu (B15) 2017; 8 Amer (B46) 2011; 11 Ju (B44) 2005; 13 Liu (B32) 2014; 11 Oldewurtel (B39) 2007 Ren (B26) 2013; 21 Yu (B31) 2013; 43 Hu (B34) 2009; 23 Burgar (B18) 2011; 48 Wu (B12) 2015; 12 29255442 - Front Neurol. 2017 Dec 04;8:646 19940277 - Stroke. 2010 Jan;41(1):136-40 14523735 - Top Stroke Rehabil. 2001 Autumn;8(3):16-30 21674393 - J Rehabil Res Dev. 2011;48(4):445-58 28928706 - Front Neurol. 2017 Sep 04;8:447 19531605 - Neurorehabil Neural Repair. 2009 Oct;23(8):837-46 15843670 - N Engl J Med. 2005 Apr 21;352(16):1677-84 27145936 - Stroke. 2016 Jun;47(6):e98-e169 12234086 - Neurorehabil Neural Repair. 2002 Sep;16(3):232-40 26811276 - Circulation. 2016 Jan 26;133(4):447-54 25387001 - Cochrane Database Syst Rev. 2014 Nov 12;(11):CD010820 21757677 - Stroke. 2011 Sep;42(9):2630-2 22481803 - IEEE Trans Biomed Eng. 2013 Mar;60(3):838-44 23033432 - IEEE Trans Cybern. 2013 Apr;43(2):673-84 29276499 - Front Neurol. 2017 Dec 08;8:654 19211317 - IEEE Trans Neural Syst Rehabil Eng. 2009 Feb;17(1):2-8 23096119 - IEEE Trans Neural Syst Rehabil Eng. 2013 May;21(3):490-9 22588573 - IEEE Trans Biomed Eng. 2012 Aug;59(8):2180-90 16200758 - IEEE Trans Neural Syst Rehabil Eng. 2005 Sep;13(3):349-58 28659863 - Front Neurol. 2017 Jun 14;8:284 29545767 - Front Neurol. 2018 Mar 01;9:84 20194054 - IEEE Trans Neural Syst Rehabil Eng. 2010 Feb;18(1):38-48 28373860 - Front Neurol. 2017 Mar 20;8:107 21571152 - Lancet. 2011 May 14;377(9778):1693-702 29312116 - Front Neurol. 2017 Dec 14;8:679 |
References_xml | – volume: 48 start-page: 445 year: 2011 ident: B18 article-title: Robot-assisted upper-limb therapy in acute rehabilitation setting following stroke: department of veterans affairs multisite clinical trial publication-title: J Rehabil Res Dev. doi: 10.1682/JRRD.2010.04.0062 – volume: 11 start-page: 4943 year: 2011 ident: B46 article-title: Adaptive fuzzy sliding mode control using supervisory fuzzy control for 3 DOF planar robot manipulators publication-title: Appl Soft Comput J. doi: 10.1016/j.asoc.2011.06.005 – volume: 23 start-page: 837 year: 2009 ident: B34 article-title: A comparison between electromyography-driven robot and passive motion device on wrist rehabilitation for chronic stroke publication-title: Neurorehabil Neural Repair doi: 10.1177/1545968309338191 – volume: 21 start-page: 2201 year: 2016 ident: B36 article-title: ChARMin: the first actuated exoskeleton robot for pediatric arm rehabilitation publication-title: IEEE-ASME Trans Mech. doi: 10.1109/TMECH.2016.2559799 – volume: 46 start-page: 926 year: 2016 ident: B28 article-title: Design and evaluation of the RUPERT wearable upper extremity exoskeleton robot for clinical and in-home therapies publication-title: IEEE Trans Syst Man Cybern Syst. doi: 10.1109/TSMC.2015.2497205 – volume: 47 start-page: e98 year: 2016 ident: B7 article-title: Guidelines for adult stroke rehabilitation and recovery publication-title: Stroke doi: 10.1161/STR.0000000000000098 – volume: 41 start-page: 136 year: 2010 ident: B11 article-title: Strength training improves upper-limb function in individuals with stroke publication-title: Stroke doi: 10.1161/STROKEAHA.109.567438 – volume: 21 start-page: 490 year: 2013 ident: B26 article-title: Developing a multi-joint upper limb exoskeleton robot for diagnosis, therapy, and outcome evaluation in neurorehabilitation publication-title: IEEE Trans Neural Syst Rehabil Eng. doi: 10.1109/TNSRE.2012.2225073 – volume: 42 start-page: 2630 year: 2011 ident: B13 article-title: An economic analysis of robot-assisted therapy for long-term upperlimb impairment after stroke publication-title: Stroke doi: 10.1161/STROKEAHA.110.606442 – volume: 48 start-page: 1005 year: 2018 ident: B16 article-title: Development of a minimal-intervention-based admittance control strategy for upper extremity rehabilitation exoskeleton publication-title: IEEE Trans Syst Man Cy-S doi: 10.1109/TSMC.2017.2771227 – volume: 9 start-page: 84 year: 2018 ident: B21 article-title: Involuntary neuromuscular coupling between the thumb and finger of stroke survivors during dynamic movement publication-title: Front Neurol. doi: 10.3389/fneur.2018.00084 – start-page: 2527 volume-title: IEEE Conf Euro Cont Conf year: 2007 ident: B39 article-title: Patient-cooperative control strategies for coordinated functional arm movements – volume: 133 start-page: 447 year: 2016 ident: B1 article-title: Executive summary: heart disease and stroke statistics – 2016 update: a report from the American Heart Association publication-title: Circulation doi: 10.1161/cir.0000000000000366 – volume: 377 start-page: 1693 year: 2011 ident: B2 article-title: Stroke rehabilitation publication-title: Lancet doi: 10.1016/S0140-6736(11)60325-5 – volume: 7 start-page: 024502 year: 2012 ident: B33 article-title: Position control of a rehabilitation robotic joint based on neuron proportion-integral and feedforward control publication-title: J Comput Nonlin Dyn. doi: 10.1115/1.4005436 – volume: 15 start-page: 35 year: 2003 ident: B20 article-title: Upper limb robot mediated stroke therapy-GENTLE/s approach publication-title: Auton Robots doi: 10.1023/A:1024436732030 – volume: 11 start-page: 1450004 year: 2014 ident: B32 article-title: Fuzzy sliding mode control of a multi-DOF parallel robot in rehabilitation environment publication-title: Int J Hum Robot. doi: 10.1142/S0219843614500042 – volume: 14 start-page: 1650031 year: 2017 ident: B38 article-title: Motion detection enhanced control of an upper limb exoskeleton robot for rehabilitation training publication-title: Int J Hum Robot. doi: 10.1142/S0219843616500316 – volume-title: Exoskeleton Robot for Upper Limb Rehabilitation: Design Analysis and Control year: 2014 ident: B48 – volume: 43 start-page: 673 year: 2013 ident: B31 article-title: Neural PID control of robot manipulators with application to an upper limb exoskeleton publication-title: IEEE Trans Cybernetics doi: 10.1109/TSMCB.2012.2214381 – volume: 13 start-page: 1550042 year: 2016 ident: B43 article-title: Analytical inverse kinematic resolution of a redundant exoskeleton for upper-limb rehabilitation publication-title: Int J Hum Robot. doi: 10.1142/S0219843615500425 – volume: 12 start-page: 1 year: 2015 ident: B12 article-title: Design and control of a powered hip exoskeleton for walking assistance publication-title: Int J Adv Robot Syst. doi: 10.5772/59991 – volume: 23 start-page: 555 year: 2015 ident: B30 article-title: Fuzzy approximation-based adaptive backstepping control of an exoskeleton for human upper limbs publication-title: IEEE Trans Fuzzy Syst. doi: 10.1109/TFUZZ.2014.2317511 – volume: 30 start-page: 55 year: 2015 ident: B19 article-title: HipBot – the design, development and control of a therapeutic robot for hip rehabilitation publication-title: Mechatronics doi: 10.1016/j.mechatronics.2015.06.007 – volume: 26 