Examining sensor-based physical activity recognition and monitoring for healthcare using Internet of Things: A systematic review
•It summarises the state-of-the-art in traditional PARM methodologies for healthcare.•It identifies new research trends and challenges of PARM studies in IoT environments.•It considers successful case studies in the area and look at the possible future industrial applications in smart healthcare. Du...
Saved in:
Published in | Journal of biomedical informatics Vol. 87; pp. 138 - 153 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.11.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 1532-0464 1532-0480 1532-0480 |
DOI | 10.1016/j.jbi.2018.09.002 |
Cover
Loading…
Abstract | •It summarises the state-of-the-art in traditional PARM methodologies for healthcare.•It identifies new research trends and challenges of PARM studies in IoT environments.•It considers successful case studies in the area and look at the possible future industrial applications in smart healthcare.
Due to importantly beneficial effects on physical and mental health and strong association with many rehabilitation programs, Physical Activity Recognition and Monitoring (PARM) have been considered as a key paradigm for smart healthcare. Traditional methods for PARM focus on controlled environments with the aim of increasing the types of identifiable activity subjects complete and improving recognition accuracy and system robustness by means of novel body-worn sensors or advanced learning algorithms. The emergence of the Internet of Things (IoT) enabling technology is transferring PARM studies to open and connected uncontrolled environments by connecting heterogeneous cost-effective wearable devices and mobile apps. Little is currently known about whether traditional PARM technologies can tackle the new challenges of IoT environments and how to effectively harness and improve these technologies. In an effort to understand the use of IoT technologies in PARM studies, this paper will give a systematic review, critically examining PARM studies from a typical IoT layer-based perspective. It will firstly summarize the state-of-the-art in traditional PARM methodologies as used in the healthcare domain, including sensory, feature extraction and recognition techniques. The paper goes on to identify some new research trends and challenges of PARM studies in the IoT environments, and discusses some key enabling techniques for tackling them. Finally, this paper consider some of the successful case studies in the area and look at the possible future industrial applications of PARM in smart healthcare. |
---|---|
AbstractList | Due to importantly beneficial effects on physical and mental health and strong association with many rehabilitation programs, Physical Activity Recognition and Monitoring (PARM) have been considered as a key paradigm for smart healthcare. Traditional methods for PARM focus on controlled environments with the aim of increasing the types of identifiable activity subjects complete and improving recognition accuracy and system robustness by means of novel body-worn sensors or advanced learning algorithms. The emergence of the Internet of Things (IoT) enabling technology is transferring PARM studies to open and connected uncontrolled environments by connecting heterogeneous cost-effective wearable devices and mobile apps. Little is currently known about whether traditional PARM technologies can tackle the new challenges of IoT environments and how to effectively harness and improve these technologies. In an effort to understand the use of IoT technologies in PARM studies, this paper will give a systematic review, critically examining PARM studies from a typical IoT layer-based perspective. It will firstly summarize the state-of-the-art in traditional PARM methodologies as used in the healthcare domain, including sensory, feature extraction and recognition techniques. The paper goes on to identify some new research trends and challenges of PARM studies in the IoT environments, and discusses some key enabling techniques for tackling them. Finally, this paper consider some of the successful case studies in the area and look at the possible future industrial applications of PARM in smart healthcare. Due to importantly beneficial effects on physical and mental health and strong association with many rehabilitation programs, Physical Activity Recognition and Monitoring (PARM) have been considered as a key paradigm for smart healthcare. Traditional methods for PARM focus on controlled environments with the aim of increasing the types of identifiable activity subjects complete and improving recognition accuracy and system robustness by means of novel body-worn sensors or advanced learning algorithms. The emergence of the Internet of Things (IoT) enabling technology is transferring PARM studies to open and connected uncontrolled environments by connecting heterogeneous cost-effective wearable devices and mobile apps. Little is currently known about whether traditional PARM technologies can tackle the new challenges of IoT environments and how to effectively harness and improve these technologies. In an effort to understand the use of IoT technologies in PARM studies, this paper will give a systematic review, critically examining PARM studies from a typical IoT layer-based perspective. It will firstly summarize the state-of-the-art in traditional PARM methodologies as used in the healthcare domain, including sensory, feature extraction and recognition techniques. The paper goes on to identify some new research trends and challenges of PARM studies in the IoT environments, and discusses some key enabling techniques for tackling them. Finally, this paper consider some of the successful case studies in the area and look at the possible future industrial applications of PARM in smart healthcare.Due to importantly beneficial effects on physical and mental health and strong association with many rehabilitation programs, Physical Activity Recognition and Monitoring (PARM) have been considered as a key paradigm for smart healthcare. Traditional methods for PARM focus on controlled environments with the aim of increasing the types of identifiable activity subjects complete and improving recognition accuracy and system robustness by means of novel body-worn sensors or advanced learning algorithms. The emergence of the Internet of Things (IoT) enabling technology is transferring PARM studies to open and connected uncontrolled environments by connecting heterogeneous cost-effective wearable devices and mobile apps. Little is currently known about whether traditional PARM technologies can tackle the new challenges of IoT environments and how to effectively harness and improve these technologies. In an effort to understand the use of IoT technologies in PARM studies, this paper will give a systematic review, critically examining PARM studies from a typical IoT layer-based perspective. It will firstly summarize the state-of-the-art in traditional PARM methodologies as used in the healthcare domain, including sensory, feature extraction and recognition techniques. The paper goes on to identify some new research trends and challenges of PARM studies in the IoT environments, and discusses some key enabling techniques for tackling them. Finally, this paper consider some of the successful case studies in the area and look at the possible future industrial applications of PARM in smart healthcare. •It summarises the state-of-the-art in traditional PARM methodologies for healthcare.•It identifies new research trends and challenges of PARM studies in IoT environments.•It considers successful case studies in the area and look at the possible future industrial applications in smart healthcare. Due to importantly beneficial effects on physical and mental health and strong association with many rehabilitation programs, Physical Activity Recognition and Monitoring (PARM) have been considered as a key paradigm for smart healthcare. Traditional methods for PARM focus on controlled environments with the aim of increasing the types of identifiable activity subjects complete and improving recognition accuracy and system robustness by means of novel body-worn sensors or advanced learning algorithms. The emergence of the Internet of Things (IoT) enabling technology is transferring PARM studies to open and connected uncontrolled environments by connecting heterogeneous cost-effective wearable devices and mobile apps. Little is currently known about whether traditional PARM technologies can tackle the new challenges of IoT environments and how to effectively harness and improve these technologies. In an effort to understand the use of IoT technologies in PARM studies, this paper will give a systematic review, critically examining PARM studies from a typical IoT layer-based perspective. It will firstly summarize the state-of-the-art in traditional PARM methodologies as used in the healthcare domain, including sensory, feature extraction and recognition techniques. The paper goes on to identify some new research trends and challenges of PARM studies in the IoT environments, and discusses some key enabling techniques for tackling them. Finally, this paper consider some of the successful case studies in the area and look at the possible future industrial applications of PARM in smart healthcare. |
Author | Zhao, Youbing Yang, Yun Deng, Zhikun Qi, Jun Yang, Po Waraich, Atif |
Author_xml | – sequence: 1 givenname: Jun surname: Qi fullname: Qi, Jun email: j.qi@2015.ljmu.ac.uk organization: School of Software, Yunnan University, Kunming, China – sequence: 2 givenname: Po orcidid: 0000-0002-8553-7127 surname: Yang fullname: Yang, Po email: p.yang@ljum.ac.uk organization: School of Software, Yunnan University, Kunming, China – sequence: 3 givenname: Atif surname: Waraich fullname: Waraich, Atif organization: Department of Computer Science, Liverpool John Moores University, Liverpool L3 3AF, UK – sequence: 4 givenname: Zhikun surname: Deng fullname: Deng, Zhikun organization: Department of Computer Science, University of Bedfordshire, Luton LU1 3JU, UK – sequence: 5 givenname: Youbing surname: Zhao fullname: Zhao, Youbing organization: Department of Computer Science, University of Bedfordshire, Luton LU1 3JU, UK – sequence: 6 givenname: Yun surname: Yang fullname: Yang, Yun organization: School of Software, Yunnan University, Kunming, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30267895$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kTtvFDEUhS0URB7wA2iQS5oZbI_tmYEqigJEikQTasuPO1mvZuzF9iZsx0_Ho00oKFLdh853inPO0UmIARB6T0lLCZWftu3W-JYROrRkbAlhr9AZFR1rCB_Iyb9d8lN0nvOWEEqFkG_QaUeY7IdRnKE_17_14oMP9zhDyDE1RmdweLc5ZG_1jLUt_sGXA05g433wxceAdXB4ifWIaSWnmPAG9Fw2VifA-7w-b0KBFKDgOOG7Tf3kz_gS50MusOjibTV88PD4Fr2e9Jzh3dO8QD-_Xt9dfW9uf3y7ubq8bSyXrDSCT73oeD9QJyRjnQPhuJm4M1yA6JwcRyGtZcClG3pjnJscIZOxojeOD7a7QB-PvrsUf-0hF7X4bGGedYC4z4pRyqtJT_sq_fAk3ZsFnNolv-h0UM-pVUF_FNgUc04wKeuLXpMpSftZUaLWftRW1X7U2o8io6r9VJL-Rz6bv8R8OTJQ46mRJZWth2DB-dpJUS76F-i_FsWq4g |
