The importance of FcRn in neuro-immunotherapies: From IgG catabolism, FCGRT gene polymorphisms, IVIg dosing and efficiency to specific FcRn inhibitors
The neonatal Fc receptor (FcRn) binds endogenous IgG and protects it from lysosomal degradation by transporting it back to the cell surface to re-enter the circulation, extending the serum IgG life span. FcRn plays a role in the function of IVIg because the supraphysiological IgG levels derived from...
Saved in:
Published in | Therapeutic advances in neurological disorders Vol. 14; p. 1756286421997381 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London, England
SAGE Publications
2021
SAGE PUBLICATIONS, INC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The neonatal Fc receptor (FcRn) binds endogenous IgG and protects it from lysosomal degradation by transporting it back to the cell surface to re-enter the circulation, extending the serum IgG life span. FcRn plays a role in the function of IVIg because the supraphysiological IgG levels derived from IVIg administrations saturate the FcRn allowing the endogenous IgG to be degraded, instead of being recycled, resulting in high levels of infused IgG ensuring IVIg efficiency. New data in myasthenia gravis patients suggest that the that the Variable Number of Tandem 3/2 (VNTR3/2) polymorphisms in FCGRT, the gene that encodes FcRn, may affect the duration of infused IgG in the circulation and IVIg effectiveness. This review addresses these implications in the context of whether the FCGRT genotype, by affecting the half-life of IVIg, may also play a role in up to 30% of patients with autoimmune neurological diseases, such as Guillain–Barré syndrome, CIDP or Multifocal Motor Neuropathy, who did not respond to IVIg in controlled trials. The concern is of practical significance because in such patient subsets super-high IVIg doses may be needed to achieve high IgG levels and ensure efficacy. Whether FCGRT polymorphisms affect the efficacy of other therapeutic monoclonal antibodies by influencing their distribution clearance and pharmacokinetics, explaining their variable effectiveness, is also addressed. Finally, the very promising effect of monoclonal antibodies that inhibit FcRn, such as efgartigimod, rozanolixizumab and nipocalimab, in treating antibody-mediated neurological diseases is discussed along with their efficacy in the IgG4 subclass of pathogenic antibodies and their role in the blood–brain barrier endothelium, that abundantly expresses FcRn. |
---|---|
AbstractList | The neonatal Fc receptor (FcRn) binds endogenous IgG and protects it from lysosomal degradation by transporting it back to the cell surface to re-enter the circulation, extending the serum IgG life span. FcRn plays a role in the function of IVIg because the supraphysiological IgG levels derived from IVIg administrations saturate the FcRn allowing the endogenous IgG to be degraded, instead of being recycled, resulting in high levels of infused IgG ensuring IVIg efficiency. New data in myasthenia gravis patients suggest that the that the Variable Number of Tandem 3/2 (VNTR3/2) polymorphisms in FCGRT, the gene that encodes FcRn, may affect the duration of infused IgG in the circulation and IVIg effectiveness. This review addresses these implications in the context of whether the FCGRT genotype, by affecting the half-life of IVIg, may also play a role in up to 30% of patients with autoimmune neurological diseases, such as Guillain–Barré syndrome, CIDP or Multifocal Motor Neuropathy, who did not respond to IVIg in controlled trials. The concern is of practical significance because in such patient subsets super-high IVIg doses may be needed to achieve high IgG levels and ensure efficacy. Whether FCGRT polymorphisms affect the efficacy of other therapeutic monoclonal antibodies by influencing their distribution clearance and pharmacokinetics, explaining their variable effectiveness, is also addressed. Finally, the very promising effect of monoclonal antibodies that inhibit FcRn, such as efgartigimod, rozanolixizumab and nipocalimab, in treating antibody-mediated neurological diseases is discussed along with their efficacy in the IgG4 subclass of pathogenic antibodies and their role in the blood–brain barrier endothelium, that abundantly expresses FcRn. The neonatal Fc receptor (FcRn) binds endogenous IgG and protects it from lysosomal degradation by transporting it back to the cell surface to re-enter the circulation, extending the serum IgG life span. FcRn plays a role in