start-page: 710 year: 2010 ident: B27 article-title: Optimization of a parallel shoulder mechanism to achieve a high-force, low-mass, robotic-arm exoskeleton publication-title: IEEE Trans Robot. doi: 10.1109/TRO.2010.2052170 – volume: 11 start-page: 428 year: 2006 ident: B49 article-title: Design and control of an exoskeleton for the elderly and patients publication-title: IEEE-ASME Trans Mech. doi: 10.1109/TMECH.2006.878550 – volume: 22 start-page: 161 year: 2017 ident: B25 article-title: Design of a 7-DOF cable-driven arm exoskeleton (CAREX-7) and a controller for dexterous motion training or assistance publication-title: IEEE-ASME Trans Mech. doi: 10.1109/TMECH.2016.2618888 – volume: 62 start-page: 1599 year: 2015 ident: B41 article-title: Transmission model and compensation control of double-tendon-sheath actuation system publication-title: IEEE Trans Ind Electron. doi: 10.1109/TIE.2014.2360062 – volume: 31 start-page: 132 year: 2015 ident: B10 article-title: Recent development of mechanisms and control strategies for robot-assisted lower limb rehabilitation publication-title: Mechatronics doi: 10.1016/j.mechatronics.2015.04.005 – volume: 140 start-page: 27 year: 2014 ident: B29 article-title: A robust adaptive neural control scheme to drive an actuated orthosis for assistance of knee movements publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.03.038 – volume: 8 start-page: 107 year: 2017 ident: B15 article-title: Advanced myoelectric control for robotic hand-assisted training: outcome from a stroke patient publication-title: Front Neurol doi: 10.3389/fneur.2017.00107 – volume: 352 start-page: 1677 year: 2005 ident: B4 article-title: Rehabilitation after stroke publication-title: N Engl J Med doi: 10.1056/NEJMcp043511 – volume: 11 start-page: CD010820 year: 2014 ident: B9 article-title: Interventions for improving upper limb function after stroke publication-title: Cochrane Database Syst Rev. doi: 10.1002/14651858.CD010820.pub2 – volume: 8 start-page: 646 year: 2017 ident: B5 article-title: Sliding mode tracking control of a wire-driven upper-limb rehabilitation robot with nonlinear disturbance observer publication-title: Front Neurol. doi: 10.3389/fneur.2017.00646 – volume: 8 start-page: 654 year: 2017 ident: B3 article-title: Usability of videogame-based dexterity training in the early rehabilitation phase of stroke patients: a pilot study publication-title: Front Neurol doi: 10.3389/fneur.2017.00654 – volume: 60 start-page: 838 year: 2013 ident: B6 article-title: Augmented dynamics and motor exploration as training for stroke publication-title: IEEE Trans. Biomed. Eng doi: 10.1109/TBME.2012.2192116 – volume: 8 start-page: 16 year: 2001 ident: B8 article-title: Constraint-induced therapy approach to restoring function after neurological injury publication-title: Top Stroke Rehabil. doi: 10.1310/bljx-m89n-ptpy-jdkw – volume: 16 start-page: 232 year: 2002 ident: B47 article-title: The Fugl-Meyer assessment of motor recovery after stroke: a critical review of its measurement properties publication-title: Neurorehabil Neural Repair doi: 10.1177/154596802401105171 – volume: 18 start-page: 38 year: 2010 ident: B37 article-title: Path control: a method for patient-cooperative robot-aided gait rehabilitation publication-title: IEEE Trans Neural Syst Rehabil Eng. doi: 10.1109/TNSRE.2009.2033061 – volume: 59 start-page: 2180 year: 2012 ident: B24 article-title: Intention-based EMG control for powered exoskeletons publication-title: IEEE Trans Biomed Eng. doi: 10.1109/TBME.2012.2198821 – volume: 8 start-page: 679 year: 2017 ident: B22 article-title: The effects of upper-limb training assisted with an electromyography-driven neuromuscular electrical stimulation robotic hand on chronic stroke publication-title: Front Neurol. doi: 10.3389/fneur.2017.00679 – volume: 231 start-page: 4360 year: 2017 ident: B45 article-title: Modeling and position control of a therapeutic exoskeleton targeting upper extremity rehabilitation publication-title: Proc Inst Mech Eng C J Mech Eng Sci. doi: 10.1177/0954406216668204 – volume: 8 start-page: 447 year: 2017 ident: B17 article-title: Early stroke rehabilitation of the upper limb assisted with an electromyography-driven neuromuscular electrical stimulation-robotic arm publication-title: Front Neurol. doi: 10.3389/fneur.2017.00447 – volume: 13 start-page: 349 year: 2005 ident: B44 article-title: A rehabilitation robot with force-position hybrid fuzzy controller: hybrid fuzzy control of rehabilitation robot publication-title: IEEE Trans Neural Syst Rehabil Eng. doi: 10.1109/TNSRE.2005.847354 – volume: 230 start-page: 3777 year: 2016 ident: B42 article-title: Development and analysis of a gravity-balanced exoskeleton for active rehabilitation training of upper limb publication-title: Proc Inst Mech Eng C J Mech Eng Sci. doi: 10.1177/0954406215616415 – volume: 17 start-page: 2 year: 2009 ident: B40 article-title: Robot assisted gait training with active leg exoskeleton (ALEX) publication-title: IEEE Trans Neural Syst Rehabil Eng. doi: 10.1109/BIOROB.2008.4762885 – volume: 8 start-page: 284 year: 2017 ident: B14 article-title: Neural plasticity in moderate to severe chronic stroke following a device-assisted task-specific arm/hand intervention publication-title: Front Neurol. doi: 10.3389/fneur.2017.00284 – volume: 36 start-page: 414 year: 2017 ident: B35 article-title: An upper-body rehabilitation exoskeleton Harmony with an anatomical shoulder mechanism: Design, modeling, control, and performance evaluation publication-title: Int J Robot Res. doi: 10.1177/0278364917706743 – volume: 35 start-page: 192 year: 2016 ident: B23 article-title: A novel kinematic architecture for portable hand exoskeletons publication-title: Mechatronics doi: 10.1016/j.mechatronics.2016.03.002 – reference: 26811276 - Circulation. 2016 Jan 26;133(4):447-54 – reference: 28928706 - Front Neurol. 2017 Sep 04;8:447 – reference: 12234086 - Neurorehabil Neural Repair. 2002 Sep;16(3):232-40 – reference: 25387001 - Cochrane Database Syst Rev. 2014 Nov 12;(11):CD010820 – reference: 29312116 - Front Neurol. 2017 Dec 14;8:679 – reference: 20194054 - IEEE Trans Neural Syst Rehabil Eng. 2010 Feb;18(1):38-48 – reference: 29545767 - Front Neurol. 2018 Mar 01;9:84 – reference: 29255442 - Front Neurol. 2017 Dec 04;8:646 – reference: 23096119 - IEEE Trans Neural Syst Rehabil Eng. 2013 May;21(3):490-9 – reference: 28659863 - Front Neurol. 2017 Jun 14;8:284 – reference: 22481803 - IEEE Trans Biomed Eng. 2013 Mar;60(3):838-44 – reference: 14523735 - Top Stroke Rehabil. 2001 Autumn;8(3):16-30 – reference: 21571152 - Lancet. 2011 May 14;377(9778):1693-702 – reference: 19211317 - IEEE Trans Neural Syst Rehabil Eng. 2009 Feb;17(1):2-8 – reference: 19940277 - Stroke. 2010 Jan;41(1):136-40 – reference: 23033432 - IEEE Trans Cybern. 