Phosphate-induced autophagy counteracts vascular calcification by reducing matrix vesicle release
Autophagy is a dynamic and highly regulated process of self-digestion responsible for cell survival and reaction to oxidative stress. As oxidative stress is increased in uremia and is associated with vascular calcification, we studied the role of autophagy in vascular calcification induced by phosph...
Saved in:
Published in | Kidney international Vol. 83; no. 6; pp. 1042 - 1051 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.06.2013
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Autophagy is a dynamic and highly regulated process of self-digestion responsible for cell survival and reaction to oxidative stress. As oxidative stress is increased in uremia and is associated with vascular calcification, we studied the role of autophagy in vascular calcification induced by phosphate. In an in vitro phosphate-induced calcification model of vascular smooth muscle cells (VSMCs) and in an in vivo model of chronic renal failure, autophagy was inhibited by the superoxide dismutase mimic MnTMPyP, superoxide dismutase-2 overexpression, and by knockdown of the sodium-dependent phosphate cotransporter Pit1. Although phosphate-induced VSMC apoptosis was reduced by an inhibitor of autophagy (3-methyladenine) and knockdown of autophagy protein 5, calcium deposition in VSMCs was increased during inhibition of autophagy, even with the apoptosis inhibitor Z-VAD-FMK. An inducer of autophagy, valproic acid, decreased calcification. Furthermore, 3-methyladenine significantly promoted phosphate-induced matrix vesicle release with increased alkaline phosphatase activity. Thus, autophagy may be an endogenous protective mechanism counteracting phosphate-induced vascular calcification by reducing matrix vesicle release. Therapeutic agents influencing the autophagic response may be of benefit to treat aging or disease-related vascular calcification and osteoporosis. |
---|---|
AbstractList | Autophagy is a dynamic and highly regulated process of self-digestion responsible for cell survival and reaction to oxidative stress. As oxidative stress is increased in uremia and is associated with vascular calcification, we studied the role of autophagy in vascular calcification induced by phosphate. In an in vitro phosphate-induced calcification model of vascular smooth muscle cells (VSMCs) and in an in vivo model of chronic renal failure, autophagy was inhibited by the superoxide dismutase mimic MnTMPyP, superoxide dismutase-2 overexpression, and by knockdown of the sodium-dependent phosphate cotransporter Pit1. Although phosphate-induced VSMC apoptosis was reduced by an inhibitor of autophagy (3-methyladenine) and knockdown of autophagy protein 5, calcium deposition in VSMCs was increased during inhibition of autophagy, even with the apoptosis inhibitor Z-VAD-FMK. An inducer of autophagy, valproic acid, decreased calcification. Furthermore, 3-methyladenine significantly promoted phosphate-induced matrix vesicle release with increased alkaline phosphatase activity. Thus, autophagy may be an endogenous protective mechanism counteracting phosphate-induced vascular calcification by reducing matrix vesicle release. Therapeutic agents influencing the autophagic response may be of benefit to treat aging or disease-related vascular calcification and osteoporosis.Autophagy is a dynamic and highly regulated process of self-digestion responsible for cell survival and reaction to oxidative stress. As oxidative stress is increased in uremia and is associated with vascular calcification, we studied the role of autophagy in vascular calcification induced by phosphate. In an in vitro phosphate-induced calcification model of vascular smooth muscle cells (VSMCs) and in an in vivo model of chronic renal failure, autophagy was inhibited by the superoxide dismutase mimic MnTMPyP, superoxide dismutase-2 overexpression, and by knockdown of the sodium-dependent phosphate cotransporter Pit1. Although phosphate-induced VSMC apoptosis was reduced by an inhibitor of autophagy (3-methyladenine) and knockdown of autophagy protein 5, calcium deposition in VSMCs was increased during inhibition of autophagy, even with the apoptosis inhibitor Z-VAD-FMK. An inducer of autophagy, valproic acid, decreased calcification. Furthermore, 3-methyladenine significantly promoted phosphate-induced matrix vesicle release with increased alkaline phosphatase activity. Thus, autophagy may be an endogenous protective mechanism counteracting phosphate-induced vascular calcification by reducing matrix vesicle release. Therapeutic agents influencing the autophagic response may be of benefit to treat aging or disease-related vascular calcification and osteoporosis. Autophagy is a dynamic and highly regulated process of self-digestion responsible for cell survival and reaction to oxidative stress. As oxidative stress is increased in uremia and is associated with vascular calcification, we studied the role of autophagy in vascular calcification induced by phosphate. In an in vitro phosphate-induced calcification model of vascular smooth muscle cells (VSMCs) and in an in vivo model of chronic renal failure, autophagy was inhibited by the superoxide dismutase mimic MnTMPyP, superoxide dismutase-2 overexpression, and by knockdown of the sodium-dependent phosphate cotransporter Pit1. Although phosphate-induced VSMC apoptosis was reduced by an inhibitor of autophagy (3-methyladenine) and knockdown of autophagy protein 5, calcium deposition in VSMCs was increased during inhibition of autophagy, even with the apoptosis inhibitor Z-VAD-FMK. An inducer of autophagy, valproic acid, decreased calcification. Furthermore, 3-methyladenine significantly promoted phosphate-induced matrix vesicle release with increased alkaline phosphatase activity. Thus, autophagy may be an endogenous protective mechanism counteracting phosphate-induced vascular calcification by reducing matrix vesicle release. Therapeutic agents influencing the autophagic response may be of benefit to treat aging or disease-related vascular calcification and osteoporosis. |
