The importance of FcRn in neuro-immunotherapies: From IgG catabolism, FCGRT gene polymorphisms, IVIg dosing and efficiency to specific FcRn inhibitors

The neonatal Fc receptor (FcRn) binds endogenous IgG and protects it from lysosomal degradation by transporting it back to the cell surface to re-enter the circulation, extending the serum IgG life span. FcRn plays a role in the function of IVIg because the supraphysiological IgG levels derived from...

Full description

Saved in:
Bibliographic Details
Published inTherapeutic advances in neurological disorders Vol. 14; p. 1756286421997381
Main Authors Dalakas, Marinos C., Spaeth, Peter J.
Format Journal Article
LanguageEnglish
Published London, England SAGE Publications 2021
SAGE PUBLICATIONS, INC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The neonatal Fc receptor (FcRn) binds endogenous IgG and protects it from lysosomal degradation by transporting it back to the cell surface to re-enter the circulation, extending the serum IgG life span. FcRn plays a role in the function of IVIg because the supraphysiological IgG levels derived from IVIg administrations saturate the FcRn allowing the endogenous IgG to be degraded, instead of being recycled, resulting in high levels of infused IgG ensuring IVIg efficiency. New data in myasthenia gravis patients suggest that the that the Variable Number of Tandem 3/2 (VNTR3/2) polymorphisms in FCGRT, the gene that encodes FcRn, may affect the duration of infused IgG in the circulation and IVIg effectiveness. This review addresses these implications in the context of whether the FCGRT genotype, by affecting the half-life of IVIg, may also play a role in up to 30% of patients with autoimmune neurological diseases, such as Guillain–Barré syndrome, CIDP or Multifocal Motor Neuropathy, who did not respond to IVIg in controlled trials. The concern is of practical significance because in such patient subsets super-high IVIg doses may be needed to achieve high IgG levels and ensure efficacy. Whether FCGRT polymorphisms affect the efficacy of other therapeutic monoclonal antibodies by influencing their distribution clearance and pharmacokinetics, explaining their variable effectiveness, is also addressed. Finally, the very promising effect of monoclonal antibodies that inhibit FcRn, such as efgartigimod, rozanolixizumab and nipocalimab, in treating antibody-mediated neurological diseases is discussed along with their efficacy in the IgG4 subclass of pathogenic antibodies and their role in the blood–brain barrier endothelium, that abundantly expresses FcRn.
AbstractList The neonatal Fc receptor (FcRn) binds endogenous IgG and protects it from lysosomal degradation by transporting it back to the cell surface to re-enter the circulation, extending the serum IgG life span. FcRn plays a role in the function of IVIg because the supraphysiological IgG levels derived from IVIg administrations saturate the FcRn allowing the endogenous IgG to be degraded, instead of being recycled, resulting in high levels of infused IgG ensuring IVIg efficiency. New data in myasthenia gravis patients suggest that the that the Variable Number of Tandem 3/2 (VNTR3/2) polymorphisms in FCGRT, the gene that encodes FcRn, may affect the duration of infused IgG in the circulation and IVIg effectiveness. This review addresses these implications in the context of whether the FCGRT genotype, by affecting the half-life of IVIg, may also play a role in up to 30% of patients with autoimmune neurological diseases, such as Guillain–Barré syndrome, CIDP or Multifocal Motor Neuropathy, who did not respond to IVIg in controlled trials. The concern is of practical significance because in such patient subsets super-high IVIg doses may be needed to achieve high IgG levels and ensure efficacy. Whether FCGRT polymorphisms affect the efficacy of other therapeutic monoclonal antibodies by influencing their distribution clearance and pharmacokinetics, explaining their variable effectiveness, is also addressed. Finally, the very promising effect of monoclonal antibodies that inhibit FcRn, such as efgartigimod, rozanolixizumab and nipocalimab, in treating antibody-mediated neurological diseases is discussed along with their efficacy in the IgG4 subclass of pathogenic antibodies and their role in the blood–brain barrier endothelium, that abundantly expresses FcRn.
The neonatal Fc receptor (FcRn) binds endogenous IgG and protects it from lysosomal degradation by transporting it back to the cell surface to re-enter the circulation, extending the serum IgG life span. FcRn plays a role in the function of IVIg because the supraphysiological IgG levels derived from IVIg administrations saturate the FcRn allowing the endogenous IgG to be degraded, instead of being recycled, resulting in high levels of infused IgG ensuring IVIg efficiency. New data in myasthenia gravis patients suggest that the that the Variable Number of Tandem 3/2 (VNTR3/2) polymorphisms in , the gene that encodes FcRn, may affect the duration of infused IgG in the circulation and IVIg effectiveness. This review addresses these implications in the context of whether the genotype, by affecting the half-life of IVIg, may also play a role in up to 30% of patients with autoimmune neurological diseases, such as Guillain-Barré syndrome, CIDP or Multifocal Motor Neuropathy, who did not respond to IVIg in controlled trials. The concern is of practical significance because in such patient subsets super-high IVIg doses may be needed to achieve high IgG levels and ensure efficacy. Whether polymorphisms affect the efficacy of other therapeutic monoclonal antibodies by influencing their distribution clearance and pharmacokinetics, explaining their variable effectiveness, is also addressed. Finally, the very promising effect of monoclonal antibodies that inhibit FcRn, such as efgartigimod, rozanolixizumab and nipocalimab, in treating antibody-mediated neurological diseases is discussed along with their efficacy in the IgG4 subclass of pathogenic antibodies and their role in the blood-brain barrier endothelium, that abundantly expresses FcRn.
