Patient-Active Control of a Powered Exoskeleton Targeting Upper Limb Rehabilitation Training

Robot-assisted therapy affords effective advantages to the rehabilitation training of patients with motion impairment problems. To meet the challenge of integrating the active participation of a patient in robotic training, this study presents an admittance-based patient-active control scheme for re...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in neurology Vol. 9; p. 817
Main Authors Wu, Qingcong, Wang, Xingsong, Chen, Bai, Wu, Hongtao
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 11.10.2018
Subjects
Online AccessGet full text
ISSN1664-2295
1664-2295
DOI10.3389/fneur.2018.00817

Cover

Loading…
Abstract Robot-assisted therapy affords effective advantages to the rehabilitation training of patients with motion impairment problems. To meet the challenge of integrating the active participation of a patient in robotic training, this study presents an admittance-based patient-active control scheme for real-time intention-driven control of a powered upper limb exoskeleton. A comprehensive overview is proposed to introduce the major mechanical structure and the real-time control system of the developed therapeutic robot, which provides seven actuated degrees of freedom and achieves the natural ranges of human arm movement. Moreover, the dynamic characteristics of the human-exoskeleton system are studied via a Lagrangian method. The patient-active control strategy consisting of an admittance module and a virtual environment module is developed to regulate the robot configurations and interaction forces during rehabilitation training. An audiovisual game-like interface is integrated into the therapeutic system to encourage the voluntary efforts of the patient and recover the neural plasticity of the brain. Further experimental investigation, involving a position tracking experiment, a free arm training experiment, and a virtual airplane-game operation experiment, is conducted with three healthy subjects and eight hemiplegic patients with different motor abilities. Experimental results validate the feasibility of the proposed scheme in providing patient-active rehabilitation training.
AbstractList Robot-assisted therapy affords effective advantages to the rehabilitation training of patients with motion impairment problems. To meet the challenge of integrating the active participation of a patient in robotic training, this study presents an admittance-based patient-active control scheme for real-time intention-driven control of a powered upper limb exoskeleton. A comprehensive overview is proposed to introduce the major mechanical structure and the real-time control system of the developed therapeutic robot, which provides seven actuated degrees of freedom and achieves the natural ranges of human arm movement. Moreover, the dynamic characteristics of the human-exoskeleton system are studied via a Lagrangian method. The patient-active control strategy consisting of an admittance module and a virtual environment module is developed to regulate the robot configurations and interaction forces during rehabilitation training. An audiovisual game-like interface is integrated into the therapeutic system to encourage the voluntary efforts of the patient and recover the neural plasticity of the brain. Further experimental investigation, involving a position tracking experiment, a free arm training experiment, and a virtual airplane-game operation experiment, is conducted with three healthy subjects and eight hemiplegic patients with different motor abilities. Experimental results validate the feasibility of the proposed scheme in providing patient-active rehabilitation training.
Robot-assisted therapy affords effective advantages to the rehabilitation training of patients with motion impairment problems. To meet the challenge of integrating the active participation of a patient in robotic training, this study presents an admittance-based patient-active control scheme for real-time intention-driven control of a powered upper limb exoskeleton. A comprehensive overview is proposed to introduce the major mechanical structure and the real-time control system of the developed therapeutic robot, which provides seven actuated degrees of freedom and achieves the natural ranges of human arm movement. Moreover, the dynamic characteristics of the human-exoskeleton system are studied via a Lagrangian method. The patient-active control strategy consisting of an admittance module and a virtual environment module is developed to regulate the robot configurations and interaction forces during rehabilitation training. An audiovisual game-like interface is integrated into the therapeutic system to encourage the voluntary efforts of the patient and recover the neural plasticity of the brain. Further experimental investigation, involving a position tracking experiment, a free arm training experiment, and a virtual airplane-game operation experiment, is conducted with three healthy subjects and eight hemiplegic patients with different motor abilities. Experimental results validate the feasibility of the proposed scheme in providing patient-active rehabilitation training.Robot-assisted therapy affords effective advantages to the rehabilitation training of patients with motion impairment problems. To meet the challenge of integrating the active participation of a patient in robotic training, this study presents an admittance-based patient-active control scheme for real-time intention-driven control of a powered upper limb exoskeleton. A comprehensive overview is proposed to introduce the major mechanical structure and the real-time control system of the developed therapeutic robot, which provides seven actuated degrees of freedom and achieves the natural ranges of human arm movement. Moreover, the dynamic characteristics of the human-exoskeleton system are studied via a Lagrangian method. The patient-active control strategy consisting of an admittance module and a virtual environment module is developed to regulate the robot configurations and interaction forces during rehabilitation training. An audiovisual game-like interface is integrated into the therapeutic system to encourage the voluntary efforts of the patient and recover the neural plasticity of the brain. Further experimental investigation, involving a position tracking experiment, a free arm training experiment, and a virtual airplane-game operation experiment, is conducted with three healthy subjects and eight hemiplegic patients with different motor abilities. Experimental results validate the feasibility of the proposed scheme in providing patient-active rehabilitation training.