CitedBy_id | crossref_primary_10_1109_ACCESS_2019_2891668 crossref_primary_10_1108_SR_02_2024_0165 crossref_primary_10_1109_TII_2022_3142315 crossref_primary_10_1155_2021_4028761 crossref_primary_10_3390_s23167095 crossref_primary_10_1155_2022_6389069 crossref_primary_10_3390_s21155006 crossref_primary_10_2196_33890 crossref_primary_10_1038_s41597_024_03254_8 crossref_primary_10_3389_fpubh_2023_1185702 crossref_primary_10_3390_s21113842 crossref_primary_10_1109_ACCESS_2020_3024003 crossref_primary_10_1016_j_engappai_2025_110465 crossref_primary_10_1016_j_technovation_2022_102558 crossref_primary_10_1109_OJCOMS_2024_3484002 crossref_primary_10_1038_s41598_024_56123_0 crossref_primary_10_1080_10447318_2024_2313282 crossref_primary_10_1108_IJIUS_01_2019_0005 crossref_primary_10_3390_app142310835 crossref_primary_10_1109_JSEN_2020_3000772 crossref_primary_10_1109_TBME_2024_3418688 crossref_primary_10_1016_j_inffus_2019_09_002 crossref_primary_10_3390_diagnostics13111861 crossref_primary_10_1016_j_jbi_2023_104483 crossref_primary_10_2196_37229 crossref_primary_10_3390_s21248297 crossref_primary_10_1109_TCSS_2019_2916086 crossref_primary_10_11834_jig_230020 crossref_primary_10_1016_j_nantod_2020_101016 crossref_primary_10_1007_s42979_024_03129_0 crossref_primary_10_1016_j_ins_2021_10_049 crossref_primary_10_1007_s40747_022_00767_w crossref_primary_10_1038_s41467_021_23020_3 crossref_primary_10_1109_ACCESS_2023_3301872 crossref_primary_10_3390_healthcare9101329 crossref_primary_10_1109_JSEN_2024_3404777 crossref_primary_10_3390_app132212135 crossref_primary_10_3390_s21196401 crossref_primary_10_3390_s22228974 crossref_primary_10_1155_2021_6632599 crossref_primary_10_31590_ejosat_868000 crossref_primary_10_1007_s42835_022_01258_1 crossref_primary_10_1007_s11036_021_01834_1 crossref_primary_10_1007_s10586_024_04653_7 crossref_primary_10_2196_38536 crossref_primary_10_1007_s40860_021_00147_0 crossref_primary_10_1007_s43926_024_00062_9 crossref_primary_10_3390_mi15040479 crossref_primary_10_1016_j_measurement_2020_107480 crossref_primary_10_1016_j_procs_2021_09_253 crossref_primary_10_2147_CIA_S329668 crossref_primary_10_1109_ACCESS_2022_3159235 crossref_primary_10_2196_54049 crossref_primary_10_3390_s22176524 crossref_primary_10_4103_abr_abr_197_22 crossref_primary_10_1109_JSEN_2022_3161797 crossref_primary_10_1002_advs_202103694 crossref_primary_10_1016_j_patcog_2020_107561 crossref_primary_10_1016_j_sintl_2021_100122 crossref_primary_10_1007_s11042_022_12349_6 crossref_primary_10_51483_IJAIML_4_1_2024_94_121 crossref_primary_10_1002_ett_4258 crossref_primary_10_1016_j_iot_2025_101548 crossref_primary_10_3389_fpubh_2021_756675 crossref_primary_10_1016_j_cobme_2021_100291 crossref_primary_10_1109_ACCESS_2020_2989128 crossref_primary_10_3389_fphys_2023_1094946 crossref_primary_10_1002_dac_4678 crossref_primary_10_1109_JSEN_2021_3108011 crossref_primary_10_1109_TII_2020_3022432 crossref_primary_10_1016_j_techfore_2022_122001 crossref_primary_10_1177_00405175241253867 crossref_primary_10_1016_j_jnca_2021_103164 crossref_primary_10_1109_ACCESS_2022_3183228 crossref_primary_10_1108_SR_02_2024_0080 crossref_primary_10_1021_acsami_1c22001 crossref_primary_10_3390_make6020040 crossref_primary_10_1109_JSEN_2022_3141064 crossref_primary_10_1002_cpe_7327 crossref_primary_10_1016_j_engappai_2023_106543 crossref_primary_10_20517_ss_2024_68 crossref_primary_10_1186_s13102_025_01063_z crossref_primary_10_1109_JIOT_2021_3135200 crossref_primary_10_1109_TNSRE_2020_3005616 crossref_primary_10_1080_1091367X_2018_1560297 crossref_primary_10_1080_09537287_2019_1702226 crossref_primary_10_1007_s12652_020_02548_0 crossref_primary_10_1109_ACCESS_2022_3176606 crossref_primary_10_1111_coin_12352 crossref_primary_10_1007_s10470_025_02350_y crossref_primary_10_3390_s21144767 crossref_primary_10_1016_j_smhl_2019_100100 crossref_primary_10_1109_JSEN_2021_3058429 crossref_primary_10_1145_3688855 crossref_primary_10_1155_2022_3463274 crossref_primary_10_1186_s13063_020_04295_1 crossref_primary_10_1109_TCSS_2019_2918285 crossref_primary_10_1155_2021_6611366 crossref_primary_10_3389_frobt_2021_610653 crossref_primary_10_1142_S1793351X22500039 crossref_primary_10_1016_j_artmed_2022_102454 crossref_primary_10_3390_healthcare10101940 crossref_primary_10_1002_adma_202100047 crossref_primary_10_1109_TCSS_2019_2919097 crossref_primary_10_1002_ett_3994 |
Cites_doi | 10.1109/ISWC.2011.24 10.1109/AINAW.2007.90 10.1109/ICMLA.2009.112 10.1152/japplphysiol.00465.2009 10.1088/0967-3334/35/7/1245 10.1109/TNSRE.2010.2070807 10.1109/ISWC.2007.4373774 10.1109/JBHI.2013.2282617 10.1109/RTCSA.2007.17 10.1109/TBME.2011.2160723 10.1109/TBME.2003.812189 10.1109/MPRV.2008.39 10.1145/1409635.1409637 10.1109/UIC-ATC.2010.26 10.1109/ICME.2005.1521728 10.1007/978-3-642-02830-4_4 10.1007/978-3-319-13105-4_14 10.1016/j.eswa.2012.09.004 10.4108/bodynets.2007.114 10.1109/TNSRE.2002.802879 10.1016/j.medengphy.2011.05.002 10.1016/j.neucom.2015.07.085 10.1109/ICME.2010.5583013 10.1109/TNSRE.2007.916282 10.1109/CVPR.2005.61 10.3390/s140610146 10.1016/j.patrec.2008.08.002 10.1016/j.eswa.2014.04.037 10.1109/TPAMI.2006.197 10.1145/2742647.2742674 10.1016/j.patcog.2007.11.016 10.1145/2702123.2702178 10.1007/s12652-011-0064-0 10.1007/s13042-010-0001-0 10.1145/2702123.2702200 10.1109/ICCAS.2007.4406764 10.3390/s131013099 10.1145/1964897.1964918 10.1016/j.maturitas.2011.03.016 10.1109/TITB.2009.2037752 10.1109/TITB.2005.856864 10.1016/j.artint.2007.01.006 10.1109/ISWC.2006.286336 10.1002/anr.1780321108 10.1016/j.simpat.2009.09.002 10.1007/978-3-642-21219-2_58 10.1049/el.2014.2611 10.1109/BSN.2006.24 10.1109/JBHI.2015.2432033 10.1016/j.medengphy.2013.11.010 10.1109/TITB.2007.899496 10.3390/s150613159 10.1109/TIM.2012.2187245 10.1109/86.547939 10.1109/TBME.2006.886670 10.1109/JBHI.2013.2282471 10.1016/j.medengphy.2004.11.006 10.1109/ICSMC.2001.973004 10.3390/s140916181 10.1109/ICCV.2007.4408865 10.1145/1409635.1409638 10.1109/MPRV.2008.36 10.1109/21.97458 10.1145/3102304.3105828 10.1109/7333.928571 10.1145/2423636.2423644 10.1145/1656274.1656278 10.1109/WMVC.2007.12 10.1109/MPRV.2004.7 10.1109/TKDE.2011.51 10.1109/EMBC.2014.6944533 10.1109/NNSP.1999.788121 10.1109/IEMBS.2007.4353446 10.1109/TBME.2005.851475 10.1109/HealthCom.2012.6379453 10.1007/s11517-010-0701-3 10.1109/TIM.2009.2025065 10.1109/TITB.2010.2051955 10.1007/978-3-540-39863-9_17 10.1109/ISWC.2008.4911590 10.1109/79.91217 10.1109/TBME.2012.2208750 10.1109/TASE.2013.2256349 10.3390/jsan6040028 10.1109/TNSRE.2012.2230189 10.1016/j.pmcj.2009.10.004 10.1109/TNSRE.2007.914454 10.1109/TBME.2011.2178070 10.1109/PERCOM.2015.7146519 10.1145/2134203.2134205 10.3233/AIS-2010-0071 10.1109/TITB.2005.856863 10.1109/TSMCC.2007.905750 10.1145/1497185.1497223 10.1007/s00779-010-0345-1 10.1109/TNSRE.2003.822759 10.1145/279943.279962 10.1145/1689239.1689243 10.1111/j.1469-8986.1997.tb01747.x 10.1007/978-3-540-24646-6_10 10.1109/TBME.2012.2206384 10.1145/2493432.2493454 10.1109/ISWC.2012.23 10.1016/j.pmcj.2012.11.004 10.1109/KICSS.2012.26 10.1109/CC.2015.7114066 10.1016/S0966-6362(01)00201-6 10.1016/S1350-4533(00)00041-2 10.1109/TNSRE.2010.2053217 10.1109/MPRV.2010.7 10.1023/A:1018628609742 10.1109/ISSNIP.2005.1595593 10.1016/j.pmcj.2014.02.003 10.1109/JBHI.2014.2328593 10.1016/j.pmcj.2012.06.002 10.1007/s00779-012-0515-4 10.1109/ISWC.2009.23 10.1016/j.gaitpost.2004.08.008 |
ContentType | Journal Article |
Copyright | 2018 Copyright © 2018. Published by Elsevier Inc. |
Copyright_xml | – notice: 2018 – notice: Copyright © 2018. Published by Elsevier Inc. |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.jbi.2018.09.002 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Public Health |
EISSN | 1532-0480 |
EndPage | 153 |
ExternalDocumentID | 30267895 10_1016_j_jbi_2018_09_002 S153204641830176X |
Genre | Journal Article Review |
GroupedDBID | --- --K --M -~X .DC .GJ .~1 0R~ 1B1 1RT 1~. 1~5 29J 4.4 457 4G. 53G 5GY 5VS 6I. 7-5 71M 8P~ AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAWTL AAXUO AAYFN ABBOA ABBQC ABFRF ABJNI ABLVK ABMAC ABMZM ABVKL ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADFGL ADMUD AEBSH AEFWE AEKER AENEX AEXQZ AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AOUOD ASPBG AVWKF AXJTR AZFZN BAWUL BKOJK BLXMC BNPGV CAG COF CS3 DIK DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HVGLF HZ~ IHE IXB J1W KOM LCYCR LG5 M41 MO0 N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSH SSV SSZ T5K UAP UHS UNMZH XPP ZGI ZMT ZU3 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACIEU ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS 0SF NPM 7X8 AGRNS |
ID | FETCH-LOGICAL-c462t-54f7534781d56223de5d4bf4db45e53d69956cc2e46d87bbddfd00fbc57bd48c3 |
IEDL.DBID | IXB |
ISSN | 1532-0464 1532-0480 |
IngestDate | Fri Jul 11 02:06:06 EDT 2025 Wed Feb 19 02:34:20 EST 2025 Wed Aug 27 16:25:01 EDT 2025 Thu Apr 24 23:06:56 EDT 2025 Fri Feb 23 02:34:24 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Systematic review Internet of Things Physical activity recognition Sensor-based Physical activity monitoring |
Language | English |
License | This article is made available under the Elsevier license. Copyright © 2018. Published by Elsevier Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c462t-54f7534781d56223de5d4bf4db45e53d69956cc2e46d87bbddfd00fbc57bd48c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3 |
ORCID | 0000-0002-8553-7127 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S153204641830176X |
PMID | 30267895 |
PQID | 2114699717 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_2114699717 pubmed_primary_30267895 crossref_citationtrail_10_1016_j_jbi_2018_09_002 crossref_primary_10_1016_j_jbi_2018_09_002 elsevier_sciencedirect_doi_10_1016_j_jbi_2018_09_002 |
PublicationCentury | 2000 |
PublicationDate | November 2018 2018-11-00 20181101 |
PublicationDateYYYYMMDD | 2018-11-01 |
PublicationDate_xml | – month: 11 year: 2018 text: November 2018 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of biomedical informatics |
PublicationTitleAlternate | J Biomed Inform |
PublicationYear | 2018 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Luštrek, Kaluža (b0075) 2009; 33 M. Stikic, B. Schiele, Activity recognition from sparsely labeled data using multi-instance learning, Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 5561 LNCS, 2009, pp. 156–173. Moncada-Torres, Leuenberger, Gonzenbach, Luft, Gassert (b0105) 2014; 35 Palmes, Pung, Gu, Xue, Chen (b0630) 2010; 6 M. Stikic, K. Van Laerhoven, B. Schiele, Exploring semi-supervised and active learning for activity recognition, in: 12th IEEE Int. Symp. Wearable Comput., 2008, pp. 81–88. Meditskos, Dasiopoulou, Kompatsiaris (b0675) 2015 E.M. Tapia, S.S. Intille, W. Haskell, K. Larson, J. Wright, A. King, R. Friedman, Real-time recognition of physical activities and their intensities using wireless accelerometers and a heart rate monitor, in: 11th IEEE Int. Symp. Wearable Comput., 2007, pp. 1–4. F. Adib, H. Mao, Z. Kabelac, D. Katabi, R.C. Miller, Smart homes that monitor breathing and heart rate, in: Proc. 33rd Annu. ACM Conf. Hum. Factors Comput. Syst. – CHI ’15, 2015, pp. 837–846. Wyatt, Philipose, Choudhury (b0635) 2005; 20 Banos, Moral-Munoz, Diaz-Reyes, Arroyo-Morales, Damas, Herrera-Viedma, Hong, Lee, Pomares, Rojas, Villalonga (b0720) 2015; 15 Kwon, Kang, Bae (b0685) 2014; 41 Dong, Scisco, Wilson, Muth, Hoover (b0740) 2014; 18 Chernbumroong, Cang, Atkins, Yu (b0700) 2013; 40 A. Purwar, D. Do Jeong, W.Y. Chung, Activity monitoring from real-time triaxial accelerometer data using sensor network, in: Int. Conf. Control. Autom. Syst., 2007, pp. 2402–2406. Khan, Lee, Lee, Kim (b0210) 2010; 14 E.C. Larson, M. Goel, G. Boriello, S. Heltshe, M. Rosenfeld, S.N. Patel, SpiroSmart, in: Proc. 2012 ACM Conf. Ubiquitous Comput. – UbiComp ’12, no. Figure 1, 2012, p. 280. N.C. Krishnan, P. Lade, S. Panchanathan, Activity gesture spotting using a threshold model based on adaptive boosting, in: IEEE Int. Conf. Multimed. Expo, ICME 2010, 2010, pp. 155–160. D. Anguita, A. Ghio, L. Oneto, X. Parra, J.L. Reyes-Ortiz, Human activity recognition on smartphones using a multiclass hardware-friendly support vector machine. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 7657 LNCS, 2012, pp. 216–223. Chen, Nugent, Wang (b0405) 2012; 24 Naranjo-Hernández, Roa, Reina-Tosina, Estudillo-Valderrama (b0200) 2012; 59 Kranz, Möller, Hammerla, Diewald, Plötz, Olivier, Roalter (b0335) 2013; 9 K. Van Laerhoven, E. Berlin, and B. Schiele, “Enabling efficient time series analysis for wearable activity data, in: 8th Int. Conf. Mach. Learn. Appl., ICMLA 2009, 2009, pp. 392–397. T. Maekawa, S. Watanabe, Unsupervised activity recognition with user’s physical characteristics data, in: Proc. – Int. Symp. Wearable Comput. ISWC, 2011, pp. 89–96. E.J. Wang, W. Li, D. Hawkins, T. Gernsheimer, C. Norby-Slycord, S.N. Patel, HemaApp, in: Proc. 2016 ACM Int. Jt. Conf. Pervasive Ubiquitous Comput. – UbiComp’16, 2016, pp. 593–604. Okeyo, Chen, Wang, Sterritt (b0380) 2014; 10 Z. He, L. Jin, Activity recognition from acceleration data using AR model representation and SVM, in: Int. Conf. Mach. Learn. Cybern., no. July, 2008, pp. 12–15. S. Knox, L. Coyle, S. Dobson, Using ontologies in case-based activity recognition, in: FLAIRS Conf., 2010, pp. 1–6. Krishnan, Cook (b0375) 2012; 13 Logan, Healey, Philipose, Tapia, Intille (b0265) 2007; 4717 Kau, Chen (b0325) 2015; 19 Pärkkä, Ermes, Korpipää, Mäntyjärvi, Peltola, Korhonen (b0570) 2006; 10 Zhou, Hu, Member (b0735) 2010; 59 Costigan, Deluzio, Wyss (b0085) 2002; 16 Van Kasteren, Englebienne, Kröse (b0555) 2010; 2 Naik, Kumar, Jayadeva (b0590) 2010; 14 McKeever, Ye, Coyle, Bleakley (b0680) 2010; 2 Safavian, Landgrebe (b0565) 1991; 21 Khan, Siddiqi, Lee (b0250) 2013; 13 H. Chen, F. Perich, T. Finin, A. Joshi, SOUPA : Standard Ontology for Ubiquitous and Pervasive Applications. P. Natarajan, R. Nevatia, Coupled hidden semi Markov Models for activity recognition, in: Proc. IEEE Work. Motion Video Comput., 2007, p. 10. R. Nandakumar, S. Gollakota, N. Watson, Contactless sleep apnea detection on smartphones, in: Proc. 13th Annu. Int. Conf. Mob. Syst. Appl. Serv. – MobiSys ’15, 2015, pp. 45–57. Kim, Helal, Cook (b0545) 2010; 9 Philipose, Fishkin, Perkowitz, Patterson, Fox, Kautz, Hähnel (b0310) 2004; 3 Liu, Gao, John, Staudenmayer, Freedson (b0155) 2012; 59 Liu, Darabi, Banerjee, Liu (b0285) 2007; 37 Liao, Patterson, Fox, Kautz (b0295) 2007; 171 Pappas, Popovic, Keller, Dietz, Morari (b0080) 2001; 9 Giuffrida, Lerner, Steiner, Daly (b0140) 2008; 16 S. Mika, G. Ratsch, J. Weston, B. Schölkopf, K.-R. Muller, Fisher discriminant analysis with kernels, in: IEEE, 1999, pp. 41–48. Z. Yan, V. Subbaraju, D. Chakraborty, A. Misra, K. Aberer, Energy-efficient continuous activity recognition on mobile phones: an activity-adaptive approach, in: 16th Int. Symp. Wearable Comput., 2012, pp. 17–24. Veltink, Bussmann, de Vries, Martens, Van Lummel (b0065) 1996; 4 D. Minnen, T. Starner, J.A. Ward, P. Lukowicz, G. Troster, Recognizing and discovering human actions from on-body sensor data, in: IEEE Int. Conf. Multimed. Expo ICME, 2005, pp. 1545–1548. R. Musculo, S. Conforto, M. Schmid, P. Caselli, T. D’Alessio, Classification of motor activities through derivative dynamic time warping applied on accelerometer data, in: Annu. Int. Conf. IEEE Eng. Med. Biol. – Proc, 2007, pp. 4930–4933. J. Rafferty, C. N.-I. Member, L. C.-I. Member, J. Qi, R. Dutton, A. Zirk, L.T. Boye, M. Kohn, R. Hellman, NFC based provisioning of instructional videos to assist with instrumental activities of daily living, 2014, pp. 4131–4134. Yang, Wang, Chen (b0465) 2008; 29 T. Huỳnh, B. Schiele, Towards less supervision in activity recognition from wearable sensors, in: Proc. – Int. Symp. Wearable Comput. ISWC, 2007, pp. 3–10. Trabelsi, Mohammed, Chamroukhi, Oukhellou, Amirat (b0745) 2013; 10 Altini, Penders, Vullers, Amft (b0135) 2014; 2194 H. Li, C. Ye, A.P. Sample, IDSense, in: Proc. 33rd Annu. ACM Conf. Hum. Factors Comput. Syst. – CHI’15, no. c, 2015, pp. 2555–2564. Paiyarom, Tungamchit, Keinprasit, Kayasith (b0595) 2009 Roggen, Förster, Calatroni, Tröster (b0400) 2013; 4 Han, Bang, Nugent, McClean, Lee (b0300) 2014; 14 K. Van Laerhoven, E. Berlin, When else did this happen? Efficient subsequence representation for matching in wearable activity data, in: Proc. – Int. Symp. Wearable Comput. ISWC, 2009, pp. 101–104. Godfrey, Bourke, Ólaighin, van de Ven, Nelson (b0220) 2011; 33 T. Mitchell, A. Blum, Combining labeled and unlabeled data with co-training, in: Proc. Elev. Annu. Conf. Comput. Learn. Theory, 1998, pp. 92–100. Lu, Fu (b0340) 2009 Jian, Chen (b0355) 2015 Reyes-Ortiz, Oneto, Samà, Parra, Anguita (b0345) 2015; 171 Bagala, Klenk, Cappello, Chiari, Becker, Lindemann (b0520) 2013; 21 Castro (b0025) 2017; 6 Lowe, ÓLaighin (b0115) 2014; 36 Keogh, Chu, Hart, Pazzani (b0360) 2003 Hynes, Wang, McCarrick, Kilmartin (b0705) 2011; 15 M.H. Ko, G. West, S. Venkatesh, M. Kumar, Online context recognition in multisensor systems using dynamic time warping, in: Int. Conf. Intell. Sensors, Sens. Networks Inf. Process., 2005, pp. 283–288. F. Paganelli, D. Giuli, An ontology-based context model for home health monitoring and alerting in chronic patient care networks, in: Proc. – 21st Int. Conf. Adv. Inf. Netw. Appl. Work. AINAW’07, vol. 1, no. Iccc, 2007, pp. 838–845. J. Lester, T. Choudhury, A hybrid discriminative/generative approach for modeling human activities, in: Proc. 19th Int. Jt. Conf. Artif. Intell., 2005, pp. 766–772. Hall, Frank, Holmes, Pfahringer, Reutemann, Witten (b0575) 2009; 11 El-Gohary, McNames (b0750) 2012; 59 G. Spina, G. Huang, A. Vaes, M. Spruit, O. Amft, COPDTrainer: a smartphone-based motion rehabilitation training system with real-time acoustic feedback, 2013, pp. 597–606. Nam, Rho, Lee (b0180) 2013; 12 Vandewalle (b0580) 1999; 9 Li, Rozgić, Thatte, Lee, Emken, Annavaram, Mitra, Spruijt-Metz, Narayanan (b0225) 2010; 18 J. Wu, A. Osuntogun, T. Choudhury, M. Philipose, J.M. Rehg, A scalable approach to activity recognition based on object use, in: 11th Int. Conf. Comput. Vision, ICCV 2007, IEEE, 2007, pp. 1–8. Guyatt, Sullivan, Thompson, Fallen, Pugsley, Taylor, Berman (b0015) 1985; 132 Rioul, Vetterli (b0480) 1991; 8 Martín, Bernardos, Iglesias, Casar (b0255) 2013; 17 R. Ravichandran, E. Saba, K. Chen, M. Goel, S. Gupta, S.N. Patel, WiBreathe : Estimating respiration rate using wireless signals in natural settings in the home, vol. 16, 2015, pp. 131–139. K. Oh, H.-S. Park, S.-B. Cho, A mobile context sharing system using activity and emotion recognition with bayesian networks, in: 7th Int. Conf. Ubiquitous Intell. Comput. 7th Int. Conf. Auton. Trust. Comput., no. Im, 2010, pp. 244–249. Khan, Lee, Lee, Kim (b0245) 2010; 48 Karantonis, Narayanan, Mathie, Lovell, Celler (b0215) 2006; 10 A. McCallum, D. Freitag, F. Pereira, Maximum entropy markov models for information extraction and segmentation, in: Icml, 2000, pp. 1–26. T. Huỳnh, M. Fritz, B. Schiele, Discovery of activity patterns using topic models, in: Proc. 10th Int. Conf. Ubiquitous Comput. (UbiComp ’08), 2008, pp. 10–19. H. Amroun, Recognition of human activity using internet of things in a non-controlled environment, vol. 2016, no. November, 2016, pp. 13–15. Kwapisz, Weiss, Moore (b0350) 2011; 12 J. Mantyjarvi, J. Himberg, T. Seppanen, Recognizing human motion with multiple acceleration sensors, in: IEEE Int. Conf. Syst. Man Cybern. e-Systems e-Man Cybern. Cybersp., vol. 2, 2001, pp. 2–7. Bao, Intille (b0370) 2004 S. Kozina, M. Lustrek, M. Gams, Dynamic signal segmentation for activity recognition, in: Proc. Int. Jt. …, 2011, pp. 1–12. Bannach, Lukowicz, Amft (b0435) 2008; 7 M.A. Stelios, A.D. Nick, M.T. Effie, K.M. Dimitris, S.C.A. Thomopoulos, An indoor localization platform for ambient assisted living using UWB, in: Proc. 6th Int. Conf. Adv. Mob. Comput. Multimed. – MoMM ’08, 2008, p. 178. Ward, Lukowicz, Tröster, Starner (b0175) 2006; 28 Caspersen, Powell, Christenson (b0005) 1985; 100 Perriot, Argod, Pepin, Noury (b0185) 2014; 18 Spina, Casale, Albert, Alison, Garcia-ayme Luštrek (10.1016/j.jbi.2018.09.002_b0075) 2009; 33 Hall (10.1016/j.jbi.2018.09.002_b0575) 2009; 11 Keogh (10.1016/j.jbi.2018.09.002_b0360) 2003 Altini (10.1016/j.jbi.2018.09.002_b0135) 2014; 2194 Kwapisz (10.1016/j.jbi.2018.09.002_b0350) 2011; 12 10.1016/j.jbi.2018.09.002_b0715 Martín (10.1016/j.jbi.2018.09.002_b0255) 2013; 17 10.1016/j.jbi.2018.09.002_b0710 10.1016/j.jbi.2018.09.002_b0315 Sekine (10.1016/j.jbi.2018.09.002_b0495) 2002; 10 Karantonis (10.1016/j.jbi.2018.09.002_b0215) 2006; 10 10.1016/j.jbi.2018.09.002_b0280 10.1016/j.jbi.2018.09.002_b0160 Kwon (10.1016/j.jbi.2018.09.002_b0685) 2014; 41 Khan (10.1016/j.jbi.2018.09.002_b0245) 2010; 48 Sekine (10.1016/j.jbi.2018.09.002_b0490) 2000; 22 10.1016/j.jbi.2018.09.002_b0440 10.1016/j.jbi.2018.09.002_b0045 10.1016/j.jbi.2018.09.002_b0320 Ye (10.1016/j.jbi.2018.09.002_b0730) 2014; 19 Merilahti (10.1016/j.jbi.2018.09.002_b0235) 2015; 2194 10.1016/j.jbi.2018.09.002_b0040 10.1016/j.jbi.2018.09.002_b0560 Vandewalle (10.1016/j.jbi.2018.09.002_b0580) 1999; 9 10.1016/j.jbi.2018.09.002_b0305 Logan (10.1016/j.jbi.2018.09.002_b0265) 2007; 4717 Kau (10.1016/j.jbi.2018.09.002_b0325) 2015; 19 10.1016/j.jbi.2018.09.002_b0665 Chernbumroong (10.1016/j.jbi.2018.09.002_b0700) 2013; 40 Moncada-Torres (10.1016/j.jbi.2018.09.002_b0105) 2014; 35 10.1016/j.jbi.2018.09.002_b0425 Tapia (10.1016/j.jbi.2018.09.002_b0695) 2004; 3001 10.1016/j.jbi.2018.09.002_b0390 El-Gohary (10.1016/j.jbi.2018.09.002_b0750) 2012; 59 Wyatt (10.1016/j.jbi.2018.09.002_b0635) 2005; 20 10.1016/j.jbi.2018.09.002_b0275 10.1016/j.jbi.2018.09.002_b0430 10.1016/j.jbi.2018.09.002_b0035 Liu (10.1016/j.jbi.2018.09.002_b0155) 2012; 59 Shoaib (10.1016/j.jbi.2018.09.002_b0690) 2014; 14 10.1016/j.jbi.2018.09.002_b0030 Jian (10.1016/j.jbi.2018.09.002_b0355) 2015 10.1016/j.jbi.2018.09.002_b0395 10.1016/j.jbi.2018.09.002_b0670 Lee (10.1016/j.jbi.2018.09.002_b0130) 2012; 61 10.1016/j.jbi.2018.09.002_b0615 Fahrenberg (10.1016/j.jbi.2018.09.002_b0530) 1997; 34 10.1016/j.jbi.2018.09.002_b0455 Lyons (10.1016/j.jbi.2018.09.002_b0070) 2005; 27 Dolédec (10.1016/j.jbi.2018.09.002_b0510) 1997 Luinge (10.1016/j.jbi.2018.09.002_b0125) 2004; 12 10.1016/j.jbi.2018.09.002_b0060 Lu (10.1016/j.jbi.2018.09.002_b0340) 2009 Staudenmayer (10.1016/j.jbi.2018.09.002_b0535) 2009; 17 Pappas (10.1016/j.jbi.2018.09.002_b0080) 2001; 9 Meditskos (10.1016/j.jbi.2018.09.002_b0675) 2015 Caspersen (10.1016/j.jbi.2018.09.002_b0005) 1985; 100 Junker (10.1016/j.jbi.2018.09.002_b0420) 2008; 41 Hong (10.1016/j.jbi.2018.09.002_b0470) 2010; 18 Najafi (10.1016/j.jbi.2018.09.002_b0500) 2003; 50 10.1016/j.jbi.2018.09.002_b0585 Han (10.1016/j.jbi.2018.09.002_b0300) 2014; 14 10.1016/j.jbi.2018.09.002_b0460 Okeyo (10.1016/j.jbi.2018.09.002_b0380) 2014; 10 Hankin (10.1016/j.jbi.2018.09.002_b0485) 1977; 41 Reddy (10.1016/j.jbi.2018.09.002_b0525) 2010; 6 Hynes (10.1016/j.jbi.2018.09.002_b0705) 2011; 15 Banos (10.1016/j.jbi.2018.09.002_b0720) 2015; 15 10.1016/j.jbi.2018.09.002_b0725 10.1016/j.jbi.2018.09.002_b0605 Veltink (10.1016/j.jbi.2018.09.002_b0065) 1996; 4 10.1016/j.jbi.2018.09.002_b0445 10.1016/j.jbi.2018.09.002_b0600 Alshurafa (10.1016/j.jbi.2018.09.002_b0230) 2013; 18 Nam (10.1016/j.jbi.2018.09.002_b0180) 2013; 12 Roggen (10.1016/j.jbi.2018.09.002_b0400) 2013; 4 Guyatt (10.1016/j.jbi.2018.09.002_b0015) 1985; 132 10.1016/j.jbi.2018.09.002_b0290 10.1016/j.jbi.2018.09.002_b0170 10.1016/j.jbi.2018.09.002_b0050 Rioul (10.1016/j.jbi.2018.09.002_b0480) 1991; 8 Pärkkä (10.1016/j.jbi.2018.09.002_b0570) 2006; 10 McKeever (10.1016/j.jbi.2018.09.002_b0680) 2010; 2 10.1016/j.jbi.2018.09.002_b0055 10.1016/j.jbi.2018.09.002_b0330 Dong (10.1016/j.jbi.2018.09.002_b0740) 2014; 18 Minor (10.1016/j.jbi.2018.09.002_b0010) 1989; 32 Giuffrida (10.1016/j.jbi.2018.09.002_b0140) 2008; 16 10.1016/j.jbi.2018.09.002_b0515 Mahdaviani (10.1016/j.jbi.2018.09.002_b0660) 2008 Bianchi (10.1016/j.jbi.2018.09.002_b0110) 2010; 18 Naik (10.1016/j.jbi.2018.09.002_b0590) 2010; 14 Dejnabadi (10.1016/j.jbi.2018.09.002_b0095) 2005; 52 Philipose (10.1016/j.jbi.2018.09.002_b0310) 2004; 3 Castro (10.1016/j.jbi.2018.09.002_b0025) 2017; 6 Gyllensten (10.1016/j.jbi.2018.09.002_b0195) 2011; 58 Maurer (10.1016/j.jbi.2018.09.002_b0165) 2006 Choudhury (10.1016/j.jbi.2018.09.002_b0150) 2008; 7 Kranz (10.1016/j.jbi.2018.09.002_b0335) 2013; 9 Bulling (10.1016/j.jbi.2018.09.002_b0610) 2012; 9 10.1016/j.jbi.2018.09.002_b0365 10.1016/j.jbi.2018.09.002_b0640 10.1016/j.jbi.2018.09.002_b0240 10.1016/j.jbi.2018.09.002_b0625 10.1016/j.jbi.2018.09.002_b0505 Zhou (10.1016/j.jbi.2018.09.002_b0735) 2010; 59 Reyes-Ortiz (10.1016/j.jbi.2018.09.002_b0345) 2015; 171 Ermes (10.1016/j.jbi.2018.09.002_b0190) 2008; 12 Bagala (10.1016/j.jbi.2018.09.002_b0520) 2013; 21 Liu (10.1016/j.jbi.2018.09.002_b0285) 2007; 37 Wu (10.1016/j.jbi.2018.09.002_b0120) 2008; 16 10.1016/j.jbi.2018.09.002_b0475 Kern (10.1016/j.jbi.2018.09.002_b0450) 2003 Coley (10.1016/j.jbi.2018.09.002_b0090) 2005; 22 10.1016/j.jbi.2018.09.002_b0415 Yang (10.1016/j.jbi.2018.09.002_b0465) 2008; 29 Liao (10.1016/j.jbi.2018.09.002_b0295) 2007; 171 Khan (10.1016/j.jbi.2018.09.002_b0250) 2013; 13 Safavian (10.1016/j.jbi.2018.09.002_b0565) 1991; 21 10.1016/j.jbi.2018.09.002_b0655 Lee (10.1016/j.jbi.2018.09.002_b0550) 2011 Kim (10.1016/j.jbi.2018.09.002_b0545) 2010; 9 Li (10.1016/j.jbi.2018.09.002_b0225) 2010; 18 Costigan (10.1016/j.jbi.2018.09.002_b0085) 2002; 16 Naranjo-Hernández (10.1016/j.jbi.2018.09.002_b0200) 2012; 59 Palmes (10.1016/j.jbi.2018.09.002_b0630) 2010; 6 Spina (10.1016/j.jbi.2018.09.002_b0205) 2015; 19 Lowe (10.1016/j.jbi.2018.09.002_b0115) 2014; 36 Godfrey (10.1016/j.jbi.2018.09.002_b0220) 2011; 33 Perriot (10.1016/j.jbi.2018.09.002_b0185) 2014; 18 Khan (10.1016/j.jbi.2018.09.002_b0210) 2010; 14 10.1016/j.jbi.2018.09.002_b0385 10.1016/j.jbi.2018.09.002_b0540 10.1016/j.jbi.2018.09.002_b0145 Bannach (10.1016/j.jbi.2018.09.002_b0435) 2008; 7 Shi (10.1016/j.jbi.2018.09.002_b0755) 2014; 50 10.1016/j.jbi.2018.09.002_b0260 Salarian (10.1016/j.jbi.2018.09.002_b0100) 2007; 54 10.1016/j.jbi.2018.09.002_b0020 Paiyarom (10.1016/j.jbi.2018.09.002_b0595) 2009 Chen (10.1016/j.jbi.2018.09.002_b0405) 2012; 24 10.1016/j.jbi.2018.09.002_b0645 Van Kasteren (10.1016/j.jbi.2018.09.002_b0555) 2010; 2 Trabelsi (10.1016/j.jbi.2018.09.002_b0745) 2013; 10 Ward (10.1016/j.jbi.2018.09.002_b0175) 2006; 28 Zhang (10.1016/j.jbi.2018.09.002_b0620) 2010; 1 Ding (10.1016/j.jbi.2018.09.002_b0270) 2011; 69 Krishnan (10.1016/j.jbi.2018.09.002_b0375) 2012; 13 10.1016/j.jbi.2018.09.002_b0650 10.1016/j.jbi.2018.09.002_b0410 Bao (10.1016/j.jbi.2018.09.002_b0370) 2004 |
References_xml | – reference: M.H. Ko, G. West, S. Venkatesh, M. Kumar, Online context recognition in multisensor systems using dynamic time warping, in: Int. Conf. Intell. Sensors, Sens. Networks Inf. Process., 2005, pp. 283–288. – volume: 7 start-page: 22 year: 2008 end-page: 31 ident: b0435 article-title: Rapid prototyping of activity recognition applications publication-title: Pervasive Comput. IEEE – volume: 10 start-page: 119 year: 2006 end-page: 128 ident: b0570 article-title: Activity classification using realistic data from wearable sensors publication-title: IEEE Trans. Inf. Technol. Biomed. – reference: J. Mantyjarvi, J. Himberg, T. Seppanen, Recognizing human motion with multiple acceleration sensors, in: IEEE Int. Conf. Syst. Man Cybern. e-Systems e-Man Cybern. Cybersp., vol. 2, 2001, pp. 2–7. – reference: Z. He, L. Jin, Activity recognition from acceleration data using AR model representation and SVM, in: Int. Conf. Mach. Learn. Cybern., no. July, 2008, pp. 12–15. – volume: 21 start-page: 660 year: 1991 end-page: 674 ident: b0565 article-title: “A survey of decision tree classifier methodology publication-title: IEEE Trans. Syst. Man, Cybern. – volume: 1 start-page: 43 year: 2010 end-page: 52 ident: b0620 article-title: Understanding bag-of-words model: a statistical framework publication-title: Int. J. Mach. Learn. Cybern. – reference: Z. Yan, V. Subbaraju, D. Chakraborty, A. Misra, K. Aberer, Energy-efficient continuous activity recognition on mobile phones: an activity-adaptive approach, in: 16th Int. Symp. Wearable Comput., 2012, pp. 17–24. – reference: S. Knox, L. Coyle, S. Dobson, Using ontologies in case-based activity recognition, in: FLAIRS Conf., 2010, pp. 1–6. – volume: 171 start-page: 754 year: 2015 end-page: 767 ident: b0345 article-title: Transition-aware human activity recognition using smartphones publication-title: Neurocomputing – volume: 32 start-page: 1396 year: 1989 end-page: 1405 ident: b0010 article-title: Efficacy of physical conditioning exercise in patients with rheumatoid arthritis and osteoarthritis publication-title: Arthritis Rheum. – volume: 37 start-page: 1067 year: 2007 end-page: 1080 ident: b0285 article-title: Survey of wireless indoor positioning techniques and systems publication-title: IEEE Trans. Syst. Man, Cybern. Part C Appl. Rev. – volume: 50 start-page: 711 year: 2003 end-page: 723 ident: b0500 article-title: Ambulatory system for human motion analysis using a kinematic sensor: Monitoring of daily physical activity in the elderly publication-title: IEEE Trans. Biomed. Eng. – year: 2015 ident: b0675 article-title: MetaQ: A knowledge-driven framework for context-aware activity recognition combining SPARQL and OWL 2 activity patterns publication-title: Pervasive Mob. Comput. – reference: K. Van Laerhoven, E. Berlin, When else did this happen? Efficient subsequence representation for matching in wearable activity data, in: Proc. – Int. Symp. Wearable Comput. ISWC, 2009, pp. 101–104. – start-page: 220 year: 2003 end-page: 232 ident: b0450 article-title: Multi-sensor activity context detection for wearable computing publication-title: Ambient Intell. – reference: A. Environment, M.C. Mozer, That adapts to its inhabitants, 1998, pp. 0–4. – volume: 4717 start-page: 483 year: 2007 end-page: 500 ident: b0265 article-title: A long-term evaluation of sensing modalities for activity recognition publication-title: UbiComp 2007 Ubiquitous Comput. – start-page: 4 year: 2006 end-page: 7 ident: b0165 article-title: Activity recognition and monitoring using multiple sensors on different body positions publication-title: Int. Work. Wearable Implant. Body Sens. Netw. – reference: J. Rafferty, C. N.-I. Member, L. C.-I. Member, J. Qi, R. Dutton, A. Zirk, L.T. Boye, M. Kohn, R. Hellman, NFC based provisioning of instructional videos to assist with instrumental activities of daily living, 2014, pp. 4131–4134. – volume: 34 start-page: 607 year: 1997 end-page: 612 ident: b0530 article-title: Assessment of posture and motion by multichannel piezoresistive accelerometer recordings publication-title: Psychophysiology – volume: 17 start-page: 1300 year: 2009 end-page: 1307 ident: b0535 article-title: An artificial neural network to estimate physical activity energy expenditure and identify physical activity type from an accelerometer publication-title: J. Appl. Physiol. – volume: 9 start-page: 1 year: 2012 end-page: 21 ident: b0610 article-title: Multimodal recognition of reading activity in transit using body-worn sensors publication-title: ACM Trans. Appl. Percept. – volume: 20 start-page: 21 year: 2005 end-page: 27 ident: b0635 article-title: Unsupervised activity recognition using automatically mined common sense publication-title: Sensors – volume: 9 start-page: 293 year: 1999 end-page: 300 ident: b0580 article-title: Least squares support vector machine classifiers publication-title: Neural Process. Lett. – volume: 14 start-page: pp year: 2014 ident: b0690 article-title: Fusion of smartphone motion sensors for physical activity recognition publication-title: Sensors – reference: K. Oh, H.-S. Park, S.-B. Cho, A mobile context sharing system using activity and emotion recognition with bayesian networks, in: 7th Int. Conf. Ubiquitous Intell. Comput. 7th Int. Conf. Auton. Trust. Comput., no. Im, 2010, pp. 244–249. – volume: 14 start-page: 1166 year: 2010 end-page: 1172 ident: b0210 article-title: A triaxial accelerometer-based physical-activity recognition via augmented-signal features and a hierarchical recognizer publication-title: IEEE Trans. Inf. Technol. Biomed. – reference: J. Lester, T. Choudhury, A hybrid discriminative/generative approach for modeling human activities, in: Proc. 19th Int. Jt. Conf. Artif. Intell., 2005, pp. 766–772. – reference: T. Huỳnh, M. Fritz, B. Schiele, Discovery of activity patterns using topic models, in: Proc. 10th Int. Conf. Ubiquitous Comput. (UbiComp ’08), 2008, pp. 10–19. – reference: S. Kozina, M. Lustrek, M. Gams, Dynamic signal segmentation for activity recognition, in: Proc. Int. Jt. …, 2011, pp. 1–12. – reference: T. Mitchell, A. Blum, Combining labeled and unlabeled data with co-training, in: Proc. Elev. Annu. Conf. Comput. Learn. Theory, 1998, pp. 92–100. – volume: 28 start-page: 1553 year: 2006 end-page: 1566 ident: b0175 article-title: Activity recognition of assembly tasks using body-worn microphones and accelerometers publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: D. Minnen, T. Starner, J.A. Ward, P. Lukowicz, G. Troster, Recognizing and discovering human actions from on-body sensor data, in: IEEE Int. Conf. Multimed. Expo ICME, 2005, pp. 1545–1548. – reference: J. Wu, A. Osuntogun, T. Choudhury, M. Philipose, J.M. Rehg, A scalable approach to activity recognition based on object use, in: 11th Int. Conf. Comput. Vision, ICCV 2007, IEEE, 2007, pp. 1–8. – volume: 17 start-page: 675 year: 2013 end-page: 695 ident: b0255 article-title: Activity logging using lightweight classification techniques in mobile devices publication-title: Pers. Ubiquitous Comput. – reference: H. Li, C. Ye, A.P. Sample, IDSense, in: Proc. 33rd Annu. ACM Conf. Hum. Factors Comput. Syst. – CHI’15, no. c, 2015, pp. 2555–2564. – start-page: 598 year: 2009 end-page: 609 ident: b0340 article-title: Robust location-aware activity recognition using wireless sensor network in an attentive home publication-title: IEEE Trans. Autom. Sci. Eng. – volume: 6 start-page: 1 year: 2010 end-page: 27 ident: b0525 article-title: Using mobile phones to determine transportation modes publication-title: ACM Trans. Sens. Netw. – volume: 18 start-page: 619 year: 2010 end-page: 627 ident: b0110 article-title: Barometric pressure and triaxial accelerometry-based falls event detection publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 19 start-page: 47 year: 2014 end-page: 70 ident: b0730 article-title: KCAR: A knowledge-driven approach for concurrent activity recognition publication-title: Pervasive Mob. Comput. – volume: 12 start-page: 1 year: 2013 end-page: 14 ident: b0180 article-title: Physical activity recognition using multiple sensors embedded in a wearable device publication-title: ACM Trans. Embed. Comput. Syst. – volume: 29 start-page: 2213 year: 2008 end-page: 2220 ident: b0465 article-title: Using acceleration measurements for activity recognition: an effective learning algorithm for constructing neural classifiers publication-title: Pattern Recognit. Lett. – volume: 59 start-page: 3177 year: 2012 end-page: 3184 ident: b0200 article-title: SoM: A smart sensor for human activity monitoring and assisted healthy ageing publication-title: IEEE Trans. Biomed. Eng. – volume: 3001 start-page: 158 year: 2004 end-page: 175 ident: b0695 article-title: Activity recognition in the home using simple and ubiquitous sensors publication-title: Pervasive Comput. – reference: R. Musculo, S. Conforto, M. Schmid, P. Caselli, T. D’Alessio, Classification of motor activities through derivative dynamic time warping applied on accelerometer data, in: Annu. Int. Conf. IEEE Eng. Med. Biol. – Proc, 2007, pp. 4930–4933. – reference: A. McCallum, D. Freitag, F. Pereira, Maximum entropy markov models for information extraction and segmentation, in: Icml, 2000, pp. 1–26. – volume: 19 start-page: 1567 year: 2015 end-page: 1576 ident: b0205 article-title: Identifying physical activity profiles in COPD patients using topic models publication-title: IEEE J. Biomed. Health Inf. – reference: Z. He, L. Jin, Activity recognition from acceleration data based on discrete consine transform and SVM, in: IEEE Int. Conf. Syst. Man Cybern. 