Author | Kong, Wei Xu, Ming-Jiang Cai, Yan Guan, Youfei Zhao, Ming-Ming Dai, Xiao-Yan Wang, Xian Guan, Qing-Cong Zhu, Wei-Guo Zhao, Ying |
Author_xml | – sequence: 1 givenname: Xiao-Yan surname: Dai fullname: Dai, Xiao-Yan organization: Department of Physiology and Pathophysiology, School of Basic Medical Science, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China – sequence: 2 givenname: Ming-Ming surname: Zhao fullname: Zhao, Ming-Ming organization: Department of Physiology and Pathophysiology, School of Basic Medical Science, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China – sequence: 3 givenname: Yan surname: Cai fullname: Cai, Yan organization: Department of Physiology and Pathophysiology, School of Basic Medical Science, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China – sequence: 4 givenname: Qing-Cong surname: Guan fullname: Guan, Qing-Cong organization: Renal Division, Taizhou Municicpal Hospital, Taizhou, China – sequence: 5 givenname: Ying surname: Zhao fullname: Zhao, Ying organization: Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Peking University Health Science Center, Beijing, China – sequence: 6 givenname: Youfei surname: Guan fullname: Guan, Youfei organization: Department of Physiology and Pathophysiology, School of Basic Medical Science, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China – sequence: 7 givenname: Wei surname: Kong fullname: Kong, Wei organization: Department of Physiology and Pathophysiology, School of Basic Medical Science, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China – sequence: 8 givenname: Wei-Guo surname: Zhu fullname: Zhu, Wei-Guo organization: Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Peking University Health Science Center, Beijing, China – sequence: 9 givenname: Ming-Jiang surname: Xu fullname: Xu, Ming-Jiang email: mingjiangxu@bjmu.edu.cn organization: Department of Physiology and Pathophysiology, School of Basic Medical Science, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China – sequence: 10 givenname: Xian surname: Wang fullname: Wang, Xian organization: Department of Physiology and Pathophysiology, School of Basic Medical Science, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23364520$$D View this record in MEDLINE/PubMed |
BookMark | eNqN0c1rFDEYBvAgFbutnrzLgBdBZs3HZDI5SrEqFPSg5_BO8k6bdjZZk8zi_vdmu9VDUfAUEn5PSN7njJyEGJCQl4yuGRXDuzu_5pTxdTfwJ2TFJBctU1KekBWlg2y5FMMpOcv5lta9FvQZOeVC9J3kdEXg603M2xso2PrgFouugaXEenK9b2xcQsEEtuRmB9kuM6TGwmz95C0UH0Mz7puENefDdbOBkvzPZofZ2xnr-YyQ8Tl5OsGc8cXDek6-X374dvGpvfry8fPF-6vWdj0vbecom1jXS8c7qToNjI5SKTkwLRiTauoBpZZqRIGTozAOukcnOVgYHR-cOCdvjvduU_yxYC5m47PFeYaAccmGCa01o0zR_6B9p6hWtK_09SN6G5cU6keqkorWt-uDevWglnGDzmyT30Dam99zruDtEdgUc044_SGMmkOL5s6bQ4umtlg1e6StL_fzLgn8_I-MPGawznjnMZlsPYZaqE9oi3HR_zX3C6i4sPg |
CitedBy_id | crossref_primary_10_1007_s00223_021_00828_1 crossref_primary_10_1007_s00018_019_03054_z crossref_primary_10_1016_j_vph_2016_05_014 crossref_primary_10_1152_ajprenal_00256_2017 crossref_primary_10_3389_fphys_2020_01092 crossref_primary_10_1208_s12248_024_00982_y crossref_primary_10_1038_bonekey_2015_39 crossref_primary_10_3389_fcvm_2021_685748 crossref_primary_10_1161_CIRCRESAHA_116_303804 crossref_primary_10_3389_fimmu_2018_01866 crossref_primary_10_1016_j_yexcr_2023_113803 crossref_primary_10_1161_CIRCRESAHA_116_303805 crossref_primary_10_3168_jds_2021_20445 crossref_primary_10_1002_cbin_10888 crossref_primary_10_1002_path_4873 crossref_primary_10_1016_j_mod_2014_08_001 crossref_primary_10_3892_mmr_2018_8488 crossref_primary_10_3389_fnut_2022_841187 crossref_primary_10_1007_s00395_020_0802_6 crossref_primary_10_1590_fst_74021 crossref_primary_10_1111_jcmm_13692 crossref_primary_10_1186_s13578_021_00639_9 crossref_primary_10_1038_s41467_024_49315_9 crossref_primary_10_1002_adhm_202402320 crossref_primary_10_1038_nrneph_2014_185 crossref_primary_10_3389_fphys_2023_1120308 crossref_primary_10_1016_j_mce_2018_08_012 crossref_primary_10_3390_cells10040777 crossref_primary_10_1002_jcp_25985 crossref_primary_10_1111_1759_7714_15314 crossref_primary_10_1016_j_yexcr_2015_02_002 crossref_primary_10_1101_cshperspect_a035303 crossref_primary_10_3390_biomedicines10102491 crossref_primary_10_1152_ajpheart_00267_2024 crossref_primary_10_1016_j_yexcr_2014_01_025 crossref_primary_10_3389_fcell_2020_547342 crossref_primary_10_1186_s13068_015_0302_3 crossref_primary_10_1016_j_tcm_2014_10_021 crossref_primary_10_14814_phy2_12626 crossref_primary_10_3390_cells7100149 crossref_primary_10_2139_ssrn_4152835 crossref_primary_10_3389_fcell_2021_611922 crossref_primary_10_1161_ATVBAHA_118_311576 crossref_primary_10_14336_AD_2022_0824 crossref_primary_10_3390_biomedicines9040404 crossref_primary_10_1038_s41598_023_47774_6 crossref_primary_10_1097_MNH_0000000000000509 crossref_primary_10_3390_ijms20061486 crossref_primary_10_1007_s00774_019_01076_y crossref_primary_10_1002_jcp_30887 crossref_primary_10_1186_s13287_022_02721_6 crossref_primary_10_3389_fcell_2022_825622 crossref_primary_10_1016_j_lfs_2020_118121 crossref_primary_10_1038_s41419_020_03162_w crossref_primary_10_1002_bmm2_12127 crossref_primary_10_1038_s41419_022_04735_7 crossref_primary_10_1016_j_cca_2016_03_016 crossref_primary_10_1177_1358863X211024721 crossref_primary_10_3389_fgene_2021_526277 crossref_primary_10_1016_j_atherosclerosis_2016_09_071 crossref_primary_10_1155_2019_3415682 crossref_primary_10_1016_j_yexcr_2016_06_007 crossref_primary_10_1186_s12882_018_0836_2 crossref_primary_10_1093_ckj_sfaa135 crossref_primary_10_1093_eurheartj_ehu163 crossref_primary_10_3390_ijms21238933 crossref_primary_10_1002_mco2_200 crossref_primary_10_1152_ajprenal_00163_2014 crossref_primary_10_1161_ATVBAHA_113_302070 crossref_primary_10_1016_j_pharmthera_2019_107430 crossref_primary_10_1097_FJC_0000000000000342 crossref_primary_10_1038_s41467_019_09174_1 crossref_primary_10_1016_j_coph_2016_02_002 crossref_primary_10_1038_s41598_020_58568_5 crossref_primary_10_1155_2022_7192507 crossref_primary_10_1038_ki_2013_75 