The neonatal Fc receptor (FcRn) binds endogenous IgG and protects it from lysosomal degradation by transporting it back to the cell surface to re-enter the circulation, extending the serum IgG life span. FcRn plays a role in the function of IVIg because the supraphysiological IgG levels derived from IVIg administrations saturate the FcRn allowing the endogenous IgG to be degraded, instead of being recycled, resulting in high levels of infused IgG ensuring IVIg efficiency. New data in myasthenia gravis patients suggest that the that the Variable Number of Tandem 3/2 (VNTR3/2) polymorphisms in FCGRT , the gene that encodes FcRn, may affect the duration of infused IgG in the circulation and IVIg effectiveness. This review addresses these implications in the context of whether the FCGRT genotype, by affecting the half-life of IVIg, may also play a role in up to 30% of patients with autoimmune neurological diseases, such as Guillain–Barré syndrome, CIDP or Multifocal Motor Neuropathy, who did not respond to IVIg in controlled trials. The concern is of practical significance because in such patient subsets super-high IVIg doses may be needed to achieve high IgG levels and ensure efficacy. Whether FCGRT polymorphisms affect the efficacy of other therapeutic monoclonal antibodies by influencing their distribution clearance and pharmacokinetics, explaining their variable effectiveness, is also addressed. Finally, the very promising effect of monoclonal antibodies that inhibit FcRn, such as efgartigimod, rozanolixizumab and nipocalimab, in treating antibody-mediated neurological diseases is discussed along with their efficacy in the IgG4 subclass of pathogenic antibodies and their role in the blood–brain barrier endothelium, that abundantly expresses FcRn.
The neonatal Fc receptor (FcRn) binds endogenous IgG and protects it from lysosomal degradation by transporting it back to the cell surface to re-enter the circulation, extending the serum IgG life span. FcRn plays a role in the function of IVIg because the supraphysiological IgG levels derived from IVIg administrations saturate the FcRn allowing the endogenous IgG to be degraded, instead of being recycled, resulting in high levels of infused IgG ensuring IVIg efficiency. New data in myasthenia gravis patients suggest that the that the Variable Number of Tandem 3/2 (VNTR3/2) polymorphisms in FCGRT, the gene that encodes FcRn, may affect the duration of infused IgG in the circulation and IVIg effectiveness. This review addresses these implications in the context of whether the FCGRT genotype, by affecting the half-life of IVIg, may also play a role in up to 30% of patients with autoimmune neurological diseases, such as Guillain-Barré syndrome, CIDP or Multifocal Motor Neuropathy, who did not respond to IVIg in controlled trials. The concern is of practical significance because in such patient subsets super-high IVIg doses may be needed to achieve high IgG levels and ensure efficacy. Whether FCGRT polymorphisms affect the efficacy of other therapeutic monoclonal antibodies by influencing their distribution clearance and pharmacokinetics, explaining their variable effectiveness, is also addressed. Finally, the very promising effect of monoclonal antibodies that inhibit FcRn, such as efgartigimod, rozanolixizumab and nipocalimab, in treating antibody-mediated neurological diseases is discussed along with their efficacy in the IgG4 subclass of pathogenic antibodies and their role in the blood-brain barrier endothelium, that abundantly expresses FcRn.The neonatal Fc receptor (FcRn) binds endogenous IgG and protects it from lysosomal degradation by transporting it back to the cell surface to re-enter the circulation, extending the serum IgG life span. FcRn plays a role in the function of IVIg because the supraphysiological IgG levels derived from IVIg administrations saturate the FcRn allowing the endogenous IgG to be degraded, instead of being recycled, resulting in high levels of infused IgG ensuring IVIg efficiency. New data in myasthenia gravis patients suggest that the that the Variable Number of Tandem 3/2 (VNTR3/2) polymorphisms in FCGRT, the gene that encodes FcRn, may affect the duration of infused IgG in the circulation and IVIg effectiveness. This review addresses these implications in the context of whether the FCGRT genotype, by affecting the half-life of IVIg, may also play a role in up to 30% of patients with autoimmune neurological diseases, such as Guillain-Barré syndrome, CIDP or Multifocal Motor Neuropathy, who did not respond to IVIg in controlled trials. The concern is of practical significance because in such patient subsets super-high IVIg doses may be needed to achieve high IgG levels and ensure efficacy. Whether FCGRT polymorphisms affect the efficacy of other therapeutic monoclonal antibodies by influencing their distribution clearance and pharmacokinetics, explaining their variable effectiveness, is also addressed. Finally, the very promising effect of monoclonal antibodies that inhibit FcRn, such as efgartigimod, rozanolixizumab and nipocalimab, in treating antibody-mediated neurological diseases is discussed along with their efficacy in the IgG4 subclass of pathogenic antibodies and their role in the blood-brain barrier endothelium, that abundantly expresses FcRn.
Author Dalakas, Marinos C.
Spaeth, Peter J.