2009, SMC 2009, no. October, 2009, pp. 5041–5044. – volume: 2194 start-page: 1 year: 2014 end-page: 8 ident: b0135 article-title: Estimating energy expenditure using body-worn accelerometers: a comparison of methods, sensors number and positioning publication-title: IEEE J. Biomed. Heal. Inf. – volume: 41 start-page: 6067 year: 2014 end-page: 6074 ident: b0685 article-title: Unsupervised learning for human activity recognition using smartphone sensors publication-title: Expert Syst. Appl. – volume: 4 start-page: 169 year: 2013 end-page: 186 ident: b0400 article-title: The adARC pattern analysis architecture for adaptive human activity recognition systems publication-title: J. Ambient Intell. Humaniz. Comput. – reference: P. Natarajan, R. Nevatia, Coupled hidden semi Markov Models for activity recognition, in: Proc. IEEE Work. Motion Video Comput., 2007, p. 10. – reference: H. Amroun, Recognition of human activity using internet of things in a non-controlled environment, vol. 2016, no. November, 2016, pp. 13–15. – volume: 16 start-page: 82 year: 2008 end-page: 90 ident: b0140 article-title: Upper-extremity stroke therapy task discrimination using motion sensors and electromyography publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 4 start-page: 375 year: 1996 end-page: 385 ident: b0065 article-title: Detection of static and dynamic activities using uniaxial\naccelerometers publication-title: IEEE Trans. Rehabil. Eng. – volume: 8 start-page: 14 year: 1991 end-page: 38 ident: b0480 article-title: Wavelets and signal processing publication-title: IEEE Signal Process Mag. – volume: 18 start-page: 1253 year: 2014 end-page: 1260 ident: b0740 article-title: Detecting periods of eating during free-living by tracking wrist motion publication-title: IEEE J. Biomed. Heal. Inf. – volume: 6 start-page: 28 year: 2017 ident: b0025 article-title: Wearable-based human activity recognition using an IoT approach publication-title: J. Sens. Actuator Netw. – reference: M. Stikic, K. Van Laerhoven, B. Schiele, Exploring semi-supervised and active learning for activity recognition, in: 12th IEEE Int. Symp. Wearable Comput., 2008, pp. 81–88. – reference: N.C. Krishnan, P. Lade, S. Panchanathan, Activity gesture spotting using a threshold model based on adaptive boosting, in: IEEE Int. Conf. Multimed. Expo, ICME 2010, 2010, pp. 155–160. – reference: D. Guan, W. Yuan, Y.-K. Lee, A. Gavrilov, S. Lee, Activity recognition based on semi-supervised learning, in: 13th IEEE Int. Conf. Embed. Real-Time Comput. Syst. Appl. (RTCSA 2007), no. 1, 2007, pp. 469–475. – start-page: 1 year: 1997 end-page: 28 ident: b0510 article-title: Between- and within-groups principal components analyses publication-title: Work. Pap. – volume: 11 start-page: 10 year: 2009 end-page: 18 ident: b0575 article-title: The WEKA data mining software publication-title: ACM SIGKDD Explor. – volume: 16 start-page: 31 year: 2002 end-page: 37 ident: b0085 article-title: Knee, and hip kinetics during normal stair climbing publication-title: Gait Post. – volume: 54 start-page: 313 year: 2007 end-page: 322 ident: b0100 article-title: Quantification of tremor and bradykinesia in Parkinson’s disease using a novel ambulatory monitoring system publication-title: IEEE Trans. Biomed. Eng. – volume: 59 start-page: 575 year: 2010 end-page: 585 ident: b0735 article-title: Reducing drifts in the inertial measurements of wrist and elbow positions publication-title: IEEE Trans. Instrum. Meas. – volume: 35 start-page: 1245 year: 2014 end-page: 1263 ident: b0105 article-title: Activity classification based on inertial and barometric pressure sensors at different anatomical locations publication-title: Physiol. Meas. – volume: 19 start-page: 44 year: 2015 end-page: 56 ident: b0325 article-title: A smart phone-based pocket fall accident detection, positioning, and rescue system publication-title: IEEE J. Biomed. Heal. Inf. – volume: 10 start-page: 155 year: 2014 end-page: 172 ident: b0380 article-title: Dynamic sensor data segmentation for real-time knowledge-driven activity recognition publication-title: Pervasive Mob. Comput. – reference: E.J. Wang, W. Li, D. Hawkins, T. Gernsheimer, C. Norby-Slycord, S.N. Patel, HemaApp, in: Proc. 2016 ACM Int. Jt. Conf. Pervasive Ubiquitous Comput. – UbiComp’16, 2016, pp. 593–604. – volume: 12 start-page: 74 year: 2011 ident: b0350 article-title: Activity recognition using cell phone accelerometers publication-title: ACM SIGKDD Explor. Newsl. – start-page: 460 year: 2011 end-page: 467 ident: b0550 article-title: Activity recognition using hierarchical hidden markov models on a smartphone with 3D accelerometer publication-title: Hybrid Artif. Intell. Syst. – volume: 9 start-page: 48 year: 2010 end-page: 53 ident: b0545 article-title: Human activity recognition and pattern discovery publication-title: Pervasive Comput. IEEE – volume: 14 start-page: 16181 year: 2014 end-page: 16195 ident: b0300 article-title: A lightweight hierarchical activity recognition framework using smartphone sensors publication-title: Sensors – volume: 41 start-page: 2010 year: 2008 end-page: 2024 ident: b0420 article-title: Gesture spotting with body-worn inertial sensors to detect user activities publication-title: Pattern Recognit. – volume: 41 start-page: 341 year: 1977 end-page: 345 ident: b0485 article-title: Ambulatory cardiac monitoring publication-title: Conn. Med. – reference: E.C. Larson, M. Goel, G. Boriello, S. Heltshe, M. Rosenfeld, S.N. Patel, SpiroSmart, in: Proc. 2012 ACM Conf. Ubiquitous Comput. – UbiComp ’12, no. Figure 1, 2012, p. 280. – volume: 10 start-page: 156 year: 2006 end-page: 167 ident: b0215 article-title: Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring publication-title: IEEE Trans. Inf. Technol. Biomed. – reference: R. Ravichandran, E. Saba, K. Chen, M. Goel, S. Gupta, S.N. Patel, WiBreathe : Estimating respiration rate using wireless signals in natural settings in the home, vol. 16, 2015, pp. 131–139. – reference: M. Stikic, B. Schiele, Activity recognition from sparsely labeled data using multi-instance learning, Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 5561 LNCS, 2009, pp. 156–173. – start-page: 1 year: 2003 end-page: 21 ident: b0360 article-title: Segmenting time series: a survey and novel approach publication-title: Data Min. Time Ser. Databases – reference: G. Spina, G. Huang, A. Vaes, M. Spruit, O. Amft, COPDTrainer: a smartphone-based motion rehabilitation training system with real-time acoustic feedback, 2013, pp. 597–606. – volume: 27 start-page: 497 year: 2005 end-page: 504 ident: b0070 article-title: A description of an accelerometer-based mobility monitoring technique publication-title: Med. Eng. Phys. – reference: A. Purwar, D. Do Jeong, W.Y. Chung, Activity monitoring from real-time triaxial accelerometer data using sensor network, in: Int. Conf. Control. Autom. Syst., 2007, pp. 2402–2406. – volume: 2 start-page: 253 year: 2010 end-page: 269 ident: b0680 article-title: Activity recognition using temporal evidence theory publication-title: J. Ambient Intell. Smart Environ. – volume: 14 start-page: 301 year: 2010 end-page: 308 ident: b0590 article-title: Twin SVM for gesture classification using the surface electromyogram publication-title: IEEE Trans. Inf. Technol. Biomed. – volume: 40 start-page: 1662 year: 2013 end-page: 1674 ident: b0700 article-title: Elderly activities recognition and classification for applications in assisted living publication-title: Expert Syst. Appl. – reference: R. Nandakumar, S. Gollakota, N. Watson, Contactless sleep apnea detection on smartphones, in: Proc. 13th Annu. Int. Conf. Mob. Syst. Appl. Serv. – MobiSys ’15, 2015, pp. 45–57. – volume: 9 start-page: 203 year: 2013 end-page: 215 ident: b0335 article-title: The mobile fitness coach: towards individualized skill assessment using personalized mobile devices publication-title: Pervasive Mob. Comput. – reference: H. Chen, F. Perich, T. Finin, A. Joshi, SOUPA : Standard Ontology for Ubiquitous and Pervasive Applications. – reference: E.M. Tapia, S.S. Intille, W. Haskell, K. Larson, J. Wright, A. King, R. Friedman, Real-time recognition of physical activities and their intensities using wireless accelerometers and a heart rate monitor, in: 11th IEEE Int. Symp. Wearable Comput., 2007, pp. 1–4. – volume: 36 start-page: 147 year: 2014 end-page: 168 ident: b0115 article-title: Monitoring human health behaviour in one’s living environment: a technological review publication-title: Med. Eng. Phys. – volume: 59 start-page: 687 year: 2012 end-page: 696 ident: b0155 article-title: Multisensor data fusion for physical activity assessment publication-title: IEEE Trans. Biomed. Eng. – volume: 50 start-page: 1633 year: 2014 end-page: 1635 ident: b0755 article-title: Continuous fine-grained arm action recognition using motion spectrum mixture models publication-title: Electron. Lett. – volume: 3 start-page: 50 year: 2004 end-page: 57 ident: b0310 article-title: Inferring activities from interactions with objects publication-title: IEEE Pervasive Comput. – volume: 33 start-page: 205 year: 2009 end-page: 212 ident: b0075 article-title: Fall detection and activity recognition with machine learning publication-title: Informatica – reference: M.A. Stelios, A.D. Nick, M.T. Effie, K.M. Dimitris, S.C.A. Thomopoulos, An indoor localization platform for ambient assisted living using UWB, in: Proc. 6th Int. Conf. Adv. Mob. Comput. Multimed. – MoMM ’08, 2008, p. 178. – start-page: 1 year: 2008 end-page: 8 ident: b0660 article-title: Fast and scalable training of semisupervised crfs with application to activity recognition publication-title: Adv. Neural Inf. – volume: 24 start-page: 961 year: 2012 end-page: 974 ident: b0405 article-title: A knowledge-driven approach to activity recognition in smart homes publication-title: IEEE Trans. Knowl. Data Eng. – volume: 18 start-page: 369 year: 2010 end-page: 380 ident: b0225 article-title: Multimodal physical activity recognition by fusing temporal and cepstral information publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 21 start-page: 624 year: 2013 end-page: 633 ident: b0520 article-title: Quantitative description of the lie-to-sit-to-stand-to-walk transfer by a single body-fixed sensor publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 6 start-page: 43 year: 2010 end-page: 57 ident: b0630 article-title: Object relevance weight pattern mining for activity recognition and segmentation publication-title: Pervasive Mob. Comput. – reference: M.D. Oresti Banos, Rafael Garcia, Juan A. Holgado-Terriza, C.V. Hector Pomares, Ignacio Rojas, Alejandro Saez, mHealthDroid: a novel framework for agile development of mobile health applications, in: Ambient Assisted Living and Daily Activities, Springer International Publishing, 2014, pp. 91–98. – reference: I.E. Achumba, S. Bersch, R. Khusainov, D. Azzi, U. Kamalu, Activity classification, 2012, pp. 427–430. – volume: 58 start-page: 2656 year: 2011 end-page: 2663 ident: b0195 article-title: Identifying types of physical activity with a single accelerometer: evaluating laboratory-trained algorithms in daily life publication-title: IEEE Trans. Biomed. Eng. – volume: 171 start-page: 311 year: 2007 end-page: 331 ident: b0295 article-title: Learning and inferring transportation routines publication-title: Artif. Intell. – reference: T. Maekawa, S. Watanabe, Unsupervised activity recognition with user’s physical characteristics data, in: Proc. – Int. Symp. Wearable Comput. ISWC, 2011, pp. 89–96. – reference: F. Paganelli, D. Giuli, An ontology-based context model for home health monitoring and alerting in chronic patient care networks, in: Proc. – 21st Int. Conf. Adv. Inf. Netw. Appl. Work. AINAW’07, vol. 1, no. Iccc, 2007, pp. 838–845. – volume: 13 start-page: 1133 year: 2012 end-page: 1145 ident: b0375 article-title: Activity recognition on streaming sensor data publication-title: Pervasive Mob. Comput. – start-page: 1 year: 2009 end-page: 4 ident: b0595 article-title: Activity monitoring system using Dynamic Time Warping for the elderly and disabled people publication-title: Int. Conf. Comput. Control Commun. – volume: 15 start-page: 667 year: 2011 end-page: 678 ident: b0705 article-title: Accurate monitoring of human physical activity levels for medical diagnosis and monitoring using off-the-shelf cellular handsets publication-title: Pers. Ubiquitous Comput. – reference: J. Wu, G. Pan, D. Zhang, G. Qi, Gesture recognition with a 3-d accelerometer, in: Proc. 6th Int. Conf. Ubiquitous Intell. Comput., 2009, pp. 25–38. – reference: D. Anguita, A. Ghio, L. Oneto, X. Parra, J.L. Reyes-Ortiz, Human activity recognition on smartphones using a multiclass hardware-friendly support vector machine. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 7657 LNCS, 2012, pp. 216–223. – volume: 48 start-page: 1271 year: 2010 end-page: 1279 ident: b0245 article-title: Accelerometer’s position independent physical activity recognition system for long-term activity monitoring in the elderly publication-title: Med. Biol. Eng. Comput. – volume: 2 start-page: 311 year: 2010 end-page: 325 ident: b0555 article-title: Activity recognition using semi-Markov models on real world smart home datasets publication-title: Environments – volume: 9 start-page: 113 year: 2001 end-page: 125 ident: b0080 article-title: A reliable gait phase detection system publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 12 start-page: 20 year: 2008 end-page: 26 ident: b0190 article-title: Detection of daily activities and sports with wearable sensors in controlled and uncontrolled conditions publication-title: IEEE Trans. Inf. Technol. Biomed. – volume: 33 start-page: 1127 year: 2011 end-page: 1135 ident: b0220 article-title: Activity classification using a single chest mounted tri-axial accelerometer publication-title: Med. Eng. Phys. – start-page: 23 year: 2015 end-page: 31 ident: b0355 article-title: A portable fall detection and alerting system based on k-NN algorithm and remote medicine publication-title: China Commun. – volume: 22 start-page: 285 year: 2000 end-page: 291 ident: b0490 article-title: Classification of waist-acceleration signals in a continuous walking record publication-title: Med. Eng. Phys. – volume: 18 start-page: 1 year: 2013 end-page: 11 ident: b0230 article-title: Designing a robust activity recognition framework for health and exergaming using wearable sensors publication-title: IEEE J. Biomed. Heal. Inf. – volume: 59 start-page: 2635 year: 2012 end-page: 2641 ident: b0750 article-title: Shoulder and elbow joint angle tracking with inertial sensors publication-title: IEEE Trans. Biomed. Eng. – reference: S. Mika, G. Ratsch, J. Weston, B. Schölkopf, K.-R. Muller, Fisher discriminant analysis with kernels, in: IEEE, 1999, pp. 41–48. – volume: 15 start-page: 13159 year: 2015 end-page: 13183 ident: b0720 article-title: MDurance: a novel mobile health system to support trunk endurance assessment publication-title: Sensors (Switzerland) – reference: C. Rodriguez, D.M. Castro, W. Coral, J.L. Cabra, N. Velasquez, J. Colorado, D. Mendez, L.C. Trujillo, IoT system for human activity recognition using BioHarness 3 and smartphone, in: Proc. Int. Conf. Futur. Networks Distrib. Syst. – ICFNDS ’17, 2017, pp. 1–7. – reference: K. Van Laerhoven, E. Berlin, and B. Schiele, “Enabling efficient time series analysis for wearable activity data, in: 8th Int. Conf. Mach. Learn. Appl., ICMLA 2009, 2009, pp. 392–397. – volume: 100 start-page: 126 year: 1985 end-page: 131 ident: b0005 article-title: Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research publication-title: Public Health Rep. – start-page: 1 year: 2004 end-page: 17 ident: b0370 article-title: Activity recognition from user-annotated acceleration data publication-title: Pervasive Comput. – reference: T. van Kasteren, A. Noulas, G. Englebienne, B. Kröse, Accurate activity recognition in a home setting, 2008, pp. 1–9. – reference: T. Huỳnh, B. Schiele, Towards less supervision in activity recognition from wearable sensors, in: Proc. – Int. Symp. Wearable Comput. ISWC, 2007, pp. 3–10. – volume: 18 start-page: 1225 year: 2014 end-page: 1231 ident: b0185 article-title: Characterization of physical activity in COPD patients: validation of a robust algorithm for actigraphic measurements in living situations publication-title: IEEE J. Biomed. Heal. Inf. – volume: 132 start-page: 919 year: 1985 end-page: 923 ident: b0015 article-title: The 6-minute walk: a new measure of exercise capacity in patients with chronic heart failure publication-title: Can. Med. Assoc. J. – volume: 13 start-page: 13099 year: 2013 end-page: 13122 ident: b0250 article-title: Exploratory data analysis of acceleration signals to select light-weight and accurate features for real-time activity recognition on smartphones publication-title: Sensors – volume: 10 start-page: 829 year: 2013 end-page: 835 ident: b0745 article-title: An unsupervised approach for automatic activity recognition based on hidden markov model regression publication-title: IEEE Trans. Autom. Sci. Eng. – reference: C. Lombriser, N. B. Bharatula, D. Roggen, G. Tröster, On-body activity recognition in a dynamic sensor network, in: Proc. ICST 2nd Int. Conf. Body Area Networks, 2007, pp. 1–6. – reference: T.V. Duong, H.H. Bui, D.Q. Phung, S. Venkatesh, Activity recognition and abnormality detection with the switching hidden semi-Markov model, in: Proc. Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. I, 2005, pp. 838–845. – reference: F. Adib, H. Mao, Z. Kabelac, D. Katabi, R.C. Miller, Smart homes that monitor breathing and heart rate, in: Proc. 33rd Annu. ACM Conf. Hum. Factors Comput. Syst. – CHI ’15, 2015, pp. 837–846. – ident: 10.1016/j.jbi.2018.09.002_b0615 doi: 10.1109/ISWC.2011.24 – ident: 10.1016/j.jbi.2018.09.002_b0060 doi: 10.1109/AINAW.2007.90 – ident: 10.1016/j.jbi.2018.09.002_b0430 doi: 10.1109/ICMLA.2009.112 – volume: 17 start-page: 1300 year: 2009 ident: 10.1016/j.jbi.2018.09.002_b0535 article-title: An artificial neural network to estimate physical activity energy expenditure and identify physical activity type from an accelerometer publication-title: J. Appl. Physiol. doi: 10.1152/japplphysiol.00465.2009 – volume: 35 start-page: 1245 issue: 7 year: 2014 ident: 10.1016/j.jbi.2018.09.002_b0105 article-title: Activity classification based on inertial and barometric pressure sensors at different anatomical locations publication-title: Physiol. Meas. doi: 10.1088/0967-3334/35/7/1245 – volume: 18 start-page: 619 issue: 6 year: 2010 ident: 10.1016/j.jbi.2018.09.002_b0110 article-title: Barometric pressure and triaxial accelerometry-based falls event detection publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2010.2070807 – start-page: 598 year: 2009 ident: 10.1016/j.jbi.2018.09.002_b0340 article-title: Robust location-aware activity recognition using wireless sensor network in an attentive home publication-title: IEEE Trans. Autom. Sci. Eng. – ident: 10.1016/j.jbi.2018.09.002_b0145 doi: 10.1109/ISWC.2007.4373774 – volume: 132 start-page: 919 issue: 8 year: 1985 ident: 10.1016/j.jbi.2018.09.002_b0015 article-title: The 6-minute walk: a new measure of exercise capacity in patients with chronic heart failure publication-title: Can. Med. Assoc. J. – volume: 18 start-page: 1225 issue: 4 year: 2014 ident: 10.1016/j.jbi.2018.09.002_b0185 article-title: Characterization of physical activity in COPD patients: validation of a robust algorithm for actigraphic measurements in living situations publication-title: IEEE J. Biomed. Heal. Inf. doi: 10.1109/JBHI.2013.2282617 – ident: 10.1016/j.jbi.2018.09.002_b0455 – ident: 10.1016/j.jbi.2018.09.002_b0650 doi: 10.1109/RTCSA.2007.17 – volume: 41 start-page: 341 issue: 6 year: 1977 ident: 10.1016/j.jbi.2018.09.002_b0485 article-title: Ambulatory cardiac monitoring publication-title: Conn. Med. – volume: 58 start-page: 2656 issue: 9 year: 2011 ident: 10.1016/j.jbi.2018.09.002_b0195 article-title: Identifying types of physical activity with a single accelerometer: evaluating laboratory-trained algorithms in daily life publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2011.2160723 – volume: 50 start-page: 711 issue: 6 year: 2003 ident: 10.1016/j.jbi.2018.09.002_b0500 article-title: Ambulatory system for human motion analysis using a kinematic sensor: Monitoring of daily physical activity in the elderly publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2003.812189 – volume: 7 start-page: 32 issue: 2 year: 2008 ident: 10.1016/j.jbi.2018.09.002_b0150 article-title: An embedded activity recognition system publication-title: IEEE Pervasive Comput. doi: 10.1109/MPRV.2008.39 – ident: 10.1016/j.jbi.2018.09.002_b0410 doi: 10.1145/1409635.1409637 – ident: 10.1016/j.jbi.2018.09.002_b0445 doi: 10.1109/UIC-ATC.2010.26 – ident: 10.1016/j.jbi.2018.09.002_b0170 doi: 10.1109/ICME.2005.1521728 – ident: 10.1016/j.jbi.2018.09.002_b0020 – ident: 10.1016/j.jbi.2018.09.002_b0320 – ident: 10.1016/j.jbi.2018.09.002_b0475 doi: 10.1007/978-3-642-02830-4_4 – ident: 10.1016/j.jbi.2018.09.002_b0715 doi: 10.1007/978-3-319-13105-4_14 – volume: 40 start-page: 1662 issue: 5 year: 2013 ident: 10.1016/j.jbi.2018.09.002_b0700 article-title: Elderly activities recognition and classification for applications in assisted living publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2012.09.004 – ident: 10.1016/j.jbi.2018.09.002_b0395 doi: 10.4108/bodynets.2007.114 – ident: 10.1016/j.jbi.2018.09.002_b0515 – volume: 10 start-page: 188 issue: 3 year: 2002 ident: 10.1016/j.jbi.2018.09.002_b0495 article-title: Discrimination of walking patterns using wavelet-based fractal analysis publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2002.802879 – volume: 33 start-page: 1127 issue: 9 year: 2011 ident: 10.1016/j.jbi.2018.09.002_b0220 article-title: Activity classification using a single chest mounted tri-axial accelerometer publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2011.05.002 – volume: 171 start-page: 754 year: 2015 ident: 10.1016/j.jbi.2018.09.002_b0345 article-title: Transition-aware human activity recognition using smartphones publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.07.085 – ident: 10.1016/j.jbi.2018.09.002_b0425 doi: 10.1109/ICME.2010.5583013 – volume: 16 start-page: 178 issue: 2 year: 2008 ident: 10.1016/j.jbi.2018.09.002_b0120 article-title: Portable preimpact fall detector with inertial sensors publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2007.916282 – ident: 10.1016/j.jbi.2018.09.002_b0725 doi: 10.1109/CVPR.2005.61 – volume: 14 start-page: pp issue: 6 year: 2014 ident: 10.1016/j.jbi.2018.09.002_b0690 article-title: Fusion of smartphone motion sensors for physical activity recognition publication-title: Sensors doi: 10.3390/s140610146 – volume: 29 start-page: 2213 issue: 16 year: 2008 ident: 10.1016/j.jbi.2018.09.002_b0465 article-title: Using acceleration measurements for activity recognition: an effective learning algorithm for constructing neural classifiers publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2008.08.002 – volume: 41 start-page: 6067 issue: 14 year: 2014 ident: 10.1016/j.jbi.2018.09.002_b0685 article-title: Unsupervised learning for human activity recognition using smartphone sensors publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2014.04.037 – volume: 28 start-page: 1553 issue: 10 year: 2006 ident: 10.1016/j.jbi.2018.09.002_b0175 article-title: Activity recognition of assembly tasks using body-worn microphones and accelerometers publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2006.197 – ident: 10.1016/j.jbi.2018.09.002_b0045 doi: 10.1145/2742647.2742674 – volume: 41 start-page: 2010 issue: 6 year: 2008 ident: 10.1016/j.jbi.2018.09.002_b0420 article-title: Gesture spotting with body-worn inertial sensors to detect user activities publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2007.11.016 – ident: 10.1016/j.jbi.2018.09.002_b0665 – ident: 10.1016/j.jbi.2018.09.002_b0305 doi: 10.1145/2702123.2702178 – volume: 4 start-page: 169 issue: 2 year: 2013 ident: 10.1016/j.jbi.2018.09.002_b0400 article-title: The adARC pattern analysis architecture for adaptive human activity recognition systems publication-title: J. Ambient Intell. Humaniz. Comput. doi: 10.1007/s12652-011-0064-0 – volume: 20 