Total-Variation-Regularized Low-Rank Matrix Factorization for Hyperspectral Image Restoration

In this paper, we present a spatial spectral hyperspectral image (HSI) mixed-noise removal method named total variation (TV)-regularized low-rank matrix factorization (LRTV). In general, HSIs are not only assumed to lie in a low-rank subspace from the spectral perspective but also assumed to be piec...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on geoscience and remote sensing Vol. 54; no. 1; pp. 178 - 188
Main Authors He, Wei, Zhang, Hongyan, Zhang, Liangpei, Shen, Huanfeng
Format Journal Article
LanguageEnglish
Published New York IEEE 01.01.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we present a spatial spectral hyperspectral image (HSI) mixed-noise removal method named total variation (TV)-regularized low-rank matrix factorization (LRTV). In general, HSIs are not only assumed to lie in a low-rank subspace from the spectral perspective but also assumed to be piecewise smooth in the spatial dimension. The proposed method integrates the nuclear norm, TV regularization, and L 1 -norm together in a unified framework. The nuclear norm is used to exploit the spectral low-rank property, and the TV regularization is adopted to explore the spatial piecewise smooth structure of the HSI. At the same time, the sparse noise, which includes stripes, impulse noise, and dead pixels, is detected by the L 1 -norm regularization. To tradeoff the nuclear norm and TV regularization and to further remove the Gaussian noise of the HSI, we also restrict the rank of the clean image to be no larger than the number of endmembers. A number of experiments were conducted in both simulated and real data conditions to illustrate the performance of the proposed LRTV method for HSI restoration.
AbstractList In this paper, we present a spatial spectral hyperspectral image (HSI) mixed-noise removal method named total variation (TV)-regularized low-rank matrix factorization (LRTV). In general, HSIs are not only assumed to lie in a low-rank subspace from the spectral perspective but also assumed to be piecewise smooth in the spatial dimension. The proposed method integrates the nuclear norm, TV regularization, and [Formula Omitted]-norm together in a unified framework. The nuclear norm is used to exploit the spectral low-rank property, and the TV regularization is adopted to explore the spatial piecewise smooth structure of the HSI. At the same time, the sparse noise, which includes stripes, impulse noise, and dead pixels, is detected by the [Formula Omitted]-norm regularization. To tradeoff the nuclear norm and TV regularization and to further remove the Gaussian noise of the HSI, we also restrict the rank of the clean image to be no larger than the number of endmembers. A number of experiments were conducted in both simulated and real data conditions to illustrate the performance of the proposed LRTV method for HSI restoration.
In this paper, we present a spatial spectral hyperspectral image (HSI) mixed-noise removal method named total variation (TV)-regularized low-rank matrix factorization (LRTV). In general, HSIs are not only assumed to lie in a low-rank subspace from the spectral perspective but also assumed to be piecewise smooth in the spatial dimension. The proposed method integrates the nuclear norm, TV regularization, and $L_1$-norm together in a unified framework. The nuclear norm is used to exploit the spectral low-rank property, and the TV regularization is adopted to explore the spatial piecewise smooth structure of the HSI. At the same time, the sparse noise, which includes stripes, impulse noise, and dead pixels, is detected by the $L_1$-norm regularization. To tradeoff the nuclear norm and TV regularization and to further remove the Gaussian noise of the HSI, we also restrict the rank of the clean image to be no larger than the number of endmembers. A number of experiments were conducted in both simulated and real data conditions to illustrate the performance of the proposed LRTV method for HSI restoration.
Author Huanfeng Shen
Hongyan Zhang
Wei He
Liangpei Zhang
Author_xml – sequence: 1
  givenname: Wei
  surname: He
  fullname: He, Wei
– sequence: 2
