In vitro assessment of cord blood–derived proinsulin-specific regulatory T cells for cellular therapy in type 1 diabetes

Antigen-specific regulatory T cells (Tregs) have proven to be effective in reversing established autoimmunity in type 1 diabetes (T1D). Cord blood (CB) can serve as an efficient and safe source for Tregs for antigen-specific immunomodulation in T1D, a strategy that is yet to be explored. Therefore,...

Full description

Saved in:
Bibliographic Details
Published inCytotherapy (Oxford, England) Vol. 20; no. 11; pp. 1355 - 1370
Main Authors Paul, MAHINDER, DAYAL, DEVI, BHANSALI, ANIL, DHALIWAL, LAKHBIR, SACHDEVA, NARESH
Format Journal Article
LanguageEnglish
Published England Elsevier Inc 01.11.2018
Subjects
Online AccessGet full text
ISSN1465-3249
1477-2566
1477-2566
DOI10.1016/j.jcyt.2018.09.004

Cover

Loading…
Abstract Antigen-specific regulatory T cells (Tregs) have proven to be effective in reversing established autoimmunity in type 1 diabetes (T1D). Cord blood (CB) can serve as an efficient and safe source for Tregs for antigen-specific immunomodulation in T1D, a strategy that is yet to be explored. Therefore, we assessed the potential of CB in generation of proinsulin (PI)-specific Tregs by using HLA class II tetramers. We analyzed the frequency of PI-specific natural Tregs (nTregs) and induced Tregs (iTregs) derived from the CB as well as peripheral blood (PB) of patients with T1D and healthy control subjects. For this, CD4+CD25+CD127low and CD4+CD25-T cells were cultured in the presence of PI-derived peptides, transforming growth factor (TGF)-β and rapamycin. PI-specific Tregs were then selected using allele-specific HLA II tetramers loaded with PI-derived peptides, followed by suppression assays. Following stimulation, we observed that CB harbors a significantly higher frequency of PI-specific Tregs than PB of subjects with T1D (P = 0.0003). Further, the proportion of PI-specific Tregs was significantly higher in both the nTreg (P = 0.01) and iTreg (P = 0.0003) compartments of CB as compared with PB of subjects with T1D. In co-culture experiments, the PI-specific Tregs suppressed the proliferation of effector T cells significantly (P = 0.0006). The expanded nTregs were able to retain hypomethylation status at their Tregs-specific demethylated region (TSDR), whereas iTregs were unable to acquire the characteristic demethylation pattern. Our study demonstrates that CB can serve as an excellent source for generation of functional antigen-specific Tregs for immunotherapeutic approaches in subjects with T1D.
AbstractList Antigen-specific regulatory T cells (Tregs) have proven to be effective in reversing established autoimmunity in type 1 diabetes (T1D). Cord blood (CB) can serve as an efficient and safe source for Tregs for antigen-specific immunomodulation in T1D, a strategy that is yet to be explored. Therefore, we assessed the potential of CB in generation of proinsulin (PI)-specific Tregs by using HLA class II tetramers. We analyzed the frequency of PI-specific natural Tregs (nTregs) and induced Tregs (iTregs) derived from the CB as well as peripheral blood (PB) of patients with T1D and healthy control subjects. For this, CD4+CD25+CD127low and CD4+CD25-T cells were cultured in the presence of PI-derived peptides, transforming growth factor (TGF)-β and rapamycin. PI-specific Tregs were then selected using allele-specific HLA II tetramers loaded with PI-derived peptides, followed by suppression assays. Following stimulation, we observed that CB harbors a significantly higher frequency of PI-specific Tregs than PB of subjects with T1D (P = 0.0003). Further, the proportion of PI-specific Tregs was significantly higher in both the nTreg (P = 0.01) and iTreg (P = 0.0003) compartments of CB as compared with PB of subjects with T1D. In co-culture experiments, the PI-specific Tregs suppressed the proliferation of effector T cells significantly (P = 0.0006). The expanded nTregs were able to retain hypomethylation status at their Tregs-specific demethylated region (TSDR), whereas iTregs were unable to acquire the characteristic demethylation pattern. Our study demonstrates that CB can serve as an excellent source for generation of functional antigen-specific Tregs for immunotherapeutic approaches in subjects with T1D.
Antigen-specific regulatory T cells (Tregs) have proven to be effective in reversing established autoimmunity in type 1 diabetes (T1D). Cord blood (CB) can serve as an efficient and safe source for Tregs for antigen-specific immunomodulation in T1D, a strategy that is yet to be explored. Therefore, we assessed the potential of CB in generation of proinsulin (PI)-specific Tregs by using HLA class II tetramers.BACKGROUNDAntigen-specific regulatory T cells (Tregs) have proven to be effective in reversing established autoimmunity in type 1 diabetes (T1D). Cord blood (CB) can serve as an efficient and safe source for Tregs for antigen-specific immunomodulation in T1D, a strategy that is yet to be explored. Therefore, we assessed the potential of CB in generation of proinsulin (PI)-specific Tregs by using HLA class II tetramers.We analyzed the frequency of PI-specific natural Tregs (nTregs) and induced Tregs (iTregs) derived from the CB as well as peripheral blood (PB) of patients with T1D and healthy control subjects. For this, CD4+CD25+CD127low and CD4+CD25-T cells were cultured in the presence of PI-derived peptides, transforming growth factor (TGF)-β and rapamycin. PI-specific Tregs were then selected using allele-specific HLA II tetramers loaded with PI-derived peptides, followed by suppression assays.METHODSWe analyzed the frequency of PI-specific natural Tregs (nTregs) and induced Tregs (iTregs) derived from the CB as well as peripheral blood (PB) of patients with T1D and healthy control subjects. For this, CD4+CD25+CD127low and CD4+CD25-T cells were cultured in the presence of PI-derived peptides, transforming growth factor (TGF)-β and rapamycin. PI-specific Tregs were then selected using allele-specific HLA II tetramers loaded with PI-derived peptides, followed by suppression assays.Following stimulation, we observed that CB harbors a significantly higher frequency of PI-specific Tregs than PB of subjects with T1D (P = 0.0003). Further, the proportion of PI-specific Tregs was significantly higher in both the nTreg (P = 0.01) and iTreg (P = 0.0003) compartments of CB as compared with PB of subjects with T1D. In co-culture experiments, the PI-specific Tregs suppressed the proliferation of effector T cells significantly (P = 0.0006). The expanded nTregs were able to retain hypomethylation status at their Tregs-specific demethylated region (TSDR), whereas iTregs were unable to acquire the characteristic demethylation pattern.RESULTSFollowing stimulation, we observed that CB harbors a significantly higher frequency of PI-specific Tregs than PB of subjects with T1D (P = 0.0003). Further, the proportion of PI-specific Tregs was significantly higher in both the nTreg (P = 0.01) and iTreg (P = 0.0003) compartments of CB as compared with PB of subjects with T1D. In co-culture experiments, the PI-specific Tregs suppressed the proliferation of effector T cells significantly (P = 0.0006). The expanded nTregs were able to retain hypomethylation status at their Tregs-specific demethylated region (TSDR), whereas iTregs were unable to acquire the characteristic demethylation pattern.Our study demonstrates that CB can serve as an excellent source for generation of functional antigen-specific Tregs for immunotherapeutic approaches in subjects with T1D.CONCLUSIONOur study demonstrates that CB can serve as an excellent source for generation of functional antigen-specific Tregs for immunotherapeutic approaches in subjects with T1D.
