Estimating Objective Weights of Pareto-Optimal Policies for Multi-Objective Sequential Decision-Making

Sequential decision-making under multiple objective functions includes the problem of exhaustively searching for a Pareto-optimal policy and the problem of selecting a policy from the resulting set of Pareto-optimal policies based on the decision maker’s preferences. This paper focuses on the latter...

Full description

Saved in:
Bibliographic Details
Published inJournal of advanced computational intelligence and intelligent informatics Vol. 28; no. 2; pp. 393 - 402
Main Authors Ikenaga, Akiko, Arai, Sachiyo
Format Journal Article
LanguageEnglish
Published Tokyo Fuji Technology Press Co. Ltd 01.03.2024
Subjects
Online AccessGet full text
ISSN1343-0130
1883-8014
DOI10.20965/jaciii.2024.p0393

Cover

Loading…
Abstract Sequential decision-making under multiple objective functions includes the problem of exhaustively searching for a Pareto-optimal policy and the problem of selecting a policy from the resulting set of Pareto-optimal policies based on the decision maker’s preferences. This paper focuses on the latter problem. In order to select a policy that reflects the decision maker’s preferences, it is necessary to order these policies, which is problematic because the decision-maker’s preferences are generally tacit knowledge. Furthermore, it is difficult to order them quantitatively. For this reason, conventional methods have mainly been used to elicit preferences through dialogue with decision-makers and through one-to-one comparisons. In contrast, this paper proposes a method based on inverse reinforcement learning to estimate the weight of each objective from the decision-making sequence. The estimated weights can be used to quantitatively evaluate the Pareto-optimal policies from the viewpoints of the decision-makers preferences. We applied the proposed method to the multi-objective reinforcement learning benchmark problem and verified its effectiveness as an elicitation method of weights for each objective function.
AbstractList Sequential decision-making under multiple objective functions includes the problem of exhaustively searching for a Pareto-optimal policy and the problem of selecting a policy from the resulting set of Pareto-optimal policies based on the decision maker’s preferences. This paper focuses on the latter problem. In order to select a policy that reflects the decision maker’s preferences, it is necessary to order these policies, which is problematic because the decision-maker’s preferences are generally tacit knowledge. Furthermore, it is difficult to order them quantitatively. For this reason, conventional methods have mainly been used to elicit preferences through dialogue with decision-makers and through one-to-one comparisons. In contrast, this paper proposes a method based on inverse reinforcement learning to estimate the weight of each objective from the decision-making sequence. The estimated weights can be used to quantitatively evaluate the Pareto-optimal policies from the viewpoints of the decision-makers preferences. We applied the proposed method to the multi-objective reinforcement learning benchmark problem and verified its effectiveness as an elicitation method of weights for each objective function.