  givenname: Hongyan
  surname: Zhang
  fullname: Zhang, Hongyan
– sequence: 3
  givenname: Liangpei
  surname: Zhang
  fullname: Zhang, Liangpei
– sequence: 4
  givenname: Huanfeng
  surname: Shen
  fullname: Shen, Huanfeng
BookMark eNp9kE1Lw0AQhhepYKv-APES8OIldWezySZHKVaFilCrNwnTzaykptm6m-LHr3fbigcPnoZhnndmeAas19qWGDsBPgTgxcXsevowFBzSoZCpyEHssT6kaR7zTMoe63MosljkhThgA-8XnINMQfXZ88x22MRP6GrsatvGU3pZN6H7oiqa2Pd4iu1rdIedqz-iMerOhtGWjIx10c3nipxfke4cNtHtEl8ompIP1JY5YvsGG0_HP_WQPY6vZqObeHJ_fTu6nMRaZqKLZZaZAhWaFCCZozScdK5VkaPJDC8wlWJeoSYFJGQheVUJUwGlc6MTrTOZHLLz3d6Vs2_rcL9c1l5T02BLdu1LUCrngucSAnr2B13YtWvDd4FKElDBoQoU7CjtrPeOTLly9RLdZwm83AgvN8LLjfDyR3jIqD8ZXXdbDUFO3fybPN0layL6vaQgUwpk8g2Uk5FS
CODEN IGRSD2
CitedBy_id crossref_primary_10_1109_JSTARS_2021_3129622
crossref_primary_10_1109_TGRS_2020_2985400
crossref_primary_10_3390_math10203810
crossref_primary_10_1109_TGRS_2018_2866439
crossref_primary_10_1109_ACCESS_2020_2979809
crossref_primary_10_1109_TGRS_2019_2946050
crossref_primary_10_3390_rs15081970
crossref_primary_10_1016_j_patcog_2022_108692
crossref_primary_10_1109_TPAMI_2020_3027563
crossref_primary_10_23939_mmc2022_02_365
crossref_primary_10_1109_JSTARS_2016_2519498
crossref_primary_10_1016_j_sigpro_2021_108060
crossref_primary_10_1016_j_apm_2017_04_002
crossref_primary_10_1109_TGRS_2020_3046038
crossref_primary_10_1155_2023_4685563
crossref_primary_10_1109_JSTARS_2024_3379558
crossref_primary_10_3389_fmars_2024_1452737
crossref_primary_10_3390_rs12213541
crossref_primary_10_1109_LGRS_2021_3113078
crossref_primary_10_1109_TGRS_2024_3385536
crossref_primary_10_3390_ijgi7100389
crossref_primary_10_3390_s20195567
crossref_primary_10_1109_TCI_2024_3485467
crossref_primary_10_1109_TGRS_2017_2766094
crossref_primary_10_3390_rs10030361
crossref_primary_10_3390_rs10030482
crossref_primary_10_1109_TGRS_2021_3064429
crossref_primary_10_1109_TCYB_2017_2677944
crossref_primary_10_1016_j_patcog_2021_108280
crossref_primary_10_1016_j_sigpro_2020_107805
crossref_primary_10_1109_JSTARS_2023_3286974
crossref_primary_10_1109_TGRS_2019_2948361
crossref_primary_10_1109_TGRS_2023_3347752
crossref_primary_10_1109_TGRS_2025_3549625
crossref_primary_10_3390_rs12142264
crossref_primary_10_1109_TGRS_2024_3442887
crossref_primary_10_1109_TCSVT_2022_3214583
crossref_primary_10_1109_LGRS_2023_3264522
crossref_primary_10_1145_3510373
crossref_primary_10_1016_j_isprsjprs_2018_07_006
crossref_primary_10_1080_07038992_2016_1158094
crossref_primary_10_1109_LGRS_2017_2701805
crossref_primary_10_1016_j_dsp_2019_08_001
crossref_primary_10_1109_ACCESS_2021_3137656
crossref_primary_10_3390_rs14092071
crossref_primary_10_1109_ACCESS_2017_2778947
crossref_primary_10_1109_JSTARS_2021_3138564
crossref_primary_10_1109_TKDE_2020_3037131
crossref_primary_10_1080_2150704X_2023_2195567
crossref_primary_10_1109_JSTARS_2023_3257051
crossref_primary_10_1109_TGRS_2020_3045169
crossref_primary_10_1117_1_JEI_31_4_043044
crossref_primary_10_1109_LGRS_2019_2937625
crossref_primary_10_3390_rs14030511
crossref_primary_10_1109_JSTARS_2020_3024911
crossref_primary_10_1016_j_isprsjprs_2019_09_003
crossref_primary_10_1109_TGRS_2020_2996686
crossref_primary_10_1109_TGRS_2019_2924017
crossref_primary_10_1109_LGRS_2017_2764059
crossref_primary_10_1016_j_cviu_2020_103004
crossref_primary_10_1117_1_JRS_13_036502
crossref_primary_10_1109_TGRS_2019_2935150
crossref_primary_10_3390_electronics14020238
crossref_primary_10_1109_JSTSP_2021_3058503
crossref_primary_10_1016_j_isprsjprs_2020_04_010
crossref_primary_10_1109_TGRS_2019_2939512
crossref_primary_10_1049_iet_ipr_2019_1409
crossref_primary_10_1109_TGRS_2023_3311482
crossref_primary_10_1109_TIP_2022_3211471
crossref_primary_10_1016_j_knosys_2024_112273
crossref_primary_10_1016_j_neucom_2024_129266
crossref_primary_10_1093_bib_bbae649
crossref_primary_10_1109_TGRS_2022_3206783
crossref_primary_10_3390_app131810363
crossref_primary_10_1016_j_neucom_2021_05_075
crossref_primary_10_1109_JSTARS_2019_2953378
crossref_primary_10_1109_TIP_2020_2994411
crossref_primary_10_1002_mp_15387
crossref_primary_10_1007_s11432_022_3609_4
crossref_primary_10_1109_ACCESS_2020_2988684
crossref_primary_10_1109_TGRS_2020_3007945
crossref_primary_10_3390_rs15020490