Antigen-specific regulatory T cells (Tregs) have proven to be effective in reversing established autoimmunity in type 1 diabetes (T1D). Cord blood (CB) can serve as an efficient and safe source for Tregs for antigen-specific immunomodulation in T1D, a strategy that is yet to be explored. Therefore, we assessed the potential of CB in generation of proinsulin (PI)-specific Tregs by using HLA class II tetramers. We analyzed the frequency of PI-specific natural Tregs (nTregs) and induced Tregs (iTregs) derived from the CB as well as peripheral blood (PB) of patients with T1D and healthy control subjects. For this, CD4+CD25+CD127 and CD4+CD25-T cells were cultured in the presence of PI-derived peptides, transforming growth factor (TGF)-β and rapamycin. PI-specific Tregs were then selected using allele-specific HLA II tetramers loaded with PI-derived peptides, followed by suppression assays. Following stimulation, we observed that CB harbors a significantly higher frequency of PI-specific Tregs than PB of subjects with T1D (P = 0.0003). Further, the proportion of PI-specific Tregs was significantly higher in both the nTreg (P = 0.01) and iTreg (P = 0.0003) compartments of CB as compared with PB of subjects with T1D. In co-culture experiments, the PI-specific Tregs suppressed the proliferation of effector T cells significantly (P = 0.0006). The expanded nTregs were able to retain hypomethylation status at their Tregs-specific demethylated region (TSDR), whereas iTregs were unable to acquire the characteristic demethylation pattern. Our study demonstrates that CB can serve as an excellent source for generation of functional antigen-specific Tregs for immunotherapeutic approaches in subjects with T1D.
Abstract Background Antigen-specific regulatory T cells (Tregs) have proven to be effective in reversing established autoimmunity in type 1 diabetes (T1D). Cord blood (CB) can serve as an efficient and safe source for Tregs for antigen-specific immunomodulation in T1D, a strategy that is yet to be explored. Therefore, we assessed the potential of CB in generation of proinsulin (PI)-specific Tregs by using HLA class II tetramers. Methods We analyzed the frequency of PI-specific natural Tregs (nTregs) and induced Tregs (iTregs) derived from the CB as well as peripheral blood (PB) of patients with T1D and healthy control subjects. For this, CD4+CD25+CD127low and CD4+CD25-T cells were cultured in the presence of PI-derived peptides, transforming growth factor (TGF)-β and rapamycin. PI-specific Tregs were then selected using allele-specific HLA II tetramers loaded with PI-derived peptides, followed by suppression assays. Results Following stimulation, we observed that CB harbors a significantly higher frequency of PI-specific Tregs than PB of subjects with T1D ( P  = 0.0003). Further, the proportion of PI-specific Tregs was significantly higher in both the nTreg ( P  = 0.01) and iTreg ( P  = 0.0003) compartments of CB as compared with PB of subjects with T1D. In co-culture experiments, the PI-specific Tregs suppressed the proliferation of effector T cells significantly ( P  = 0.0006). The expanded nTregs were able to retain hypomethylation status at their Tregs-specific demethylated region (TSDR), whereas iTregs were unable to acquire the characteristic demethylation pattern. Conclusion Our study demonstrates that CB can serve as an excellent source for generation of functional antigen-specific Tregs for immunotherapeutic approaches in subjects with T1D.
Author SACHDEVA, NARESH
DAYAL, DEVI
BHANSALI, ANIL
DHALIWAL, LAKHBIR
Paul, MAHINDER
Author_xml – sequence: 1
  givenname: MAHINDER
  surname: Paul
  fullname: Paul, MAHINDER
  organization: Departments of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
– sequence: 2
  givenname: DEVI
  orcidid: 0000-0002-3279-6002
  surname: DAYAL
  fullname: DAYAL, DEVI
  organization: Departments of Pediatrics, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
– sequence: 3
  givenname: ANIL
  surname: BHANSALI
  fullname: BHANSALI, ANIL
  organization: Departments of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
– sequence: 4
  givenname: LAKHBIR
  surname: DHALIWAL
  fullname: DHALIWAL, LAKHBIR
  organization: Departments of Obstetrics and Gynecology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
– sequence: 5
  givenname: NARESH
  orcidid: 0000-0001-6289-4749
  surname: SACHDEVA
  fullname: SACHDEVA, NARESH
  email: naresh_pgi@hotmail.com
  organization: Departments of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30340983$$D View this record in MEDLINE/PubMed
BookMark eNqFUstu1TAUjFARfcAPsEBesknwI7EThJBQxaNSJRaUteXYJ-CQawfbuVJY8Q_9w34JDrfdVKIsLB9ZM3OOZ85pceS8g6J4TnBFMOGvxmrUa6ooJm2Fuwrj-lFxQmohStpwfrTVvCkZrbvj4jTGEWOK27Z5UhwzzGrcteyk-HXh0N6m4JGKEWLcgUvID0j7YFA_eW9ufl8bCHYPBs3BWxeXyboyzqDtYDUK8G2ZVPJhRVdIwzRFNPjwt8rvAaXvENS8IutQWmdABBmrekgQnxaPBzVFeHZ7nxVfP7y_Ov9UXn7-eHH-7rLUNaepbITSlAshWqJg4MZgwbFuespJI4Tq8iGU94pBj-thoAPrRG3aFlhLOOMDOyteHnTz-D8XiEnubNzmUw78EiUllAnCMesy9MUtdOl3YOQc7E6FVd75lQHtAaCDjzHAILVNKlnvUlB2kgTLLRo5yi0auUUjcSdzNJlK71Hv1B8kvTmQIBu0txBk1BacBmMD6CSNtw_T396j6xye1Wr6ASvE0S_BZeslkZFKLL9sC7PtC2kZ5oRt_339b4H_df8DcYjSVQ
CitedBy_id crossref_primary_10_4103_jod_jod_46_20
crossref_primary_10_4103_jod_jod_77_24
crossref_primary_10_1007_s13410_021_00919_7
crossref_primary_10_1134_S1990519X22010047
crossref_primary_10_3389_fimmu_2024_1462384
crossref_primary_10_1016_j_clim_2023_109716
crossref_primary_10_1007_s40200_022_01120_1
crossref_primary_10_3389_fimmu_2020_00611
crossref_primary_10_1186_s13098_024_01277_0
Cites_doi 10.1182/blood-2004-06-2467
10.4049/jimmunol.1600676
10.1016/S1074-7613(00)80048-5
10.1182/blood-2007-06-094482
10.1182/blood-2006-10-052506
10.1186/1471-2105-11-230
10.1182/blood-2004-10-3932
10.1101/cshperspect.a007781
10.2337/diabetes.54.1.92
10.1111/pedi.12536
10.4049/jimmunol.1401145
10.1002/eji.200636435
10.1182/blood.V93.7.2302
10.1186/s13072-017-0129-1
10.1016/j.jaut.2005.09.018
10.2337/dc12-0038
10.1111/pedi.12029
10.1111/j.1399-3038.2008.00843.x
10.1016/j.exphem.2005.09.002
10.1002/dmrr.1244
10.4049/jimmunol.1004112
10.1093/intimm/dxm014
10.4049/jimmunol.181.12.8209
10.1097/01.mjt.0000178767.67857.63
10.2337/db11-1520
10.1016/j.clim.2014.03.016
10.1016/j.omtm.2016.12.003
10.1371/journal.pone.0029355
10.1016/j.jaut.2016.03.011
10.1371/journal.pone.0005994
10.2337/db16-1025
10.1084/jem.192.2.303
10.1002/eji.201141651
10.2337/dc09-0967
10.1182/blood-2010-07-293795
10.3324/haematol.2012.074088
10.1007/s00005-012-0177-y
10.1007/s00277-010-1121-z
10.4049/jimmunol.0901065
10.1038/ni1572
10.1007/s10753-014-9878-1
10.1111/cei.12116
10.1002/eji.200838819
10.1172/JCI19441
10.1038/ni.1818
10.1093/jmcb/mjr039
10.1016/j.clim.2015.01.005
10.2337/db14-0332
ContentType Journal Article
Copyright 2018 International Society for Cellular Therapy
International Society for Cellular Therapy
Copyright © 2018 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2018 International Society for Cellular Therapy
– notice: International Society for Cellular Therapy
– notice: Copyright © 2018 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.jcyt.2018.09.004
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1477-2566
EndPage 1370
ExternalDocumentID 30340983
10_1016_j_jcyt_2018_09_004
S1465324918306133
1_s2_0_S1465324918306133
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--M
.1-
.FO
.~1
1P~
1~.