crossref_primary_10_1016_j_yexcr_2020_111883 crossref_primary_10_1089_ars_2018_7620 crossref_primary_10_1016_j_lfs_2016_11_025 crossref_primary_10_3389_fendo_2022_863708 crossref_primary_10_1177_1074248419838501 crossref_primary_10_1007_s00223_017_0313_0 crossref_primary_10_1016_j_msec_2017_04_109 crossref_primary_10_3390_ijms22189829 crossref_primary_10_3390_nu15061470 crossref_primary_10_3390_nu16010099 crossref_primary_10_12677_ACM_2022_132169 crossref_primary_10_1007_s11427_017_9240_2 crossref_primary_10_1093_cvr_cvae035 crossref_primary_10_1111_bph_13052 crossref_primary_10_1016_j_bbadis_2021_166323 crossref_primary_10_1021_acsami_7b12029 crossref_primary_10_1016_j_bone_2016_04_007 crossref_primary_10_1096_fj_202301429R crossref_primary_10_3389_fphar_2022_907835 crossref_primary_10_3389_fcvm_2022_912358 crossref_primary_10_1016_j_biomaterials_2015_06_039 crossref_primary_10_1053_j_ackd_2019_08_014 crossref_primary_10_1186_s12951_023_01985_1 crossref_primary_10_1016_j_bone_2014_06_018 crossref_primary_10_1016_j_colsurfb_2020_111388 crossref_primary_10_3390_ijms21082685 crossref_primary_10_1161_JAHA_117_007555 crossref_primary_10_1155_2021_6675548 crossref_primary_10_1093_cvr_cvy010 crossref_primary_10_1038_nrneph_2017_60 crossref_primary_10_1038_s41598_017_06406_6 crossref_primary_10_1002_jcp_31021 crossref_primary_10_1016_j_bbagen_2017_11_005 crossref_primary_10_1016_j_jvs_2016_03_462 crossref_primary_10_1016_j_isci_2020_101105 crossref_primary_10_1042_BSR20140103 crossref_primary_10_1172_jci_insight_94920 crossref_primary_10_1080_15548627_2022_2026097 crossref_primary_10_1038_ki_2015_160 crossref_primary_10_1002_jcb_26137 crossref_primary_10_3390_toxins11040213 crossref_primary_10_1038_s41598_017_17540_6 crossref_primary_10_1093_cvr_cvy007 crossref_primary_10_1016_j_mvr_2017_04_007 crossref_primary_10_1038_s41569_018_0123_8 crossref_primary_10_1016_j_bbrc_2019_07_102 crossref_primary_10_1016_j_kint_2017_07_019 crossref_primary_10_3389_fcell_2022_853451 crossref_primary_10_1186_s12967_017_1190_z crossref_primary_10_2478_jtim_2020_0013 crossref_primary_10_1016_j_atherosclerosis_2014_01_003 crossref_primary_10_3390_ijms20235925 crossref_primary_10_1111_jcmm_15813 crossref_primary_10_4103_0366_6999_228249 crossref_primary_10_3390_ijms21093246 crossref_primary_10_1111_gtc_12301 crossref_primary_10_12677_OJNS_2020_82009 crossref_primary_10_1016_j_cellsig_2019_03_006 crossref_primary_10_1038_s41392_023_01430_7 crossref_primary_10_1007_s00795_015_0122_3 crossref_primary_10_1161_ATVBAHA_119_313765 crossref_primary_10_1016_j_cca_2019_11_012 crossref_primary_10_1111_jcmm_15494 crossref_primary_10_1039_C6MB00557H crossref_primary_10_1371_journal_pone_0098902 crossref_primary_10_14336_AD_2021_0101 crossref_primary_10_1007_s42247_019_00063_3 crossref_primary_10_1016_j_isci_2023_108360 crossref_primary_10_1016_j_bone_2015_05_013 crossref_primary_10_1007_s11010_015_2552_6 crossref_primary_10_3390_ph14040289 crossref_primary_10_1016_j_ejphar_2023_176084 crossref_primary_10_3389_fphar_2019_01427 crossref_primary_10_1038_s41598_017_03801_x crossref_primary_10_1161_CIRCRESAHA_119_316159 crossref_primary_10_1002_advs_202400790 crossref_primary_10_1002_jcp_27281 crossref_primary_10_1096_fj_201902127R crossref_primary_10_3389_fcvm_2022_895005 crossref_primary_10_1016_j_freeradbiomed_2013_08_003 crossref_primary_10_1016_j_jss_2017_05_088 crossref_primary_10_1155_2018_8407137 |
Cites_doi | 10.1016/S1534-5807(04)00099-1 10.1038/nrm2239 10.1038/ki.2009.481 10.1126/science.1099993 10.4161/cc.8.3.7545 10.1093/ndt/gfg414 10.1016/S0272-6386(00)70064-3 10.1007/s11926-003-0071-z 10.1016/j.tcb.2003.12.002 10.1074/jbc.M800102200 10.1016/0169-6009(92)90925-4 10.1016/S0021-9258(17)36354-8 10.1038/nature06639 10.1002/jcp.22244 10.1002/jcb.21992 10.1089/ars.2010.3554 10.1172/JCI26185 10.1083/jcb.50.1.172 10.1161/CIRCRESAHA.110.234914 10.4161/auto.7.7.15593 10.1161/01.RES.0000218859.90970.8d 10.1093/jn/133.6.2057S 10.1161/CIRCRESAHA.108.188318 10.1038/ki.2008.644 10.1007/BF00305527 10.1161/01.RES.87.11.1055 10.1038/cdd.2009.49 10.1161/CIRCGENETICS.108.847814 10.1016/j.cell.2006.05.034 10.1038/ki.2011.18 10.1038/ncb1482 10.1093/cvr/cvp366 10.1002/cm.970030517 10.1097/01.ASN.0000141960.01035.28 10.1053/ajkd.2001.27394 10.1681/ASN.2011020200 10.1359/jbmr.080604 10.1007/BF02390833 10.1016/j.bbamcr.2008.12.011 10.1016/S0021-9258(19)75726-3 10.4161/auto.5432 10.1089/ars.2006.8.152 10.1038/ki.2012.40 10.1161/01.RES.0000216409.20863.e7 10.1016/j.cub.2006.10.053 10.1161/01.ATV.15.11.2003 |
ContentType | Journal Article |
Copyright | 2013 International Society of Nephrology Copyright Nature Publishing Group Jun 2013 |
Copyright_xml | – notice: 2013 International Society of Nephrology – notice: Copyright Nature Publishing Group Jun 2013 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QP 7RV 7X7 7XB 88E 8AO 8FI 8FJ 8FK ABUWG AFKRA BENPR CCPQU FYUFA GHDGH K9. M0S M1P NAPCQ PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 |
DOI | 10.1038/ki.2012.482 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Nursing & Allied Health Database Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central ProQuest One Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) Medical Database Nursing & Allied Health Premium ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central China ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest One Academic Middle East (New) MEDLINE Calcium & Calcified Tissue Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1523-1755 |
EndPage | 1051 |
ExternalDocumentID | 2984314841 23364520 10_1038_ki_2012_482 S0085253815558614 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- .55 .GJ 0R~ 1CY 29L 2WC 36B 39C 3O- 3V. 4.4 457 53G 5GY 5RE 5VS 6I. 6PF 7RV 7X7 88E 8AO 8FI 8FJ 8R4 8R5 AACTN AAEDW AAFTH AAIAV AAKUH AALRI AAQFI AAWTL AAXUO ABAWZ ABJNI ABLJU ABMAC ABOCM ABUWG ABVKL ACGFO ACGFS ACPRK ADBBV ADEZE ADFRT ADQMX AENEX AEXQZ AFEBI AFKRA AFTJW AGHFR AHMBA AHPSJ AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BAWUL BENPR BFHJK BKEYQ BPHCQ BVXVI CAG CCPQU COF CS3 DIK DU5 EBS EJD EX3 F5P FDB FRP FYUFA GX1 HMCUK HZ~ IHE J5H JSO KQ8 L7B LH4 LW6 M1P M41 MJL N4W NAPCQ NCXOZ O9- OK1 P2P P6G PQQKQ PROAC PSQYO Q2X R9- RIG RNS ROL SDH SSZ TR2 UKHRP W2D WOW X7M XVB YFH YOC YUY ZA5 ZCG ZGI ZXP AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFETI AFJKZ AFPUW AGCQF AIGII AKBMS AKRWK AKYEP ALIPV APXCP CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QP 7XB 8FK EFKBS K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 |