Author_xml – sequence: 1
  givenname: Marinos C.
  orcidid: 0000-0001-7070-1134
  surname: Dalakas
  fullname: Dalakas, Marinos C.
  email: marinos.dalakas@jefferson.edu, mdalakas@med.uoa.gr
  organization: Neuroimmunology Unit, National and Kapodistrian University of Athens, Athens, Greece
– sequence: 2
  givenname: Peter J.
  surname: Spaeth
  fullname: Spaeth, Peter J.
  organization: Institute of Pharmacology, University of Bern, Bern, Switzerland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33717213$$D View this record in MEDLINE/PubMed
BookMark eNp9kk9r3DAQxUVJaf60956KoJce4laStZbdQ6As2e1CoBC2vQpZHnkVbMmV5MJ-kX7e2GySpgvtSWLm957eoDlHJ847QOgtJR8pFeITFYuClQVntKpEXtIX6GwuZXPt5Nn9FJ3HeEdIwQQnr9BpngsqGM3P0O_tDrDtBx-SchqwN3ilbx22DjsYg89s34_Opx0ENViIn_Eq-B5v2jXWKqnadzb2l3i1XN9ucQsO8OC7fe_DsJsa8RJvfmxa3PhoXYuVazAYY7UFp_c4eRwH0HYqPD66s7VNPsTX6KVRXYQ3D-cF-r663i6_Zjff1pvll5tM84KljIOpuCi0EEYJwnUFVNHGKF1CpWsDFaupKHlRANNVo0hNG0ZUbTjTi1LXeX6Brg6-w1j30GhwKahODsH2KuylV1b-3XF2J1v_S4pqNhaTwYcHg-B_jhCT7G3U0HXKgR-jZAtCp4QFLSf0_RF658fgpvEkK2jOuOCMTdS754meojx-2QSQA6CDjzGAeUIokfNWyOOtmCTFkUTbpJL180y2-58wOwijauFP3H_y9xCYyZU
CitedBy_id crossref_primary_10_1093_brain_awae066
crossref_primary_10_1007_s00415_024_12247_x
crossref_primary_10_1007_s40263_024_01090_3
crossref_primary_10_1016_j_autrev_2021_103015
crossref_primary_10_1007_s40265_022_01678_3
crossref_primary_10_1016_j_ensci_2022_100404
crossref_primary_10_3389_fimmu_2022_834342
crossref_primary_10_1016_j_autrev_2023_103451
crossref_primary_10_1016_j_jneuroim_2024_578431
crossref_primary_10_1097_CND_0000000000000451
crossref_primary_10_3390_ijms24119180
crossref_primary_10_1080_1744666X_2022_2054803
crossref_primary_10_1002_mus_27922
crossref_primary_10_3389_fneur_2023_1243787
crossref_primary_10_1136_jnnp_2024_334165
crossref_primary_10_1093_abt_tbae007
crossref_primary_10_1177_17562864241254895
crossref_primary_10_1007_s13311_022_01222_x
crossref_primary_10_1111_ncn3_12813
crossref_primary_10_1016_j_clim_2025_110457
crossref_primary_10_1007_s10517_024_06193_x
crossref_primary_10_1111_ene_16079
crossref_primary_10_1016_j_bdcasr_2024_100052
crossref_primary_10_1016_j_bbi_2024_10_006
crossref_primary_10_1080_1744666X_2022_2106972
crossref_primary_10_1080_14737175_2022_2057223
crossref_primary_10_1177_17562864221137129
crossref_primary_10_1016_S1473_3099_22_00311_5
crossref_primary_10_1080_1744666X_2022_2136167
crossref_primary_10_3390_vaccines11121756
crossref_primary_10_1136_pn_2022_003655
crossref_primary_10_1080_14737175_2022_2169134
crossref_primary_10_1080_03772063_2023_2301663
crossref_primary_10_1177_17562864241307687
crossref_primary_10_1080_14712598_2023_2296126
crossref_primary_10_1111_ene_16205
crossref_primary_10_1016_j_jtauto_2021_100122
crossref_primary_10_1111_trf_17748
crossref_primary_10_2174_1381612828666220325102840
crossref_primary_10_3390_ijms24087288
crossref_primary_10_1007_s40272_024_00646_6
crossref_primary_10_1016_j_jaip_2022_04_003
crossref_primary_10_1186_s13023_024_03501_6
crossref_primary_10_2217_imt_2022_0298
crossref_primary_10_1016_j_bcp_2023_115872
crossref_primary_10_1007_s40268_024_00490_6
crossref_primary_10_1007_s13311_021_01175_7
crossref_primary_10_1007_s40495_023_00327_x
crossref_primary_10_1016_j_xgen_2022_100212
crossref_primary_10_1212_NXI_0000000000001116
crossref_primary_10_1111_cen3_12791
crossref_primary_10_1016_j_tmrv_2023_150767
crossref_primary_10_2147_ITT_S388151
crossref_primary_10_3389_fimmu_2022_901872
crossref_primary_10_1007_s13311_022_01188_w
crossref_primary_10_1016_j_clim_2023_109782
crossref_primary_10_3390_jcm12226961
crossref_primary_10_1080_1744666X_2022_2082946
crossref_primary_10_1007_s13311_021_01108_4
crossref_primary_10_1016_j_autrev_2024_103719
crossref_primary_10_3389_fmicb_2023_1174410
crossref_primary_10_1093_braincomms_fcac196
crossref_primary_10_1097_MD_0000000000040700
crossref_primary_10_3389_fimmu_2024_1409480
crossref_primary_10_1080_21645515_2025_2470542
Cites_doi 10.4161/mabs.24815
10.1080/00207454.2020.1815733
10.1038/nri2155
10.1007/s13311-015-0391-5
10.1212/NXI.0000000000000893
10.1126/scitranslmed.aan1208
10.1177/1756286420986747
10.1097/WCO.0000000000000858
10.1111/j.1365-2567.2006.02408.x
10.1002/acn3.307
10.1016/j.tips.2018.08.004
10.1136/jnnp-2013-306227
10.1212/WNL.96.15_supplement.4520
10.1172/JCI97911
10.1056/NEJM199312303292704
10.1111/cei.12002
10.1038/ajg.2016.306
10.1073/pnas.0600548103
10.1212/WNL.0000000000007600
10.1038/nrneurol.2014.260
10.1016/j.ygeno.2017.04.006
10.1182/bloodadvances.2020002003
10.1038/2031352a0
10.1016/S1474-4422(07)70329-0
10.1016/j.jaci.2020.07.016
10.1002/ana.21737
10.1016/j.jaci.2020.07.015
10.1016/j.clim.2010.05.006
10.1002/ajh.25680
10.1056/NEJM199901213400311
10.1056/NEJMoa01167
10.1212/WNL.0000000000011108
ContentType Journal Article
Copyright The Author(s), 2021
The Author(s), 2021.