crossref_primary_10_1109_JSTARS_2019_2940065
crossref_primary_10_1049_iet_ipr_2019_1763
crossref_primary_10_1109_TGRS_2019_2957153
crossref_primary_10_1016_j_jfranklin_2024_107282
crossref_primary_10_3390_rs14143338
crossref_primary_10_1109_TGRS_2024_3490773
crossref_primary_10_1016_j_neunet_2019_12_023
crossref_primary_10_1109_TNNLS_2023_3243808
crossref_primary_10_1109_TGRS_2018_2862384
crossref_primary_10_1016_j_neucom_2020_01_103
crossref_primary_10_3390_rs9101044
crossref_primary_10_1109_TPAMI_2022_3204203
crossref_primary_10_3390_rs16244721
crossref_primary_10_1109_TGRS_2022_3229301
crossref_primary_10_1109_TGRS_2018_2868796
crossref_primary_10_3389_fmars_2024_1447189
crossref_primary_10_1109_TGRS_2020_3006757
crossref_primary_10_1109_TGRS_2021_3061148
crossref_primary_10_1109_ACCESS_2022_3233831
crossref_primary_10_1109_TCYB_2022_3208095
crossref_primary_10_3390_rs16111937
crossref_primary_10_1109_TGRS_2020_2999634
crossref_primary_10_1109_ACCESS_2019_2911864
crossref_primary_10_1109_TNNLS_2020_2978756
crossref_primary_10_1016_j_neucom_2020_07_022
crossref_primary_10_1016_j_knosys_2022_108590
crossref_primary_10_1109_TNNLS_2024_3359852
crossref_primary_10_1109_TGRS_2023_3268944
crossref_primary_10_1109_TGRS_2017_2683719
crossref_primary_10_3390_rs16152694
crossref_primary_10_1109_TGRS_2020_3040879
crossref_primary_10_1109_TGRS_2019_2947333
crossref_primary_10_1109_TIP_2022_3196826
crossref_primary_10_1016_j_trc_2021_103228
crossref_primary_10_3390_rs10101631
crossref_primary_10_1109_TGRS_2024_3379199
crossref_primary_10_1109_LGRS_2021_3062657
crossref_primary_10_1016_j_trc_2024_104890
crossref_primary_10_1109_LGRS_2024_3383874
crossref_primary_10_3390_rs10060817
crossref_primary_10_1109_LGRS_2023_3307411
crossref_primary_10_1109_ACCESS_2023_3304005
crossref_primary_10_1016_j_amc_2024_128980
crossref_primary_10_1016_j_sigpro_2024_109718
crossref_primary_10_1002_mp_16550
crossref_primary_10_3390_rs9040335
crossref_primary_10_1002_nbm_5027
crossref_primary_10_1016_j_inffus_2021_07_003
crossref_primary_10_1109_TGRS_2020_3025601
crossref_primary_10_1109_TGRS_2021_3085779
crossref_primary_10_1016_j_ins_2024_121176
crossref_primary_10_1109_TGRS_2021_3131878
crossref_primary_10_1109_TGRS_2024_3493164
crossref_primary_10_1109_TGRS_2017_2771155
crossref_primary_10_1007_s13042_023_01942_2
crossref_primary_10_1109_TGRS_2020_2978276
crossref_primary_10_3390_rs14051276
crossref_primary_10_1049_iet_ipr_2017_0603
crossref_primary_10_1109_TAES_2023_3285195
crossref_primary_10_1109_ACCESS_2020_2996303
crossref_primary_10_1109_TCYB_2021_3051656
crossref_primary_10_1109_TIP_2024_3360902
crossref_primary_10_1049_ipr2_12585
crossref_primary_10_1109_ACCESS_2020_2982494
crossref_primary_10_1109_TGRS_2017_2711640
crossref_primary_10_1051_matecconf_201817303084
crossref_primary_10_1016_j_sigpro_2024_109706
crossref_primary_10_1109_TGRS_2022_3228927
crossref_primary_10_1109_TGRS_2024_3458395
crossref_primary_10_1109_TIP_2019_2907478
crossref_primary_10_1109_JSTARS_2024_3382325
crossref_primary_10_1109_MGRS_2021_3075491
crossref_primary_10_3390_s17092087
crossref_primary_10_1109_TGRS_2020_3024623
crossref_primary_10_1016_j_sigpro_2020_107645
crossref_primary_10_1109_TGRS_2022_3214542
crossref_primary_10_1109_JSTARS_2023_3301149
crossref_primary_10_1016_j_rse_2019_111416
crossref_primary_10_1109_LGRS_2023_3255413
crossref_primary_10_1109_TGRS_2023_3323955
crossref_primary_10_1109_TGRS_2023_3254505
crossref_primary_10_1109_TCI_2024_3384812
crossref_primary_10_1016_j_displa_2022_102197
crossref_primary_10_1109_JSEN_2024_3462305
crossref_primary_10_1016_j_patcog_2020_107505
crossref_primary_10_1109_TGRS_2022_3182745
crossref_primary_10_1109_TGRS_2017_2743110
crossref_primary_10_3390_s18010060
crossref_primary_10_1109_TNNLS_2023_3278866
crossref_primary_10_1109_JSTARS_2019_2915842
crossref_primary_10_3390_rs13214231
crossref_primary_10_1109_TGRS_2022_3227735
crossref_primary_10_3390_rs16101686
crossref_primary_10_1109_TGRS_2024_3458174
crossref_primary_10_1109_TMI_2024_3412033
crossref_primary_10_1016_j_neucom_2023_126772
crossref_primary_10_1016_j_infrared_2023_104729
crossref_primary_10_1155_2021_1589182
crossref_primary_10_3390_rs12020212
crossref_primary_10_3390_app10113694