the function of IVIg because the supraphysiological IgG levels derived from IVIg administrations saturate the FcRn allowing the endogenous IgG to be degraded, instead of being recycled, resulting in high levels of infused IgG ensuring IVIg efficiency. New data in myasthenia gravis patients suggest that the that the Variable Number of Tandem 3/2 (VNTR3/2) polymorphisms in , the gene that encodes FcRn, may affect the duration of infused IgG in the circulation and IVIg effectiveness. This review addresses these implications in the context of whether the genotype, by affecting the half-life of IVIg, may also play a role in up to 30% of patients with autoimmune neurological diseases, such as Guillain-Barré syndrome, CIDP or Multifocal Motor Neuropathy, who did not respond to IVIg in controlled trials. The concern is of practical significance because in such patient subsets super-high IVIg doses may be needed to achieve high IgG levels and ensure efficacy. Whether polymorphisms affect the efficacy of other therapeutic monoclonal antibodies by influencing their distribution clearance and pharmacokinetics, explaining their variable effectiveness, is also addressed. Finally, the very promising effect of monoclonal antibodies that inhibit FcRn, such as efgartigimod, rozanolixizumab and nipocalimab, in treating antibody-mediated neurological diseases is discussed along with their efficacy in the IgG4 subclass of pathogenic antibodies and their role in the blood-brain barrier endothelium, that abundantly expresses FcRn. The neonatal Fc receptor (FcRn) binds endogenous IgG and protects it from lysosomal degradation by transporting it back to the cell surface to re-enter the circulation, extending the serum IgG life span. FcRn plays a role in the function of IVIg because the supraphysiological IgG levels derived from IVIg administrations saturate the FcRn allowing the endogenous IgG to be degraded, instead of being recycled, resulting in high levels of infused IgG ensuring IVIg efficiency. New data in myasthenia gravis patients suggest that the that the Variable Number of Tandem 3/2 (VNTR3/2) polymorphisms in FCGRT , the gene that encodes FcRn, may affect the duration of infused IgG in the circulation and IVIg effectiveness. This review addresses these implications in the context of whether the FCGRT genotype, by affecting the half-life of IVIg, may also play a role in up to 30% of patients with autoimmune neurological diseases, such as Guillain–Barré syndrome, CIDP or Multifocal Motor Neuropathy, who did not respond to IVIg in controlled trials. The concern is of practical significance because in such patient subsets super-high IVIg doses may be needed to achieve high IgG levels and ensure efficacy. Whether FCGRT polymorphisms affect the efficacy of other therapeutic monoclonal antibodies by influencing their distribution clearance and pharmacokinetics, explaining their variable effectiveness, is also addressed. Finally, the very promising effect of monoclonal antibodies that inhibit FcRn, such as efgartigimod, rozanolixizumab and nipocalimab, in treating antibody-mediated neurological diseases is discussed along with their efficacy in the IgG4 subclass of pathogenic antibodies and their role in the blood–brain barrier endothelium, that abundantly expresses FcRn. The neonatal Fc receptor (FcRn) binds endogenous IgG and protects it from lysosomal degradation by transporting it back to the cell surface to re-enter the circulation, extending the serum IgG life span. FcRn plays a role in the function of IVIg because the supraphysiological IgG levels derived from IVIg administrations saturate the FcRn allowing the endogenous IgG to be degraded, instead of being recycled, resulting in high levels of infused IgG ensuring IVIg efficiency. New data in myasthenia gravis patients suggest that the that the Variable Number of Tandem 3/2 (VNTR3/2) polymorphisms in FCGRT, the gene that encodes FcRn, may affect the duration of infused IgG in the circulation and IVIg effectiveness. This review addresses these implications in the context of whether the FCGRT genotype, by affecting the half-life of IVIg, may also play a role in up to 30% of patients with autoimmune neurological diseases, such as Guillain-Barré syndrome, CIDP or Multifocal Motor Neuropathy, who did not respond to IVIg in controlled trials. The concern is of practical significance because in such patient subsets super-high IVIg doses may be needed to achieve high IgG levels and ensure efficacy. Whether FCGRT