Author Wang, Xingsong
Chen, Bai
Wu, Hongtao
Wu, Qingcong
AuthorAffiliation 1 College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics , Nanjing , China
2 College of Mechanical Engineering, Southeast University , Nanjing , China
AuthorAffiliation_xml – name: 2 College of Mechanical Engineering, Southeast University , Nanjing , China
– name: 1 College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics , Nanjing , China
Author_xml – sequence: 1
  givenname: Qingcong
  surname: Wu
  fullname: Wu, Qingcong
– sequence: 2
  givenname: Xingsong
  surname: Wang
  fullname: Wang, Xingsong
– sequence: 3
  givenname: Bai
  surname: Chen
  fullname: Chen, Bai
– sequence: 4
  givenname: Hongtao
  surname: Wu
  fullname: Wu, Hongtao
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30364274$$D View this record in MEDLINE/PubMed
BookMark eNp1kt1vFCEUxYmpsXXtu09mHn2ZlY8ZdngxaTa1NtnExrRvJuTCXLbUWVgZtrX_veyHTWsiLxA453fhct6SoxADEvKe0akQnfrkAm7SlFPWTSnt2OwVOWFSNjXnqj16tj4mp-N4R8sQSgkp3pBjQYVs-Kw5IT-uIHsMuT6z2d9jNY8hpzhU0VVQXcUHTNhX57_j-BMHzDFU15CWmH1YVjfrNaZq4Vem-o63YPzgc4FtNQl8KJJ35LWDYcTTwzwhN1_Or-df68W3i8v52aK2jeS5bjvqGKITAAIo0H5msTPAuOxFA0yA4o7K1rZcGQfcSda1aCxVvZgJaZmYkMs9t49wp9fJryA96ghe7zZiWmpI2dsBdTHT1hauQtaYpu8YCGtFY1rO0LRdYX3es9Ybs8Lelt4kGF5AX54Ef6uX8V5LpgQtDZ6QjwdAir82OGa98qPFYYCAcTNqXt6lGKV8W-vD81pPRf5-TxHQvcCmOI4J3ZOEUb0Ngd6FQG9DoHchKBb5j8UevqXc1g__N_4B2kO43A
CitedBy_id crossref_primary_10_1007_s00170_024_14830_y
crossref_primary_10_54105_ijpmh_B1005_091421
crossref_primary_10_1002_rob_22455
crossref_primary_10_1016_j_robot_2023_104555
crossref_primary_10_1109_ACCESS_2019_2949197
crossref_primary_10_35940_ijpmh_B1005_091421
crossref_primary_10_1109_ACCESS_2019_2938566
crossref_primary_10_3389_fnbot_2021_692562
crossref_primary_10_1109_LRA_2020_3043197
crossref_primary_10_1155_2020_8814460
crossref_primary_10_1109_OJEMB_2024_3363137
crossref_primary_10_7717_peerj_15095
crossref_primary_10_1109_ACCESS_2019_2941973
crossref_primary_10_3389_frobt_2021_745018
crossref_primary_10_3390_math11071598
crossref_primary_10_1007_s10209_022_00929_0
crossref_primary_10_1177_0959651819825984
crossref_primary_10_2196_19071
crossref_primary_10_1109_JBHI_2024_3414291
crossref_primary_10_1007_s11370_024_00558_x
crossref_primary_10_3390_machines11040447
crossref_primary_10_3390_s22103747
crossref_primary_10_1080_10447318_2022_2050545
crossref_primary_10_1186_s12984_022_01058_8
crossref_primary_10_1016_j_aei_2024_102482
crossref_primary_10_3390_s18113611
crossref_primary_10_4103_joss_joss_6_23
Cites_doi 10.1682/JRRD.2010.04.0062
10.1016/j.asoc.2011.06.005
10.1177/1545968309338191
10.1109/TMECH.2016.2559799
10.1109/TSMC.2015.2497205
10.1161/STR.0000000000000098
10.1161/STROKEAHA.109.567438
10.1109/TNSRE.2012.2225073
10.1161/STROKEAHA.110.606442
10.1109/TSMC.2017.2771227
10.3389/fneur.2018.00084
10.1161/cir.0000000000000366
10.1016/S0140-6736(11)60325-5
10.1115/1.4005436
10.1023/A:1024436732030
10.1142/S0219843614500042
10.1142/S0219843616500316
10.1109/TSMCB.2012.2214381
10.1142/S0219843615500425
10.5772/59991
10.1109/TFUZZ.2014.2317511
10.1016/j.mechatronics.2015.06.007
10.1109/TRO.2010.2052170
10.1109/TMECH.2006.878550
10.1109/TMECH.2016.2618888
10.1109/TIE.2014.2360062
10.1016/j.mechatronics.2015.04.005
10.1016/j.neucom.2014.03.038
10.3389/fneur.2017.00107
10.1056/NEJMcp043511