ID | FETCH-LOGICAL-c462t-4d01f1465d245749a10b577581931157f6ae5957be3efd0ab896ed52acabd28d3 |
IEDL.DBID | 7X7 |
ISSN | 0085-2538 1523-1755 |
IngestDate | Fri Jul 11 15:14:38 EDT 2025 Thu Jul 10 19:12:24 EDT 2025 Fri Jul 25 06:12:14 EDT 2025 Thu Apr 03 07:03:48 EDT 2025 Thu Apr 24 23:03:12 EDT 2025 Tue Jul 01 01:25:01 EDT 2025 Fri Feb 23 02:18:34 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | apoptosis autophagy chronic renal failure hyperphosphatemia oxidative stress |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 https://www.elsevier.com/tdm/userlicense/1.0 https://www.elsevier.com/open-access/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c462t-4d01f1465d245749a10b577581931157f6ae5957be3efd0ab896ed52acabd28d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | https://dx.doi.org/10.1038/ki.2012.482 |
PMID | 23364520 |
PQID | 1357046296 |
PQPubID | 47198 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1399910170 proquest_miscellaneous_1364709706 proquest_journals_1357046296 pubmed_primary_23364520 crossref_primary_10_1038_ki_2012_482 crossref_citationtrail_10_1038_ki_2012_482 elsevier_sciencedirect_doi_10_1038_ki_2012_482 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-06-01 |
PublicationDateYYYYMMDD | 2013-06-01 |
PublicationDate_xml | – month: 06 year: 2013 text: 2013-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: London |
PublicationTitle | Kidney international |
PublicationTitleAlternate | Kidney Int |
PublicationYear | 2013 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Zhao G, Xu MJ, Zhao MM Zhao MM, Xu MJ, Cai Y Scott, Juhasz, Neufeld (bb0140) 2007; 17 Kiffin, Bandyopadhyay, Cuervo (bb0130) 2006; 8 Li, Yang, Giachelli (bb0125) 2006; 98 1071-1079. Thouverey, Strzelecka-Kiliszek, Balcerzak (bb0195) 2009; 106 Shanahan CM, Crouthamel MH, Kapustin A Chen NX, Kircelli F, O’Neill KD Mitochondrial reactive oxygen species promote p65 nuclear translocation mediating high-phosphate-induced vascular calcification in vitro and Chen, Gibson (bb0095) 2008; 4 Srinivas, Bohensky, Zahm (bb0105) 2009; 8 De Meyer, Martinet (bb0030) 2009; 1793 Kiel, Kauppila, Cupples (bb0215) 2001; 68 Cuervo (bb0020) 2004; 14 Shintani, Klionsky (bb0025) 2004; 306 Levine, Klionsky (bb0015) 2004; 6 Hale, Wuthier (bb0185) 1987; 262 Mizushima, Levine, Cuervo (bb0120) 2008; 451 . 1Alpha,25- (OH)2D3 acts in the early phase of osteoblast differentiation to enhance mineralization via accelerated production of mature matrix vesicles. 864-873. Anderson (bb0155) 2003; 5 Shioi, Nishizawa, Jono (bb0230) 1995; 15 Maiuri, Zalckvar, Kimchi (bb0135) 2007; 8 Hale, Chin, Ishikawa (bb0190) 1983; 3 34-44. 2215-2231. Dean, Schwartz, Bonewald (bb0180) 1994; 54 Huang J, Lam GY, Brumell JH. Autophagy signaling through reactive oxygen species. Antioxid Redox Signal 780-782. Giachelli (bb0070) 2009; 75 Mostowy S, Cossart P. Autophagy and the cytoskeleton: new links revealed by intracellular pathogens. Autophagy Espert, Denizot, Grimaldi (bb0145) 2006; 116 London, Guerin, Marchais (bb0050) 2003; 18 Chen, O’Neill, Chen (bb0165) 2008; 23 593-600. Yousefi, Perozzo, Schmid (bb0150) 2006; 8 Woeckel VJ, Alves RD, Swagemakers SM Arterial calcification in chronic kidney disease: key roles for calcium and phosphate. Rodriguez Garcia, Naves Diaz, Cannata Andia (bb0220) 2005; 18 Ross (bb0225) 1971; 50 Giachelli, Jono, Shioi (bb0060) 2001; 38 Martinet, De Meyer (bb0035) 2009; 104 Ohnishi, Nakatani, Lanske (bb0065) 2009; 2 Riediger F, Quack I, Qadri F Wuthier, Chin, Hale (bb0240) 1985; 260 Block, Port (bb0055) 2000; 35 Intermedin inhibits vascular calcification by increasing the level of matrix gamma-carboxyglutamic acid protein. 697-711. Verapamil inhibits calcification and matrix vesicle activity of bovine vascular smooth muscle cells. 436-442. Activation of nuclear factor-kappa B accelerates vascular calcification by inhibiting ankylosis protein homolog expression. Son, Kozaki, Iijima (bb0110) 2006; 98 Prorenin receptor is essential for podocyte autophagy and survival. Proudfoot, Skepper, Hegyi (bb0115) 2000; 87 2193-2202. Chen, Azad, Gibson (bb0090) 2009; 16 Frye, Melton, Bryant (bb0210) 1992; 19 Reynolds, Joannides, Skepper (bb0160) 2004; 15 Crighton, Wilkinson, O’Prey (bb0045) 2006; 126 Zhang, Bosch-Marce, Shimoda (bb0040) 2008; 283 Cai Y, Xu MJ, Teng X Meijer (bb0010) 2003; 133 Srinivas (10.1038/ki.2012.482_bb0105) 2009; 8 Maiuri (10.1038/ki.2012.482_bb0135) 2007; 8 10.1038/ki.2012.482_bb0235 London (10.1038/ki.2012.482_bb0050) 2003; 18 Li (10.1038/ki.2012.482_bb0125) 2006; 98 Meijer (10.1038/ki.2012.482_bb0010) 2003; 133 Levine (10.1038/ki.2012.482_bb0015) 2004; 6 Proudfoot (10.1038/ki.2012.482_bb0115) 2000; 87 Rodriguez Garcia (10.1038/ki.2012.482_bb0220) 2005; 18 Martinet (10.1038/ki.2012.482_bb0035) 2009; 104 10.1038/ki.2012.482_bb0170 Cuervo (10.1038/ki.2012.482_bb0020) 2004; 14 Frye (10.1038/ki.2012.482_bb0210) 1992; 19 Ohnishi (10.1038/ki.2012.482_bb0065) 2009; 2 Ross (10.1038/ki.2012.482_bb0225) 1971; 50 10.1038/ki.2012.482_bb0175 10.1038/ki.2012.482_bb0075 Scott (10.1038/ki.2012.482_bb0140) 2007; 17 Giachelli (10.1038/ki.2012.482_bb0070) 2009; 75 Chen (10.1038/ki.2012.482_bb0090) 2009; 16 Zhang (10.1038/ki.2012.482_bb0040) 2008; 283 Mizushima (10.1038/ki.2012.482_bb0120) 2008; 451 10.1038/ki.2012.482_bb0205 Anderson (10.1038/ki.2012.482_bb0155) 2003; 5 Giachelli (10.1038/ki.2012.482_bb0060) 2001; 38 Shintani (10.1038/ki.2012.482_bb0025) 2004; 306 Chen (10.1038/ki.2012.482_bb0095) 2008; 4 Hale (10.1038/ki.2012.482_bb0185) 1987; 262 Reynolds (10.1038/ki.2012.482_bb0160) 2004; 15 Block (10.1038/ki.2012.482_bb0055) 2000; 35 Espert (10.1038/ki.2012.482_bb0145) 2006; 116 10.1038/ki.2012.482_bb0080 Dean (10.1038/ki.2012.482_bb0180) 1994; 54 Kiel (10.1038/ki.2012.482_bb0215) 2001; 68 De Meyer (10.1038/ki.2012.482_bb0030) 2009; 1793 10.1038/ki.2012.482_bb0200 10.1038/ki.2012.482_bb0100 Kiffin (10.1038/ki.2012.482_bb0130) 2006; 8 Hale (10.1038/ki.2012.482_bb0190) 1983; 3 Wuthier (10.1038/ki.2012.482_bb0240) 1985; 260 Crighton (10.1038/ki.2012.482_bb0045) 2006; 126 Yousefi (10.1038/ki.2012.482_bb0150) 2006; 8 Thouverey (10.1038/ki.2012.482_bb0195) 2009; 106 Shioi (10.1038/ki.2012.482_bb0230) 1995; 15 10.1038/ki.2012.482_bb0085 Chen (10.1038/ki.2012.482_bb0165) 2008; 23 Son (10.1038/ki.2012.482_bb0110) 2006; 98 23727998 - Kidney Int. 2013 Jun;83(6):984-6 |