polymorphisms affect the efficacy of other therapeutic monoclonal antibodies by influencing their distribution clearance and pharmacokinetics, explaining their variable effectiveness, is also addressed. Finally, the very promising effect of monoclonal antibodies that inhibit FcRn, such as efgartigimod, rozanolixizumab and nipocalimab, in treating antibody-mediated neurological diseases is discussed along with their efficacy in the IgG4 subclass of pathogenic antibodies and their role in the blood-brain barrier endothelium, that abundantly expresses FcRn.The neonatal Fc receptor (FcRn) binds endogenous IgG and protects it from lysosomal degradation by transporting it back to the cell surface to re-enter the circulation, extending the serum IgG life span. FcRn plays a role in the function of IVIg because the supraphysiological IgG levels derived from IVIg administrations saturate the FcRn allowing the endogenous IgG to be degraded, instead of being recycled, resulting in high levels of infused IgG ensuring IVIg efficiency. New data in myasthenia gravis patients suggest that the that the Variable Number of Tandem 3/2 (VNTR3/2) polymorphisms in FCGRT, the gene that encodes FcRn, may affect the duration of infused IgG in the circulation and IVIg effectiveness. This review addresses these implications in the context of whether the FCGRT genotype, by affecting the half-life of IVIg, may also play a role in up to 30% of patients with autoimmune neurological diseases, such as Guillain-Barré syndrome, CIDP or Multifocal Motor Neuropathy, who did not respond to IVIg in controlled trials. The concern is of practical significance because in such patient subsets super-high IVIg doses may be needed to achieve high IgG levels and ensure efficacy. Whether FCGRT polymorphisms affect the efficacy of other therapeutic monoclonal antibodies by influencing their distribution clearance and pharmacokinetics, explaining their variable effectiveness, is also addressed. Finally, the very promising effect of monoclonal antibodies that inhibit FcRn, such as efgartigimod, rozanolixizumab and nipocalimab, in treating antibody-mediated neurological diseases is discussed along with their efficacy in the IgG4 subclass of pathogenic antibodies and their role in the blood-brain barrier endothelium, that abundantly expresses FcRn. |
Author | Dalakas, Marinos C. Spaeth, Peter J. |
Author_xml | – sequence: 1 givenname: Marinos C. orcidid: 0000-0001-7070-1134 surname: Dalakas fullname: Dalakas, Marinos C. email: marinos.dalakas@jefferson.edu, mdalakas@med.uoa.gr organization: Neuroimmunology Unit, National and Kapodistrian University of Athens, Athens, Greece – sequence: 2 givenname: Peter J. surname: Spaeth fullname: Spaeth, Peter J. organization: Institute of Pharmacology, University of Bern, Bern, Switzerland |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33717213$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk9r3DAQxUVJaf60956KoJce4laStZbdQ6As2e1CoBC2vQpZHnkVbMmV5MJ-kX7e2GySpgvtSWLm957eoDlHJ847QOgtJR8pFeITFYuClQVntKpEXtIX6GwuZXPt5Nn9FJ3HeEdIwQQnr9BpngsqGM3P0O_tDrDtBx-SchqwN3ilbx22DjsYg89s34_Opx0ENViIn_Eq-B5v2jXWKqnadzb2l3i1XN9ucQsO8OC7fe_DsJsa8RJvfmxa3PhoXYuVazAYY7UFp_c4eRwH0HYqPD66s7VNPsTX6KVRXYQ3D-cF-r663i6_Zjff1pvll5tM84KljIOpuCi0EEYJwnUFVNHGKF1CpWsDFaupKHlRANNVo0hNG0ZUbTjTi1LXeX6Brg6-w1j30GhwKahODsH2KuylV1b-3XF2J1v_S4pqNhaTwYcHg-B_jhCT7G3U0HXKgR-jZAtCp4QFLSf0_RF658fgpvEkK2jOuOCMTdS754meojx-2QSQA6CDjzGAeUIokfNWyOOtmCTFkUTbpJL180y2-58wOwijauFP3H_y9xCYyZU |
CitedBy_id | crossref_primary_10_1093_brain_awae066 crossref_primary_10_1007_s00415_024_12247_x crossref_primary_10_1007_s40263_024_01090_3 crossref_primary_10_1016_j_autrev_2021_103015 crossref_primary_10_1007_s40265_022_01678_3 crossref_primary_10_1016_j_ensci_2022_100404 crossref_primary_10_3389_fimmu_2022_834342 crossref_primary_10_1016_j_autrev_2023_103451 crossref_primary_10_1016_j_jneuroim_2024_578431 crossref_primary_10_1097_CND_0000000000000451 crossref_primary_10_3390_ijms24119180 crossref_primary_10_1080_1744666X_2022_2054803 crossref_primary_10_1002_mus_27922 crossref_primary_10_3389_fneur_2023_1243787 crossref_primary_10_1136_jnnp_2024_334165 crossref_primary_10_1093_abt_tbae007 crossref_primary_10_1177_17562864241254895 crossref_primary_10_1007_s13311_022_01222_x crossref_primary_10_1111_ncn3_12813 crossref_primary_10_1016_j_clim_2025_110457 crossref_primary_10_1007_s10517_024_06193_x crossref_primary_10_1111_ene_16079 crossref_primary_10_1016_j_bdcasr_2024_100052 crossref_primary_10_1016_j_bbi_2024_10_006 