10.1002/14651858.CD010820.pub2
10.3389/fneur.2017.00646
10.3389/fneur.2017.00654
10.1109/TBME.2012.2192116
10.1310/bljx-m89n-ptpy-jdkw
10.1177/154596802401105171
10.1109/TNSRE.2009.2033061
10.1109/TBME.2012.2198821
10.3389/fneur.2017.00679
10.1177/0954406216668204
10.3389/fneur.2017.00447
10.1109/TNSRE.2005.847354
10.1177/0954406215616415
10.1109/BIOROB.2008.4762885
10.3389/fneur.2017.00284
10.1177/0278364917706743
10.1016/j.mechatronics.2016.03.002
ContentType Journal Article
Copyright Copyright © 2018 Wu, Wang, Chen and Wu. 2018 Wu, Wang, Chen and Wu
Copyright_xml – notice: Copyright © 2018 Wu, Wang, Chen and Wu. 2018 Wu, Wang, Chen and Wu
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fneur.2018.00817
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1664-2295
ExternalDocumentID oai_doaj_org_article_f6105cd349e14b4d81a3cc34b521eb58
PMC6193099
30364274
10_3389_fneur_2018_00817
Genre Journal Article
GrantInformation_xml – fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK20170783
– fundername: Aeronautical Science Foundation of China
– fundername: National Natural Science Foundation of China
  grantid: 51705240
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
E3Z
EMOBN
F5P
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
O5R
O5S
OK1
P2P
PGMZT
RNS
RPM
IAO
IEA
IHR
IHW
IPNFZ
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c462t-580f1eef3aa3a0a0d7ce8ba126d34a13a92f065c529bfa2f6185ebc09d3736c13
IEDL.DBID M48
ISSN 1664-2295
IngestDate Wed Aug 27 01:04:31 EDT 2025
Thu Aug 21 17:40:01 EDT 2025
Sun Aug 24 04:05:08 EDT 2025
Thu Jan 02 23:10:51 EST 2025
Tue Jul 01 03:19:23 EDT 2025
Thu Apr 24 23:02:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords patient-active control
intention-driven
rehabilitation training
robot-assisted
upper limb exoskeleton
virtual environment
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c462t-580f1eef3aa3a0a0d7ce8ba126d34a13a92f065c529bfa2f6185ebc09d3736c13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Reviewed by: Denise Taylor, Auckland University of Technology, New Zealand; Ru-Lan Hsieh, Shin Kong Wu Ho-Su Memorial Hospital, Taiwan
Edited by: Nicola Smania, Università degli Studi di Verona, Italy
This article was submitted to Stroke, a section of the journal Frontiers in Neurology
OpenAccessLink https://doaj.org/article/f6105cd349e14b4d81a3cc34b521eb58
PMID 30364274
PQID 2126910028
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_f6105cd349e14b4d81a3cc34b521eb58
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6193099
proquest_miscellaneous_2126910028
pubmed_primary_30364274
crossref_primary_10_3389_fneur_2018_00817
crossref_citationtrail_10_3389_fneur_2018_00817
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-10-11
PublicationDateYYYYMMDD 2018-10-11
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-11
  day: 11
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in neurology
PublicationTitleAlternate Front Neurol
PublicationYear 2018
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Jiang (B33) 2012; 7
Wilkins (B14) 2017; 8
Duschauwicke (B37) 2010; 18
Wagner (B13) 2011; 42
Klein (B27) 2010; 26
Dobkin (B4) 2005; 352
Banala (B40) 2009; 17
Writing Group (B1) 2016; 133
Kong (B49) 2006; 11
Jones (B21) 2018; 9
Winstein (B7) 2016; 47
Guzmán-Valdivia (B19) 2015; 30
Wu (B42) 2016; 230