29F
36B
4.4
457
4G.
53G
5GY
5VS
7-5
8P~
AAAJQ
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AATTM
AAXKI
AAXUO
AAYWO
ABDBF
ABGSF
ABJNI
ABMAC
ABMZM
ABUDA
ABXDB
ACDAQ
ACGEJ
ACGFS
ACIEU
ACRLP
ACUHS
ACVFH
ADBBV
ADCNI
ADCVX
ADEZE
ADXPE
AEBSH
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFKVX
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGEKW
AGHFR
AGRDE
AGUBO
AGYEJ
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AJWEG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AWYRJ
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CAG
CJTIS
COF
CS3
DU5
EAP
EBC
EBS
EFJIC
EFKBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
GBLVA
H13
HVGLF
HZ~
KOM
LUGTX
M44
MO0
O-L
O9.
OAUVE
OK~
P-8
P-9
P2P
PC.
Q38
R2-
ROL
SDF
SPCBC
SSH
SSI
SSU
SSZ
SV3
T5K
TDBHL
TFW
Z5R
~G-
AACTN
AFCTW
AFKWA
AJOXV
AMFUW
AAIAV
ABLVK
ABYKQ
AJBFU
DOVZS
EFLBG
LCYCR
AAYXX
AGRNS
CITATION
NPM
7X8
ID FETCH-LOGICAL-c462t-57ac2677781aef6dd0760c5b261577a977a126ba3eb04ff2f3974d88e381636f3
IEDL.DBID .~1
ISSN 1465-3249
1477-2566
IngestDate Fri Jul 11 02:44:12 EDT 2025
Wed Feb 19 02:32:29 EST 2025
Thu Apr 24 23:09:46 EDT 2025
Tue Jul 01 03:06:22 EDT 2025
Fri Feb 23 02:16:04 EST 2024
Tue Feb 25 19:54:30 EST 2025
Tue Aug 26 17:16:31 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords regulatory T cells
proinsulin
cord blood
type 1 diabetes
HLA tetramers
Language English
License Copyright © 2018 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c462t-57ac2677781aef6dd0760c5b261577a977a126ba3eb04ff2f3974d88e381636f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3279-6002
0000-0001-6289-4749
PMID 30340983
PQID 2123716039
PQPubID 23479
PageCount 16
ParticipantIDs proquest_miscellaneous_2123716039
pubmed_primary_30340983
crossref_citationtrail_10_1016_j_jcyt_2018_09_004
crossref_primary_10_1016_j_jcyt_2018_09_004
elsevier_sciencedirect_doi_10_1016_j_jcyt_2018_09_004
elsevier_clinicalkeyesjournals_1_s2_0_S1465324918306133
elsevier_clinicalkey_doi_10_1016_j_jcyt_2018_09_004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-11-01
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Cytotherapy (Oxford, England)
PublicationTitleAlternate Cytotherapy
PublicationYear 2018
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Ryba-Stanislawowska, Rybarczyk-Kapturska, Mysliwiec, Mysliwska (bib0010) 2014; 37
Haseda, Imagawa, Murase-Mishiba, Terasaki, Hanafusa (bib0012) 2013; 173
Savage, Boniface, Davis (bib0049) 1999; 10
Zeiser, Leveson-Gower, Zambricki, Kambham, Beilhack, Loh (bib0023) 2008; 111
Battaglia, Stabilini, Roncarolo (bib0022) 2005; 105
Paul, Badal, Jacob, Dayal, Kumar, Bhansali (bib0033) 2018; 19
Scotta, Esposito, Fazekasova, Fanelli, Edozie, Ali (bib0037) 2013; 98
Tang, Bluestone (bib0008) 2008; 9
Marek-Trzonkowska, Mysliwiec, Dobyszuk, Grabowska, Derkowska, Juscinska (bib0014) 2014; 153
Lan, Fan, Quesniaux, Ryffel, Liu, Zheng (bib0007) 2012; 4
Lee, Lin, Cheng, Kuo (bib0018) 2009; 20
Lindley, Dayan, Bishop, Roep, Peakman, Tree (bib0011) 2005; 54
Huter, Stummvoll, DiPaolo, Glass, Shevach (bib0047) 2008; 181
Godfrey, Spoden, Ge, Baker, Liu, Levine (bib0017) 2005; 105
Michels, Landry, McDaniel, Yu, Campbell-Thompson, Kwok (bib0003) 2017; 66
Mayer, Bannert, Gruber, Klunker, Spittler, Akdis (bib0044) 2012; 7
Yoon, Jun (bib0002) 2005; 12
Allan, Crome, Crellin, Passerini, Steiner, Bacchetta (bib0042) 2007; 19
Wang, Huizinga, Toes (bib0045) 2009; 183
Nguyen, Sullivan, Ebel, Teague, DiPaolo (bib0046) 2011; 187
Marek-Trzonkowska, Mysliwiec, Dobyszuk, Grabowska, Techmanska, Juscinska (bib0015) 2012; 35
Seay, Putnam, Cserny, Posgai, Rosenau, Wingard (bib0019) 2017; 4
James, LaFond, Durinovic-Bello, Kwok (bib0026) 2009; 6
Rohde, Zhang, Reinhardt, Jeltsch (bib0028) 2010; 11
Skowera, Ladell, McLaren, Dolton, Matthews, Gostick (bib0035) 2015; 64
Sachdeva, Paul, Badal, Kumar, Jacob, Dayal (bib0034) 2015; 157
Walker, Kasprowicz, Gersuk, Benard, Van Landeghen, Buckner (bib0038) 2003; 112
Szypowska, Stelmaszczyk-Emmel, Demkow, Luczynski (bib0009) 2012; 60
Danova, Grohova, Strnadova, Funda, Sumnik, Lebl (bib0013) 2017; 198
McMurchy, Levings (bib0027) 2012; 42
James, Mallone, Schloot, Gagnerault, Thorpe, Fitzgerald-Miller (bib0025) 2011; 27
Gitelman, Bluestone (bib0006) 2016; 71
Takahashi, Tagami, Yamazaki, Uede, Shimizu, Sakaguchi (bib0004) 2000; 192
Hamdi, Godot, Maillot, Prejean, Cohen, Krzysiek (bib0039) 2007; 110
Okada, Kanamori, Someya, Nakatsukasa, Yoshimura (bib0048) 2017; 10
Long, Walker, Rieck, James, Kwok, Sanda (bib0030) 2009; 39
Brunstein, Miller, Cao, McKenna, Hippen, Curtsinger (bib0032) 2011; 117
Wang, Ioan-Facsinay, van der Voort, Huizinga, Toes (bib0043) 2007; 37
Roep, Peakman (bib0001) 2012; 2
Rossetti, Spreafico, Saidin, Chua, Moshref, Leong (bib0031) 2015; 194
Haller, Wasserfall, McGrail, Cintron, Brusko, Wingard (bib0024) 2009; 32
Strauss, Czystowska, Szajnik, Mandapathil, Whiteside (bib0021) 2009; 4
Kronenberg, Knight, Estorninho, Ellis, Kester, de Ru (bib0036) 2012; 61
Sorg, Kogler, Wernet (bib0041) 1999; 93
Mayer, Bannert, Gruber, Klunker, Spittler, Akdis (bib0029) 2012; 7
Chang, Satwani, Oberfield, Vlad, Simpson, Cairo (bib0040) 2005; 33
Marek-Trzonkowska, Mysliwec, Siebert, Trzonkowski (bib0016) 2013; 14
Wing, Sakaguchi (bib0005) 2010; 11
Asanuma, Tanaka, Sugita, Kosugi, Shiratori, Wakasa (bib0020) 2011; 90
Oling, Marttila, Ilonen, Kwok, Nepom, Knip (bib0050) 2005; 25
Gitelman (10.1016/j.jcyt.2018.09.004_bib0006) 2016; 71
Chang (10.1016/j.jcyt.2018.09.004_bib0040) 2005; 33
Strauss (10.1016/j.jcyt.2018.09.004_bib0021) 2009; 4
Marek-Trzonkowska (10.1016/j.jcyt.2018.09.004_bib0015) 2012; 35
Kronenberg (10.1016/j.jcyt.2018.09.004_bib0036) 2012; 61
Zeiser (10.1016/j.jcyt.2018.09.004_bib0023) 2008; 111
Sorg (10.1016/j.jcyt.2018.09.004_bib0041) 1999; 93
James (10.1016/j.jcyt.2018.09.004_bib0025) 2011; 27
Godfrey (10.1016/j.jcyt.2018.09.004_bib0017) 2005; 105
Mayer (10.1016/j.jcyt.2018.09.004_bib0044) 2012; 7
Brunstein (10.1016/j.jcyt.2018.09.004_bib0032) 2011; 117
Savage (10.1016/j.jcyt.2018.09.004_bib0049) 1999; 10
Seay (10.1016/j.jcyt.2018.09.004_bib0019) 2017; 4
Sachdeva (10.1016/j.jcyt.2018.09.004_bib0034) 2015; 157
Skowera (10.1016/j.jcyt.2018.09.004_bib0035) 2015; 64
Ryba-Stanislawowska (10.1016/j.jcyt.2018.09.004_bib0010) 2014; 37
Mayer (10.1016/j.jcyt.2018.09.004_bib0029) 2012; 7
Okada (10.1016/j.jcyt.2018.09.004_bib0048) 2017; 10
Michels (10.1016/j.jcyt.2018.09.004_bib0003) 2017; 66
Wang (10.1016/j.jcyt.2018.09.004_bib0043) 2007; 37
Takahashi (10.1016/j.jcyt.2018.09.004_bib0004) 2000; 192
Marek-Trzonkowska (10.1016/j.jcyt.2018.09.004_bib0014) 2014; 153
Scotta (10.1016/j.jcyt.2018.09.004_bib0037) 2013; 98
Roep (10.1016/j.jcyt.2018.09.004_bib0001) 2012; 2
Marek-Trzonkowska (10.1016/j.jcyt.2018.09.004_bib0016) 2013; 14
Wing (10.1016/j.jcyt.2018.09.004_bib0005) 2010; 11