The Author(s), 2021. This work is licensed under the Creative Commons Attribution – Non-Commercial License https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s), 2021 2021 SAGE Publications Ltd unless otherwise noted. Manuscript content on this site is licensed under Creative Commons Licenses
Copyright_xml – notice: The Author(s), 2021
– notice: The Author(s), 2021.
– notice: The Author(s), 2021. This work is licensed under the Creative Commons Attribution – Non-Commercial License https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s), 2021 2021 SAGE Publications Ltd unless otherwise noted. Manuscript content on this site is licensed under Creative Commons Licenses
DBID AFRWT
AAYXX
CITATION
NPM
3V.
7TK
7X7
7XB
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PSYQQ
7X8
5PM
DOI 10.1177/1756286421997381
DatabaseName Sage Journals GOLD Open Access 2024
CrossRef
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Psychology
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Neurosciences Abstracts
ProQuest Central China
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
Health Research Premium Collection
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef
PubMed

MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: AFRWT
  name: Sage Open Access Journals
  url: http://journals.sagepub.com/
  sourceTypes: Publisher
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1756-2864
ExternalDocumentID PMC7917847
33717213
10_1177_1756286421997381
10.1177_1756286421997381
Genre Journal Article
Review
GroupedDBID ---
-TM
01A
0R~
123
18M
29Q
4.4
53G
54M
5VS
7X7
8FI
8FJ
AABMB
AADUE
AAKDD
AAQDB
AARDL
AARIX
AASGM
ABAWP
ABEIX
ABFWQ
ABJIS
ABKRH
ABNCE
ABQXT
ABRHV
ABUWG
ABVFX
ACARO
ACDSZ
ACDXX
ACGFS
ACOFE
ACROE
ACRPL
ADBBV
ADEBD
ADNMO
ADOGD
ADYCS
ADZZY
AENEX
AEQLS
AERKM
AEUHG
AEWDL
AEXNY
AFCOW
AFEET
AFKRA
AFKRG
AFRWT
AFUIA
AFWMB
AGNHF
AGQPQ
AHHFK
AJUZI
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARTOV
ASPBG
AUTPY
AUVAJ
AVWKF
AYAKG
AZFZN
B8M
BAWUL
BCNDV
BDDNI
BENPR
BKSCU
BPHCQ
BSEHC
BVXVI
CAG
CCPQU
CDWPY
CFDXU
COF
CS3
DC-
DC.
DIK
DOPDO
E3Z
EBS
EJD
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION
GX1
H13
HMCUK
HVGLF
HYE
HZ~
J8X
K.F
N9A
O9-
OK1
P.B
PHGZM
PHGZT
PIMPY
PQQKQ
PSYQQ
ROL
RPM
S01
SAUOL
SCDPB
SCNPE
SFC
UKHRP
ZONMY
ZPPRI
ZRKOI
ZSSAH
AAYXX
ACHEB
CITATION
31X
AADTT
AATBZ
ACGZU
ACSBE
ACSIQ
ACUIR
AEUIJ
AEWHI
B8Z
DV7
M4V
NPM
SGV
3V.
7TK
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c462t-4ef9476c77fa704c9e1a1dfac8e9cbfe92b178466e2c9da0b1d20abf42c58cb33
IEDL.DBID AFRWT
ISSN 1756-2864
1756-2856
IngestDate Thu Aug 21 18:09:36 EDT 2025
Fri Jul 11 12:25:12 EDT 2025
Mon Jun 30 11:36:56 EDT 2025
Wed Feb 19 02:28:16 EST 2025
Thu Apr 24 23:03:41 EDT 2025
Tue Jul 01 05:24:16 EDT 2025
Tue Jun 17 22:26:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords FcRn
autoantibodies
FCGRT gene polymorphisms
IgG catabolism IVIg
Neuro-mmunotherapies
Autoimmune neurology
Language English
License This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page (https://us.sagepub.com/en-us/nam/open-access-at-sage).