Lenzi (B24) 2012; 59
Huang (B6) 2013; 60
Conti (B23) 2016; 35
Wu (B45) 2017; 231
Wu (B16) 2018; 48
Keller (B36) 2016; 21
Kim (B35) 2017; 36
Li (B30) 2015; 23
Gladstone (B47) 2002; 16
Meng (B10) 2015; 31
Rui (B20) 2003; 15
Harris (B11) 2010; 41
Langhorne (B2) 2011; 377
Lo (B48) 2014
Niu (B5) 2017; 8
Huang (B28) 2016; 46
Nam (B22) 2017; 8
Wu (B41) 2015; 62
Cui (B25) 2017; 22
Qian (B17) 2017; 8
Morris (B8) 2001; 8
Mefoued (B29) 2014; 140
Vanbellingen (B3) 2017; 8
Ye (B38) 2017; 14
Wu (B43) 2016; 13
Pollock (B9) 2014; 11
Lu (B15) 2017; 8
Amer (B46) 2011; 11
Ju (B44) 2005; 13
Liu (B32) 2014; 11
Oldewurtel (B39) 2007
Ren (B26) 2013; 21
Yu (B31) 2013; 43
Hu (B34) 2009; 23
Burgar (B18) 2011; 48
Wu (B12) 2015; 12
29255442 - Front Neurol. 2017 Dec 04;8:646
19940277 - Stroke. 2010 Jan;41(1):136-40
14523735 - Top Stroke Rehabil. 2001 Autumn;8(3):16-30
21674393 - J Rehabil Res Dev. 2011;48(4):445-58
28928706 - Front Neurol. 2017 Sep 04;8:447
19531605 - Neurorehabil Neural Repair. 2009 Oct;23(8):837-46
15843670 - N Engl J Med. 2005 Apr 21;352(16):1677-84
27145936 - Stroke. 2016 Jun;47(6):e98-e169
12234086 - Neurorehabil Neural Repair. 2002 Sep;16(3):232-40
26811276 - Circulation. 2016 Jan 26;133(4):447-54
25387001 - Cochrane Database Syst Rev. 2014 Nov 12;(11):CD010820
21757677 - Stroke. 2011 Sep;42(9):2630-2
22481803 - IEEE Trans Biomed Eng. 2013 Mar;60(3):838-44
23033432 - IEEE Trans Cybern. 2013 Apr;43(2):673-84
29276499 - Front Neurol. 2017 Dec 08;8:654
19211317 - IEEE Trans Neural Syst Rehabil Eng. 2009 Feb;17(1):2-8
23096119 - IEEE Trans Neural Syst Rehabil Eng. 2013 May;21(3):490-9
22588573 - IEEE Trans Biomed Eng. 2012 Aug;59(8):2180-90
16200758 - IEEE Trans Neural Syst Rehabil Eng. 2005 Sep;13(3):349-58
28659863 - Front Neurol. 2017 Jun 14;8:284
29545767 - Front Neurol. 2018 Mar 01;9:84
20194054 - IEEE Trans Neural Syst Rehabil Eng. 2010 Feb;18(1):38-48
28373860 - Front Neurol. 2017 Mar 20;8:107
21571152 - Lancet. 2011 May 14;377(9778):1693-702
29312116 - Front Neurol. 2017 Dec 14;8:679
References_xml – volume: 48
  start-page: 445
  year: 2011
  ident: B18
  article-title: Robot-assisted upper-limb therapy in acute rehabilitation setting following stroke: department of veterans affairs multisite clinical trial
  publication-title: J Rehabil Res Dev.
  doi: 10.1682/JRRD.2010.04.0062
– volume: 11
  start-page: 4943
  year: 2011
  ident: B46
  article-title: Adaptive fuzzy sliding mode control using supervisory fuzzy control for 3 DOF planar robot manipulators
  publication-title: Appl Soft Comput J.
  doi: 10.1016/j.asoc.2011.06.005
– volume: 23
  start-page: 837
  year: 2009
  ident: B34
  article-title: A comparison between electromyography-driven robot and passive motion device on wrist rehabilitation for chronic stroke
  publication-title: Neurorehabil Neural Repair
  doi: 10.1177/1545968309338191
– volume: 21
  start-page: 2201
  year: 2016
  ident: B36
  article-title: ChARMin: the first actuated exoskeleton robot for pediatric arm rehabilitation
  publication-title: IEEE-ASME Trans Mech.
  doi: 10.1109/TMECH.2016.2559799
– volume: 46
  start-page: 926
  year: 2016
  ident: B28
  article-title: Design and evaluation of the RUPERT wearable upper extremity exoskeleton robot for clinical and in-home therapies
  publication-title: IEEE Trans Syst Man Cybern Syst.