References_xml | – volume: 16 start-page: 1040 year: 2009 end-page: 1052 ident: bb0090 article-title: Superoxide is the major reactive oxygen species regulating autophagy publication-title: Cell Death Differ – reference: Shanahan CM, Crouthamel MH, Kapustin A – reference: . Mitochondrial reactive oxygen species promote p65 nuclear translocation mediating high-phosphate-induced vascular calcification in vitro and – reference: : 34-44. – volume: 35 start-page: 1226 year: 2000 end-page: 1237 ident: bb0055 article-title: Re-evaluation of risks associated with hyperphosphatemia and hyperparathyroidism in dialysis patients: recommendations for a change in management publication-title: Am J Kidney Dis – volume: 8 start-page: 741 year: 2007 end-page: 752 ident: bb0135 article-title: Self-eating and self-killing: crosstalk between autophagy and apoptosis publication-title: Nat Rev Mol Cell Biol – volume: 50 start-page: 172 year: 1971 end-page: 186 ident: bb0225 article-title: The smooth muscle cell. II. Growth of smooth muscle in culture and formation of elastic fibers publication-title: J Cell Biol – reference: : 2215-2231. – volume: 451 start-page: 1069 year: 2008 end-page: 1075 ident: bb0120 article-title: Autophagy fights disease through cellular self-digestion publication-title: Nature – volume: 283 start-page: 10892 year: 2008 end-page: 10903 ident: bb0040 article-title: Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia publication-title: J Biol Chem – volume: 2 start-page: 583 year: 2009 end-page: 590 ident: bb0065 article-title: genetic evidence for suppressing vascular and soft-tissue calcification through the reduction of serum phosphate levels, even in the presence of high serum calcium and 1,25-dihydroxyvitamin D levels publication-title: Circ Cardiovasc Genet – volume: 8 start-page: 391 year: 2009 end-page: 393 ident: bb0105 article-title: Autophagy in mineralizing tissues: microenvironmental perspectives publication-title: Cell Cycle – volume: 116 start-page: 2161 year: 2006 end-page: 2172 ident: bb0145 article-title: Autophagy is involved in T cell death after binding of HIV-1 envelope proteins to CXCR4 publication-title: J Clin Invest – reference: : 1071-1079. – volume: 87 start-page: 1055 year: 2000 end-page: 1062 ident: bb0115 article-title: Apoptosis regulates human vascular calcification publication-title: Circ Res – volume: 23 start-page: 1798 year: 2008 end-page: 1805 ident: bb0165 article-title: Annexin-mediated matrix vesicle calcification in vascular smooth muscle cells publication-title: J Bone Miner Res – volume: 98 start-page: 905 year: 2006 end-page: 912 ident: bb0125 article-title: Role of the sodium-dependent phosphate cotransporter, Pit-1, in vascular smooth muscle cell calcification publication-title: Circ Res – volume: 6 start-page: 463 year: 2004 end-page: 477 ident: bb0015 article-title: Development by self-digestion: molecular mechanisms and biological functions of autophagy publication-title: Dev Cell – volume: 14 start-page: 70 year: 2004 end-page: 77 ident: bb0020 article-title: Autophagy: in sickness and in health publication-title: Trends Cell Biol – volume: 98 start-page: 1024 year: 2006 end-page: 1031 ident: bb0110 article-title: Statins protect human aortic smooth muscle cells from inorganic phosphate-induced calcification by restoring Gas6-Axl survival pathway publication-title: Circ Res – reference: : 593-600. – volume: 262 start-page: 1916 year: 1987 end-page: 1925 ident: bb0185 article-title: The mechanism of matrix vesicle formation. Studies on the composition of chondrocyte microvilli and on the effects of microfilament-perturbing agents on cellular vesiculation publication-title: J Biol Chem – volume: 19 start-page: 185 year: 1992 end-page: 194 ident: bb0210 article-title: Osteoporosis and calcification of the aorta publication-title: Bone Miner – reference: : 780-782. – volume: 106 start-page: 127 year: 2009 end-page: 138 ident: bb0195 article-title: Matrix vesicles originate from apical membrane microvilli of mineralizing osteoblast-like Saos-2 cells publication-title: J Cell Biochem – reference: Chen NX, Kircelli F, O’Neill KD – volume: 126 start-page: 121 year: 2006 end-page: 134 ident: bb0045 article-title: DRAM, a p53-induced modulator of autophagy, is critical for apoptosis publication-title: Cell – volume: 15 start-page: 2857 year: 2004 end-page: 2867 ident: bb0160 article-title: Human vascular smooth muscle cells undergo vesicle-mediated calcification in response to changes in extracellular calcium and phosphate concentrations: a potential mechanism for accelerated vascular calcification in ESRD publication-title: J Am Soc Nephrol – reference: . Verapamil inhibits calcification and matrix vesicle activity of bovine vascular smooth muscle cells. – reference: : 2193-2202. – reference: . – volume: 4 start-page: 246 year: 2008 end-page: 248 ident: bb0095 article-title: Is mitochondrial generation of reactive oxygen species a trigger for autophagy? publication-title: Autophagy – volume: 306 start-page: 990 year: 2004 end-page: 995 ident: bb0025 article-title: Autophagy in health and disease: a double-edged sword publication-title: Science – reference: Riediger F, Quack I, Qadri F – volume: 1793 start-page: 1485 year: 2009 end-page: 1495 ident: bb0030 article-title: Autophagy in the cardiovascular system publication-title: Biochim Biophys Acta – reference: Huang J, Lam GY, Brumell JH. Autophagy signaling through reactive oxygen species. Antioxid Redox Signal – volume: 8 start-page: 152 year: 2006 end-page: 162 ident: bb0130 article-title: Oxidative stress and autophagy publication-title: Antioxid Redox Signal – volume: 18 start-page: 1731 year: 2003 end-page: 1740 ident: bb0050 article-title: Arterial media calcification in end-stage renal disease: impact on all-cause and cardiovascular mortality publication-title: Nephrol Dial Transplant – volume: 3 start-page: 501 year: 1983 end-page: 512 ident: bb0190 article-title: Correlation between distribution of cytoskeletal proteins and release of alkaline phosphatase-rich vesicles by epiphyseal chondrocytes in primary culture publication-title: Cell Motil – reference: . Prorenin receptor is essential for podocyte autophagy and survival. – volume: 54 start-page: 399 year: 1994 end-page: 408 ident: bb0180 article-title: Matrix vesicles produced by osteoblast-like cells in culture become significantly enriched in proteoglycan-degrading metalloproteinases after addition of beta-glycerophosphate and ascorbic acid publication-title: Calcif Tissue Int – volume: 68 start-page: 271 year: 2001 end-page: 276 ident: bb0215 article-title: Bone loss and the progression of abdominal aortic calcification over a 25 year period: the Framingham Heart Study publication-title: Calcif Tissue Int – volume: 133 start-page: 2057S year: 2003 end-page: 2062S ident: bb0010 article-title: Amino acids as regulators and components of nonproteinogenic pathways publication-title: J Nutr – volume: 18 start-page: 458 year: 2005 end-page: 463 ident: bb0220 article-title: Bone metabolism, vascular calcifications and mortality: associations beyond mere coincidence publication-title: J Nephrol – reference: Zhao G, Xu MJ, Zhao MM – volume: 17 start-page: 1 year: 2007 end-page: 11 ident: bb0140 article-title: Direct induction of autophagy by Atg1 inhibits cell growth and induces apoptotic cell death publication-title: Curr Biol – reference: . Intermedin inhibits vascular calcification by increasing the level of matrix gamma-carboxyglutamic acid protein. – volume: 5 start-page: 222 year: 2003 end-page: 226 ident: bb0155 article-title: Matrix vesicles and calcification publication-title: Curr Rheumatol Rep – reference: Woeckel VJ, Alves RD, Swagemakers SM – reference: . 1Alpha,25- (OH)2D3 acts in the early phase of osteoblast differentiation to enhance mineralization via accelerated production of mature matrix vesicles. – reference: : 436-442. – reference: : 864-873. – volume: 75 start-page: 890 year: 2009 end-page: 897 ident: bb0070 article-title: The emerging role of phosphate in vascular calcification publication-title: Kidney Int – volume: 8 start-page: 1124 year: 2006 end-page: 1132 ident: bb0150 article-title: Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis publication-title: Nat Cell Biol – reference: . Arterial calcification in chronic kidney disease: key roles for calcium and phosphate. – volume: 15 start-page: 2003 year: 1995 end-page: 2009 ident: bb0230 article-title: Beta-glycerophosphate accelerates calcification in cultured bovine vascular smooth muscle cells publication-title: Arterioscler Thromb Vasc Biol – volume: 104 start-page: 304 year: 2009 end-page: 317 ident: bb0035 article-title: Autophagy in atherosclerosis: a cell survival and death phenomenon with therapeutic potential publication-title: Circ Res – reference: Cai Y, Xu MJ, Teng X – volume: 260 start-page: 15972 year: 1985 end-page: 15979 ident: bb0240 article-title: Isolation and characterization of calcium-accumulating matrix vesicles from chondrocytes of chicken epiphyseal growth plate cartilage in primary culture publication-title: J Biol Chem – volume: 38 start-page: S34 year: 2001 end-page: S37 ident: bb0060 article-title: Vascular calcification and inorganic phosphate publication-title: Am J Kidney Dis – reference: Zhao MM, Xu MJ, Cai Y – reference: Mostowy S, Cossart P. Autophagy and the cytoskeleton: new links revealed by intracellular pathogens. Autophagy – reference: :697-711. – reference: . Activation of nuclear factor-kappa B accelerates vascular calcification by inhibiting ankylosis protein homolog expression. – volume: 6 start-page: 463 year: 2004 ident: 10.1038/ki.2012.482_bb0015 article-title: Development by self-digestion: molecular mechanisms and biological functions of autophagy publication-title: Dev Cell doi: 10.1016/S1534-5807(04)00099-1 – volume: 8 start-page: 741 year: 2007 ident: 10.1038/ki.2012.482_bb0135 article-title: Self-eating and self-killing: crosstalk between autophagy and apoptosis publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm2239 – ident: 10.1038/ki.2012.482_bb0175 doi: 10.1038/ki.2009.481 – volume: 306 start-page: 990 year: 2004 ident: 10.1038/ki.2012.482_bb0025 article-title: Autophagy in health and disease: a double-edged sword publication-title: Science doi: 10.1126/science.1099993 – volume: 8 start-page: 391 year: 2009 ident: 10.1038/ki.2012.482_bb0105 article-title: Autophagy in mineralizing tissues: microenvironmental perspectives publication-title: Cell Cycle doi: 10.4161/cc.8.3.7545 – volume: 18 start-page: 1731 year: 2003 ident: 10.1038/ki.2012.482_bb0050 article-title: Arterial media calcification in end-stage renal disease: impact on all-cause and cardiovascular mortality publication-title: Nephrol Dial Transplant doi: 10.1093/ndt/gfg414 – volume: 35 start-page: 1226 year: 2000 ident: 10.1038/ki.2012.482_bb0055 article-title: Re-evaluation of risks associated with hyperphosphatemia and hyperparathyroidism in dialysis patients: recommendations for a change in management publication-title: Am J Kidney Dis doi: 10.1016/S0272-6386(00)70064-3 – volume: 5 start-page: 222 year: 2003 ident: 10.1038/ki.2012.482_bb0155 article-title: Matrix vesicles and calcification publication-title: Curr Rheumatol Rep doi: 10.1007/s11926-003-0071-z – volume: 14 start-page: 70 year: 2004 ident: 10.1038/ki.2012.482_bb0020 article-title: Autophagy: in sickness and in health publication-title: Trends Cell Biol