crossref_primary_10_1109_TGRS_2023_3324821
crossref_primary_10_3390_rs17061021
crossref_primary_10_1109_LSP_2020_3047576
crossref_primary_10_1109_TGRS_2022_3167475
crossref_primary_10_3390_rs14030467
crossref_primary_10_3390_app9173583
crossref_primary_10_1117_1_JEI_33_4_043015
crossref_primary_10_1109_JSTARS_2016_2531178
crossref_primary_10_1080_01431161_2017_1382742
crossref_primary_10_3390_rs9111145
crossref_primary_10_1109_ACCESS_2018_2817071
crossref_primary_10_3390_s16101718
crossref_primary_10_1515_jisys_2018_0492
crossref_primary_10_1109_LGRS_2021_3073176
crossref_primary_10_1016_j_sigpro_2016_07_031
crossref_primary_10_1109_JSTARS_2018_2866815
crossref_primary_10_3390_rs11242897
crossref_primary_10_1109_TGRS_2019_2897316
crossref_primary_10_1109_ACCESS_2018_2808474
crossref_primary_10_1109_LGRS_2021_3066627
crossref_primary_10_1109_JSTARS_2020_3042966
crossref_primary_10_1109_JSTARS_2023_3327860
crossref_primary_10_1109_JSTARS_2018_2877722
crossref_primary_10_1109_TGRS_2022_3202359
crossref_primary_10_1109_TGRS_2018_2872888
crossref_primary_10_1016_j_infrared_2018_08_012
crossref_primary_10_1016_j_sigpro_2020_107607
crossref_primary_10_3390_s22197348
crossref_primary_10_1016_j_sigpro_2023_109248
crossref_primary_10_1109_TPAMI_2023_3259640
crossref_primary_10_1109_ACCESS_2018_2876038
crossref_primary_10_1016_j_apm_2018_06_044
crossref_primary_10_1016_j_neucom_2024_128912
crossref_primary_10_1109_TGRS_2022_3156646
crossref_primary_10_1007_s11045_020_00738_9
crossref_primary_10_1109_TGRS_2021_3069241
crossref_primary_10_1109_LSP_2018_2850218
crossref_primary_10_1109_JSTARS_2023_3281808
crossref_primary_10_1007_s00371_020_01951_0
crossref_primary_10_1109_TGRS_2020_3032168
crossref_primary_10_1109_LGRS_2016_2536658
crossref_primary_10_1016_j_neucom_2018_07_052
crossref_primary_10_1109_TGRS_2017_2670021
crossref_primary_10_1109_TGRS_2021_3071799
crossref_primary_10_1109_TGRS_2023_3324606
crossref_primary_10_1109_TNNLS_2018_2874432
crossref_primary_10_3390_math11071682
crossref_primary_10_1109_TBDATA_2023_3254156
crossref_primary_10_1049_iet_ipr_2019_0803
crossref_primary_10_1109_TGRS_2023_3242728
crossref_primary_10_1109_TGRS_2019_2933555
crossref_primary_10_1109_MGRS_2021_3064051
crossref_primary_10_1109_TSP_2020_2971441
crossref_primary_10_12677_jisp_2024_132013
crossref_primary_10_1016_j_neucom_2019_08_017
crossref_primary_10_1109_LGRS_2023_3329936
crossref_primary_10_3390_rs9121286
crossref_primary_10_1016_j_ejrs_2024_01_005
crossref_primary_10_1109_TGRS_2021_3106380
crossref_primary_10_1109_TCI_2019_2911881
crossref_primary_10_1109_JSTARS_2017_2779539
crossref_primary_10_1089_cmb_2023_0107
crossref_primary_10_1109_TIP_2016_2593343
crossref_primary_10_12677_jisp_2024_132015
crossref_primary_10_1109_LGRS_2024_3370299
crossref_primary_10_1007_s10915_024_02509_1
crossref_primary_10_1109_TGRS_2021_3110769
crossref_primary_10_3390_rs12182979
crossref_primary_10_1109_LGRS_2022_3141801
crossref_primary_10_1109_TGRS_2016_2594080
crossref_primary_10_1109_JSTARS_2019_2896031
crossref_primary_10_1109_TIM_2023_3251399
crossref_primary_10_1109_TITS_2023_3247961
crossref_primary_10_1016_j_engappai_2025_110508
crossref_primary_10_1364_AO_421081
crossref_primary_10_1016_j_neucom_2017_05_018
crossref_primary_10_1109_LGRS_2022_3217581
crossref_primary_10_1109_TGRS_2023_3318521
crossref_primary_10_1109_TIP_2020_3007840
crossref_primary_10_1016_j_sigpro_2019_04_029
crossref_primary_10_3390_rs8060499
crossref_primary_10_1109_TGRS_2018_2852708
crossref_primary_10_1007_s11082_019_2092_5
crossref_primary_10_1109_TGRS_2023_3297627
crossref_primary_10_1007_s00530_021_00812_7
crossref_primary_10_1109_TGRS_2022_3202714
crossref_primary_10_1016_j_jfoodeng_2023_111662
crossref_primary_10_1016_j_sigpro_2025_109960
crossref_primary_10_1088_1742_6596_1438_1_012024
crossref_primary_10_1109_TGRS_2019_2937901
crossref_primary_10_1109_TGRS_2022_3158901
crossref_primary_10_1109_JSTARS_2024_3373466
crossref_primary_10_1109_TCYB_2019_2936042
crossref_primary_10_1109_TGRS_2023_3308936
crossref_primary_10_1109_TCYB_2020_2983102
crossref_primary_10_1109_TGRS_2024_3457010
crossref_primary_10_1016_j_bspc_2019_101766
crossref_primary_10_1155_2021_5535169
crossref_primary_10_1109_TGRS_2018_2859203