  doi: 10.1109/TSMC.2015.2497205
– volume: 47
  start-page: e98
  year: 2016
  ident: B7
  article-title: Guidelines for adult stroke rehabilitation and recovery
  publication-title: Stroke
  doi: 10.1161/STR.0000000000000098
– volume: 41
  start-page: 136
  year: 2010
  ident: B11
  article-title: Strength training improves upper-limb function in individuals with stroke
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.109.567438
– volume: 21
  start-page: 490
  year: 2013
  ident: B26
  article-title: Developing a multi-joint upper limb exoskeleton robot for diagnosis, therapy, and outcome evaluation in neurorehabilitation
  publication-title: IEEE Trans Neural Syst Rehabil Eng.
  doi: 10.1109/TNSRE.2012.2225073
– volume: 42
  start-page: 2630
  year: 2011
  ident: B13
  article-title: An economic analysis of robot-assisted therapy for long-term upperlimb impairment after stroke
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.110.606442
– volume: 48
  start-page: 1005
  year: 2018
  ident: B16
  article-title: Development of a minimal-intervention-based admittance control strategy for upper extremity rehabilitation exoskeleton
  publication-title: IEEE Trans Syst Man Cy-S
  doi: 10.1109/TSMC.2017.2771227
– volume: 9
  start-page: 84
  year: 2018
  ident: B21
  article-title: Involuntary neuromuscular coupling between the thumb and finger of stroke survivors during dynamic movement
  publication-title: Front Neurol.
  doi: 10.3389/fneur.2018.00084
– start-page: 2527
  volume-title: IEEE Conf Euro Cont Conf
  year: 2007
  ident: B39
  article-title: Patient-cooperative control strategies for coordinated functional arm movements
– volume: 133
  start-page: 447
  year: 2016
  ident: B1
  article-title: Executive summary: heart disease and stroke statistics – 2016 update: a report from the American Heart Association
  publication-title: Circulation
  doi: 10.1161/cir.0000000000000366
– volume: 377
  start-page: 1693
  year: 2011
  ident: B2
  article-title: Stroke rehabilitation
  publication-title: Lancet
  doi: 10.1016/S0140-6736(11)60325-5
– volume: 7
  start-page: 024502
  year: 2012
  ident: B33
  article-title: Position control of a rehabilitation robotic joint based on neuron proportion-integral and feedforward control
  publication-title: J Comput Nonlin Dyn.
  doi: 10.1115/1.4005436
– volume: 15
  start-page: 35
  year: 2003
  ident: B20
  article-title: Upper limb robot mediated stroke therapy-GENTLE/s approach
  publication-title: Auton Robots
  doi: 10.1023/A:1024436732030
– volume: 11
  start-page: 1450004
  year: 2014
  ident: B32
  article-title: Fuzzy sliding mode control of a multi-DOF parallel robot in rehabilitation environment
  publication-title: Int J Hum Robot.
  doi: 10.1142/S0219843614500042
– volume: 14
  start-page: 1650031
  year: 2017
  ident: B38
  article-title: Motion detection enhanced control of an upper limb exoskeleton robot for rehabilitation training
  publication-title: Int J Hum Robot.
  doi: 10.1142/S0219843616500316
– volume-title: Exoskeleton Robot for Upper Limb Rehabilitation: Design Analysis and Control
  year: 2014
  ident: B48
– volume: 43
  start-page: 673
  year: 2013
  ident: B31
  article-title: Neural PID control of robot manipulators with application to an upper limb exoskeleton
  publication-title: IEEE Trans Cybernetics
  doi: 10.1109/TSMCB.2012.2214381
– volume: 13
  start-page: 1550042
  year: 2016
  ident: B43
  article-title: Analytical inverse kinematic resolution of a redundant exoskeleton for upper-limb rehabilitation
  publication-title: Int J Hum Robot.
  doi: 10.1142/S0219843615500425
– volume: 12
  start-page: 1
  year: 2015
  ident: B12
  article-title: Design and control of a powered hip exoskeleton for walking assistance
  publication-title: Int J Adv Robot Syst.
  doi: 10.5772/59991
– volume: 23
  start-page: 555
  year: 2015
  ident: B30
  article-title: Fuzzy approximation-based adaptive backstepping control of an exoskeleton for human upper limbs
  publication-title: IEEE Trans Fuzzy Syst.