crossref_primary_10_1080_1744666X_2022_2106972 crossref_primary_10_1080_14737175_2022_2057223 crossref_primary_10_1177_17562864221137129 crossref_primary_10_1016_S1473_3099_22_00311_5 crossref_primary_10_1080_1744666X_2022_2136167 crossref_primary_10_3390_vaccines11121756 crossref_primary_10_1136_pn_2022_003655 crossref_primary_10_1080_14737175_2022_2169134 crossref_primary_10_1080_03772063_2023_2301663 crossref_primary_10_1177_17562864241307687 crossref_primary_10_1080_14712598_2023_2296126 crossref_primary_10_1111_ene_16205 crossref_primary_10_1016_j_jtauto_2021_100122 crossref_primary_10_1111_trf_17748 crossref_primary_10_2174_1381612828666220325102840 crossref_primary_10_3390_ijms24087288 crossref_primary_10_1007_s40272_024_00646_6 crossref_primary_10_1016_j_jaip_2022_04_003 crossref_primary_10_1186_s13023_024_03501_6 crossref_primary_10_2217_imt_2022_0298 crossref_primary_10_1016_j_bcp_2023_115872 crossref_primary_10_1007_s40268_024_00490_6 crossref_primary_10_1007_s13311_021_01175_7 crossref_primary_10_1007_s40495_023_00327_x crossref_primary_10_1016_j_xgen_2022_100212 crossref_primary_10_1212_NXI_0000000000001116 crossref_primary_10_1111_cen3_12791 crossref_primary_10_1016_j_tmrv_2023_150767 crossref_primary_10_2147_ITT_S388151 crossref_primary_10_3389_fimmu_2022_901872 crossref_primary_10_1007_s13311_022_01188_w crossref_primary_10_1016_j_clim_2023_109782 crossref_primary_10_3390_jcm12226961 crossref_primary_10_1080_1744666X_2022_2082946 crossref_primary_10_1007_s13311_021_01108_4 crossref_primary_10_1016_j_autrev_2024_103719 crossref_primary_10_3389_fmicb_2023_1174410 crossref_primary_10_1093_braincomms_fcac196 crossref_primary_10_1097_MD_0000000000040700 crossref_primary_10_3389_fimmu_2024_1409480 crossref_primary_10_1080_21645515_2025_2470542 |
Cites_doi | 10.4161/mabs.24815 10.1080/00207454.2020.1815733 10.1038/nri2155 10.1007/s13311-015-0391-5 10.1212/NXI.0000000000000893 10.1126/scitranslmed.aan1208 10.1177/1756286420986747 10.1097/WCO.0000000000000858 10.1111/j.1365-2567.2006.02408.x 10.1002/acn3.307 10.1016/j.tips.2018.08.004 10.1136/jnnp-2013-306227 10.1212/WNL.96.15_supplement.4520 10.1172/JCI97911 10.1056/NEJM199312303292704 10.1111/cei.12002 10.1038/ajg.2016.306 10.1073/pnas.0600548103 10.1212/WNL.0000000000007600 10.1038/nrneurol.2014.260 10.1016/j.ygeno.2017.04.006 10.1182/bloodadvances.2020002003 10.1038/2031352a0 10.1016/S1474-4422(07)70329-0 10.1016/j.jaci.2020.07.016 10.1002/ana.21737 10.1016/j.jaci.2020.07.015 10.1016/j.clim.2010.05.006 10.1002/ajh.25680 10.1056/NEJM199901213400311 10.1056/NEJMoa01167 10.1212/WNL.0000000000011108 |
ContentType | Journal Article |
Copyright | The Author(s), 2021 The Author(s), 2021. The Author(s), 2021. This work is licensed under the Creative Commons Attribution – Non-Commercial License https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s), 2021 2021 SAGE Publications Ltd unless otherwise noted. Manuscript content on this site is licensed under Creative Commons Licenses |
Copyright_xml | – notice: The Author(s), 2021 – notice: The Author(s), 2021. – notice: The Author(s), 2021. This work is licensed under the Creative Commons Attribution – Non-Commercial License https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s), 2021 2021 SAGE Publications Ltd unless otherwise noted. Manuscript content on this site is licensed under Creative Commons Licenses |
DBID | AFRWT AAYXX CITATION NPM 3V. 7TK 7X7 7XB 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS PSYQQ 7X8 5PM |
DOI | 10.1177/1756286421997381 |
DatabaseName | Sage Journals GOLD Open Access 2024 CrossRef PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Psychology ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Hospital Collection Health Research Premium Collection (Alumni) Neurosciences Abstracts ProQuest Central China ProQuest Hospital Collection (Alumni) ProQuest Central ProQuest Health & Medical Complete Health Research Premium Collection ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: AFRWT name: Sage Open Access Journals url: http://journals.sagepub.com/ sourceTypes: Publisher – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1756-2864 |
ExternalDocumentID | PMC7917847 33717213 10_1177_1756286421997381 10.1177_1756286421997381 |
Genre | Journal Article Review |