crossref_primary_10_1016_j_amc_2021_126342
crossref_primary_10_1002_nla_70013
crossref_primary_10_1137_24M1647758
crossref_primary_10_3390_rs10121956
crossref_primary_10_1109_TEVC_2021_3078478
crossref_primary_10_1109_JSTARS_2020_3038778
crossref_primary_10_1016_j_future_2018_07_065
crossref_primary_10_1109_TIP_2020_3005520
crossref_primary_10_1587_transfun_2020EAL2099
crossref_primary_10_1109_JSTARS_2018_2800701
crossref_primary_10_1109_TGRS_2017_2675961
crossref_primary_10_1109_TIP_2023_3245323
crossref_primary_10_1109_JSTARS_2021_3111404
crossref_primary_10_1016_j_sigpro_2024_109449
crossref_primary_10_1109_TAES_2023_3293783
crossref_primary_10_1016_j_neucom_2018_08_038
crossref_primary_10_1016_j_optlastec_2024_111865
crossref_primary_10_1109_TIP_2021_3120037
crossref_primary_10_1109_TGRS_2023_3319405
crossref_primary_10_1109_JSTARS_2018_2805290
crossref_primary_10_1016_j_sigpro_2023_109266
crossref_primary_10_1109_LGRS_2020_3037104
crossref_primary_10_1109_TPAMI_2024_3450575
crossref_primary_10_3390_rs14102348
crossref_primary_10_1109_JSTARS_2024_3398201
crossref_primary_10_1137_18M1202311
crossref_primary_10_1109_LGRS_2018_2811468
crossref_primary_10_3390_rs14133083
crossref_primary_10_1109_JSTARS_2023_3310215
crossref_primary_10_1109_TGRS_2020_2993631
crossref_primary_10_1016_j_patcog_2023_109699
crossref_primary_10_1587_essfr_14_2_138
crossref_primary_10_1109_LGRS_2018_2844555
crossref_primary_10_1080_10106049_2021_1996642
crossref_primary_10_1109_TCSVT_2019_2890880
crossref_primary_10_1109_JSTARS_2022_3185657
crossref_primary_10_1109_TPAMI_2024_3464875
crossref_primary_10_1007_s11263_022_01587_8
crossref_primary_10_1109_ACCESS_2019_2923255
crossref_primary_10_1109_ACCESS_2017_2768580
crossref_primary_10_1109_TGRS_2019_2912909
crossref_primary_10_1109_JSTARS_2021_3064243
crossref_primary_10_3390_e25020260
crossref_primary_10_1109_LGRS_2024_3412804
crossref_primary_10_1109_TIP_2019_2928627
crossref_primary_10_1109_TGRS_2017_2706326
crossref_primary_10_1109_JSTARS_2017_2714338
crossref_primary_10_1109_TGRS_2016_2623626
crossref_primary_10_1109_TGRS_2021_3068465
crossref_primary_10_3390_rs15215174
crossref_primary_10_1109_TIM_2023_3348910
crossref_primary_10_1016_j_neucom_2024_128885
crossref_primary_10_1109_TSP_2023_3290353
crossref_primary_10_1109_TGRS_2022_3201206
crossref_primary_10_3390_rs14133078
crossref_primary_10_1109_ACCESS_2019_2938633
crossref_primary_10_1109_TGRS_2018_2790262
crossref_primary_10_1016_j_neucom_2019_01_004
crossref_primary_10_1109_TGRS_2024_3450888
crossref_primary_10_1109_TGRS_2024_3357981
crossref_primary_10_1007_s11227_025_07037_9
crossref_primary_10_3389_fmed_2023_1061357
crossref_primary_10_1109_TCSVT_2019_2892848
crossref_primary_10_1109_TGRS_2020_2983063
crossref_primary_10_1109_TIP_2022_3169694
crossref_primary_10_1109_TGRS_2018_2833473
crossref_primary_10_1016_j_infrared_2021_103968
crossref_primary_10_1155_2022_7410364
crossref_primary_10_1109_ACCESS_2019_2909310
crossref_primary_10_1109_JSTARS_2020_3012443
crossref_primary_10_1109_MGRS_2017_2762087
crossref_primary_10_1109_TIP_2021_3093780
crossref_primary_10_1049_cit2_12355
crossref_primary_10_1109_JSTARS_2020_2968930
crossref_primary_10_1007_s11263_022_01660_2
crossref_primary_10_1109_TGRS_2025_3543920
crossref_primary_10_3788_LOP222268
crossref_primary_10_1016_j_sigpro_2022_108733
crossref_primary_10_1016_j_patcog_2024_110944
crossref_primary_10_3390_rs16010109
crossref_primary_10_1109_TGRS_2016_2547879
crossref_primary_10_3390_app8112317
crossref_primary_10_3390_ijgi7100412
crossref_primary_10_1109_ACCESS_2019_2944577
crossref_primary_10_3390_rs14184598
crossref_primary_10_1109_TGRS_2016_2524557
crossref_primary_10_1016_j_inffus_2025_102930
crossref_primary_10_1016_j_sigpro_2017_06_012
crossref_primary_10_3390_rs13040819
crossref_primary_10_1109_TGRS_2023_3324147
crossref_primary_10_1109_JSTARS_2022_3228942
crossref_primary_10_3390_rs16122071
crossref_primary_10_1016_j_neucom_2018_10_023
crossref_primary_10_3390_rs12050775
crossref_primary_10_1016_j_engappai_2024_109659
crossref_primary_10_1109_TGRS_2022_3229012
crossref_primary_10_2478_amns_2023_2_00294
crossref_primary_10_1109_TGRS_2024_3364573
crossref_primary_10_1109_TNNLS_2018_2860964