  doi: 10.1109/TFUZZ.2014.2317511
– volume: 30
  start-page: 55
  year: 2015
  ident: B19
  article-title: HipBot – the design, development and control of a therapeutic robot for hip rehabilitation
  publication-title: Mechatronics
  doi: 10.1016/j.mechatronics.2015.06.007
– volume: 26
  start-page: 710
  year: 2010
  ident: B27
  article-title: Optimization of a parallel shoulder mechanism to achieve a high-force, low-mass, robotic-arm exoskeleton
  publication-title: IEEE Trans Robot.
  doi: 10.1109/TRO.2010.2052170
– volume: 11
  start-page: 428
  year: 2006
  ident: B49
  article-title: Design and control of an exoskeleton for the elderly and patients
  publication-title: IEEE-ASME Trans Mech.
  doi: 10.1109/TMECH.2006.878550
– volume: 22
  start-page: 161
  year: 2017
  ident: B25
  article-title: Design of a 7-DOF cable-driven arm exoskeleton (CAREX-7) and a controller for dexterous motion training or assistance
  publication-title: IEEE-ASME Trans Mech.
  doi: 10.1109/TMECH.2016.2618888
– volume: 62
  start-page: 1599
  year: 2015
  ident: B41
  article-title: Transmission model and compensation control of double-tendon-sheath actuation system
  publication-title: IEEE Trans Ind Electron.
  doi: 10.1109/TIE.2014.2360062
– volume: 31
  start-page: 132
  year: 2015
  ident: B10
  article-title: Recent development of mechanisms and control strategies for robot-assisted lower limb rehabilitation
  publication-title: Mechatronics
  doi: 10.1016/j.mechatronics.2015.04.005
– volume: 140
  start-page: 27
  year: 2014
  ident: B29
  article-title: A robust adaptive neural control scheme to drive an actuated orthosis for assistance of knee movements
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.03.038
– volume: 8
  start-page: 107
  year: 2017
  ident: B15
  article-title: Advanced myoelectric control for robotic hand-assisted training: outcome from a stroke patient
  publication-title: Front Neurol
  doi: 10.3389/fneur.2017.00107
– volume: 352
  start-page: 1677
  year: 2005
  ident: B4
  article-title: Rehabilitation after stroke
  publication-title: N Engl J Med
  doi: 10.1056/NEJMcp043511
– volume: 11
  start-page: CD010820
  year: 2014
  ident: B9
  article-title: Interventions for improving upper limb function after stroke
  publication-title: Cochrane Database Syst Rev.
  doi: 10.1002/14651858.CD010820.pub2
– volume: 8
  start-page: 646
  year: 2017
  ident: B5
  article-title: Sliding mode tracking control of a wire-driven upper-limb rehabilitation robot with nonlinear disturbance observer
  publication-title: Front Neurol.
  doi: 10.3389/fneur.2017.00646
– volume: 8
  start-page: 654
  year: 2017
  ident: B3
  article-title: Usability of videogame-based dexterity training in the early rehabilitation phase of stroke patients: a pilot study
  publication-title: Front Neurol
  doi: 10.3389/fneur.2017.00654
– volume: 60
  start-page: 838
  year: 2013
  ident: B6
  article-title: Augmented dynamics and motor exploration as training for stroke
  publication-title: IEEE Trans. Biomed. Eng
  doi: 10.1109/TBME.2012.2192116
– volume: 8
  start-page: 16
  year: 2001
  ident: B8
  article-title: Constraint-induced therapy approach to restoring function after neurological injury
  publication-title: Top Stroke Rehabil.
  doi: 10.1310/bljx-m89n-ptpy-jdkw
– volume: 16
  start-page: 232
  year: 2002
  ident: B47
  article-title: The Fugl-Meyer assessment of motor recovery after stroke: a critical review of its measurement properties
  publication-title: Neurorehabil Neural Repair
  doi: 10.1177/154596802401105171
– volume: 18
  start-page: 38
  year: 2010
  ident: B37
  article-title: Path control: a method for patient-cooperative robot-aided gait rehabilitation
  publication-title: IEEE Trans Neural Syst Rehabil Eng.
  doi: 10.1109/TNSRE.2009.2033061
– volume: 59
  start-page: 2180
  year: 2012
  ident: B24
  article-title: Intention-based EMG control for powered exoskeletons
  publication-title: IEEE Trans Biomed Eng.
  doi: 10.1109/TBME.2012.2198821
– volume: 8
  start-page: 679
  year: 2017
  ident: B22
  article-title: The effects of upper-limb training assisted with an electromyography-driven neuromuscular electrical stimulation robotic hand on chronic stroke
  publication-title: Front Neurol.