GroupedDBID | --- -TM 01A 0R~ 123 18M 29Q 4.4 53G 54M 5VS 7X7 8FI 8FJ AABMB AADUE AAKDD AAQDB AARDL AARIX AASGM ABAWP ABEIX ABFWQ ABJIS ABKRH ABNCE ABQXT ABRHV ABUWG ABVFX ACARO ACDSZ ACDXX ACGFS ACOFE ACROE ACRPL ADBBV ADEBD ADNMO ADOGD ADYCS ADZZY AENEX AEQLS AERKM AEUHG AEWDL AEXNY AFCOW AFEET AFKRA AFKRG AFRWT AFUIA AFWMB AGNHF AGQPQ AHHFK AJUZI ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS ARTOV ASPBG AUTPY AUVAJ AVWKF AYAKG AZFZN B8M BAWUL BCNDV BDDNI BENPR BKSCU BPHCQ BSEHC BVXVI CAG CCPQU CDWPY CFDXU COF CS3 DC- DC. DIK DOPDO E3Z EBS EJD EMOBN F5P FEDTE FYUFA GROUPED_DOAJ GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION GX1 H13 HMCUK HVGLF HYE HZ~ J8X K.F N9A O9- OK1 P.B PHGZM PHGZT PIMPY PQQKQ PSYQQ ROL RPM S01 SAUOL SCDPB SCNPE SFC UKHRP ZONMY ZPPRI ZRKOI ZSSAH AAYXX ACHEB CITATION 31X AADTT AATBZ ACGZU ACSBE ACSIQ ACUIR AEUIJ AEWHI B8Z DV7 M4V NPM SGV 3V. 7TK 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c462t-4ef9476c77fa704c9e1a1dfac8e9cbfe92b178466e2c9da0b1d20abf42c58cb33 |
IEDL.DBID | AFRWT |
ISSN | 1756-2864 1756-2856 |
IngestDate | Thu Aug 21 18:09:36 EDT 2025 Fri Jul 11 12:25:12 EDT 2025 Mon Jun 30 11:36:56 EDT 2025 Wed Feb 19 02:28:16 EST 2025 Thu Apr 24 23:03:41 EDT 2025 Tue Jul 01 05:24:16 EDT 2025 Tue Jun 17 22:26:18 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | FcRn autoantibodies FCGRT gene polymorphisms IgG catabolism IVIg Neuro-mmunotherapies Autoimmune neurology |
Language | English |
License | This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page (https://us.sagepub.com/en-us/nam/open-access-at-sage). The Author(s), 2021. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c462t-4ef9476c77fa704c9e1a1dfac8e9cbfe92b178466e2c9da0b1d20abf42c58cb33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-7070-1134 |
OpenAccessLink | https://journals.sagepub.com/doi/full/10.1177/1756286421997381?utm_source=summon&utm_medium=discovery-provider |
PMID | 33717213 |
PQID | 2613247422 |
PQPubID | 4450847 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7917847 proquest_miscellaneous_2501476618 proquest_journals_2613247422 pubmed_primary_33717213 crossref_primary_10_1177_1756286421997381 crossref_citationtrail_10_1177_1756286421997381 sage_journals_10_1177_1756286421997381 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-00-00 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 2021-00-00 |
PublicationDecade | 2020 |
PublicationPlace | London, England |
PublicationPlace_xml | – name: London, England – name: England – name: London – name: Sage UK: London, England |
PublicationTitle | Therapeutic advances in neurological disorders |
PublicationTitleAlternate | Ther Adv Neurol Disord |
PublicationYear | 2021 |
Publisher | SAGE Publications SAGE PUBLICATIONS, INC |
Publisher_xml | – name: SAGE Publications – name: SAGE PUBLICATIONS, INC |
References | Alexopoulos, Magira, Bitzogli 2020; 7 Lunemann, Quast, Dalakas 2016; 13 Newland, Sánchez-González, Rejtö 2020; 95 Bayry, Kaveri 2108; 39 Wani, Haynes, Kim 2006; 103 Stathopoulos, Alexopoulos, Dalakas 2015; 11 Bril, Benatar, Benatar Roopenian, Akilesh 2007; 7 Sachs, Socher, Braeunlich 2006; 119 Dalakas 2020; 33 Dalakas, Illa, Dambrosia 1993; 329 Brambell, Hemmings, Morris 1964; 203 Passot, Azzopardi, Renault 2013; 5 Gouilleux-Gruart, Chapel, Chevret 2013; 171 Billiet, Dreesen, Cleynen 2016; 111 Howard, Bril, Burns 2019; 92 Robak, Kaźmierczak, Jarque 2020; 4 Kuitwaard, de Gelder, Tio-Gillen 2009; 66 Patel, Bussel 2020; 146 Peter, Ochs, Cunningham-Rundles 2020; 146 Kapoor, Reilly, Manji O’Shannessy, Bendas, Schweizer 2017; 109 Kiessling, Lledo-Garcia, Watanabe 2017; 9 Vlam, Cats, Willemse 2014; 85 Su, Liu, Zhang 2021 Hughes, Donofrio, Bril 2008; 7 Dalakas, Fujii, Li 2001; 345 Freiberger, Grodecká, Ravčuková 2010; 136 Hughes, Swan, van Doorn 2012; 7 Fokkink, Haarman, Tio-Gillen 2016; 3 Ulrichts, Guglietta, Dreier 2018; 128 Yu, Lennon 1999; 340 bibr12-1756286421997381 bibr17-1756286421997381 bibr8-1756286421997381 bibr3-1756286421997381 bibr4-1756286421997381 bibr25-1756286421997381 bibr9-1756286421997381 bibr16-1756286421997381 bibr20-1756286421997381 bibr18-1756286421997381 bibr33-1756286421997381 bibr7-1756286421997381 bibr29-1756286421997381 bibr13-1756286421997381 bibr26-1756286421997381 bibr21-1756286421997381 bibr30-1756286421997381 bibr1-1756286421997381 bibr6-1756286421997381 bibr23-1756286421997381 bibr28-1756286421997381 bibr10-1756286421997381 bibr27-1756286421997381 bibr14-1756286421997381 bibr22-1756286421997381 bibr31-1756286421997381 bibr24-1756286421997381 bibr5-1756286421997381 bibr2-1756286421997381 bibr11-1756286421997381 Hughes RAC (bibr15-1756286421997381) 2012; 7 bibr19-1756286421997381 bibr32-1756286421997381 |