Author Ikenaga, Akiko
Arai, Sachiyo
Author_xml – sequence: 1
  givenname: Akiko
  surname: Ikenaga
  fullname: Ikenaga, Akiko
  organization: Graduate School of Science and Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
– sequence: 2
  givenname: Sachiyo
  orcidid: 0000-0002-8899-645X
  surname: Arai
  fullname: Arai, Sachiyo
  organization: Graduate School of Science and Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
BookMark eNpFkEtLAzEUhYNUsNb-AVcDrlPz6kxmKbU-oKUFFZdhEm9qxnFSk1Tw35u2gqt7Lpz7ON85GvS-B4QuKZkwUpfT67YxzrncMDHZEl7zEzSkUnIsCRWDrLngmFBOztA4xpaQrFlJBB0iO4_JfTbJ9ZtipVswyX1D8Qpu855i4W2xbgIkj1fbva0r1r5zxkEsrA_Fctclh__HnuBrB31y2XcLxkXne7xsPvLuC3Rqmy7C-K-O0Mvd_Hn2gBer-8fZzQIbUbKERcU0h7qxEgwHYo1h0HCtDasFSKLp21RSTitNdEVYbSupS1aCBK5rnSPxEbo67t0Gn3-JSbV-F_p8UrG6rEgphJDZxY4uE3yMAazahpwu_ChK1AGpOiJVe6TqgJT_AlIubiU
Cites_doi 10.1609/aaai.v25i1.7954
10.1007/978-3-540-89378-3_37
10.1109/ADPRL.2013.6615007
10.1145/1015330.1015430
10.1609/aaai.v32i1.11804
10.1109/TSMC.2014.2358639
10.1007/s10994-010-5232-5
10.1613/jair.3987
10.1016/0022-2496(77)90033-5
10.1145/1390156.1390162
10.1016/j.neucom.2017.05.090
ContentType Journal Article
Copyright Copyright © 2024 Fuji Technology Press Ltd.
Copyright_xml – notice: Copyright © 2024 Fuji Technology Press Ltd.
DBID AAYXX
CITATION
7SC
7SP
8FD
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.20965/jaciii.2024.p0393
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Computer Science Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1883-8014
EndPage 402
ExternalDocumentID 10_20965_jaciii_2024_p0393
GroupedDBID AAYXX
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
JSI
JSP
K7-
P2P
PHGZM
PHGZT
RJT
RZJ
TUS
7SC
7SP
8FD
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L7M
L~C
L~D
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c462t-472b3e9af8ec3e0fcc2ea3bbc294e80b1d581317b0b7029f78b626e8e3b9b3263
IEDL.DBID BENPR
ISSN 1343-0130
IngestDate Mon Jul 14 10:33:18 EDT 2025
Tue Jul 01 04:30:45 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c462t-472b3e9af8ec3e0fcc2ea3bbc294e80b1d581317b0b7029f78b626e8e3b9b3263
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8899-645X
OpenAccessLink https://doi.org/10.20965/jaciii.2024.p0393
PQID 2967064448
PQPubID 4911628
PageCount 10
ParticipantIDs proquest_journals_2967064448
crossref_primary_10_20965_jaciii_2024_p0393
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Tokyo
PublicationPlace_xml – name: Tokyo
PublicationTitle Journal of advanced computational intelligence and intelligent informatics
PublicationYear 2024
Publisher Fuji Technology Press Co. Ltd
Publisher_xml – name: Fuji Technology Press Co. Ltd
References key-10.20965/jaciii.2024.p0393-2
key-10.20965/jaciii.2024.p0393-1
key-10.20965/jaciii.2024.p0393-8
key-10.20965/jaciii.2024.p0393-13
key-10.20965/jaciii.2024.p0393-7
key-10.20965/jaciii.2024.p0393-12
key-10.20965/jaciii.2024.p0393-9
key-10.20965/jaciii.2024.p0393-14
key-10.20965/jaciii.2024.p0393-4
key-10.20965/jaciii.2024.p0393-3
key-10.20965/jaciii.2024.p0393-6
key-10.20965/jaciii.2024.p0393-11
key-10.20965/jaciii.2024.p0393-5
key-10.20965/jaciii.2024.p0393-10
References_xml – ident: key-10.20965/jaciii.2024.p0393-11
  doi: 10.1609/aaai.v25i1.7954
– ident: key-10.20965/jaciii.2024.p0393-13
  doi: 10.1007/978-3-540-89378-3_37