  doi: 10.3389/fneur.2017.00679
– volume: 231
  start-page: 4360
  year: 2017
  ident: B45
  article-title: Modeling and position control of a therapeutic exoskeleton targeting upper extremity rehabilitation
  publication-title: Proc Inst Mech Eng C J Mech Eng Sci.
  doi: 10.1177/0954406216668204
– volume: 8
  start-page: 447
  year: 2017
  ident: B17
  article-title: Early stroke rehabilitation of the upper limb assisted with an electromyography-driven neuromuscular electrical stimulation-robotic arm
  publication-title: Front Neurol.
  doi: 10.3389/fneur.2017.00447
– volume: 13
  start-page: 349
  year: 2005
  ident: B44
  article-title: A rehabilitation robot with force-position hybrid fuzzy controller: hybrid fuzzy control of rehabilitation robot
  publication-title: IEEE Trans Neural Syst Rehabil Eng.
  doi: 10.1109/TNSRE.2005.847354
– volume: 230
  start-page: 3777
  year: 2016
  ident: B42
  article-title: Development and analysis of a gravity-balanced exoskeleton for active rehabilitation training of upper limb
  publication-title: Proc Inst Mech Eng C J Mech Eng Sci.
  doi: 10.1177/0954406215616415
– volume: 17
  start-page: 2
  year: 2009
  ident: B40
  article-title: Robot assisted gait training with active leg exoskeleton (ALEX)
  publication-title: IEEE Trans Neural Syst Rehabil Eng.
  doi: 10.1109/BIOROB.2008.4762885
– volume: 8
  start-page: 284
  year: 2017
  ident: B14
  article-title: Neural plasticity in moderate to severe chronic stroke following a device-assisted task-specific arm/hand intervention
  publication-title: Front Neurol.
  doi: 10.3389/fneur.2017.00284
– volume: 36
  start-page: 414
  year: 2017
  ident: B35
  article-title: An upper-body rehabilitation exoskeleton Harmony with an anatomical shoulder mechanism: Design, modeling, control, and performance evaluation
  publication-title: Int J Robot Res.
  doi: 10.1177/0278364917706743
– volume: 35
  start-page: 192
  year: 2016
  ident: B23
  article-title: A novel kinematic architecture for portable hand exoskeletons
  publication-title: Mechatronics
  doi: 10.1016/j.mechatronics.2016.03.002
– reference: 26811276 - Circulation. 2016 Jan 26;133(4):447-54
– reference: 28928706 - Front Neurol. 2017 Sep 04;8:447
– reference: 12234086 - Neurorehabil Neural Repair. 2002 Sep;16(3):232-40
– reference: 25387001 - Cochrane Database Syst Rev. 2014 Nov 12;(11):CD010820
– reference: 29312116 - Front Neurol. 2017 Dec 14;8:679
– reference: 20194054 - IEEE Trans Neural Syst Rehabil Eng. 2010 Feb;18(1):38-48
– reference: 29545767 - Front Neurol. 2018 Mar 01;9:84
– reference: 29255442 - Front Neurol. 2017 Dec 04;8:646
– reference: 23096119 - IEEE Trans Neural Syst Rehabil Eng. 2013 May;21(3):490-9
– reference: 28659863 - Front Neurol. 2017 Jun 14;8:284
– reference: 22481803 - IEEE Trans Biomed Eng. 2013 Mar;60(3):838-44
– reference: 14523735 - Top Stroke Rehabil. 2001 Autumn;8(3):16-30
– reference: 21571152 - Lancet. 2011 May 14;377(9778):1693-702
– reference: 19211317 - IEEE Trans Neural Syst Rehabil Eng. 2009 Feb;17(1):2-8
– reference: 19940277 - Stroke. 2010 Jan;41(1):136-40
– reference: 23033432 - IEEE Trans Cybern. 2013 Apr;43(2):673-84
– reference: 29276499 - Front Neurol. 2017 Dec 08;8:654
– reference: 15843670 - N Engl J Med. 2005 Apr 21;352(16):1677-84