Battaglia (10.1016/j.jcyt.2018.09.004_bib0022) 2005; 105
James (10.1016/j.jcyt.2018.09.004_bib0026) 2009; 6
Lee (10.1016/j.jcyt.2018.09.004_bib0018) 2009; 20
Long (10.1016/j.jcyt.2018.09.004_bib0030) 2009; 39
Haller (10.1016/j.jcyt.2018.09.004_bib0024) 2009; 32
Lindley (10.1016/j.jcyt.2018.09.004_bib0011) 2005; 54
Rossetti (10.1016/j.jcyt.2018.09.004_bib0031) 2015; 194
Haseda (10.1016/j.jcyt.2018.09.004_bib0012) 2013; 173
Wang (10.1016/j.jcyt.2018.09.004_bib0045) 2009; 183
Paul (10.1016/j.jcyt.2018.09.004_bib0033) 2018; 19
Yoon (10.1016/j.jcyt.2018.09.004_bib0002) 2005; 12
Rohde (10.1016/j.jcyt.2018.09.004_bib0028) 2010; 11
Oling (10.1016/j.jcyt.2018.09.004_bib0050) 2005; 25
Tang (10.1016/j.jcyt.2018.09.004_bib0008) 2008; 9
Walker (10.1016/j.jcyt.2018.09.004_bib0038) 2003; 112
Lan (10.1016/j.jcyt.2018.09.004_bib0007) 2012; 4
Asanuma (10.1016/j.jcyt.2018.09.004_bib0020) 2011; 90
Danova (10.1016/j.jcyt.2018.09.004_bib0013) 2017; 198
Allan (10.1016/j.jcyt.2018.09.004_bib0042) 2007; 19
McMurchy (10.1016/j.jcyt.2018.09.004_bib0027) 2012; 42
Nguyen (10.1016/j.jcyt.2018.09.004_bib0046) 2011; 187
Huter (10.1016/j.jcyt.2018.09.004_bib0047) 2008; 181
Hamdi (10.1016/j.jcyt.2018.09.004_bib0039) 2007; 110
Szypowska (10.1016/j.jcyt.2018.09.004_bib0009) 2012; 60
References_xml – volume: 14
  start-page: 322
  year: 2013
  end-page: 332
  ident: bib0016
  article-title: Clinical application of regulatory T cells in type 1 diabetes
  publication-title: Pediatr Diabetes
– volume: 4
  start-page: 22
  year: 2012
  end-page: 28
  ident: bib0007
  article-title: Induced Foxp3+ regulatory T cells: a potential new weapon to treat autoimmune and inflammatory diseases?
  publication-title: Journal of molecular cell biology
– volume: 173
  start-page: 207
  year: 2013
  end-page: 216
  ident: bib0012
  article-title: CD4(+) CD45RA(-) FoxP3high activated regulatory T cells are functionally impaired and related to residual insulin-secreting capacity in patients with type 1 diabetes
  publication-title: Clin Exp Immunol
– volume: 12
  start-page: 580
  year: 2005
  end-page: 591
  ident: bib0002
  article-title: Autoimmune destruction of pancreatic β cells
  publication-title: American journal of therapeutics
– volume: 98
  start-page: 1291
  year: 2013
  end-page: 1299
  ident: bib0037
  article-title: Differential effects of rapamycin and retinoic acid on expansion, stability and suppressive qualities of human CD4(+)CD25(+)FOXP3(+) T regulatory cell subpopulations
  publication-title: Haematologica
– volume: 54
  start-page: 92
  year: 2005
  end-page: 99
  ident: bib0011
  article-title: Defective suppressor function in CD4(+)CD25(+) T-cells from patients with type 1 diabetes
  publication-title: Diabetes
– volume: 90
  start-page: 617
  year: 2011
  end-page: 624
  ident: bib0020
  article-title: Expansion of CD4+ CD25+ regulatory T cells from cord blood CD4+ cells using the common γ-chain cytokines (IL-2 and IL-15) and rapamycin
  publication-title: Annals of hematology
– volume: 11
  start-page: 230
  year: 2010
  ident: bib0028
  article-title: BISMA–fast and accurate bisulfite sequencing data analysis of individual clones from unique and repetitive sequences
  publication-title: BMC Bioinformatics
– volume: 105
  start-page: 4743
  year: 2005
  end-page: 4748
  ident: bib0022
  article-title: Rapamycin selectively expands CD4+CD25+FoxP3+ regulatory T cells
  publication-title: Blood
– volume: 110
  start-page: 211
  year: 2007
  end-page: 219
  ident: bib0039
  article-title: Induction of antigen-specific regulatory T lymphocytes by human dendritic cells expressing the glucocorticoid-induced leucine zipper
  publication-title: Blood
– volume: 112
  start-page: 1437
  year: 2003
  end-page: 1443
  ident: bib0038
  article-title: Induction of FoxP3 and acquisition of T regulatory activity by stimulated human CD4+CD25- T cells
  publication-title: J Clin Invest
– volume: 11
  start-page: 7
  year: 2010
  end-page: 13
  ident: bib0005
  article-title: Regulatory T cells exert checks and balances on self tolerance and autoimmunity
  publication-title: Nature immunology
– volume: 66
  start-page: 722
  year: 2017
  end-page: 734
  ident: bib0003
  article-title: Islet-Derived CD4 T Cells Targeting Proinsulin in Human Autoimmune Diabetes
  publication-title: Diabetes
– volume: 37
  start-page: 129
  year: 2007
  end-page: 138
  ident: bib0043
  article-title: Transient expression of FOXP3 in human activated nonregulatory CD4+ T cells
  publication-title: Eur J Immunol
– volume: 198
  start-page: 729
  year: 2017
  end-page: 740
  ident: bib0013
  article-title: Tolerogenic Dendritic Cells from Poorly Compensated Type 1 Diabetes Patients Have Decreased Ability To Induce Stable Antigen-Specific T Cell Hyporesponsiveness and Generation of Suppressive Regulatory T Cells
  publication-title: J Immunol
– volume: 33
  start-page: 1508
  year: 2005
  end-page: 1520
  ident: bib0040
  article-title: Increased induction of allogeneic-specific cord blood CD4+CD25+ regulatory T (Treg) cells: a comparative study of naive and antigenic-specific cord blood Treg cells
  publication-title: Exp Hematol
– volume: 9
  start-page: 239
  year: 2008
  end-page: 244
  ident: bib0008
  article-title: The Foxp3+ regulatory T cell: a jack of all trades, master of regulation
  publication-title: Nature immunology
– volume: 105
  start-page: 750
  year: 2005
  end-page: 758
  ident: bib0017
  article-title: Cord blood CD4(+)CD25(+)-derived T regulatory cell lines express FoxP3 protein and manifest potent suppressor function
  publication-title: Blood
– volume: 6
  start-page: 1167
  year: 2009
  ident: bib0026
  article-title: Visualizing antigen specific CD4+ T cells using MHC class II tetramers
  publication-title: J Vis Exp
– volume: 19
  start-page: 345
  year: 2007
  end-page: 354
  ident: bib0042
  article-title: Activation-induced FOXP3 in human T effector cells does not suppress proliferation or cytokine production
  publication-title: International immunology
– volume: 4
  start-page: e5994
  year: 2009
  ident: bib0021
  article-title: Differential responses of human regulatory T cells (Treg) and effector T cells to rapamycin
  publication-title: PLoS One
– volume: 4
  start-page: 178
  year: 2017
  end-page: 191
  ident: bib0019
  article-title: Expansion of Human Tregs from Cryopreserved Umbilical Cord Blood for GMP-Compliant Autologous Adoptive Cell Transfer Therapy
  publication-title: Mol Ther Methods Clin Dev
– volume: 42
  start-page: 27
  year: 2012
  end-page: 34
  ident: bib0027
  article-title: Suppression assays with human T regulatory cells: a technical guide
  publication-title: Eur J Immunol
– volume: 192
  start-page: 303
  year: 2000
  end-page: 310
  ident: bib0004