– ident: key-10.20965/jaciii.2024.p0393-9
  doi: 10.1109/ADPRL.2013.6615007
– ident: key-10.20965/jaciii.2024.p0393-12
– ident: key-10.20965/jaciii.2024.p0393-7
  doi: 10.1145/1015330.1015430
– ident: key-10.20965/jaciii.2024.p0393-10
  doi: 10.1609/aaai.v32i1.11804
– ident: key-10.20965/jaciii.2024.p0393-3
  doi: 10.1109/TSMC.2014.2358639
– ident: key-10.20965/jaciii.2024.p0393-8
  doi: 10.1007/s10994-010-5232-5
– ident: key-10.20965/jaciii.2024.p0393-1
  doi: 10.1613/jair.3987
– ident: key-10.20965/jaciii.2024.p0393-5
– ident: key-10.20965/jaciii.2024.p0393-6
  doi: 10.1016/0022-2496(77)90033-5
– ident: key-10.20965/jaciii.2024.p0393-2
  doi: 10.1145/1390156.1390162
– ident: key-10.20965/jaciii.2024.p0393-4
– ident: key-10.20965/jaciii.2024.p0393-14
  doi: 10.1016/j.neucom.2017.05.090
SSID ssj0001326041
ssib051641541
Score 2.2814596
Snippet Sequential decision-making under multiple objective functions includes the problem of exhaustively searching for a Pareto-optimal policy and the problem of...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
StartPage 393
SubjectTerms Decision making
Multiple objective analysis
Pareto optimum
Policies
Title Estimating Objective Weights of Pareto-Optimal Policies for Multi-Objective Sequential Decision-Making
URI https://www.proquest.com/docview/2967064448
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8JAEN4IXLz4NqJI9uDNVJbttmxPxgdITHhEJXJrututCSGlCv5_Z7bbEC6e-zh825n5vuk8CLkRRqkswUq1TDJPhGCKCicjomPkUoeBsjnd0TgczsTrPJi7hNvalVVWPtE66nSlMUfe4VHYg_AJauK--PZwaxT-XXUrNGqkAS5YgvhqPPbH07fqiwpADABH6G6zLsBWmChVmMBCIp-VnTQcp6B0FonGkQ4cAtddgV2ru9Fq11nbCDQ4IgeOOtKH8qyPyZ7JT8hhtZaBOis9JVkfzBaJaP5FJ2pRejT6aXOga7rK6BQ32668SYG3LakdDQyCmQJ_pbYh19s-9m5LrcENLOmzW8fjjewGqzMyG_Q_noaeW6fgaRHyjSd6XPkmSjJptG9YpjU3ia-U5pEwkqluGsgu0AnFVI_xKOtJBWrHSOOrSAFu_jmp56vcXBDKU4YtsYEOjRYmDRScb5qyVOMwnTRhTXJbwRYX5dSMGNSGBTkuQY4R5NiC3CStCtnYWdA63p735f-Xr8g-vqqsC2uR-ubn11wDUdioNqnJwUvbfRNtK7f_AOF6vjg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8JAEJ4gHvTi2_hA3YOeTHXZbkt7MMYICCJiIkZvtbvdmhgCKBjjn_I3OrNtQ7x489ztHr5-8-w8AA6lUSqNqVItDbgjfRRFRZMRSTGKQPuesjnd7q3fepDXT95TCb6LXhgqqyx0olXUyUhTjvxUhH4NzSdGE-fjN4e2RtHf1WKFRkaLjvn6xJBtctau4_c9EqLZ6F-2nHyrgKOlL6aOrAnlmjBOA6Ndw1OthYldpbQIpQm4qiZeUEWrqriqcRGmtUCh028C46pQobPj4r1zMC9dNySJCppXBX89DD3QI6nOcjx4nMss5pNUtuTyrG9H0MyV09dY0wAJgWbyZEw9sr9t42_TYO1dcwWWckeVXWTMWoWSGa7BcrEEguU6YR3SBioJcnuHL6ynXjP9yR5txnXCRim7oz26I6c3pmMDZgcRY3jO0Ftmtv3Xmb12bwu7UekMWD1f_uN07b6sDXj4F5g3oTwcDc0WMJFwasD1tG-0NImnkE1JwhNNo3uSmG_DcQFbNM5mdEQY21iQowzkiECOLMjbUCmQjXJ5nUQzdu38_fgAFlr97k10077t7MIiXZtVpFWgPH3_MHvookzVvuUFg-f_JuIP9qn4Ww
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+Objective+Weights+of+Pareto-Optimal+Policies+for+Multi-Objective+Sequential+Decision-Making&rft.jtitle=Journal+of+advanced+computational+intelligence+and+intelligent+informatics&rft.au=Ikenaga%2C+Akiko&rft.au=Arai%2C+Sachiyo&rft.date=2024-03-01&rft.issn=1343-0130&rft.eissn=1883-8014&rft.volume=28&rft.issue=2&rft.spage=393&rft.epage=402&rft_id=info:doi/10.20965%2Fjaciii.2024.p0393&rft.externalDBID=n%2Fa&rft.externalDocID=10_20965_jaciii_2024_p0393
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1343-0130&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1343-0130&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1343-0130&client=summon