– reference: 28373860 - Front Neurol. 2017 Mar 20;8:107
– reference: 16200758 - IEEE Trans Neural Syst Rehabil Eng. 2005 Sep;13(3):349-58
– reference: 27145936 - Stroke. 2016 Jun;47(6):e98-e169
– reference: 19531605 - Neurorehabil Neural Repair. 2009 Oct;23(8):837-46
– reference: 21674393 - J Rehabil Res Dev. 2011;48(4):445-58
– reference: 22588573 - IEEE Trans Biomed Eng. 2012 Aug;59(8):2180-90
– reference: 21757677 - Stroke. 2011 Sep;42(9):2630-2
SSID ssj0000399363
Score 2.3114612
Snippet Robot-assisted therapy affords effective advantages to the rehabilitation training of patients with motion impairment problems. To meet the challenge of...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 817
SubjectTerms intention-driven
Neurology
patient-active control
rehabilitation training
robot-assisted
upper limb exoskeleton
virtual environment
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA_iQbyI384vInjxULY06UeOOjaGqAzZYAchJOkLitoNneCf70ta5yaiF0-FNm3D7732917z-nuEnBqTZkYyHeVaYILCCh4ZLUzkmMQNWBDhO-T1TdobistRMppr9eVrwip54Aq4pkN-T2zBhQQmjChyprm1XBjkHTBJ-M0XOW8umQrvYM-7Ka_WJTELk03n9SF9KZevncxDf7IvHgpy_T_FmN9LJee4p7tO1uqgkZ5Xk90gS1BukpXrell8i9z1K3XU6Dy8vWi7qj-nY0c17fs-aFDQzvv49RFJBoM9Ogj138hadDiZwAu9eng29HZBtJsO6uYR22TY7QzavahumxBZkcbTKMlbjgE4rjXXLd0qMgu50SxOEUXNuJaxw8DDJrE0TscIcJ6AsS1Z8IynlvEdslyOS9gjNDfSIakD55kVmdQyLfDaBQgLzjgTN0jzE0Rl6-n51hZPCnMLD7sKsCsPuwqwN8jZ7IxJpafxy9gLb5fZOK-EHXagf6jaP9Rf_tEgJ59WVfjk-OUQXcL47VUhaafSK9DimN3KyrNbeWIXmLA3SLZg_4W5LB4pH-6DOjdmpBzD7v3_mPwBWfVweK5k7JAsT1_e4AiDoKk5Dv7-ASwdB_s
  priority: 102
  providerName: Directory of Open Access Journals
Title Patient-Active Control of a Powered Exoskeleton Targeting Upper Limb Rehabilitation Training
URI https://www.ncbi.nlm.nih.gov/pubmed/30364274
https://www.proquest.com/docview/2126910028
https://pubmed.ncbi.nlm.nih.gov/PMC6193099
https://doaj.org/article/f6105cd349e14b4d81a3cc34b521eb58
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA96gvgifrt-HBF88aFe06Rp8yByHncc4sohu3APQkjSiR6e7bq7B-d_70zaW60sgk-lbdomM0l-v0mmM4y99F5X3giX1U6hgSIamXmnfBaFwQMEUGkdcvpRH8_V-9Py9Pfv0YMAV1tNO8onNV-ev7788fMtDvg3ZHEi3u5FCv1IXlrkFlmL6jq7gbhU0TCdDmQ_zcuExSm1mtBaZZTHut-33PqSEU6lcP7bOOjfrpR_YNPRHXZ7IJV8v-8Fd9k1aO-xm9Nh2_w--3zSR0_N9tPsxg96_3TeRe74CeVJg4YfXnarbwhCSAb5LPmHI6rx-WIBS_7h7Lvnn0ZBvflsSC7xgM2PDmcHx9mQViELShfrrKzzKACidE663OVNFaD2ThS6kcoJ6UwRkZiEsjA-uiJqhHTwITeNrKQOQj5kO23XwmPGa28igj5IWQVVGWd0g-9uQAWIPvpiwvauhGjDUD1KfXFu0fYgsdskdktit0nsE_Zq88Sij7fxj7LvSC-bchQpO13oll_sMPAsVj8vA7bMgFBeNbVwMgSpPPIW8GU9YS-utGpxZNF2iWuhu1hZBHVtKEItlnnUa3nzKQJ-hQb9hFUj_Y_qMr7Tnn1N0bvRYpVIy5_8R0Ofslt0QpApxDO2s15ewHPkQmu_m9YQdlNH_wXkgQoc
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Patient-Active+Control+of+a+Powered+Exoskeleton+Targeting+Upper+Limb+Rehabilitation+Training&rft.jtitle=Frontiers+in+neurology&rft.au=Wu%2C+Qingcong&rft.au=Wang%2C+Xingsong&rft.au=Chen%2C+Bai&rft.au=Wu%2C+Hongtao&rft.date=2018-10-11&rft.issn=1664-2295&rft.eissn=1664-2295&rft.volume=9&rft_id=info:doi/10.3389%2Ffneur.2018.00817&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fneur_2018_00817
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-2295&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-2295&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-2295&client=summon