References_xml | – volume: 3 start-page: 547 year: 2016 end-page: 551 article-title: Neonatal Fc receptor promoter gene polymorphism does not predict pharmacokinetics of IVIg or the clinical course of GBS publication-title: Ann Clin Transl Neurol – volume: 7 year: 2012 article-title: Intravenous immunoglobulin for Guillain–Barré syndrome publication-title: Cochrane Database Syst Rev – volume: 13 start-page: 34 year: 2016 end-page: 46 article-title: Efficacy of intravenous immunoglobulin in therapeutic advances in neurological disorders neurological diseases publication-title: Neurotherapeutics – volume: 340 start-page: 227 year: 1999 end-page: 228 article-title: Mechanism of intravenous immune globulin therapy in antibody-mediated autoimmune diseases publication-title: N Engl J Med – volume: 171 start-page: 186 year: 2013 end-page: 194 article-title: Efficiency of immunoglobulin G replacement therapy in common variable immunodeficiency: correlations with clinical phenotype and polymorphism of the neonatal Fc receptor publication-title: Clin Exp Immunol – volume: 39 start-page: 919 year: 2108 end-page: 922 article-title: Kill ’Em All: efgatigimod immunotherapy for autoimmune diseases publication-title: Trends Pharmacol Sci – volume: 203 start-page: 1352 year: 1964 end-page: 1354 article-title: A theoretical model of gamma-globulin catabolism publication-title: Nature – volume: 7 year: 2020 article-title: Anti-SARS-CoV-2 antibodies in the CSF, blood–brain barrier dysfunction, and neurological outcome: studies in 8 comatose patients publication-title: Neurol Neuroimmunol Neuroinflamm – volume: 345 start-page: 1870 year: 2001 end-page: 1876 article-title: High-dose intravenous immune globulin for stiff-person syndrome publication-title: N Engl J Med – volume: 103 start-page: 5084 year: 2006 end-page: 5089 article-title: Familial hypercatabolic hypoproteinemia caused by deficiency of the neonatal Fc receptor, FcRn, due to a mutant beta2-microglobulin gene publication-title: Proc Natl Acad Sci U S A – volume: 4 start-page: 4136 year: 2020 end-page: 4146 article-title: Phase 2 multiple dose study of an FcRn inhibitor, rozanolixizumab, in patients with primary immune thrombocytopenia (ITP) publication-title: Blood Adv – article-title: Efficacy and safety of rozanolixizumab in moderate-to-severe generalised myasthenia gravis: a phase 2 RCT publication-title: Neurology – year: 2021 article-title: VNTR2/VNTR3 genotype in the FCGRT gene associates with the reduced effectiveness of intravenous immunoglobulin treatment in patients with myasthenia gravis publication-title: Ther Adv Neurol Disord – volume: 7 start-page: 136 year: 2008 end-page: 144 article-title: Intravenous immune globulin (10% caprylate-chromatography purified) for the treatment of chronic inflammatory demyelinating polyradiculoneuropathy (ICE study): a randomized placebo-controlled trial publication-title: Lancet Neurol – volume: 119 start-page: 83 year: 2006 end-page: 89 article-title: A variable number of tandem repeats polymorphism influences the transcriptional activity of the neonatal Fc receptor alpha-chain promoter publication-title: Immunology – volume: 9 year: 2017 article-title: The FcRn inhibitor rozanolixizumab reduces human serum IgG concentration: a randomized phase 1 study publication-title: Sci Transl Med – volume: 109 start-page: 251 year: 2017 end-page: 257 article-title: Correlation of FCGRT genomic structure with serum immunoglobulin, albumin and farletuzumab pharmacokinetics in patients with first elapsed ovarian cancer publication-title: Genomics – volume: 128 start-page: 4372 year: 2018 end-page: 4386 article-title: Neonatal Fc receptor antagonist efgartigimod safely and sustainably reduces IgGs in humans publication-title: J Clin Invest – volume: 5 start-page: 614 year: 2013 end-page: 619 article-title: Influence of FCGRT gene polymorphisms on pharmacokinetics of therapeutic antibodies publication-title: MAbs – volume: 111 start-page: 1438 year: 2016 end-page: 1445 article-title: A genetic variation in the neonatal Fc-receptor affects anti-TNF drug concentrations in inflammatory bowel disease publication-title: Am J Gastroenterol – volume: 95 start-page: 178 year: 2020 end-page: 187 article-title: Phase 2 study of efgartigimod, a novel FcRn antagonist, in adult patients with primary immune thrombocytopenia publication-title: Am J Hematol – volume: 146 year: 2020 article-title: Targeting FcRn for immunomodulation: benefits, risks, and practical considerations publication-title: J Allergy Clin