2013 Apr;43(2):673-84 – reference: 29276499 - Front Neurol. 2017 Dec 08;8:654 – reference: 15843670 - N Engl J Med. 2005 Apr 21;352(16):1677-84 – reference: 28373860 - Front Neurol. 2017 Mar 20;8:107 – reference: 16200758 - IEEE Trans Neural Syst Rehabil Eng. 2005 Sep;13(3):349-58 – reference: 27145936 - Stroke. 2016 Jun;47(6):e98-e169 – reference: 19531605 - Neurorehabil Neural Repair. 2009 Oct;23(8):837-46 – reference: 21674393 - J Rehabil Res Dev. 2011;48(4):445-58 – reference: 22588573 - IEEE Trans Biomed Eng. 2012 Aug;59(8):2180-90 – reference: 21757677 - Stroke. 2011 Sep;42(9):2630-2 |
SSID | ssj0000399363 |
Score | 2.3114612 |
Snippet | Robot-assisted therapy affords effective advantages to the rehabilitation training of patients with motion impairment problems. To meet the challenge of... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 817 |
SubjectTerms | intention-driven Neurology patient-active control rehabilitation training robot-assisted upper limb exoskeleton virtual environment |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA_iQbyI384vInjxULY06UeOOjaGqAzZYAchJOkLitoNneCf70ta5yaiF0-FNm3D7732917z-nuEnBqTZkYyHeVaYILCCh4ZLUzkmMQNWBDhO-T1TdobistRMppr9eVrwip54Aq4pkN-T2zBhQQmjChyprm1XBjkHTBJ-M0XOW8umQrvYM-7Ka_WJTELk03n9SF9KZevncxDf7IvHgpy_T_FmN9LJee4p7tO1uqgkZ5Xk90gS1BukpXrell8i9z1K3XU6Dy8vWi7qj-nY0c17fs-aFDQzvv49RFJBoM9Ogj138hadDiZwAu9eng29HZBtJsO6uYR22TY7QzavahumxBZkcbTKMlbjgE4rjXXLd0qMgu50SxOEUXNuJaxw8DDJrE0TscIcJ6AsS1Z8IynlvEdslyOS9gjNDfSIakD55kVmdQyLfDaBQgLzjgTN0jzE0Rl6-n51hZPCnMLD7sKsCsPuwqwN8jZ7IxJpafxy9gLb5fZOK-EHXagf6jaP9Rf_tEgJ59WVfjk-OUQXcL47VUhaafSK9DimN3KyrNbeWIXmLA3SLZg_4W5LB4pH-6DOjdmpBzD7v3_mPwBWfVweK5k7JAsT1_e4AiDoKk5Dv7-ASwdB_s priority: 102 providerName: Directory of Open Access Journals |
Title | Patient-Active Control of a Powered Exoskeleton Targeting Upper Limb Rehabilitation Training |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30364274 https://www.proquest.com/docview/2126910028 https://pubmed.ncbi.nlm.nih.gov/PMC6193099 https://doaj.org/article/f6105cd349e14b4d81a3cc34b521eb58 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA96gvgifrt-HBF88aFe06Rp8yByHncc4sohu3APQkjSiR6e7bq7B-d_70zaW60sgk-lbdomM0l-v0mmM4y99F5X3giX1U6hgSIamXmnfBaFwQMEUGkdcvpRH8_V-9Py9Pfv0YMAV1tNO8onNV-ev7788fMtDvg3ZHEi3u5FCv1IXlrkFlmL6jq7gbhU0TCdDmQ_zcuExSm1mtBaZZTHut-33PqSEU6lcP7bOOjfrpR_YNPRHXZ7IJV8v-8Fd9k1aO-xm9Nh2_w--3zSR0_N9tPsxg96_3TeRe74CeVJg4YfXnarbwhCSAb5LPmHI6rx-WIBS_7h7Lvnn0ZBvflsSC7xgM2PDmcHx9mQViELShfrrKzzKACidE663OVNFaD2ThS6kcoJ6UwRkZiEsjA-uiJqhHTwITeNrKQOQj5kO23XwmPGa28igj5IWQVVGWd0g-9uQAWIPvpiwvauhGjDUD1KfXFu0fYgsdskdktit0nsE_Zq88Sij7fxj7LvSC-bchQpO13oll_sMPAsVj8vA7bMgFBeNbVwMgSpPPIW8GU9YS-utGpxZNF2iWuhu1hZBHVtKEItlnnUa3nzKQJ-hQb9hFUj_Y_qMr7Tnn1N0bvRYpVIy5_8R0Ofslt0QpApxDO2s15ewHPkQmu_m9YQdlNH_wXkgQoc |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Patient-Active+Control+of+a+Powered+Exoskeleton+Targeting+Upper+Limb+Rehabilitation+Training&rft.jtitle=Frontiers+in+neurology&rft.au=Wu%2C+Qingcong&rft.au=Wang%2C+Xingsong&rft.au=Chen%2C+Bai&rft.au=Wu%2C+Hongtao&rft.date=2018-10-11&rft.issn=1664-2295&rft.eissn=1664-2295&rft.volume=9&rft_id=info:doi/10.3389%2Ffneur.2018.00817&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fneur_2018_00817 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-2295&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-2295&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-2295&client=summon |