The Author(s), 2021.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c462t-4ef9476c77fa704c9e1a1dfac8e9cbfe92b178466e2c9da0b1d20abf42c58cb33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-7070-1134
OpenAccessLink https://journals.sagepub.com/doi/full/10.1177/1756286421997381?utm_source=summon&utm_medium=discovery-provider
PMID 33717213
PQID 2613247422
PQPubID 4450847
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7917847
proquest_miscellaneous_2501476618
proquest_journals_2613247422
pubmed_primary_33717213
crossref_primary_10_1177_1756286421997381
crossref_citationtrail_10_1177_1756286421997381
sage_journals_10_1177_1756286421997381
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-00-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021-00-00
PublicationDecade 2020
PublicationPlace London, England
PublicationPlace_xml – name: London, England
– name: England
– name: London
– name: Sage UK: London, England
PublicationTitle Therapeutic advances in neurological disorders
PublicationTitleAlternate Ther Adv Neurol Disord
PublicationYear 2021
Publisher SAGE Publications
SAGE PUBLICATIONS, INC
Publisher_xml – name: SAGE Publications
– name: SAGE PUBLICATIONS, INC
References Alexopoulos, Magira, Bitzogli 2020; 7
Lunemann, Quast, Dalakas 2016; 13
Newland, Sánchez-González, Rejtö 2020; 95
Bayry, Kaveri 2108; 39
Wani, Haynes, Kim 2006; 103
Stathopoulos, Alexopoulos, Dalakas 2015; 11
Bril, Benatar, Benatar
Roopenian, Akilesh 2007; 7
Sachs, Socher, Braeunlich 2006; 119
Dalakas 2020; 33
Dalakas, Illa, Dambrosia 1993; 329
Brambell, Hemmings, Morris 1964; 203
Passot, Azzopardi, Renault 2013; 5
Gouilleux-Gruart, Chapel, Chevret 2013; 171
Billiet, Dreesen, Cleynen 2016; 111
Howard, Bril, Burns 2019; 92
Robak, Kaźmierczak, Jarque 2020; 4
Kuitwaard, de Gelder, Tio-Gillen 2009; 66
Patel, Bussel 2020; 146
Peter, Ochs, Cunningham-Rundles 2020; 146
Kapoor, Reilly, Manji
O’Shannessy, Bendas, Schweizer 2017; 109
Kiessling, Lledo-Garcia, Watanabe 2017; 9
Vlam, Cats, Willemse 2014; 85
Su, Liu, Zhang 2021
Hughes, Donofrio, Bril 2008; 7
Dalakas, Fujii, Li 2001; 345
Freiberger, Grodecká, Ravčuková 2010; 136
Hughes, Swan, van Doorn 2012; 7
Fokkink, Haarman, Tio-Gillen 2016; 3
Ulrichts, Guglietta, Dreier 2018; 128
Yu, Lennon 1999; 340
bibr12-1756286421997381
bibr17-1756286421997381
bibr8-1756286421997381
bibr3-1756286421997381
bibr4-1756286421997381
bibr25-1756286421997381
bibr9-1756286421997381
bibr16-1756286421997381
bibr20-1756286421997381
bibr18-1756286421997381
bibr33-1756286421997381
bibr7-1756286421997381
bibr29-1756286421997381
bibr13-1756286421997381
bibr26-1756286421997381
bibr21-1756286421997381
bibr30-1756286421997381
bibr1-1756286421997381
bibr6-1756286421997381
bibr23-1756286421997381
bibr28-1756286421997381
bibr10-1756286421997381
bibr27-1756286421997381
bibr14-1756286421997381
bibr22-1756286421997381
bibr31-1756286421997381
bibr24-1756286421997381
bibr5-1756286421997381
bibr2-1756286421997381
bibr11-1756286421997381
Hughes RAC (bibr15-1756286421997381) 2012; 7
bibr19-1756286421997381
bibr32-1756286421997381
References_xml – volume: 3
  start-page: 547
  year: 2016
  end-page: 551
  article-title: Neonatal Fc receptor promoter gene polymorphism does not predict pharmacokinetics of IVIg or the clinical course of GBS
  publication-title: Ann Clin Transl Neurol
– volume: 7
  year: 2012
  article-title: Intravenous immunoglobulin for Guillain–Barré syndrome
  publication-title: Cochrane Database Syst Rev
– volume: 13
  start-page: 34
  year: 2016
  end-page: 46
  article-title: Efficacy of intravenous immunoglobulin in therapeutic advances in neurological disorders neurological diseases
  publication-title: Neurotherapeutics
– volume: 340
  start-page: 227
  year: 1999
  end-page: 228
  article-title: Mechanism of intravenous immune globulin therapy in antibody-mediated autoimmune diseases
  publication-title: N Engl J Med
– volume: 171
  start-page: 186
  year: 2013
  end-page: 194
  article-title: Efficiency of immunoglobulin G replacement therapy in common variable immunodeficiency: correlations with clinical phenotype and polymorphism of the neonatal Fc receptor
  publication-title: Clin Exp Immunol
– volume: 39
  start-page: 919
  year: 2108
  end-page: 922