doi: 10.1016/j.tcb.2003.12.002 – volume: 283 start-page: 10892 year: 2008 ident: 10.1038/ki.2012.482_bb0040 article-title: Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia publication-title: J Biol Chem doi: 10.1074/jbc.M800102200 – volume: 19 start-page: 185 year: 1992 ident: 10.1038/ki.2012.482_bb0210 article-title: Osteoporosis and calcification of the aorta publication-title: Bone Miner doi: 10.1016/0169-6009(92)90925-4 – volume: 260 start-page: 15972 year: 1985 ident: 10.1038/ki.2012.482_bb0240 article-title: Isolation and characterization of calcium-accumulating matrix vesicles from chondrocytes of chicken epiphyseal growth plate cartilage in primary culture publication-title: J Biol Chem doi: 10.1016/S0021-9258(17)36354-8 – volume: 451 start-page: 1069 year: 2008 ident: 10.1038/ki.2012.482_bb0120 article-title: Autophagy fights disease through cellular self-digestion publication-title: Nature doi: 10.1038/nature06639 – ident: 10.1038/ki.2012.482_bb0170 doi: 10.1002/jcp.22244 – volume: 106 start-page: 127 year: 2009 ident: 10.1038/ki.2012.482_bb0195 article-title: Matrix vesicles originate from apical membrane microvilli of mineralizing osteoblast-like Saos-2 cells publication-title: J Cell Biochem doi: 10.1002/jcb.21992 – ident: 10.1038/ki.2012.482_bb0100 doi: 10.1089/ars.2010.3554 – volume: 116 start-page: 2161 year: 2006 ident: 10.1038/ki.2012.482_bb0145 article-title: Autophagy is involved in T cell death after binding of HIV-1 envelope proteins to CXCR4 publication-title: J Clin Invest doi: 10.1172/JCI26185 – volume: 50 start-page: 172 year: 1971 ident: 10.1038/ki.2012.482_bb0225 article-title: The smooth muscle cell. II. Growth of smooth muscle in culture and formation of elastic fibers publication-title: J Cell Biol doi: 10.1083/jcb.50.1.172 – ident: 10.1038/ki.2012.482_bb0075 doi: 10.1161/CIRCRESAHA.110.234914 – ident: 10.1038/ki.2012.482_bb0200 doi: 10.4161/auto.7.7.15593 – volume: 18 start-page: 458 year: 2005 ident: 10.1038/ki.2012.482_bb0220 article-title: Bone metabolism, vascular calcifications and mortality: associations beyond mere coincidence publication-title: J Nephrol – volume: 98 start-page: 1024 year: 2006 ident: 10.1038/ki.2012.482_bb0110 article-title: Statins protect human aortic smooth muscle cells from inorganic phosphate-induced calcification by restoring Gas6-Axl survival pathway publication-title: Circ Res doi: 10.1161/01.RES.0000218859.90970.8d – volume: 133 start-page: 2057S year: 2003 ident: 10.1038/ki.2012.482_bb0010 article-title: Amino acids as regulators and components of nonproteinogenic pathways publication-title: J Nutr doi: 10.1093/jn/133.6.2057S – volume: 104 start-page: 304 year: 2009 ident: 10.1038/ki.2012.482_bb0035 article-title: Autophagy in atherosclerosis: a cell survival and death phenomenon with therapeutic potential publication-title: Circ Res doi: 10.1161/CIRCRESAHA.108.188318 – volume: 75 start-page: 890 year: 2009 ident: 10.1038/ki.2012.482_bb0070 article-title: The emerging role of phosphate in vascular calcification publication-title: Kidney Int doi: 10.1038/ki.2008.644 – volume: 54 start-page: 399 year: 1994 ident: 10.1038/ki.2012.482_bb0180 article-title: Matrix vesicles produced by osteoblast-like cells in culture become significantly enriched in proteoglycan-degrading metalloproteinases after addition of beta-glycerophosphate and ascorbic acid publication-title: Calcif Tissue Int doi: 10.1007/BF00305527 – volume: 87 start-page: 1055 year: 2000 ident: 10.1038/ki.2012.482_bb0115 article-title: Apoptosis regulates human vascular calcification in vitro: evidence for initiation of vascular calcification by apoptotic bodies publication-title: Circ Res doi: 10.1161/01.RES.87.11.1055 – volume: 16 start-page: 1040 year: 2009 ident: 10.1038/ki.2012.482_bb0090 article-title: Superoxide is the major reactive oxygen species regulating autophagy publication-title: Cell Death Differ doi: 10.1038/cdd.2009.49 – volume: 2 start-page: 583 year: 2009 ident: 10.1038/ki.2012.482_bb0065 article-title: In vivo genetic evidence for suppressing vascular and soft-tissue calcification through the reduction of serum phosphate levels, even in the presence of high serum calcium and 1,25-dihydroxyvitamin D levels publication-title: Circ Cardiovasc Genet doi: 10.1161/CIRCGENETICS.108.847814 – volume: 126 start-page: 121 year: 2006 ident: 10.1038/ki.2012.482_bb0045 article-title: DRAM, a p53-induced modulator of autophagy, is critical for apoptosis publication-title: Cell doi: 10.1016/j.cell.2006.05.034 – ident: 10.1038/ki.2012.482_bb0080 doi: 10.1038/ki.2011.18 – volume: 8 start-page: 1124 year: 2006 ident: 10.1038/ki.2012.482_bb0150 article-title: Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis publication-title: Nat Cell Biol doi: 10.1038/ncb1482 – ident: 10.1038/ki.2012.482_bb0235 doi: 10.1093/cvr/cvp366 – volume: 3 start-page: 501 year: 1983 ident: 10.1038/ki.2012.482_bb0190 article-title: Correlation between distribution of cytoskeletal proteins and release of alkaline phosphatase-rich vesicles by epiphyseal chondrocytes in primary culture publication-title: Cell Motil doi: 10.1002/cm.970030517 – volume: 15 start-page: 2857 year: 2004 ident: 10.1038/ki.2012.482_bb0160 article-title: Human vascular smooth muscle cells undergo vesicle-mediated calcification in response to changes in extracellular calcium and phosphate concentrations: a potential mechanism for accelerated vascular calcification in ESRD publication-title: J Am Soc Nephrol doi: 10.1097/01.ASN.0000141960.01035.28 – volume: 38 start-page: S34 year: 2001 ident: 10.1038/ki.2012.482_bb0060 article-title: Vascular calcification and inorganic phosphate publication-title: Am J Kidney Dis doi: 10.1053/ajkd.2001.27394 – ident: 10.1038/ki.2012.482_bb0205 doi: 10.1681/ASN.2011020200 – volume: 23 start-page: 1798 year: 2008 ident: 10.1038/ki.2012.482_bb0165 article-title: Annexin-mediated matrix vesicle calcification in vascular smooth muscle cells publication-title: J Bone Miner Res doi: 10.1359/jbmr.080604 – volume: 68 start-page: 271 year: 2001 ident: 10.1038/ki.2012.482_bb0215 