  article-title: Immunologic self-tolerance maintained by CD25+ CD4+ regulatory T cells constitutively expressing cytotoxic T lymphocyte–associated antigen 4
  publication-title: The Journal of experimental medicine
– volume: 93
  start-page: 2302
  year: 1999
  end-page: 2307
  ident: bib0041
  article-title: Identification of cord blood dendritic cells as an immature CD11c- population
  publication-title: Blood
– volume: 111
  start-page: 453
  year: 2008
  end-page: 462
  ident: bib0023
  article-title: Differential impact of mammalian target of rapamycin inhibition on CD4+CD25+Foxp3+ regulatory T cells compared with conventional CD4+ T cells
  publication-title: Blood
– volume: 60
  start-page: 307
  year: 2012
  end-page: 313
  ident: bib0009
  article-title: Low frequency of regulatory T cells in the peripheral blood of children with type 1 diabetes diagnosed under the age of five
  publication-title: Arch Immunol Ther Exp (Warsz)
– volume: 10
  start-page: 485
  year: 1999
  end-page: 492
  ident: bib0049
  article-title: A kinetic basis for T cell receptor repertoire selection during an immune response
  publication-title: Immunity
– volume: 32
  start-page: 2041
  year: 2009
  end-page: 2046
  ident: bib0024
  article-title: Autologous umbilical cord blood transfusion in very young children with type 1 diabetes
  publication-title: Diabetes Care
– volume: 61
  start-page: 1752
  year: 2012
  end-page: 1759
  ident: bib0036
  article-title: Circulating preproinsulin signal peptide-specific CD8 T cells restricted by the susceptibility molecule HLA-A24 are expanded at onset of type 1 diabetes and kill beta-cells
  publication-title: Diabetes
– volume: 194
  start-page: 113
  year: 2015
  end-page: 124
  ident: bib0031
  article-title: -expanded but not
  publication-title: J Immunol
– volume: 19
  start-page: 68
  year: 2018
  end-page: 79
  ident: bib0033
  article-title: Pathophysiological characteristics of preproinsulin-specific CD8+ T cells in subjects with juvenile-onset and adult-onset type 1 diabetes: A 1-year follow-up study
  publication-title: Pediatr Diabetes
– volume: 187
  start-page: 1745
  year: 2011
  end-page: 1753
  ident: bib0046
  article-title: Antigen-specific TGF-beta-induced regulatory T cells secrete chemokines, regulate T cell trafficking, and suppress ongoing autoimmunity
  publication-title: J Immunol
– volume: 157
  start-page: 78
  year: 2015
  end-page: 90
  ident: bib0034
  article-title: Preproinsulin specific CD8+ T cells in subjects with latent autoimmune diabetes show lower frequency and different pathophysiological characteristics than those with type 1 diabetes
  publication-title: Clin Immunol
– volume: 64
  start-page: 916
  year: 2015
  end-page: 925
  ident: bib0035
  article-title: Beta-cell-specific CD8 T cell phenotype in type 1 diabetes reflects chronic autoantigen exposure
  publication-title: Diabetes
– volume: 39
  start-page: 612
  year: 2009
  end-page: 620
  ident: bib0030
  article-title: Functional islet-specific Treg can be generated from CD4+CD25- T cells of healthy and type 1 diabetic subjects
  publication-title: Eur J Immunol
– volume: 27
  start-page: 727
  year: 2011
  end-page: 736
  ident: bib0025
  article-title: Immunology of Diabetes Society T-Cell Workshop: HLA class II tetramer-directed epitope validation initiative
  publication-title: Diabetes Metab Res Rev
– volume: 153
  start-page: 23
  year: 2014
  end-page: 30
  ident: bib0014
  article-title: Therapy of type 1 diabetes with CD4(+)CD25(high)CD127-regulatory T cells prolongs survival of pancreatic islets - results of one year follow-up
  publication-title: Clin Immunol
– volume: 37
  start-page: 1513
  year: 2014
  end-page: 1520
  ident: bib0010
  article-title: Elevated levels of serum IL-12 and IL-18 are associated with lower frequencies of CD4(+)CD25 (high)FOXP3 (+) regulatory t cells in young patients with type 1 diabetes
  publication-title: Inflammation
– volume: 2
  year: 2012
  ident: bib0001
  article-title: Antigen targets of type 1 diabetes autoimmunity
  publication-title: Cold Spring Harb Perspect Med
– volume: 35
  start-page: 1817
  year: 2012
  end-page: 1820
  ident: bib0015
  article-title: Administration of CD4+CD25highCD127- regulatory T cells preserves beta-cell function in type 1 diabetes in children
  publication-title: Diabetes Care
– volume: 7
  start-page: e29355
  year: 2012
  ident: bib0029
  article-title: Cord blood derived CD4+ CD25(high) T cells become functional regulatory T cells upon antigen encounter
  publication-title: PLoS One
– volume: 183
  start-page: 4119
  year: 2009
  end-page: 4126
  ident: bib0045
  article-title: generation and enhanced suppression of human CD4+CD25+ regulatory T cells by retinoic acid
  publication-title: J Immunol
– volume: 181
  start-page: 8209
  year: 2008
  end-page: 8213
  ident: bib0047
  article-title: Cutting edge: antigen-specific TGF beta-induced regulatory T cells suppress Th17-mediated autoimmune disease
  publication-title: J Immunol
– volume: 10
  start-page: 24
  year: 2017
  ident: bib0048
  article-title: Stabilization of Foxp3 expression by CRISPR-dCas9-based epigenome editing in mouse primary T cells
  publication-title: Epigenetics Chromatin
– volume: 117
  start-page: 1061
  year: 2011
  end-page: 1070
  ident: bib0032
  article-title: Infusion of
  publication-title: Blood
– volume: 20
  start-page: 624
  year: 2009
  end-page: 632
  ident: bib0018
  article-title: The regulatory function of umbilical cord blood CD4(+) CD25(+) T cells stimulated with anti-CD3/anti-CD28 and exogenous interleukin (IL)-2 or IL-15
  publication-title: Pediatr Allergy Immunol
– volume: 7
  start-page: e29355
  year: 2012
  ident: bib0044
  article-title: Cord blood derived CD4+ CD25high T cells become functional regulatory T cells upon antigen encounter
  publication-title: PloS one
– volume: 25
  start-page: 235
  year: 2005
  end-page: 243
  ident: bib0050
  article-title: GAD65- and proinsulin-specific CD4+ T-cells detected by MHC class II tetramers in peripheral blood of type 1 diabetes patients and at-risk subjects
  publication-title: J Autoimmun
– volume: 71
  start-page: 78
  year: 2016
  end-page: 87
  ident: bib0006
  article-title: Regulatory T cell therapy for type 1 diabetes: May the force be with you
  publication-title: J Autoimmun
– volume: 105
  start-page: 750
  issue: 2
  year: 2005
  ident: 10.1016/j.jcyt.2018.09.004_bib0017
  article-title: Cord blood CD4(+)CD25(+)-derived T regulatory cell lines express FoxP3 protein and manifest potent suppressor function
  publication-title: Blood
  doi: 10.1182/blood-2004-06-2467
– volume: 198
  start-page: 729
  issue: 2
  year: 2017
  ident: 10.1016/j.jcyt.2018.09.004_bib0013
  article-title: Tolerogenic Dendritic Cells from Poorly Compensated Type 1 Diabetes Patients Have Decreased Ability To Induce Stable Antigen-Specific T Cell Hyporesponsiveness and Generation of Suppressive Regulatory T Cells