  article-title: Kill ’Em All: efgatigimod immunotherapy for autoimmune diseases
  publication-title: Trends Pharmacol Sci
– volume: 203
  start-page: 1352
  year: 1964
  end-page: 1354
  article-title: A theoretical model of gamma-globulin catabolism
  publication-title: Nature
– volume: 7
  year: 2020
  article-title: Anti-SARS-CoV-2 antibodies in the CSF, blood–brain barrier dysfunction, and neurological outcome: studies in 8 comatose patients
  publication-title: Neurol Neuroimmunol Neuroinflamm
– volume: 345
  start-page: 1870
  year: 2001
  end-page: 1876
  article-title: High-dose intravenous immune globulin for stiff-person syndrome
  publication-title: N Engl J Med
– volume: 103
  start-page: 5084
  year: 2006
  end-page: 5089
  article-title: Familial hypercatabolic hypoproteinemia caused by deficiency of the neonatal Fc receptor, FcRn, due to a mutant beta2-microglobulin gene
  publication-title: Proc Natl Acad Sci U S A
– volume: 4
  start-page: 4136
  year: 2020
  end-page: 4146
  article-title: Phase 2 multiple dose study of an FcRn inhibitor, rozanolixizumab, in patients with primary immune thrombocytopenia (ITP)
  publication-title: Blood Adv
– article-title: Efficacy and safety of rozanolixizumab in moderate-to-severe generalised myasthenia gravis: a phase 2 RCT
  publication-title: Neurology
– year: 2021
  article-title: VNTR2/VNTR3 genotype in the FCGRT gene associates with the reduced effectiveness of intravenous immunoglobulin treatment in patients with myasthenia gravis
  publication-title: Ther Adv Neurol Disord
– volume: 7
  start-page: 136
  year: 2008
  end-page: 144
  article-title: Intravenous immune globulin (10% caprylate-chromatography purified) for the treatment of chronic inflammatory demyelinating polyradiculoneuropathy (ICE study): a randomized placebo-controlled trial
  publication-title: Lancet Neurol
– volume: 119
  start-page: 83
  year: 2006
  end-page: 89
  article-title: A variable number of tandem repeats polymorphism influences the transcriptional activity of the neonatal Fc receptor alpha-chain promoter
  publication-title: Immunology
– volume: 9
  year: 2017
  article-title: The FcRn inhibitor rozanolixizumab reduces human serum IgG concentration: a randomized phase 1 study
  publication-title: Sci Transl Med
– volume: 109
  start-page: 251
  year: 2017
  end-page: 257
  article-title: Correlation of FCGRT genomic structure with serum immunoglobulin, albumin and farletuzumab pharmacokinetics in patients with first elapsed ovarian cancer
  publication-title: Genomics
– volume: 128
  start-page: 4372
  year: 2018
  end-page: 4386
  article-title: Neonatal Fc receptor antagonist efgartigimod safely and sustainably reduces IgGs in humans
  publication-title: J Clin Invest
– volume: 5
  start-page: 614
  year: 2013
  end-page: 619
  article-title: Influence of FCGRT gene polymorphisms on pharmacokinetics of therapeutic antibodies
  publication-title: MAbs
– volume: 111
  start-page: 1438
  year: 2016
  end-page: 1445
  article-title: A genetic variation in the neonatal Fc-receptor affects anti-TNF drug concentrations in inflammatory bowel disease
  publication-title: Am J Gastroenterol
– volume: 95
  start-page: 178
  year: 2020
  end-page: 187
  article-title: Phase 2 study of efgartigimod, a novel FcRn antagonist, in adult patients with primary immune thrombocytopenia
  publication-title: Am J Hematol
– volume: 146
  year: 2020
  article-title: Targeting FcRn for immunomodulation: benefits, risks, and practical considerations
  publication-title: J Allergy Clin Immunol
– volume: 92
  year: 2019
  article-title: Randomized phase 2 study of FcRn antagonist efgartigimod in generalized myasthenia gravis
  publication-title: Neurology
– volume: 7
  start-page: 715
  year: 2007
  end-page: 725
  article-title: FcRn: the neonatal Fc receptor comes of age
  publication-title: Nat Rev Immunol
– volume: 33
  start-page: 545
  year: 2020
  end-page: 552
  article-title: Progress in the therapy of myasthenia gravis: getting closer to effective targeted immunotherapies
  publication-title: Curr Opin Neurol
– volume: 146
  start-page: 467
  year: 2020
  end-page: 478
  article-title: Neonatal Fc receptor in human immunity: function and role in therapeutic intervention