article-title: Bone loss and the progression of abdominal aortic calcification over a 25 year period: the Framingham Heart Study publication-title: Calcif Tissue Int doi: 10.1007/BF02390833 – volume: 1793 start-page: 1485 year: 2009 ident: 10.1038/ki.2012.482_bb0030 article-title: Autophagy in the cardiovascular system publication-title: Biochim Biophys Acta doi: 10.1016/j.bbamcr.2008.12.011 – volume: 262 start-page: 1916 year: 1987 ident: 10.1038/ki.2012.482_bb0185 article-title: The mechanism of matrix vesicle formation. Studies on the composition of chondrocyte microvilli and on the effects of microfilament-perturbing agents on cellular vesiculation publication-title: J Biol Chem doi: 10.1016/S0021-9258(19)75726-3 – volume: 4 start-page: 246 year: 2008 ident: 10.1038/ki.2012.482_bb0095 article-title: Is mitochondrial generation of reactive oxygen species a trigger for autophagy? publication-title: Autophagy doi: 10.4161/auto.5432 – volume: 8 start-page: 152 year: 2006 ident: 10.1038/ki.2012.482_bb0130 article-title: Oxidative stress and autophagy publication-title: Antioxid Redox Signal doi: 10.1089/ars.2006.8.152 – ident: 10.1038/ki.2012.482_bb0085 doi: 10.1038/ki.2012.40 – volume: 98 start-page: 905 year: 2006 ident: 10.1038/ki.2012.482_bb0125 article-title: Role of the sodium-dependent phosphate cotransporter, Pit-1, in vascular smooth muscle cell calcification publication-title: Circ Res doi: 10.1161/01.RES.0000216409.20863.e7 – volume: 17 start-page: 1 year: 2007 ident: 10.1038/ki.2012.482_bb0140 article-title: Direct induction of autophagy by Atg1 inhibits cell growth and induces apoptotic cell death publication-title: Curr Biol doi: 10.1016/j.cub.2006.10.053 – volume: 15 start-page: 2003 year: 1995 ident: 10.1038/ki.2012.482_bb0230 article-title: Beta-glycerophosphate accelerates calcification in cultured bovine vascular smooth muscle cells publication-title: Arterioscler Thromb Vasc Biol doi: 10.1161/01.ATV.15.11.2003 – reference: 23727998 - Kidney Int. 2013 Jun;83(6):984-6 |
SSID | ssj0008930 |
Score | 2.5004027 |
Snippet | Autophagy is a dynamic and highly regulated process of self-digestion responsible for cell survival and reaction to oxidative stress. As oxidative stress is... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1042 |
SubjectTerms | Adenine - analogs & derivatives Adenine - pharmacology Alkaline Phosphatase - metabolism Amino Acid Chloromethyl Ketones - pharmacology Animals Antioxidants - pharmacology apoptosis autophagy Autophagy - drug effects Autophagy-Related Protein 5 Caspase Inhibitors - pharmacology Cattle Cells, Cultured chronic renal failure Disease Models, Animal hyperphosphatemia Kidney Failure, Chronic - complications Kidney Failure, Chronic - metabolism Kidney Failure, Chronic - pathology Metalloporphyrins - pharmacology Muscle, Smooth, Vascular - drug effects Muscle, Smooth, Vascular - metabolism Muscle, Smooth, Vascular - pathology Myocytes, Smooth Muscle - drug effects Myocytes, Smooth Muscle - metabolism Myocytes, Smooth Muscle - pathology oxidative stress Phosphates - metabolism Proteins - genetics Proteins - metabolism Rats RNA Interference Secretory Vesicles - drug effects Secretory Vesicles - metabolism Secretory Vesicles - pathology Sodium-Phosphate Cotransporter Proteins, Type III - genetics Sodium-Phosphate Cotransporter Proteins, Type III - metabolism Superoxide Dismutase - genetics Superoxide Dismutase - metabolism Time Factors Transfection Valproic Acid - pharmacology Vascular Calcification - etiology Vascular Calcification - metabolism Vascular Calcification - pathology Vascular Calcification - prevention & control |
Title | Phosphate-induced autophagy counteracts vascular calcification by reducing matrix vesicle release |
URI | https://dx.doi.org/10.1038/ki.2012.482 https://www.ncbi.nlm.nih.gov/pubmed/23364520 https://www.proquest.com/docview/1357046296 https://www.proquest.com/docview/1364709706 https://www.proquest.com/docview/1399910170 |
Volume | 83 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dSxwxEA9VQXyR1tZ6rZUUfCpEs9l87VNpiyKCIqXCvYXsJqmi3p3uXan_fWd2s9cX9Xln2TAzmY-dmd8Qso9o1A2kGiyFxJm0qmbWywQCSbq2VntZ4KDw2bk-uZSnYzXOP9za3FY52MTOUIdpg__ID4tSGRykrPTX2T3DrVFYXc0rNFbIGkKXYUuXGS8TLg6-uB9BsYoJuNl5Po-X9vDmGtu6xIG04jmP9FzE2Xme49dkM4eM9Fsv4zfkVZxskfWzXBR_S_zF1bSdXUHQyCDBBlEF6heIF-B_P9JuF0TEUaiWDl2nFOTSteJ1UqH1I31AAFdwYvQOEfv_0j-xxW9R3KgCbu4duTw--vXjhOXNCawBFs2ZDLxIYANVEFIZWfmC18pAagDhGqLrJO2jqpSpYxlT4L62lY5BCd_4Oggbym2yOplO4g6hyftK6iIFyUvZRG0REN6m0psESijNiHwZuOeaDCuO2y1uXVfeLq27uXbIagesHpH9JfGsR9N4muxgEIPLgUDv4B3Y-adf2B2E5fIdbN1_jRmRz8vHcHuwJOIncbpAGi0Nrwx_kQaDaMQZGpH3vSIsDy9KLOMK_uHlA3wkG6Jfo8F4sUtW5w-L-AmCmXm912nsHln7fnR-8fMfqjf0gg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrQS9IN4sFDBSuSCldRw7cQ4I8Wi1pd1VhVqpN-PENq1adpdmF9g_xW9kJo_l0vbWc8aJZX-e-SbjmQHYoGrUJboaUXCBR1KrItJWBtyQkBZap1bGlCg8HKWDI_nlWB2vwN8uF4auVXY6sVbUblLSP_KtOFEZJVLm6fvpz4i6RlF0tWuh0cBizy9-o8tWvdv9jPv7Roid7cNPg6jtKhCVOHwWScfjgPpBOSFVJnMb80JlSJuRylDlmZBar3KVFT7xwXFb6Dz1Tglb2sIJ7RJ87y1YlQm6Mj1Y_bg9Ovi61P1o_ZukF60igbqkzQjkid46O6WLZGJTanGVDbyK49a2buce3G1JKvvQoOo-rPjxA7g9bMPwD8EenEyq6QnS1AhdegSHY3ZOFQrs9wWru094Sr6qWHfPlSES6st_NQ5YsWAXVDIWzSb7QT0C_rBfvqJvMerhgob1ERzdyKo-ht54MvZPgQVrc5nGwUmeyNKnmkrQ65DYLCDsZdaHt93qmbItZE79NM5NHVBPtDk7NbTUBpe6DxtL4WlTv-Nysc1uG0xLPRpKYdCyXD5gvdss0576yvzHaB9eLx_jeaUgjB37yZxkUpnxPOPXyhBtp8pGfXjSAGE5eZFQ4FjwZ9dP4BXcGRwO983-7mjvOayJpolHxON16M0u5v4FUqlZ8bLFL4NvN31k_gFD3jCk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phosphate-induced+autophagy+counteracts+vascular+calcification+by+reducing+matrix+vesicle+release&rft.jtitle=Kidney+international&rft.au=Dai%2C+Xiao-Yan&rft.au=Zhao%2C+Ming-Ming&rft.au=Cai%2C+Yan&rft.au=Guan%2C+Qing-Cong&rft.date=2013-06-01&rft.eissn=1523-1755&rft.volume=83&rft.issue=6&rft.spage=1042&rft_id=info:doi/10.1038%2Fki.2012.482&rft_id=info%3Apmid%2F23364520&rft.externalDocID=23364520 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0085-2538&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0085-2538&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0085-2538&client=summon |