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1600676
– volume: 10
  start-page: 485
  issue: 4
  year: 1999
  ident: 10.1016/j.jcyt.2018.09.004_bib0049
  article-title: A kinetic basis for T cell receptor repertoire selection during an immune response
  publication-title: Immunity
  doi: 10.1016/S1074-7613(00)80048-5
– volume: 111
  start-page: 453
  issue: 1
  year: 2008
  ident: 10.1016/j.jcyt.2018.09.004_bib0023
  article-title: Differential impact of mammalian target of rapamycin inhibition on CD4+CD25+Foxp3+ regulatory T cells compared with conventional CD4+ T cells
  publication-title: Blood
  doi: 10.1182/blood-2007-06-094482
– volume: 110
  start-page: 211
  issue: 1
  year: 2007
  ident: 10.1016/j.jcyt.2018.09.004_bib0039
  article-title: Induction of antigen-specific regulatory T lymphocytes by human dendritic cells expressing the glucocorticoid-induced leucine zipper
  publication-title: Blood
  doi: 10.1182/blood-2006-10-052506
– volume: 11
  start-page: 230
  year: 2010
  ident: 10.1016/j.jcyt.2018.09.004_bib0028
  article-title: BISMA–fast and accurate bisulfite sequencing data analysis of individual clones from unique and repetitive sequences
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-11-230
– volume: 105
  start-page: 4743
  issue: 12
  year: 2005
  ident: 10.1016/j.jcyt.2018.09.004_bib0022
  article-title: Rapamycin selectively expands CD4+CD25+FoxP3+ regulatory T cells
  publication-title: Blood
  doi: 10.1182/blood-2004-10-3932
– volume: 2
  issue: 4
  year: 2012
  ident: 10.1016/j.jcyt.2018.09.004_bib0001
  article-title: Antigen targets of type 1 diabetes autoimmunity
  publication-title: Cold Spring Harb Perspect Med
  doi: 10.1101/cshperspect.a007781
– volume: 6
  start-page: 1167
  issue: 25
  year: 2009
  ident: 10.1016/j.jcyt.2018.09.004_bib0026
  article-title: Visualizing antigen specific CD4+ T cells using MHC class II tetramers
  publication-title: J Vis Exp
– volume: 54
  start-page: 92
  issue: 1
  year: 2005
  ident: 10.1016/j.jcyt.2018.09.004_bib0011
  article-title: Defective suppressor function in CD4(+)CD25(+) T-cells from patients with type 1 diabetes
  publication-title: Diabetes
  doi: 10.2337/diabetes.54.1.92
– volume: 19
  start-page: 68
  issue: 1
  year: 2018
  ident: 10.1016/j.jcyt.2018.09.004_bib0033
  article-title: Pathophysiological characteristics of preproinsulin-specific CD8+ T cells in subjects with juvenile-onset and adult-onset type 1 diabetes: A 1-year follow-up study
  publication-title: Pediatr Diabetes
  doi: 10.1111/pedi.12536
– volume: 194
  start-page: 113
  issue: 1
  year: 2015
  ident: 10.1016/j.jcyt.2018.09.004_bib0031
  article-title: Ex vivo-expanded but not in vitro-induced human regulatory T cells are candidates for cell therapy in autoimmune diseases thanks to stable demethylation of the FOXP3 regulatory T cell-specific demethylated region
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1401145
– volume: 37
  start-page: 129
  issue: 1
  year: 2007
  ident: 10.1016/j.jcyt.2018.09.004_bib0043
  article-title: Transient expression of FOXP3 in human activated nonregulatory CD4+ T cells
  publication-title: Eur J Immunol
  doi: 10.1002/eji.200636435
– volume: 93
  start-page: 2302
  issue: 7
  year: 1999
  ident: 10.1016/j.jcyt.2018.09.004_bib0041
  article-title: Identification of cord blood dendritic cells as an immature CD11c- population
  publication-title: Blood
  doi: 10.1182/blood.V93.7.2302
– volume: 10
  start-page: 24
  year: 2017
  ident: 10.1016/j.jcyt.2018.09.004_bib0048
  article-title: Stabilization of Foxp3 expression by CRISPR-dCas9-based epigenome editing in mouse primary T cells
  publication-title: Epigenetics Chromatin
  doi: 10.1186/s13072-017-0129-1
– volume: 25
  start-page: 235
  issue: 3
  year: 2005
  ident: 10.1016/j.jcyt.2018.09.004_bib0050
  article-title: GAD65- and proinsulin-specific CD4+ T-cells detected by MHC class II tetramers in peripheral blood of type 1 diabetes patients and at-risk subjects
  publication-title: J Autoimmun
  doi: 10.1016/j.jaut.2005.09.018
– volume: 35
  start-page: 1817
  issue: 9
  year: 2012
  ident: 10.1016/j.jcyt.2018.09.004_bib0015
  article-title: Administration of CD4+CD25highCD127- regulatory T cells preserves beta-cell function in type 1 diabetes in children
  publication-title: Diabetes Care
  doi: 10.2337/dc12-0038
– volume: 14
  start-page: 322
  issue: 5
  year: 2013
  ident: 10.1016/j.jcyt.2018.09.004_bib0016
  article-title: Clinical application of regulatory T cells in type 1 diabetes
  publication-title: Pediatr Diabetes
  doi: 10.1111/pedi.12029
– volume: 20
  start-page: 624
  issue: 7
  year: 2009
  ident: 10.1016/j.jcyt.2018.09.004_bib0018
  article-title: The regulatory function of umbilical cord blood CD4(+) CD25(+) T cells stimulated with anti-CD3/anti-CD28 and exogenous interleukin (IL)-2 or IL-15
  publication-title: Pediatr Allergy Immunol
  doi: 10.1111/j.1399-3038.2008.00843.x
– volume: 33
  start-page: 1508
  issue: 12
  year: 2005
  ident: 10.1016/j.jcyt.2018.09.004_bib0040
  article-title: Increased induction of allogeneic-specific cord blood CD4+CD25+ regulatory T (Treg) cells: a comparative study of naive and antigenic-specific cord blood Treg cells
  publication-title: Exp Hematol
  doi: 10.1016/j.exphem.2005.09.002
– volume: 27
  start-page: 727
  issue: 8
  year: 2011
  ident: 10.1016/j.jcyt.2018.09.004_bib0025
  article-title: Immunology of Diabetes Society T-Cell Workshop: HLA class II tetramer-directed epitope validation initiative
  publication-title: Diabetes Metab Res Rev
  doi: 10.1002/dmrr.1244
– volume: 187
  start-page: 1745
  issue: 4
  year: 2011
  ident: 10.1016/j.jcyt.2018.09.004_bib0046
  article-title: Antigen-specific TGF-beta-induced regulatory T cells secrete chemokines, regulate T cell trafficking, and suppress ongoing autoimmunity
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1004112
– volume: 19
  start-page: 345
  issue: 4
  year: 2007
  ident: 10.1016/j.jcyt.2018.09.004_bib0042
  article-title: Activation-induced FOXP3 in human T effector cells does not suppress proliferation or cytokine production
  publication-title: International immunology
  doi: 10.1093/intimm/dxm014
– volume: 181
  start-page: 8209
  issue: 12
  year: 2008
  ident: 10.1016/j.jcyt.2018.09.004_bib0047
  article-title: Cutting edge: antigen-specific TGF beta-induced regulatory T cells suppress Th17-mediated autoimmune disease
  publication-title: J Immunol
  doi: 10.4049/jimmunol.181.12.8209
– volume: 12
  start-page: 580
  issue: 6
  year: 2005
  ident: 10.1016/j.jcyt.2018.09.004_bib0002
  article-title: Autoimmune destruction of pancreatic β cells
  publication-title: American journal of therapeutics