  publication-title: J Allergy Clin Immunol
– article-title: Dramatic clinical response to ultra-high dose IVIg in otherwise treatment resistant inflammatory neuropathies
  publication-title: Int J Neurosci
– volume: 11
  start-page: 143
  year: 2015
  end-page: 156
  article-title: Autoimmune antigenic targets at the node of Ranvier in demyelinating disorders
  publication-title: Nat Rev Neurol
– volume: 136
  start-page: 419
  year: 2010
  end-page: 425
  article-title: Association of FcRn expression with lung abnormalities and IVIG catabolism in patients with common variable immunodeficiency
  publication-title: Clin Immunol
– volume: 85
  start-page: 1145
  year: 2014
  end-page: 1148
  article-title: Pharmacokinetics of intravenous immunoglobulin in multifocal motor neuropathy
  publication-title: J Neurol Neurosurg Psychiatry
– volume: 329
  start-page: 1993
  year: 1993
  end-page: 2000
  article-title: A controlled trial of high-dose intravenous immune globulin infusions as treatment for dermatomyositis
  publication-title: N Engl J Med
– volume: 66
  start-page: 597
  year: 2009
  end-page: 603
  article-title: Pharmacokinetics of intravenous immunoglobulin and outcome in Guillain-Barré syndrome
  publication-title: Ann Neurol
– ident: bibr7-1756286421997381
  doi: 10.4161/mabs.24815
– ident: bibr20-1756286421997381
  doi: 10.1080/00207454.2020.1815733
– ident: bibr1-1756286421997381
  doi: 10.1038/nri2155
– ident: bibr19-1756286421997381
  doi: 10.1007/s13311-015-0391-5
– ident: bibr33-1756286421997381
  doi: 10.1212/NXI.0000000000000893
– ident: bibr31-1756286421997381
  doi: 10.1126/scitranslmed.aan1208
– ident: bibr6-1756286421997381
  doi: 10.1177/1756286420986747
– ident: bibr26-1756286421997381
  doi: 10.1097/WCO.0000000000000858
– ident: bibr8-1756286421997381
  doi: 10.1111/j.1365-2567.2006.02408.x
– ident: bibr13-1756286421997381
  doi: 10.1002/acn3.307
– ident: bibr32-1756286421997381
  doi: 10.1016/j.tips.2018.08.004
– ident: bibr14-1756286421997381
  doi: 10.1136/jnnp-2013-306227
– ident: bibr27-1756286421997381
  doi: 10.1212/WNL.96.15_supplement.4520
– ident: bibr30-1756286421997381
  doi: 10.1172/JCI97911
– ident: bibr17-1756286421997381
  doi: 10.1056/NEJM199312303292704
– ident: bibr9-1756286421997381
  doi: 10.1111/cei.12002
– ident: bibr21-1756286421997381
  doi: 10.1038/ajg.2016.306
– ident: bibr4-1756286421997381
  doi: 10.1073/pnas.0600548103
– ident: bibr23-1756286421997381
  doi: 10.1212/WNL.0000000000007600
– ident: bibr29-1756286421997381
  doi: 10.1038/nrneurol.2014.260
– ident: bibr22-1756286421997381
  doi: 10.1016/j.ygeno.2017.04.006
– ident: bibr25-1756286421997381
  doi: 10.1182/bloodadvances.2020002003
– ident: bibr5-1756286421997381
  doi: 10.1038/2031352a0
– volume: 7
  year: 2012
  ident: bibr15-1756286421997381
  publication-title: Cochrane Database Syst Rev
– ident: bibr16-1756286421997381
  doi: 10.1016/S1474-4422(07)70329-0
– ident: bibr3-1756286421997381
  doi: 10.1016/j.jaci.2020.07.016
– ident: bibr12-1756286421997381
  doi: 10.1002/ana.21737
– ident: bibr2-1756286421997381
  doi: 10.1016/j.jaci.2020.07.015
– ident: bibr10-1756286421997381
  doi: 10.1016/j.clim.2010.05.006
– ident: bibr24-1756286421997381
  doi: 10.1002/ajh.25680
– ident: bibr11-1756286421997381
  doi: 10.1056/NEJM199901213400311
– ident: bibr18-1756286421997381
  doi: 10.1056/NEJMoa01167
– ident: bibr28-1756286421997381
  doi: 10.1212/WNL.0000000000011108
SSID ssj0062740
Score 2.4811094
SecondaryResourceType review_article
Snippet The neonatal Fc receptor (FcRn) binds endogenous IgG and protects it from lysosomal degradation by transporting it back to the cell surface to re-enter the...
SourceID pubmedcentral
proquest
pubmed
crossref
sage
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1756286421997381
SubjectTerms Blood-brain barrier
Cell surface
Clinical trials
Endothelium
Fc receptors
Gene polymorphism
Immunoglobulin G
Immunotherapy
Intravenous administration
Lysosomes
Monoclonal antibodies
Myasthenia gravis
Neonates
Neurological diseases
Neuromuscular junctions
Patients
Pharmacokinetics
Progressive motor neuropathy
Review