Immunol – volume: 92 year: 2019 article-title: Randomized phase 2 study of FcRn antagonist efgartigimod in generalized myasthenia gravis publication-title: Neurology – volume: 7 start-page: 715 year: 2007 end-page: 725 article-title: FcRn: the neonatal Fc receptor comes of age publication-title: Nat Rev Immunol – volume: 33 start-page: 545 year: 2020 end-page: 552 article-title: Progress in the therapy of myasthenia gravis: getting closer to effective targeted immunotherapies publication-title: Curr Opin Neurol – volume: 146 start-page: 467 year: 2020 end-page: 478 article-title: Neonatal Fc receptor in human immunity: function and role in therapeutic intervention publication-title: J Allergy Clin Immunol – article-title: Dramatic clinical response to ultra-high dose IVIg in otherwise treatment resistant inflammatory neuropathies publication-title: Int J Neurosci – volume: 11 start-page: 143 year: 2015 end-page: 156 article-title: Autoimmune antigenic targets at the node of Ranvier in demyelinating disorders publication-title: Nat Rev Neurol – volume: 136 start-page: 419 year: 2010 end-page: 425 article-title: Association of FcRn expression with lung abnormalities and IVIG catabolism in patients with common variable immunodeficiency publication-title: Clin Immunol – volume: 85 start-page: 1145 year: 2014 end-page: 1148 article-title: Pharmacokinetics of intravenous immunoglobulin in multifocal motor neuropathy publication-title: J Neurol Neurosurg Psychiatry – volume: 329 start-page: 1993 year: 1993 end-page: 2000 article-title: A controlled trial of high-dose intravenous immune globulin infusions as treatment for dermatomyositis publication-title: N Engl J Med – volume: 66 start-page: 597 year: 2009 end-page: 603 article-title: Pharmacokinetics of intravenous immunoglobulin and outcome in Guillain-Barré syndrome publication-title: Ann Neurol – ident: bibr7-1756286421997381 doi: 10.4161/mabs.24815 – ident: bibr20-1756286421997381 doi: 10.1080/00207454.2020.1815733 – ident: bibr1-1756286421997381 doi: 10.1038/nri2155 – ident: bibr19-1756286421997381 doi: 10.1007/s13311-015-0391-5 – ident: bibr33-1756286421997381 doi: 10.1212/NXI.0000000000000893 – ident: bibr31-1756286421997381 doi: 10.1126/scitranslmed.aan1208 – ident: bibr6-1756286421997381 doi: 10.1177/1756286420986747 – ident: bibr26-1756286421997381 doi: 10.1097/WCO.0000000000000858 – ident: bibr8-1756286421997381 doi: 10.1111/j.1365-2567.2006.02408.x – ident: bibr13-1756286421997381 doi: 10.1002/acn3.307 – ident: bibr32-1756286421997381 doi: 10.1016/j.tips.2018.08.004 – ident: bibr14-1756286421997381 doi: 10.1136/jnnp-2013-306227 – ident: bibr27-1756286421997381 doi: 10.1212/WNL.96.15_supplement.4520 – ident: bibr30-1756286421997381 doi: 10.1172/JCI97911 – ident: bibr17-1756286421997381 doi: 10.1056/NEJM199312303292704 – ident: bibr9-1756286421997381 doi: 10.1111/cei.12002 – ident: bibr21-1756286421997381 doi: 10.1038/ajg.2016.306 – ident: bibr4-1756286421997381 doi: 10.1073/pnas.0600548103 – ident: bibr23-1756286421997381 doi: 10.1212/WNL.0000000000007600 – ident: bibr29-1756286421997381 doi: 10.1038/nrneurol.2014.260 – ident: bibr22-1756286421997381 doi: 10.1016/j.ygeno.2017.04.006 – ident: bibr25-1756286421997381 doi: 10.1182/bloodadvances.2020002003 – ident: bibr5-1756286421997381 doi: 10.1038/2031352a0 – volume: 7 year: 2012 ident: bibr15-1756286421997381 publication-title: Cochrane Database Syst Rev – ident: bibr16-1756286421997381 doi: 10.1016/S1474-4422(07)70329-0 – ident: bibr3-1756286421997381 doi: 10.1016/j.jaci.2020.07.016 – ident: bibr12-1756286421997381 doi: 10.1002/ana.21737 – ident: bibr2-1756286421997381 doi: 10.1016/j.jaci.2020.07.015 – ident: bibr10-1756286421997381 doi: 10.1016/j.clim.2010.05.006 – ident: bibr24-1756286421997381 doi: 10.1002/ajh.25680 – ident: bibr11-1756286421997381 doi: 10.1056/NEJM199901213400311 – ident: bibr18-1756286421997381 doi: 10.1056/NEJMoa01167 – ident: bibr28-1756286421997381 doi: 10.1212/WNL.0000000000011108 |
SSID | ssj0062740 |
Score | 2.4811094 |
SecondaryResourceType | review_article |
Snippet | The neonatal Fc receptor (FcRn) binds endogenous IgG and protects it from lysosomal degradation by transporting it back to the cell surface to re-enter the... |
SourceID | pubmedcentral proquest pubmed crossref sage |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1756286421997381 |