  doi: 10.1097/01.mjt.0000178767.67857.63
– volume: 61
  start-page: 1752
  issue: 7
  year: 2012
  ident: 10.1016/j.jcyt.2018.09.004_bib0036
  article-title: Circulating preproinsulin signal peptide-specific CD8 T cells restricted by the susceptibility molecule HLA-A24 are expanded at onset of type 1 diabetes and kill beta-cells
  publication-title: Diabetes
  doi: 10.2337/db11-1520
– volume: 153
  start-page: 23
  issue: 1
  year: 2014
  ident: 10.1016/j.jcyt.2018.09.004_bib0014
  article-title: Therapy of type 1 diabetes with CD4(+)CD25(high)CD127-regulatory T cells prolongs survival of pancreatic islets - results of one year follow-up
  publication-title: Clin Immunol
  doi: 10.1016/j.clim.2014.03.016
– volume: 4
  start-page: 178
  year: 2017
  ident: 10.1016/j.jcyt.2018.09.004_bib0019
  article-title: Expansion of Human Tregs from Cryopreserved Umbilical Cord Blood for GMP-Compliant Autologous Adoptive Cell Transfer Therapy
  publication-title: Mol Ther Methods Clin Dev
  doi: 10.1016/j.omtm.2016.12.003
– volume: 7
  start-page: e29355
  issue: 1
  year: 2012
  ident: 10.1016/j.jcyt.2018.09.004_bib0029
  article-title: Cord blood derived CD4+ CD25(high) T cells become functional regulatory T cells upon antigen encounter
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0029355
– volume: 71
  start-page: 78
  year: 2016
  ident: 10.1016/j.jcyt.2018.09.004_bib0006
  article-title: Regulatory T cell therapy for type 1 diabetes: May the force be with you
  publication-title: J Autoimmun
  doi: 10.1016/j.jaut.2016.03.011
– volume: 7
  start-page: e29355
  issue: 1
  year: 2012
  ident: 10.1016/j.jcyt.2018.09.004_bib0044
  article-title: Cord blood derived CD4+ CD25high T cells become functional regulatory T cells upon antigen encounter
  publication-title: PloS one
  doi: 10.1371/journal.pone.0029355
– volume: 4
  start-page: e5994
  issue: 6
  year: 2009
  ident: 10.1016/j.jcyt.2018.09.004_bib0021
  article-title: Differential responses of human regulatory T cells (Treg) and effector T cells to rapamycin
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0005994
– volume: 66
  start-page: 722
  issue: 3
  year: 2017
  ident: 10.1016/j.jcyt.2018.09.004_bib0003
  article-title: Islet-Derived CD4 T Cells Targeting Proinsulin in Human Autoimmune Diabetes
  publication-title: Diabetes
  doi: 10.2337/db16-1025
– volume: 192
  start-page: 303
  issue: 2
  year: 2000
  ident: 10.1016/j.jcyt.2018.09.004_bib0004
  article-title: Immunologic self-tolerance maintained by CD25+ CD4+ regulatory T cells constitutively expressing cytotoxic T lymphocyte–associated antigen 4
  publication-title: The Journal of experimental medicine
  doi: 10.1084/jem.192.2.303
– volume: 42
  start-page: 27
  issue: 1
  year: 2012
  ident: 10.1016/j.jcyt.2018.09.004_bib0027
  article-title: Suppression assays with human T regulatory cells: a technical guide
  publication-title: Eur J Immunol
  doi: 10.1002/eji.201141651
– volume: 32
  start-page: 2041
  issue: 11
  year: 2009
  ident: 10.1016/j.jcyt.2018.09.004_bib0024
  article-title: Autologous umbilical cord blood transfusion in very young children with type 1 diabetes
  publication-title: Diabetes Care
  doi: 10.2337/dc09-0967
– volume: 117
  start-page: 1061
  issue: 3
  year: 2011
  ident: 10.1016/j.jcyt.2018.09.004_bib0032
  article-title: Infusion of ex vivo expanded T regulatory cells in adults transplanted with umbilical cord blood: safety profile and detection kinetics
  publication-title: Blood
  doi: 10.1182/blood-2010-07-293795
– volume: 98
  start-page: 1291
  issue: 8
  year: 2013
  ident: 10.1016/j.jcyt.2018.09.004_bib0037
  article-title: Differential effects of rapamycin and retinoic acid on expansion, stability and suppressive qualities of human CD4(+)CD25(+)FOXP3(+) T regulatory cell subpopulations
  publication-title: Haematologica
  doi: 10.3324/haematol.2012.074088
– volume: 60
  start-page: 307
  issue: 4
  year: 2012
  ident: 10.1016/j.jcyt.2018.09.004_bib0009
  article-title: Low frequency of regulatory T cells in the peripheral blood of children with type 1 diabetes diagnosed under the age of five
  publication-title: Arch Immunol Ther Exp (Warsz)
  doi: 10.1007/s00005-012-0177-y
– volume: 90
  start-page: 617
  issue: 6
  year: 2011
  ident: 10.1016/j.jcyt.2018.09.004_bib0020
  article-title: Expansion of CD4+ CD25+ regulatory T cells from cord blood CD4+ cells using the common γ-chain cytokines (IL-2 and IL-15) and rapamycin
  publication-title: Annals of hematology
  doi: 10.1007/s00277-010-1121-z
– volume: 183
  start-page: 4119
  issue: 6
  year: 2009
  ident: 10.1016/j.jcyt.2018.09.004_bib0045
  article-title: De novo generation and enhanced suppression of human CD4+CD25+ regulatory T cells by retinoic acid
  publication-title: J Immunol
  doi: 10.4049/jimmunol.0901065
– volume: 9
  start-page: 239
  issue: 3
  year: 2008
  ident: 10.1016/j.jcyt.2018.09.004_bib0008
  article-title: The Foxp3+ regulatory T cell: a jack of all trades, master of regulation
  publication-title: Nature immunology
  doi: 10.1038/ni1572
– volume: 37
  start-page: 1513
  issue: 5
  year: 2014
  ident: 10.1016/j.jcyt.2018.09.004_bib0010
  article-title: Elevated levels of serum IL-12 and IL-18 are associated with lower frequencies of CD4(+)CD25 (high)FOXP3 (+) regulatory t cells in young patients with type 1 diabetes
  publication-title: Inflammation
  doi: 10.1007/s10753-014-9878-1
– volume: 173
  start-page: 207
  issue: 2
  year: 2013
  ident: 10.1016/j.jcyt.2018.09.004_bib0012
  article-title: CD4(+) CD45RA(-) FoxP3high activated regulatory T cells are functionally impaired and related to residual insulin-secreting capacity in patients with type 1 diabetes
  publication-title: Clin Exp Immunol
  doi: 10.1111/cei.12116
– volume: 39
  start-page: 612
  issue: 2
  year: 2009
  ident: 10.1016/j.jcyt.2018.09.004_bib0030
  article-title: Functional islet-specific Treg can be generated from CD4+CD25- T cells of healthy and type 1 diabetic subjects
  publication-title: Eur J Immunol
  doi: 10.1002/eji.200838819
– volume: 112
  start-page: 1437
  issue: 9
  year: 2003
  ident: 10.1016/j.jcyt.2018.09.004_bib0038
  article-title: Induction of FoxP3 and acquisition of T regulatory activity by stimulated human CD4+CD25- T cells
  publication-title: J Clin Invest
  doi: 10.1172/JCI19441
– volume: 11
  start-page: 7
  issue: 1
  year: 2010
  ident: 10.1016/j.jcyt.2018.09.004_bib0005
  article-title: Regulatory T cells exert checks and balances on self tolerance and autoimmunity
  publication-title: Nature immunology
  doi: 10.1038/ni.1818
– volume: 4
  start-page: 22
  issue: 1
  year: 2012
  ident: 10.1016/j.jcyt.2018.09.004_bib0007
  article-title: Induced Foxp3+ regulatory T cells: a potential new weapon to treat autoimmune and inflammatory diseases?