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdgSIgXxPcCAx0SQkJa1CZx45gXhCayFWk8TBvqW2Wf7S1SG5e1e-Af4e_Fl7rZysReY0e2fGf75_v4HWMfTIAN6ASmASuIlDsjUuko7M9y5OHIRNd5dI9_lEdn_PtkNIkGt2UMq9ycid1BbTySjXwQkH64-8NDLv-y-JVS1SjyrsYSGvfZA6Iuo5AuMekfXFRWZp0QOSrTvBrdcFMO6FteUZanlKKosu1r6RbWvB0yeSPuq7uK6ifsccSQ8HUt9Kfsnm2fsYfH0Uv-nP0Jsodm3iHrIFPwDmo8aaFpoaOvTBtKCompV-Gl_BnqSz-H8fkhkDVH-1mznO9DfXB4cgpBwSws_Oz33AeRhIblPox_js_BeDIzgGoN2I6HgpI4YeWBkjcpAGkz6EWjG6rp84Kd1d9OD47SWH8hRV7mq5RbJ7koUQinxJCjtJnKjFNYWYnaWZnrTAT8UtocpVFDnZl8qLTjOY4q1EXxku20vrW7DFCgMhgkYoshL7TWwhEzYKUKrFSlZcIGm-WfYiQnpxoZs2kW-cj_FVjCPvV_LNbEHHf03dtIdBq36HJ6rVAJe983h81FHhPVWn8V-pDXVQQIUyXs1VoB-sGKQtDzuUiY2FKNvgMRd2-3tM1FR-AtJK2bSNhHUqLrKf1v_q_vnv8b9iinSJvOMLTHdlaXV_ZtgEor_a7bD38B5fYPZw
  priority: 102
  providerName: ProQuest
Title The importance of FcRn in neuro-immunotherapies: From IgG catabolism, FCGRT gene polymorphisms, IVIg dosing and efficiency to specific FcRn inhibitors
URI https://journals.sagepub.com/doi/full/10.1177/1756286421997381
https://www.ncbi.nlm.nih.gov/pubmed/33717213
https://www.proquest.com/docview/2613247422
https://www.proquest.com/docview/2501476618
https://pubmed.ncbi.nlm.nih.gov/PMC7917847
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swED_6AWMvo_us1y5oMAaDeoltxbL3MrpStxm0jJBueQuSLLWG2C6N89B_ZH_v7vyRLgsbewpEZ05IJ91P9wnwLkXYoK3QLmIF4XKbCje2FPZnuOZ4ZWpbe3QvLsPzK_51OpxuQdHlwrQruPhIYVU4o_qyptNN1uh-62Tso86jlEruU5gE6pzPyyqfNdburqkG_UPu6WVOnm1N8ZD3bpfdtg27vgiHeJB3j5Pxj0l3d1MjmiaFchi6xODBsbnBc12RbaDTzSDL3yLFauWV7MGTFnWy40ZMnsKWKZ7Bo4vWr_4cfqK0sCyvsThKASstS_S4YFnB6oKXbkZpJG2yFr6tP7HkrszZ6PqMkf1HlfNskR-x5ORsPGEokobdlvP7vMRNxIHFERt9H12ztCTDBJNFykxduYLSPllVMkr3pJCljulNpjLqAvQCrpLTycm523ZscDUP_crlxsZchFoIK8WA69h40kut1JGJtbIm9pUnEPGExtdxKgfKS_2BVJb7ehhpFQQvYacoC7MPTAstU407YoIBD5RSwlItwUgGOpKRih3od8s_0205c-qqMZ95bQXzPzfMgQ-rL26bUh7_oD3sdnTWieQMH5sIPwX3fQferobxOJKPRRamXCIN-WkFgp7IgVeNAKyYBYGgB3fggFgTjRUBlfpeHymym7rkt4hp3YQD70mIHqb0t_m__l_CA3jsU5RObVQ6hJ3qbmneIMyqVA-2xVT02hOCv19OL7-Ne7XR4hcZiiY-
linkProvider SAGE Publications
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED9NnQS8oPE_bICRAAlpURvHrRMkhGAsa9haoaqb9lZix94itUlZO6F9ET4Gn5G7NOlWJva219iRLd_P5_t_AG9SFBu0ldpFWUG6wqbSDS2F_RmhBbJMbUuPbq_f6R6Kb8ft4zX4U-fCUFhlzRNLRp0WmmzkTZT08e1HRY5_mv50qWsUeVfrFhoLWOybi1-oss0-xl-Rvm85j3aHO1236irgatHhc1cYGwrZ0VLaRLaEDo2XeKlNdGBCrawJufIkvsodw3WYJi3lpbyVKCu4bgdakQEUWf668FGVacD6l93-90HN-6mRzSIFs91xedC-4hht0jceUF5pGEo_8FYfwmvS7fUgzSuRZuXjF23A_UpqZZ8XMHsAayZ_CHd6lV_-EfxGtLFsUsryiCJWWBbpQc6ynJUFM92M0lCqZC_UzT-w6KyYsPhkj5H9SBXjbDbZZtHO3mDIENKGTYvxxaRAEODAbJvFR_EJSwsybLAkT5kpK19Q2iibF4zSRSnkqV70NFMZdRF6DIe3Qpsn0MiL3DwDpqVOUo0UMX5L-EopaakWYZD4OkgCFTrQrI9_pKty6NSVYzzyqgro_xLMgffLP6aLUiA3zN2qKTqqmMJsdAlhB14vh_E6k48myU1xjnPIzytRaAoceLoAwHIx35eksPsOyBVoLCdQqfDVkTw7LUuGy5DOTTrwjkB0uaX_7f_5zft_BXe7w97B6CDu72_CPU5xPqVZagsa87Nz8wIFtbl6Wd0OBj9u-0L-BfDeT7Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELZQJ028IH4TGHBICAlpoY3jxglv0yBbgU2o6mBvke3YW6Q2qdbugX-Ev5e71OkoFYhnX2LLd_Z99t19Zux1ibDBOGlCxAoyFK6UYeYo7c8KI3DLNK6N6J6cJsdn4tP58Nzn5lAtjJ_BxTtKq8IRtZs1re556fo-xthHl0cVlYJTlkRMhdc7QqBr7LGdg3z8fdJtxfSuzKoicpiE9MFNnHLrH5t-aQtsbudM_pb41fqi_C6740EkHKy0fo_dsvV9tnviw-QP2E9UPlSzFlqjUqFxkJtxDVUNLX9lWFFViK-9wqPye8ivmhmMLo6ArnN0M60Ws33ID4_GE0ALszBvpj9mDeoEGxb7MPo2uoCyoXsGUHUJtiWioCpOWDZA1ZuUgdR1elnpih71ecjO8o-Tw-PQP8AQGpHwZSisy4RMjJROyYEwmY1UVDplUpsZ7WzGdSQRwCSWm6xUAx2VfKC0E9wMU6Pj-BHr1U1tnzAw0qjSoEZsPBCx1lo6ogZMVWxSleosYP1u-gvj2cnpkYxpEXlC8j8VFrC36y_mK2aOf8judRotOgsr8OyIaFIKzgP2at2Mq4tCJqq2zTXKUNhVIoZJA_Z4ZQDrzuJY0vk5DpjcMI21ADF3b7bU1WXL4C0zmjcZsDdkRDdD-tv4n_6v4Eu2-_VDXnwZnX5-xm5zyr9pr4v2WG95dW2fI4Ba6hd-mfwCQA0RQQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+importance+of+FcRn+in+neuro-immunotherapies%3A+From+IgG+catabolism%2C+FCGRT+gene+polymorphisms%2C+IVIg+dosing+and+efficiency+to+specific+FcRn+inhibitors&rft.jtitle=Therapeutic+advances+in+neurological+disorders&rft.au=Dalakas%2C+Marinos+C.&rft.au=Spaeth%2C+Peter+J.&rft.date=2021&rft.pub=SAGE+Publications&rft.issn=1756-2856&rft.eissn=1756-2864&rft.volume=14&rft_id=info:doi/10.1177%2F1756286421997381&rft_id=info%3Apmid%2F33717213&rft.externalDocID=PMC7917847
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1756-2864&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1756-2864&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1756-2864&client=summon