start-page: 21 issue: 1 year: 2005 ident: 10.1016/j.jbi.2018.09.002_b0635 article-title: Unsupervised activity recognition using automatically mined common sense publication-title: Sensors – volume: 1 start-page: 43 issue: 1–4 year: 2010 ident: 10.1016/j.jbi.2018.09.002_b0620 article-title: Understanding bag-of-words model: a statistical framework publication-title: Int. J. Mach. Learn. Cybern. doi: 10.1007/s13042-010-0001-0 – ident: 10.1016/j.jbi.2018.09.002_b0050 doi: 10.1145/2702123.2702200 – ident: 10.1016/j.jbi.2018.09.002_b0240 doi: 10.1109/ICCAS.2007.4406764 – volume: 13 start-page: 13099 issue: 10 year: 2013 ident: 10.1016/j.jbi.2018.09.002_b0250 article-title: Exploratory data analysis of acceleration signals to select light-weight and accurate features for real-time activity recognition on smartphones publication-title: Sensors doi: 10.3390/s131013099 – volume: 12 start-page: 74 year: 2011 ident: 10.1016/j.jbi.2018.09.002_b0350 article-title: Activity recognition using cell phone accelerometers publication-title: ACM SIGKDD Explor. Newsl. doi: 10.1145/1964897.1964918 – volume: 69 start-page: 131 issue: 2 year: 2011 ident: 10.1016/j.jbi.2018.09.002_b0270 article-title: Sensor technology for smart homes publication-title: Maturitas doi: 10.1016/j.maturitas.2011.03.016 – volume: 14 start-page: 301 issue: 2 year: 2010 ident: 10.1016/j.jbi.2018.09.002_b0590 article-title: Twin SVM for gesture classification using the surface electromyogram publication-title: IEEE Trans. Inf. Technol. Biomed. doi: 10.1109/TITB.2009.2037752 – volume: 10 start-page: 156 issue: 1 year: 2006 ident: 10.1016/j.jbi.2018.09.002_b0215 article-title: Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring publication-title: IEEE Trans. Inf. Technol. Biomed. doi: 10.1109/TITB.2005.856864 – volume: 171 start-page: 311 issue: 5–6 year: 2007 ident: 10.1016/j.jbi.2018.09.002_b0295 article-title: Learning and inferring transportation routines publication-title: Artif. Intell. doi: 10.1016/j.artint.2007.01.006 – ident: 10.1016/j.jbi.2018.09.002_b0655 doi: 10.1109/ISWC.2006.286336 – volume: 32 start-page: 1396 issue: 11 year: 1989 ident: 10.1016/j.jbi.2018.09.002_b0010 article-title: Efficacy of physical conditioning exercise in patients with rheumatoid arthritis and osteoarthritis publication-title: Arthritis Rheum. doi: 10.1002/anr.1780321108 – start-page: 1 year: 2004 ident: 10.1016/j.jbi.2018.09.002_b0370 article-title: Activity recognition from user-annotated acceleration data publication-title: Pervasive Comput. – volume: 18 start-page: 446 issue: 4 year: 2010 ident: 10.1016/j.jbi.2018.09.002_b0470 article-title: Mobile health monitoring system based on activity recognition using accelerometer publication-title: Simul. Model. Pract. Theory doi: 10.1016/j.simpat.2009.09.002 – start-page: 460 year: 2011 ident: 10.1016/j.jbi.2018.09.002_b0550 article-title: Activity recognition using hierarchical hidden markov models on a smartphone with 3D accelerometer publication-title: Hybrid Artif. Intell. Syst. doi: 10.1007/978-3-642-21219-2_58 – volume: 50 start-page: 1633 issue: 22 year: 2014 ident: 10.1016/j.jbi.2018.09.002_b0755 article-title: Continuous fine-grained arm action recognition using motion spectrum mixture models publication-title: Electron. Lett. doi: 10.1049/el.2014.2611 – start-page: 1 year: 2009 ident: 10.1016/j.jbi.2018.09.002_b0595 article-title: Activity monitoring system using Dynamic Time Warping for the elderly and disabled people publication-title: Int. Conf. Comput. Control Commun. – start-page: 4 year: 2006 ident: 10.1016/j.jbi.2018.09.002_b0165 article-title: Activity recognition and monitoring using multiple sensors on different body positions publication-title: Int. Work. Wearable Implant. Body Sens. Netw. doi: 10.1109/BSN.2006.24 – volume: 19 start-page: 1567 issue: 5 year: 2015 ident: 10.1016/j.jbi.2018.09.002_b0205 article-title: Identifying physical activity profiles in COPD patients using topic models publication-title: IEEE J. Biomed. Health Inf. doi: 10.1109/JBHI.2015.2432033 – volume: 2 start-page: 311 year: 2010 ident: 10.1016/j.jbi.2018.09.002_b0555 article-title: Activity recognition using semi-Markov models on real world smart home datasets publication-title: Environments – volume: 36 start-page: 147 issue: 2 year: 2014 ident: 10.1016/j.jbi.2018.09.002_b0115 article-title: Monitoring human health behaviour in one’s living environment: a technological review publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2013.11.010 – volume: 12 start-page: 20 issue: 1 year: 2008 ident: 10.1016/j.jbi.2018.09.002_b0190 article-title: Detection of daily activities and sports with wearable sensors in controlled and uncontrolled conditions publication-title: IEEE Trans. Inf. Technol. Biomed. doi: 10.1109/TITB.2007.899496 – ident: 10.1016/j.jbi.2018.09.002_b0385 – volume: 15 start-page: 13159 issue: 6 year: 2015 ident: 10.1016/j.jbi.2018.09.002_b0720 article-title: MDurance: a novel mobile health system to support trunk endurance assessment publication-title: Sensors (Switzerland) doi: 10.3390/s150613159 – volume: 61 start-page: 2262 issue: 8 year: 2012 ident: 10.1016/j.jbi.2018.09.002_b0130 article-title: Estimation of attitude and external acceleration using inertial sensor measurement during various dynamic conditions publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2012.2187245 – volume: 4 start-page: 375 issue: 4 year: 1996 ident: 10.1016/j.jbi.2018.09.002_b0065 article-title: Detection of static and dynamic activities using uniaxial\naccelerometers publication-title: IEEE Trans. Rehabil. Eng. doi: 10.1109/86.547939 – volume: 54 start-page: 313 issue: 2 year: 2007 ident: 10.1016/j.jbi.2018.09.002_b0100 article-title: Quantification of tremor and bradykinesia in Parkinson’s disease using a novel ambulatory monitoring system publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2006.886670 – start-page: 1 year: 2003 ident: 10.1016/j.jbi.2018.09.002_b0360 article-title: Segmenting time series: a survey and novel approach publication-title: Data Min. Time Ser. Databases – volume: 18 start-page: 1253 issue: 4 year: 2014 ident: 10.1016/j.jbi.2018.09.002_b0740 article-title: Detecting periods of eating during free-living by tracking wrist motion publication-title: IEEE J. Biomed. Heal. Inf. doi: 10.1109/JBHI.2013.2282471 – volume: 27 start-page: 497 issue: 6 year: 2005 ident: 10.1016/j.jbi.2018.09.002_b0070 article-title: A description of an accelerometer-based mobility monitoring technique publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2004.11.006 – ident: 10.1016/j.jbi.2018.09.002_b0160 doi: 10.1109/ICSMC.2001.973004 – volume: 14 start-page: 16181 year: 2014 ident: 10.1016/j.jbi.2018.09.002_b0300 article-title: A lightweight hierarchical activity recognition framework using smartphone sensors publication-title: Sensors doi: 10.3390/s140916181 – ident: 10.1016/j.jbi.2018.09.002_b0315 doi: 10.1109/ICCV.2007.4408865 – ident: 10.1016/j.jbi.2018.09.002_b0625 doi: 10.1145/1409635.1409638 – volume: 7 start-page: 22 issue: 2 year: 2008 ident: 10.1016/j.jbi.2018.09.002_b0435 article-title: Rapid prototyping of activity recognition applications publication-title: Pervasive Comput. IEEE doi: 10.1109/MPRV.2008.36 – volume: 21 start-page: 660 issue: 3 year: 1991 ident: 10.1016/j.jbi.2018.09.002_b0565 article-title: “A survey of decision tree classifier methodology publication-title: IEEE Trans. Syst. Man, Cybern. doi: 10.1109/21.97458 – ident: 10.1016/j.jbi.2018.09.002_b0030 doi: 10.1145/3102304.3105828 – volume: 9 start-page: 113 issue: 2 year: 2001 ident: 10.1016/j.jbi.2018.09.002_b0080 article-title: A reliable gait phase detection system publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/7333.928571 – volume: 12 start-page: 1 issue: 2 year: 2013 ident: 10.1016/j.jbi.2018.09.002_b0180 article-title: Physical activity recognition using multiple sensors embedded in a wearable device publication-title: ACM Trans. Embed. Comput. Syst. doi: 10.1145/2423636.2423644 – volume: 11 start-page: 10 issue: 1 year: 2009 ident: 10.1016/j.jbi.2018.09.002_b0575 article-title: The WEKA data mining software publication-title: ACM SIGKDD Explor. doi: 10.1145/1656274.1656278 – ident: 10.1016/j.jbi.2018.09.002_b0365 – volume: 33 start-page: 205 issue: 2 year: 2009 ident: 10.1016/j.jbi.2018.09.002_b0075 article-title: Fall detection and activity recognition with machine learning publication-title: Informatica – ident: 10.1016/j.jbi.2018.09.002_b0560 doi: 10.1109/WMVC.2007.12 – volume: 3 start-page: 50 year: 2004 ident: 10.1016/j.jbi.2018.09.002_b0310 article-title: Inferring activities from interactions with objects publication-title: IEEE Pervasive Comput. doi: 10.1109/MPRV.2004.7 – volume: 24 start-page: 961 issue: 6 year: 2012 ident: 10.1016/j.jbi.2018.09.002_b0405 article-title: A knowledge-driven approach to activity recognition in smart homes publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2011.51 – ident: 10.1016/j.jbi.2018.09.002_b0330 doi: 10.1109/EMBC.2014.6944533 – ident: 10.1016/j.jbi.2018.09.002_b0505 doi: 10.1109/NNSP.1999.788121 – volume: 100 start-page: 126 issue: 2 year: 1985 ident: 10.1016/j.jbi.2018.09.002_b0005 article-title: Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research publication-title: Public Health Rep. – ident: 10.1016/j.jbi.2018.09.002_b0605 doi: 10.1109/IEMBS.2007.4353446 – volume: 52 start-page: 1478 issue: 8 year: 2005 ident: 10.1016/j.jbi.2018.09.002_b0095 article-title: A new approach to accurate measurement of uniaxial joint angles based on a combination of accelerometers and gyroscopes publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2005.851475 – ident: 10.1016/j.jbi.2018.09.002_b0415 doi: 10.1109/HealthCom.2012.6379453 – volume: 48 start-page: 1271 issue: 12 year: 2010 ident: 10.1016/j.jbi.2018.09.002_b0245 article-title: Accelerometer’s position independent physical activity recognition system for long-term activity monitoring in the elderly publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-010-0701-3 – volume: 59 start-page: 575 issue: 3 year: 2010 ident: 10.1016/j.jbi.2018.09.002_b0735 article-title: Reducing drifts in the inertial measurements of wrist and elbow positions publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2009.2025065 – volume: 14 start-page: 1166 issue: 5 year: 2010 ident: 10.1016/j.jbi.2018.09.002_b0210 article-title: A triaxial accelerometer-based physical-activity recognition via augmented-signal features and a hierarchical recognizer publication-title: IEEE Trans. Inf. Technol. Biomed. doi: 10.1109/TITB.2010.2051955 – start-page: 220 year: 2003 ident: 10.1016/j.jbi.2018.09.002_b0450 article-title: Multi-sensor activity context detection for wearable computing publication-title: Ambient Intell. doi: 10.1007/978-3-540-39863-9_17 – ident: 10.1016/j.jbi.2018.09.002_b0645 doi: 10.1109/ISWC.2008.4911590 – volume: 8 start-page: 14 issue: 4 year: 1991 ident: 10.1016/j.jbi.2018.09.002_b0480 article-title: Wavelets and signal processing publication-title: IEEE Signal Process Mag. doi: 10.1109/79.91217 – ident: 10.1016/j.jbi.2018.09.002_b0460 – year: 2015 ident: 10.1016/j.jbi.2018.09.002_b0675 article-title: MetaQ: A knowledge-driven framework for context-aware activity recognition combining SPARQL and OWL 2 activity patterns publication-title: Pervasive Mob. Comput. – volume: 59 start-page: 2635 issue: 9 year: 2012 ident: 10.1016/j.jbi.2018.09.002_b0750 article-title: Shoulder and elbow joint angle tracking with inertial sensors publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2012.2208750 – volume: 10 start-page: 829 issue: 3 year: 2013 ident: 10.1016/j.jbi.2018.09.002_b0745 article-title: An unsupervised approach for automatic activity recognition based on hidden markov model regression publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2013.2256349 – ident: 10.1016/j.jbi.2018.09.002_b0280 – volume: 6 start-page: 28 issue: 4 year: 2017 ident: 