crossref_primary_10_1109_JSTARS_2018_2796570
crossref_primary_10_1109_TNNLS_2023_3293328
crossref_primary_10_1109_TGRS_2022_3177719
crossref_primary_10_1016_j_bspc_2019_101595
crossref_primary_10_1016_j_apm_2023_08_002
crossref_primary_10_1016_j_neucom_2019_04_066
crossref_primary_10_1016_j_artmed_2018_12_006
crossref_primary_10_3390_rs13040827
crossref_primary_10_1080_2150704X_2022_2077152
crossref_primary_10_1016_j_sigpro_2022_108712
crossref_primary_10_1109_TGRS_2022_3229361
crossref_primary_10_1016_j_neucom_2024_128572
crossref_primary_10_1080_01431161_2020_1851064
crossref_primary_10_1016_j_isprsjprs_2020_06_009
crossref_primary_10_1049_iet_ipr_2019_0283
crossref_primary_10_1016_j_isprsjprs_2024_02_018
crossref_primary_10_1007_s11042_018_6251_7
crossref_primary_10_1109_TGRS_2024_3457792
crossref_primary_10_1109_JSTARS_2016_2553520
crossref_primary_10_1109_JSTARS_2024_3356523
crossref_primary_10_1109_JSTARS_2024_3357732
crossref_primary_10_1016_j_neucom_2022_01_057
crossref_primary_10_1016_j_infrared_2023_105039
crossref_primary_10_1016_j_ins_2017_09_058
crossref_primary_10_1109_TGRS_2021_3065570
crossref_primary_10_1109_JSTSP_2018_2873148
crossref_primary_10_1080_01431161_2023_2187720
crossref_primary_10_3390_s24020327
crossref_primary_10_1109_TGRS_2021_3055516
crossref_primary_10_1109_TIP_2017_2718183
crossref_primary_10_3390_app9122529
crossref_primary_10_1109_JSTARS_2024_3437460
crossref_primary_10_1049_iet_ipr_2018_6594
crossref_primary_10_3390_rs9060559
crossref_primary_10_1080_13682199_2024_2449273
crossref_primary_10_1109_TNNLS_2022_3142425
crossref_primary_10_1016_j_jvcir_2018_09_009
crossref_primary_10_1109_TGRS_2024_3414956
crossref_primary_10_1109_JSTARS_2024_3352035
crossref_primary_10_1109_TIP_2019_2926736
crossref_primary_10_1109_ACCESS_2021_3087916
crossref_primary_10_3934_ipi_2021001
crossref_primary_10_1016_j_displa_2022_102200
crossref_primary_10_1016_j_amc_2021_126224
crossref_primary_10_3390_rs14081790
crossref_primary_10_1109_TPAMI_2024_3475249
crossref_primary_10_1109_TGRS_2023_3272906
crossref_primary_10_1109_TGRS_2020_2992032
crossref_primary_10_1016_j_patrec_2020_04_012
crossref_primary_10_1109_TSP_2019_2907264
crossref_primary_10_1016_j_sigpro_2018_12_006
crossref_primary_10_1007_s00034_021_01938_9
crossref_primary_10_1109_TPAMI_2017_2734888
crossref_primary_10_1109_TGRS_2020_3040221
crossref_primary_10_1007_s10994_019_05846_7
crossref_primary_10_1007_s11760_024_03353_4
crossref_primary_10_1109_TCYB_2019_2921827
crossref_primary_10_1007_s10851_020_01004_0
crossref_primary_10_1109_LGRS_2024_3441612
crossref_primary_10_3390_rs14235981
crossref_primary_10_1109_TGRS_2020_2987954
crossref_primary_10_1109_TGRS_2020_2987955
crossref_primary_10_1109_TGRS_2023_3329887
crossref_primary_10_1137_23M1580164
crossref_primary_10_1016_j_jappgeo_2023_104948
crossref_primary_10_1109_TGRS_2021_3137313
crossref_primary_10_1117_1_OE_62_11_118105
crossref_primary_10_1109_JSTARS_2021_3079210
crossref_primary_10_1016_j_engappai_2024_109973
crossref_primary_10_1109_TGRS_2023_3292518
crossref_primary_10_3390_rs12121956
crossref_primary_10_1109_TGRS_2021_3124240
Cites_doi 10.3934/ipi.2008.2.187
10.1016/j.isprsjprs.2013.06.001
10.1109/ICASSP.2014.6855117
10.1109/TIP.2014.2333661
10.1109/TGRS.2012.2185054
10.1109/JSTARS.2013.2264720
10.1109/JSTARS.2015.2398433
10.1145/1970392.1970395
10.1109/TGRS.2012.2191590
10.1109/TGRS.2014.2321557
10.5194/isprsannals-I-7-95-2012
10.1109/TIP.2007.901238
10.1137/120866452
10.1109/JSTARS.2012.2194696
10.1109/ICIP.2012.6467014
10.1109/TGRS.2005.860982
10.1109/JSTARS.2014.2360409
10.1016/j.sigpro.2012.01.020
10.1109/TPAMI.2012.88
10.1109/TGRS.2010.2075937
10.1137/110843642
10.1109/TGRS.2011.2144605
10.1109/LGRS.2011.2169041
10.1137/090761793
10.1109/36.789637
10.1109/TGRS.2008.916641
10.1109/JSTARS.2012.2232904
10.1109/TGRS.2010.2098413
10.1109/79.974730
10.1109/TGRS.2013.2284280
10.1109/TGRS.2008.918089
10.1137/040605412
10.1016/0167-2789(92)90242-F
10.1137/120868281
10.1109/36.3001
10.1109/TIP.2003.819861
10.1109/JSTARS.2014.2311585
10.1109/TIP.2009.2028250
10.1109/JSTARS.2014.2370062
10.1137/080738970
10.1109/TIP.2006.881969
10.1109/TIP.2011.2156801
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2016