  publication-title: Journal of molecular cell biology
  doi: 10.1093/jmcb/mjr039
– volume: 157
  start-page: 78
  issue: 1
  year: 2015
  ident: 10.1016/j.jcyt.2018.09.004_bib0034
  article-title: Preproinsulin specific CD8+ T cells in subjects with latent autoimmune diabetes show lower frequency and different pathophysiological characteristics than those with type 1 diabetes
  publication-title: Clin Immunol
  doi: 10.1016/j.clim.2015.01.005
– volume: 64
  start-page: 916
  issue: 3
  year: 2015
  ident: 10.1016/j.jcyt.2018.09.004_bib0035
  article-title: Beta-cell-specific CD8 T cell phenotype in type 1 diabetes reflects chronic autoantigen exposure
  publication-title: Diabetes
  doi: 10.2337/db14-0332
SSID ssj0020885
Score 2.2583077
Snippet Antigen-specific regulatory T cells (Tregs) have proven to be effective in reversing established autoimmunity in type 1 diabetes (T1D). Cord blood (CB) can...
Abstract Background Antigen-specific regulatory T cells (Tregs) have proven to be effective in reversing established autoimmunity in type 1 diabetes (T1D)....
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1355
SubjectTerms Advanced Basic Science
cord blood
HLA tetramers
Other
proinsulin
regulatory T cells
type 1 diabetes
Title In vitro assessment of cord blood–derived proinsulin-specific regulatory T cells for cellular therapy in type 1 diabetes
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1465324918306133
https://www.clinicalkey.es/playcontent/1-s2.0-S1465324918306133
https://dx.doi.org/10.1016/j.jcyt.2018.09.004
https://www.ncbi.nlm.nih.gov/pubmed/30340983
https://www.proquest.com/docview/2123716039
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhvfRS-u72EaZQcmnc9UOy7GMIDZuWhkA3kJuQLQk2FDusNwH3UPof-g_7SzpjyQ6laQq92UZCsmYkzUjfN8PYm9hYk3GeRZWo64iXxkU6rkXknCx4IUqTaiInfzrOF6f8w5k422IHIxeGYJVh7fdr-rBahy_zMJrzi9Vq_jmh0GDoPaBS0qZEET85l6Tl775NMI8UZ5HwDCMRUelAnPEYr_O6JzxlUgyxTkOyths2p78Zn8MmdHif3QvWI-z7Dj5gW7Z5yHZPfPjpfg-W12yqbg924eQ6MHX_iH09auBqtVm3oKd4nNA6IAcUBgT7z-8_DKrklTWAfQk49YjYmIQogrVPXN-ue1gCHfl3gDbv8ERoVvBkrh5WDdDRLiQwHu0-ZqeH75cHiyjkXohqnqebSEhdp7mUski0dbkxdINXiwodLiGlRqtRJ2le6cxWMXcudWjXcFMUli4is9xlT9h20zb2GQN0OGPDeZUVwnFR5OhzG1daLK-1jbWYsWQcdFWHwOSUH-OLGhFo54oEpUhQKi4VCmrG3k51LnxYjltLZ6Ms1Ug4xSVS4a5xay15Uy3bhVneqUR1qYrVH5o4Y2Kq-Zsy_7PF16OiKZzlJD3d2PayU2RgSMoIXs7YU6-B03-jEYJOepE9_89WX7C79OYJli_Z9mZ9aV-hpbWpdoaptMPu7B99XBz_Apn6Kfo
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7SzaG9lL67fU6h5NKY9UPy4xhCw26TLIFuIDchWxJsCHZYbwLuqf-h_7C_pBpL3lCaptCbsTVI1sxIM9J8MwAfQ6VVwlgSlLyqAlYoE8iw4oExWc5yXqhYEjj5eJ5OT9mXM362BfsDFobCKv3a79b0frX2byZ-NieXy-Xka0Spwaz3YIWSNqXkHmxTdio-gu292eF0vvG7rCJxBzLiARF47IwL8zqvOgqpjPI-3amv13bL_vQ3-7Pfhw4ewUNvQOKeG-Nj2NL1E9g5cRmou11c3ACq2l3cwZOb3NTdU_g2q_F6uV41KDcpObExSD4o9kHsP7__UFYqr7VCOxYfqh4QIJOCinDlatc3qw4XSKf-LVqzt3-igFZ0eK4OlzXS6S5GOJzuPoPTg8-L_Wngyy8EFUvjdcAzWcVplmV5JLVJlaJLvIqX1ufiWSat4SijOC1losuQGRMba9owleea7iKT1CTPYVQ3tX4JaH3OUDFWJjk3jOepdbuVKbRtL6UOJR9DNEy6qHxuciqRcSGGILRzQYwSxCgRFsIyagyfNjSXLjPHna2TgZdiwJzaVVLYjeNOquw2Kt16RW9FJNpYhOIPYRwD31D-Js__7PHDIGjCKjpxT9a6uWoF2RgZFQUvxvDCSeDmv60dYv30PHn1n72-h_vTxfGROJrND1_DA_ri8JZvYLReXem31vBal--8Yv0CtKosqw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+vitro+assessment+of+cord+blood%E2%80%93derived+proinsulin-specific+regulatory+T+cells+for+cellular+therapy+in+type+1+diabetes&rft.jtitle=Cytotherapy+%28Oxford%2C+England%29&rft.au=Paul%2C+MAHINDER&rft.au=DAYAL%2C+DEVI&rft.au=BHANSALI%2C+ANIL&rft.au=DHALIWAL%2C+LAKHBIR&rft.date=2018-11-01&rft.issn=1465-3249&rft.volume=20&rft.issue=11&rft.spage=1355&rft.epage=1370&rft_id=info:doi/10.1016%2Fj.jcyt.2018.09.004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jcyt_2018_09_004
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F14653249%2FS1465324918X00115%2Fcov150h.gif