10.1016/j.jbi.2018.09.002_b0025 article-title: Wearable-based human activity recognition using an IoT approach publication-title: J. Sens. Actuator Netw. doi: 10.3390/jsan6040028 – volume: 21 start-page: 624 issue: 4 year: 2013 ident: 10.1016/j.jbi.2018.09.002_b0520 article-title: Quantitative description of the lie-to-sit-to-stand-to-walk transfer by a single body-fixed sensor publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2012.2230189 – volume: 6 start-page: 43 issue: 1 year: 2010 ident: 10.1016/j.jbi.2018.09.002_b0630 article-title: Object relevance weight pattern mining for activity recognition and segmentation publication-title: Pervasive Mob. Comput. doi: 10.1016/j.pmcj.2009.10.004 – volume: 16 start-page: 82 issue: 1 year: 2008 ident: 10.1016/j.jbi.2018.09.002_b0140 article-title: Upper-extremity stroke therapy task discrimination using motion sensors and electromyography publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2007.914454 – start-page: 1 year: 1997 ident: 10.1016/j.jbi.2018.09.002_b0510 article-title: Between- and within-groups principal components analyses publication-title: Work. Pap. – volume: 59 start-page: 687 issue: 3 year: 2012 ident: 10.1016/j.jbi.2018.09.002_b0155 article-title: Multisensor data fusion for physical activity assessment publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2011.2178070 – ident: 10.1016/j.jbi.2018.09.002_b0040 doi: 10.1109/PERCOM.2015.7146519 – ident: 10.1016/j.jbi.2018.09.002_b0035 – volume: 9 start-page: 1 issue: 1 year: 2012 ident: 10.1016/j.jbi.2018.09.002_b0610 article-title: Multimodal recognition of reading activity in transit using body-worn sensors publication-title: ACM Trans. Appl. Percept. doi: 10.1145/2134203.2134205 – volume: 2 start-page: 253 issue: 3 year: 2010 ident: 10.1016/j.jbi.2018.09.002_b0680 article-title: Activity recognition using temporal evidence theory publication-title: J. Ambient Intell. Smart Environ. doi: 10.3233/AIS-2010-0071 – volume: 2194 issue: c year: 2015 ident: 10.1016/j.jbi.2018.09.002_b0235 article-title: Wearable monitoring of physical functioning and disability changes, circadian rhythms and sleep patterns in nursing home residents publication-title: IEEE J. Biomed. Heal. Inf. – volume: 10 start-page: 119 issue: 1 year: 2006 ident: 10.1016/j.jbi.2018.09.002_b0570 article-title: Activity classification using realistic data from wearable sensors publication-title: IEEE Trans. Inf. Technol. Biomed. doi: 10.1109/TITB.2005.856863 – volume: 37 start-page: 1067 issue: 6 year: 2007 ident: 10.1016/j.jbi.2018.09.002_b0285 article-title: Survey of wireless indoor positioning techniques and systems publication-title: IEEE Trans. Syst. Man, Cybern. Part C Appl. Rev. doi: 10.1109/TSMCC.2007.905750 – ident: 10.1016/j.jbi.2018.09.002_b0260 – ident: 10.1016/j.jbi.2018.09.002_b0290 doi: 10.1145/1497185.1497223 – volume: 4717 start-page: 483 year: 2007 ident: 10.1016/j.jbi.2018.09.002_b0265 article-title: A long-term evaluation of sensing modalities for activity recognition – volume: 15 start-page: 667 issue: 7 year: 2011 ident: 10.1016/j.jbi.2018.09.002_b0705 article-title: Accurate monitoring of human physical activity levels for medical diagnosis and monitoring using off-the-shelf cellular handsets publication-title: Pers. Ubiquitous Comput. doi: 10.1007/s00779-010-0345-1 – volume: 12 start-page: 112 issue: 1 year: 2004 ident: 10.1016/j.jbi.2018.09.002_b0125 article-title: Inclination measurement of human movement using a 3-D accelerometer with autocalibration publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2003.822759 – ident: 10.1016/j.jbi.2018.09.002_b0585 – ident: 10.1016/j.jbi.2018.09.002_b0640 doi: 10.1145/279943.279962 – volume: 6 start-page: 1 issue: 2 year: 2010 ident: 10.1016/j.jbi.2018.09.002_b0525 article-title: Using mobile phones to determine transportation modes publication-title: ACM Trans. Sens. Netw. doi: 10.1145/1689239.1689243 – volume: 34 start-page: 607 issue: 5 year: 1997 ident: 10.1016/j.jbi.2018.09.002_b0530 article-title: Assessment of posture and motion by multichannel piezoresistive accelerometer recordings publication-title: Psychophysiology doi: 10.1111/j.1469-8986.1997.tb01747.x – volume: 18 start-page: 1 issue: c year: 2013 ident: 10.1016/j.jbi.2018.09.002_b0230 article-title: Designing a robust activity recognition framework for health and exergaming using wearable sensors publication-title: IEEE J. Biomed. Heal. Inf. – volume: 13 start-page: 1133 issue: 9 year: 2012 ident: 10.1016/j.jbi.2018.09.002_b0375 article-title: Activity recognition on streaming sensor data publication-title: Pervasive Mob. Comput. – volume: 3001 start-page: 158 year: 2004 ident: 10.1016/j.jbi.2018.09.002_b0695 article-title: Activity recognition in the home using simple and ubiquitous sensors publication-title: Pervasive Comput. doi: 10.1007/978-3-540-24646-6_10 – volume: 59 start-page: 3177 issue: 12 PART2 year: 2012 ident: 10.1016/j.jbi.2018.09.002_b0200 article-title: SoM: A smart sensor for human activity monitoring and assisted healthy ageing publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2012.2206384 – ident: 10.1016/j.jbi.2018.09.002_b0710 doi: 10.1145/2493432.2493454 – ident: 10.1016/j.jbi.2018.09.002_b0390 doi: 10.1109/ISWC.2012.23 – ident: 10.1016/j.jbi.2018.09.002_b0055 – volume: 2194 start-page: 1 issue: c year: 2014 ident: 10.1016/j.jbi.2018.09.002_b0135 article-title: Estimating energy expenditure using body-worn accelerometers: a comparison of methods, sensors number and positioning publication-title: IEEE J. Biomed. Heal. Inf. – volume: 10 start-page: 155 year: 2014 ident: 10.1016/j.jbi.2018.09.002_b0380 article-title: Dynamic sensor data segmentation for real-time knowledge-driven activity recognition publication-title: Pervasive Mob. Comput. doi: 10.1016/j.pmcj.2012.11.004 – ident: 10.1016/j.jbi.2018.09.002_b0275 doi: 10.1109/KICSS.2012.26 – start-page: 23 issue: April year: 2015 ident: 10.1016/j.jbi.2018.09.002_b0355 article-title: A portable fall detection and alerting system based on k-NN algorithm and remote medicine publication-title: China Commun. doi: 10.1109/CC.2015.7114066 – volume: 16 start-page: 31 issue: 1 year: 2002 ident: 10.1016/j.jbi.2018.09.002_b0085 article-title: Knee, and hip kinetics during normal stair climbing publication-title: Gait Post. doi: 10.1016/S0966-6362(01)00201-6 – volume: 22 start-page: 285 issue: 4 year: 2000 ident: 10.1016/j.jbi.2018.09.002_b0490 article-title: Classification of waist-acceleration signals in a continuous walking record publication-title: Med. Eng. Phys. doi: 10.1016/S1350-4533(00)00041-2 – volume: 18 start-page: 369 issue: 4 year: 2010 ident: 10.1016/j.jbi.2018.09.002_b0225 article-title: Multimodal physical activity recognition by fusing temporal and cepstral information publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2010.2053217 – ident: 10.1016/j.jbi.2018.09.002_b0670 – volume: 9 start-page: 48 issue: 1 year: 2010 ident: 10.1016/j.jbi.2018.09.002_b0545 article-title: Human activity recognition and pattern discovery publication-title: Pervasive Comput. IEEE doi: 10.1109/MPRV.2010.7 – ident: 10.1016/j.jbi.2018.09.002_b0540 – volume: 9 start-page: 293 issue: 3 year: 1999 ident: 10.1016/j.jbi.2018.09.002_b0580 article-title: Least squares support vector machine classifiers publication-title: Neural Process. Lett. doi: 10.1023/A:1018628609742 – ident: 10.1016/j.jbi.2018.09.002_b0600 doi: 10.1109/ISSNIP.2005.1595593 – volume: 19 start-page: 47 year: 2014 ident: 10.1016/j.jbi.2018.09.002_b0730 article-title: KCAR: A knowledge-driven approach for concurrent activity recognition publication-title: Pervasive Mob. Comput. doi: 10.1016/j.pmcj.2014.02.003 – volume: 19 start-page: 44 issue: 1 year: 2015 ident: 10.1016/j.jbi.2018.09.002_b0325 article-title: A smart phone-based pocket fall accident detection, positioning, and rescue system publication-title: IEEE J. Biomed. Heal. Inf. doi: 10.1109/JBHI.2014.2328593 – volume: 9 start-page: 203 issue: 2 year: 2013 ident: 10.1016/j.jbi.2018.09.002_b0335 article-title: The mobile fitness coach: towards individualized skill assessment using personalized mobile devices publication-title: Pervasive Mob. Comput. doi: 10.1016/j.pmcj.2012.06.002 – volume: 17 start-page: 675 issue: 4 year: 2013 ident: 10.1016/j.jbi.2018.09.002_b0255 article-title: Activity logging using lightweight classification techniques in mobile devices publication-title: Pers. Ubiquitous Comput. doi: 10.1007/s00779-012-0515-4 – ident: 10.1016/j.jbi.2018.09.002_b0440 doi: 10.1109/ISWC.2009.23 – volume: 22 start-page: 287 issue: 4 year: 2005 ident: 10.1016/j.jbi.2018.09.002_b0090 article-title: Stair climbing detection during daily physical activity using a miniature gyroscope publication-title: Gait Post. doi: 10.1016/j.gaitpost.2004.08.008 – start-page: 1 year: 2008 ident: 10.1016/j.jbi.2018.09.002_b0660 article-title: Fast and scalable training of semisupervised crfs with application to activity recognition publication-title: Adv. Neural Inf. |
SSID | ssj0011556 |
Score | 2.5629392 |
SecondaryResourceType | review_article |
Snippet | •It summarises the state-of-the-art in traditional PARM methodologies for healthcare.•It identifies new research trends and challenges of PARM studies in IoT... Due to importantly beneficial effects on physical and mental health and strong association with many rehabilitation programs, Physical Activity Recognition and... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 138 |
SubjectTerms | Internet of Things Physical activity monitoring Physical activity recognition Sensor-based Systematic review |
Title | Examining sensor-based physical activity recognition and monitoring for healthcare using Internet of Things: A systematic review |
URI | https://dx.doi.org/10.1016/j.jbi.2018.09.002 https://www.ncbi.nlm.nih.gov/pubmed/30267895 https://www.proquest.com/docview/2114699717 |
Volume | 87 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3faxQxEB5qBVGk6PnrrB4j-CSst91Ncru-XUvLqbQvWri3kGyyesXuHu0VfBL_dGc22dWC9sHHDRsSMpPMJPN9MwCvy6IuPXnCibSeKTneJTatfOKEEaJSvvQ1Pw0cn6jFqfiwlMstOOi5MAyrjGd_ONO70zq2TONqTter1fTTHtc0EEqQUpJaqSWdw7koOhLfcn-IJJC9VCFnasYwRtFHNjuM15ldMbqr6FKdxpeVv9imf_menQ06egA70XnEeZjfQ9jyzQju_ZFScAR3jmOwfAT3w5McBqbRI_h5-N2cd_Ug8JIur-1FwibM4TqKCpnjwKUkcEAVtQ2axuF5t_F5ACQfF78OmDFk2PwXDM-KfoNtjaEQ6Duc4-8k0RgIMo_h9Ojw88EiiQUYkkqobJNIUdNthsmojtykLHdeOsHIPiukl7lTTIutqswL5YqZtc7VLk1rW8mZdaKo8iew3bSNfwaYmVwZW5C_ZaSwRWoyO3PG1Z6ajJVuDGm_9LqK2cm5SMY33cPQzjRJS7O0dFpqktYY3gxd1iE1x00_i16e-pp-aTIdN3V71cte077jYIppfHt1qTOmc5cl3YbH8DQoxTCLnMt6FaV8_n-D7sJd_gqMxxewvbm48i_J9dnYCdx6-2NvArfn7z8uTiadpv8CKoEGFg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIvFQhWB5bctjkDghRRsS25twa6tWW-j2QivtzbJjB7aiyardShz56czETgAJeuDqxLLlGXvGnu-bAXhbFnXpyRNOpPVMyfEusWnlEyeMEJXypa_5aWB-omZn4uNCLjZgv-fCMKwynv3hTO9O69gyias5WS2Xk8_vuaaBUIKUktRKLW7BbfIGFKv20WJvCCWQwVQhaWrGOEbRhzY7kNe5XTK8q-hyncanlb8Yp385n50ROnwID6L3iLthgo9gwzcjuP9bTsER3JnHaPkItsKbHAaq0WP4cfDdXHQFIfCKbq_tZcI2zOEqygqZ5MC1JHCAFbUNmsbhRbfzeQAkJxe_DqAxZNz8Fwzvin6NbY2hEugH3MVfWaIxMGSewNnhwen-LIkVGJJKqGydSFHTdYbZqI78pCx3XjrB0D4rpJe5U8yLrarMC-WKqbXO1S5Na1vJqXWiqPKnsNm0jX8OmJlcGVuQw2WksEVqMjt1xtWemoyVbgxpv_S6iunJuUrGN93j0M41SUuztHRaapLWGN4NXVYhN8dNP4tenvoPBdNkO27q9qaXvaaNx9EU0_j2-kpnzOcuS7oOj-FZUIphFjnX9SpKuf1_g76Gu7PT-bE-Pjr5tAP3-EugP76AzfXltX9JftDavur0_CcLJAax |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Examining+sensor-based+physical+activity+recognition+and+monitoring+for+healthcare+using+Internet+of+Things%3A+A+systematic+review&rft.jtitle=Journal+of+biomedical+informatics&rft.au=Qi%2C+Jun&rft.au=Yang%2C+Po&rft.au=Waraich%2C+Atif&rft.au=Deng%2C+Zhikun&rft.date=2018-11-01&rft.issn=1532-0480&rft.eissn=1532-0480&rft.volume=87&rft.spage=138&rft_id=info:doi/10.1016%2Fj.jbi.2018.09.002&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0464&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0464&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0464&client=summon |