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2016
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
7SP
F28
DOI 10.1109/TGRS.2015.2452812
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
ANTE: Abstracts in New Technology & Engineering
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
Electronics & Communications Abstracts
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Aerospace Database
Aerospace Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 188
ExternalDocumentID 3867029561
10_1109_TGRS_2015_2452812
7167714
Genre orig-research
GrantInformation_xml – fundername: Fundamental Research Funds for Central Universities
  grantid: (2015904020202)
– fundername: National Basic Research Program of China (973 Program)
  grantid: 2011CB707105
– fundername: Key Laboratory of Mapping from Space, National Administration of Surveying, Mapping and Geoinformation
– fundername: National Natural Science Foundation of China
  grantid: 61201342; 41431175
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYOK
AAYXX
CITATION
RIG
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
7SP
F28
ID FETCH-LOGICAL-c462t-466f9a7af5113ba4f0ec8c798af6f09a542bdace71e24940dd2fd1e5bfc3cc643
IEDL.DBID RIE
ISSN 0196-2892
IngestDate Fri Jul 11 03:41:25 EDT 2025
Mon Jun 30 08:28:52 EDT 2025
Tue Jul 01 01:33:59 EDT 2025
Thu Apr 24 23:02:55 EDT 2025
Tue Aug 26 16:42:45 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords rank constraint
Hyperspectral image (HSI)
low-rank matrix factorization
total variation (TV)
restoration
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c462t-466f9a7af5113ba4f0ec8c798af6f09a542bdace71e24940dd2fd1e5bfc3cc643
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1733170157
PQPubID 85465
PageCount 11
ParticipantIDs ieee_primary_7167714
crossref_citationtrail_10_1109_TGRS_2015_2452812
proquest_journals_1733170157
crossref_primary_10_1109_TGRS_2015_2452812
proquest_miscellaneous_1778020841
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-01-01
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – month: 01
  year: 2016
  text: 2016-01-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2016
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref17
ref16
(ref51) 0
ref19
ref18
ref50
(ref49) 0
cai (ref21) 2008; 2
ref45
ref47
ref42
ref44
mazumder (ref43) 2010; 11
ref8
ref7
ref9
ref4
ref3
ref6
ref5
he (ref31) 0
ref40
(ref48) 0
ref35
ref34
ref37
ref30
ref33
ref32
ref2
ref1
ref39
mnih (ref41) 0
ref38
lin (ref36) 2009
ref23
ref26
ref25
ref20
ref22
ref28
(ref52) 0
ref27
ref29
bertsekas (ref46) 2014
wang (ref24) 0
References_xml – volume: 2
  start-page: 187
  year: 2008
  ident: ref21
  article-title: Two-phase approach for deblurring images corrupted by impulse plus Gaussian noise
  publication-title: Inverse Problems Imag
  doi: 10.3934/ipi.2008.2.187
– ident: ref11
  doi: 10.1016/j.isprsjprs.2013.06.001
– ident: ref18
  doi: 10.1109/ICASSP.2014.6855117
– ident: ref35
  doi: 10.1109/TIP.2014.2333661
– ident: ref19
  doi: 10.1109/TGRS.2012.2185054
– ident: ref1
  doi: 10.1109/JSTARS.2013.2264720
– ident: ref30
  doi: 10.1109/JSTARS.2015.2398433
– ident: ref23
  doi: 10.1145/1970392.1970395
– ident: ref38
  doi: 10.1109/TGRS.2012.2191590
– ident: ref33
  doi: 10.1109/TGRS.2014.2321557
– year: 0
  ident: ref51
– year: 0
  ident: ref52
– ident: ref17
  doi: 10.5194/isprsannals-I-7-95-2012
– ident: ref6
  doi: 10.1109/TIP.2007.901238
– start-page: 1257
  year: 0
  ident: ref41
  article-title: Probabilistic matrix factorization
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref20
  doi: 10.1137/120866452
– year: 2014
  ident: ref46
  publication-title: Constrained Optimization and Lagrange Multiplier Methods
– year: 2009
  ident: ref36
  publication-title: The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices
– ident: ref3
  doi: 10.1109/JSTARS.2012.2194696
– ident: ref34
  doi: 10.1109/ICIP.2012.6467014
– ident: ref8
  doi: 10.1109/TGRS.2005.860982
– ident: ref22
  doi: 10.1109/JSTARS.2014.2360409
– ident: ref15
  doi: 10.1016/j.sigpro.2012.01.020
– ident: ref37
  doi: 10.1109/TPAMI.2012.88
– ident: ref32
  doi: 10.1109/TGRS.2010.2075937
– ident: ref25
  doi: 10.1137/110843642
– ident: ref2
  doi: 10.1109/TGRS.2011.2144605