SubjectTerms | Blood-brain barrier Cell surface Clinical trials Endothelium Fc receptors Gene polymorphism Immunoglobulin G Immunotherapy Intravenous administration Lysosomes Monoclonal antibodies Myasthenia gravis Neonates Neurological diseases Neuromuscular junctions Patients Pharmacokinetics Progressive motor neuropathy Review |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdgSIgXxPcCAx0SQkJa1CZx45gXhCayFWk8TBvqW2Wf7S1SG5e1e-Af4e_Fl7rZysReY0e2fGf75_v4HWMfTIAN6ASmASuIlDsjUuko7M9y5OHIRNd5dI9_lEdn_PtkNIkGt2UMq9ycid1BbTySjXwQkH64-8NDLv-y-JVS1SjyrsYSGvfZA6Iuo5AuMekfXFRWZp0QOSrTvBrdcFMO6FteUZanlKKosu1r6RbWvB0yeSPuq7uK6ifsccSQ8HUt9Kfsnm2fsYfH0Uv-nP0Jsodm3iHrIFPwDmo8aaFpoaOvTBtKCompV-Gl_BnqSz-H8fkhkDVH-1mznO9DfXB4cgpBwSws_Oz33AeRhIblPox_js_BeDIzgGoN2I6HgpI4YeWBkjcpAGkz6EWjG6rp84Kd1d9OD47SWH8hRV7mq5RbJ7koUQinxJCjtJnKjFNYWYnaWZnrTAT8UtocpVFDnZl8qLTjOY4q1EXxku20vrW7DFCgMhgkYoshL7TWwhEzYKUKrFSlZcIGm-WfYiQnpxoZs2kW-cj_FVjCPvV_LNbEHHf03dtIdBq36HJ6rVAJe983h81FHhPVWn8V-pDXVQQIUyXs1VoB-sGKQtDzuUiY2FKNvgMRd2-3tM1FR-AtJK2bSNhHUqLrKf1v_q_vnv8b9iinSJvOMLTHdlaXV_ZtgEor_a7bD38B5fYPZw priority: 102 providerName: ProQuest |
Title | The importance of FcRn in neuro-immunotherapies: From IgG catabolism, FCGRT gene polymorphisms, IVIg dosing and efficiency to specific FcRn inhibitors |
URI | https://journals.sagepub.com/doi/full/10.1177/1756286421997381 https://www.ncbi.nlm.nih.gov/pubmed/33717213 https://www.proquest.com/docview/2613247422 https://www.proquest.com/docview/2501476618 https://pubmed.ncbi.nlm.nih.gov/PMC7917847 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swED_6AWMvo_us1y5oMAaDeoltxbL3MrpStxm0jJBueQuSLLWG2C6N89B_ZH_v7vyRLgsbewpEZ05IJ91P9wnwLkXYoK3QLmIF4XKbCje2FPZnuOZ4ZWpbe3QvLsPzK_51OpxuQdHlwrQruPhIYVU4o_qyptNN1uh-62Tso86jlEruU5gE6pzPyyqfNdburqkG_UPu6WVOnm1N8ZD3bpfdtg27vgiHeJB3j5Pxj0l3d1MjmiaFchi6xODBsbnBc12RbaDTzSDL3yLFauWV7MGTFnWy40ZMnsKWKZ7Bo4vWr_4cfqK0sCyvsThKASstS_S4YFnB6oKXbkZpJG2yFr6tP7HkrszZ6PqMkf1HlfNskR-x5ORsPGEokobdlvP7vMRNxIHFERt9H12ztCTDBJNFykxduYLSPllVMkr3pJCljulNpjLqAvQCrpLTycm523ZscDUP_crlxsZchFoIK8WA69h40kut1JGJtbIm9pUnEPGExtdxKgfKS_2BVJb7ehhpFQQvYacoC7MPTAstU407YoIBD5RSwlItwUgGOpKRih3od8s_0205c-qqMZ95bQXzPzfMgQ-rL26bUh7_oD3sdnTWieQMH5sIPwX3fQferobxOJKPRRamXCIN-WkFgp7IgVeNAKyYBYGgB3fggFgTjRUBlfpeHymym7rkt4hp3YQD70mIHqb0t_m__l_CA3jsU5RObVQ6hJ3qbmneIMyqVA-2xVT02hOCv19OL7-Ne7XR4hcZiiY- |
linkProvider | SAGE Publications |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED9NnQS8oPE_bICRAAlpURvHrRMkhGAsa9haoaqb9lZix94itUlZO6F9ET4Gn5G7NOlWJva219iRLd_P5_t_AG9SFBu0ldpFWUG6wqbSDS2F_RmhBbJMbUuPbq_f6R6Kb8ft4zX4U-fCUFhlzRNLRp0WmmzkTZT08e1HRY5_mv50qWsUeVfrFhoLWOybi1-oss0-xl-Rvm85j3aHO1236irgatHhc1cYGwrZ0VLaRLaEDo2XeKlNdGBCrawJufIkvsodw3WYJi3lpbyVKCu4bgdakQEUWf668FGVacD6l93-90HN-6mRzSIFs91xedC-4hht0jceUF5pGEo_8FYfwmvS7fUgzSuRZuXjF23A_UpqZZ8XMHsAayZ_CHd6lV_-EfxGtLFsUsryiCJWWBbpQc6ynJUFM92M0lCqZC_UzT-w6KyYsPhkj5H9SBXjbDbZZtHO3mDIENKGTYvxxaRAEODAbJvFR_EJSwsybLAkT5kpK19Q2iibF4zSRSnkqV70NFMZdRF6DIe3Qpsn0MiL3DwDpqVOUo0UMX5L-EopaakWYZD4OkgCFTrQrI9_pKty6NSVYzzyqgro_xLMgffLP6aLUiA3zN2qKTqqmMJsdAlhB14vh_E6k48myU1xjnPIzytRaAoceLoAwHIx35eksPsOyBVoLCdQqfDVkTw7LUuGy5DOTTrwjkB0uaX_7f_5zft_BXe7w97B6CDu72_CPU5xPqVZagsa87Nz8wIFtbl6Wd0OBj9u-0L-BfDeT7Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELZQJ028IH4TGHBICAlpoY3jxglv0yBbgU2o6mBvke3YW6Q2qdbugX-Ev5e71OkoFYhnX2LLd_Z99t19Zux1ibDBOGlCxAoyFK6UYeYo7c8KI3DLNK6N6J6cJsdn4tP58Nzn5lAtjJ_BxTtKq8IRtZs1re556fo-xthHl0cVlYJTlkRMhdc7QqBr7LGdg3z8fdJtxfSuzKoicpiE9MFNnHLrH5t-aQtsbudM_pb41fqi_C6740EkHKy0fo_dsvV9tnviw-QP2E9UPlSzFlqjUqFxkJtxDVUNLX9lWFFViK-9wqPye8ivmhmMLo6ArnN0M60Ws33ID4_GE0ALszBvpj9mDeoEGxb7MPo2uoCyoXsGUHUJtiWioCpOWDZA1ZuUgdR1elnpih71ecjO8o-Tw-PQP8AQGpHwZSisy4RMjJROyYEwmY1UVDplUpsZ7WzGdSQRwCSWm6xUAx2VfKC0E9wMU6Pj-BHr1U1tnzAw0qjSoEZsPBCx1lo6ogZMVWxSleosYP1u-gvj2cnpkYxpEXlC8j8VFrC36y_mK2aOf8judRotOgsr8OyIaFIKzgP2at2Mq4tCJqq2zTXKUNhVIoZJA_Z4ZQDrzuJY0vk5DpjcMI21ADF3b7bU1WXL4C0zmjcZsDdkRDdD-tv4n_6v4Eu2-_VDXnwZnX5-xm5zyr9pr4v2WG95dW2fI4Ba6hd-mfwCQA0RQQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+importance+of+FcRn+in+neuro-immunotherapies%3A+From+IgG+catabolism%2C+FCGRT+gene+polymorphisms%2C+IVIg+dosing+and+efficiency+to+specific+FcRn+inhibitors&rft.jtitle=Therapeutic+advances+in+neurological+disorders&rft.au=Dalakas%2C+Marinos+C.&rft.au=Spaeth%2C+Peter+J.&rft.date=2021&rft.pub=SAGE+Publications&rft.issn=1756-2856&rft.eissn=1756-2864&rft.volume=14&rft_id=info:doi/10.1177%2F1756286421997381&rft_id=info%3Apmid%2F33717213&rft.externalDocID=PMC7917847 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1756-2864&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1756-2864&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1756-2864&client=summon |