– ident: ref10
  doi: 10.1109/LGRS.2011.2169041
– ident: ref44
  doi: 10.1137/090761793
– ident: ref26
  doi: 10.1109/36.789637
– ident: ref9
  doi: 10.1109/TGRS.2008.916641
– ident: ref12
  doi: 10.1109/JSTARS.2012.2232904
– ident: ref14
  doi: 10.1109/TGRS.2010.2098413
– ident: ref4
  doi: 10.1109/79.974730
– ident: ref27
  doi: 10.1109/TGRS.2013.2284280
– start-page: 126
  year: 0
  ident: ref24
  article-title: A probabilistic approach to robust matrix factorization
  publication-title: Computer Vision-ECCV
– start-page: 1536
  year: 0
  ident: ref31
  article-title: A noise-adjusted iterative randomized singular value decomposition method for hyperspectral image denoising
  publication-title: Proc IEEE IGARSS
– ident: ref47
  doi: 10.1109/TGRS.2008.918089
– ident: ref13
  doi: 10.1137/040605412
– ident: ref39
  doi: 10.1016/0167-2789(92)90242-F
– ident: ref16
  doi: 10.1137/120868281
– ident: ref7
  doi: 10.1109/36.3001
– ident: ref50
  doi: 10.1109/TIP.2003.819861
– ident: ref28
  doi: 10.1109/JSTARS.2014.2311585
– volume: 11
  start-page: 2287
  year: 2010
  ident: ref43
  article-title: Spectral regularization algorithms for learning large incomplete matrices
  publication-title: J Mach Learn Res
– year: 0
  ident: ref48
– ident: ref40
  doi: 10.1109/TIP.2009.2028250
– ident: ref29
  doi: 10.1109/JSTARS.2014.2370062
– ident: ref45
  doi: 10.1137/080738970
– ident: ref5
  doi: 10.1109/TIP.2006.881969
– ident: ref42
  doi: 10.1109/TIP.2011.2156801
– year: 0
  ident: ref49
SSID ssj0014517
Score 2.6504722
Snippet In this paper, we present a spatial spectral hyperspectral image (HSI) mixed-noise removal method named total variation (TV)-regularized low-rank matrix...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 178
SubjectTerms Factorization
Gaussian
Gaussian noise
Hyperspectral image (HSI)
Hyperspectral imaging
Image restoration
low-rank matrix factorization
Noise
Norms
rank constraint
Regularization
restoration
Sparse matrices
Spectra
Television
total variation (TV)
Title Total-Variation-Regularized Low-Rank Matrix Factorization for Hyperspectral Image Restoration
URI https://ieeexplore.ieee.org/document/7167714
https://www.proquest.com/docview/1733170157
https://www.proquest.com/docview/1778020841
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS9xAFD6oIOiD15auN1LoU-msmexMJnkUcV2l24d1Lb6UMJkLFDWRdRfFX--ZyWxQW8S3QM7JBL65nDPn8gF841mqNBeUZFwLwmTOSNbLDEkEzg9jU2k9a8nwVzq4ZOdX_GoBfrS1MMYYn3xmuu7Rx_J1rWbuquwQbXshHGv1IjpuTa1WGzFgnIbS6JSgE5GECCaN88Px6ejCJXHxrgszZjR5dQZ5UpV_dmJ_vPTXYTj_sSar5Lo7m5Zd9fSmZ-NH_3wD1oKdGR01E2MTFky1Basvug9uwbLP_lT32_BnXKMNTn6j3-yBIiPPUD_5-2R09LN-ICNZXUdD183_Mep7hp5QvhmhzRsN0JdtSjYnOOTZLW5R0cgz1niZT3DZPxkfD0jgXSCKpcmUsDS1uRTSojHWKyWzsVGZEnkmbWrjXHKWlFoqI6hB543FWidWU8NLq3pKoYnzGZaqujJfIKIl6qB6HEvHuq7yXEjHYUUl14xz24F4jkShQlNyx41xU3jnJM4LB17hwCsCeB343qrcNR053hPedmC0ggGHDuzN4S7Cmr0vqKOvFKgsOvC1fY2rzYVQZGXqmZMRmaM1ZXTn_1_ehRUcP1zS7MHSdDIz-2i2TMsDP1-fAXHL6kM
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEB4hUNVygBaKCKXFlXqq2MTr7HrtI0KkgSYc0oC4VNZ6HxICbBQSgfj1nV1vrL5U9WbJM_ZK3z5mdh4fwCeepUpzQUnGtSBM5oxk_cyQROD8MDaV1rOWjM_T4QU7u-JXK3DY1sIYY3zymem6Rx_L17VauKuyHtr2QjjW6jU89zltqrXamAHjNBRHpwTdiCTEMGmc96ZfJt9cGhfvukBjRpNfTiFPq_LHXuwPmMEmjJdDa_JKbrqLedlVz791bfzfsb-GjWBpRkfN1HgDK6bagvWf-g9uwQuf_6ketuH7tEYrnFyi5-yhIhPPUT-7fjY6GtWPZCKrm2js-vk_RQPP0RMKOCO0eqMherNN0eYMf3l6h5tUNPGcNV7mLVwMTqbHQxKYF4hiaTInLE1tLoW0aI71S8lsbFSmRJ5Jm9o4l5wlpZbKCGrQfWOx1onV1PDSqr5SaOTswGpVV2YXIlqiDqrHsXS86yrPhXQsVlRyjSDaDsRLJAoV2pI7dozbwrsncV448AoHXhHA68DnVuW-6cnxL-FtB0YrGHDowP4S7iKs2oeCOgJLgcqiAx_b17jeXBBFVqZeOBmROWJTRvf-_uUDeDmcjkfF6PT86zt4hWMJVzb7sDqfLcx7NGLm5Qc_d38AzZHtjA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Total-Variation-Regularized+Low-Rank+Matrix+Factorization+for+Hyperspectral+Image+Restoration&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=He%2C+Wei&rft.au=Zhang%2C+Hongyan&rft.au=Zhang%2C+Liangpei&rft.au=Shen%2C+Huanfeng&rft.date=2016-01-01&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=54&rft.issue=1&rft.spage=178&rft.epage=188&rft_id=info:doi/10.1109%2FTGRS.2015.2452812&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGRS_2015_2452812
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon