Total-Variation-Regularized Low-Rank Matrix Factorization for Hyperspectral Image Restoration
In this paper, we present a spatial spectral hyperspectral image (HSI) mixed-noise removal method named total variation (TV)-regularized low-rank matrix factorization (LRTV). In general, HSIs are not only assumed to lie in a low-rank subspace from the spectral perspective but also assumed to be piec...
Saved in:
Published in | IEEE transactions on geoscience and remote sensing Vol. 54; no. 1; pp. 178 - 188 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.01.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we present a spatial spectral hyperspectral image (HSI) mixed-noise removal method named total variation (TV)-regularized low-rank matrix factorization (LRTV). In general, HSIs are not only assumed to lie in a low-rank subspace from the spectral perspective but also assumed to be piecewise smooth in the spatial dimension. The proposed method integrates the nuclear norm, TV regularization, and L 1 -norm together in a unified framework. The nuclear norm is used to exploit the spectral low-rank property, and the TV regularization is adopted to explore the spatial piecewise smooth structure of the HSI. At the same time, the sparse noise, which includes stripes, impulse noise, and dead pixels, is detected by the L 1 -norm regularization. To tradeoff the nuclear norm and TV regularization and to further remove the Gaussian noise of the HSI, we also restrict the rank of the clean image to be no larger than the number of endmembers. A number of experiments were conducted in both simulated and real data conditions to illustrate the performance of the proposed LRTV method for HSI restoration. |
---|---|
AbstractList | In this paper, we present a spatial spectral hyperspectral image (HSI) mixed-noise removal method named total variation (TV)-regularized low-rank matrix factorization (LRTV). In general, HSIs are not only assumed to lie in a low-rank subspace from the spectral perspective but also assumed to be piecewise smooth in the spatial dimension. The proposed method integrates the nuclear norm, TV regularization, and [Formula Omitted]-norm together in a unified framework. The nuclear norm is used to exploit the spectral low-rank property, and the TV regularization is adopted to explore the spatial piecewise smooth structure of the HSI. At the same time, the sparse noise, which includes stripes, impulse noise, and dead pixels, is detected by the [Formula Omitted]-norm regularization. To tradeoff the nuclear norm and TV regularization and to further remove the Gaussian noise of the HSI, we also restrict the rank of the clean image to be no larger than the number of endmembers. A number of experiments were conducted in both simulated and real data conditions to illustrate the performance of the proposed LRTV method for HSI restoration. In this paper, we present a spatial spectral hyperspectral image (HSI) mixed-noise removal method named total variation (TV)-regularized low-rank matrix factorization (LRTV). In general, HSIs are not only assumed to lie in a low-rank subspace from the spectral perspective but also assumed to be piecewise smooth in the spatial dimension. The proposed method integrates the nuclear norm, TV regularization, and $L_1$-norm together in a unified framework. The nuclear norm is used to exploit the spectral low-rank property, and the TV regularization is adopted to explore the spatial piecewise smooth structure of the HSI. At the same time, the sparse noise, which includes stripes, impulse noise, and dead pixels, is detected by the $L_1$-norm regularization. To tradeoff the nuclear norm and TV regularization and to further remove the Gaussian noise of the HSI, we also restrict the rank of the clean image to be no larger than the number of endmembers. A number of experiments were conducted in both simulated and real data conditions to illustrate the performance of the proposed LRTV method for HSI restoration. |
Author | Huanfeng Shen Hongyan Zhang Wei He Liangpei Zhang |
Author_xml | – sequence: 1 givenname: Wei surname: He fullname: He, Wei – sequence: 2 givenname: Hongyan surname: Zhang fullname: Zhang, Hongyan – sequence: 3 givenname: Liangpei surname: Zhang fullname: Zhang, Liangpei – sequence: 4 givenname: Huanfeng surname: Shen fullname: Shen, Huanfeng |
BookMark | eNp9kE1Lw0AQhhepYKv-APES8OIldWezySZHKVaFilCrNwnTzaykptm6m-LHr3fbigcPnoZhnndmeAas19qWGDsBPgTgxcXsevowFBzSoZCpyEHssT6kaR7zTMoe63MosljkhThgA-8XnINMQfXZ88x22MRP6GrsatvGU3pZN6H7oiqa2Pd4iu1rdIedqz-iMerOhtGWjIx10c3nipxfke4cNtHtEl8ompIP1JY5YvsGG0_HP_WQPY6vZqObeHJ_fTu6nMRaZqKLZZaZAhWaFCCZozScdK5VkaPJDC8wlWJeoSYFJGQheVUJUwGlc6MTrTOZHLLz3d6Vs2_rcL9c1l5T02BLdu1LUCrngucSAnr2B13YtWvDd4FKElDBoQoU7CjtrPeOTLly9RLdZwm83AgvN8LLjfDyR3jIqD8ZXXdbDUFO3fybPN0layL6vaQgUwpk8g2Uk5FS |
CODEN | IGRSD2 |
CitedBy_id | crossref_primary_10_1109_JSTARS_2021_3129622 crossref_primary_10_1109_TGRS_2020_2985400 crossref_primary_10_3390_math10203810 crossref_primary_10_1109_TGRS_2018_2866439 crossref_primary_10_1109_ACCESS_2020_2979809 crossref_primary_10_1109_TGRS_2019_2946050 crossref_primary_10_3390_rs15081970 crossref_primary_10_1016_j_patcog_2022_108692 crossref_primary_10_1109_TPAMI_2020_3027563 crossref_primary_10_23939_mmc2022_02_365 crossref_primary_10_1109_JSTARS_2016_2519498 crossref_primary_10_1016_j_sigpro_2021_108060 crossref_primary_10_1016_j_apm_2017_04_002 crossref_primary_10_1109_TGRS_2020_3046038 crossref_primary_10_1155_2023_4685563 crossref_primary_10_1109_JSTARS_2024_3379558 crossref_primary_10_3389_fmars_2024_1452737 crossref_primary_10_3390_rs12213541 crossref_primary_10_1109_LGRS_2021_3113078 crossref_primary_10_1109_TGRS_2024_3385536 crossref_primary_10_3390_ijgi7100389 crossref_primary_10_3390_s20195567 crossref_primary_10_1109_TCI_2024_3485467 crossref_primary_10_1109_TGRS_2017_2766094 crossref_primary_10_3390_rs10030361 crossref_primary_10_3390_rs10030482 crossref_primary_10_1109_TGRS_2021_3064429 crossref_primary_10_1109_TCYB_2017_2677944 crossref_primary_10_1016_j_patcog_2021_108280 crossref_primary_10_1016_j_sigpro_2020_107805 crossref_primary_10_1109_JSTARS_2023_3286974 crossref_primary_10_1109_TGRS_2019_2948361 crossref_primary_10_1109_TGRS_2023_3347752 crossref_primary_10_1109_TGRS_2025_3549625 crossref_primary_10_3390_rs12142264 crossref_primary_10_1109_TGRS_2024_3442887 crossref_primary_10_1109_TCSVT_2022_3214583 crossref_primary_10_1109_LGRS_2023_3264522 crossref_primary_10_1145_3510373 crossref_primary_10_1016_j_isprsjprs_2018_07_006 crossref_primary_10_1080_07038992_2016_1158094 crossref_primary_10_1109_LGRS_2017_2701805 crossref_primary_10_1016_j_dsp_2019_08_001 crossref_primary_10_1109_ACCESS_2021_3137656 crossref_primary_10_3390_rs14092071 crossref_primary_10_1109_ACCESS_2017_2778947 crossref_primary_10_1109_JSTARS_2021_3138564 crossref_primary_10_1109_TKDE_2020_3037131 crossref_primary_10_1080_2150704X_2023_2195567 crossref_primary_10_1109_JSTARS_2023_3257051 crossref_primary_10_1109_TGRS_2020_3045169 crossref_primary_10_1117_1_JEI_31_4_043044 crossref_primary_10_1109_LGRS_2019_2937625 crossref_primary_10_3390_rs14030511 crossref_primary_10_1109_JSTARS_2020_3024911 crossref_primary_10_1016_j_isprsjprs_2019_09_003 crossref_primary_10_1109_TGRS_2020_2996686 crossref_primary_10_1109_TGRS_2019_2924017 crossref_primary_10_1109_LGRS_2017_2764059 crossref_primary_10_1016_j_cviu_2020_103004 crossref_primary_10_1117_1_JRS_13_036502 crossref_primary_10_1109_TGRS_2019_2935150 crossref_primary_10_3390_electronics14020238 crossref_primary_10_1109_JSTSP_2021_3058503 crossref_primary_10_1016_j_isprsjprs_2020_04_010 crossref_primary_10_1109_TGRS_2019_2939512 crossref_primary_10_1049_iet_ipr_2019_1409 crossref_primary_10_1109_TGRS_2023_3311482 crossref_primary_10_1109_TIP_2022_3211471 crossref_primary_10_1016_j_knosys_2024_112273 crossref_primary_10_1016_j_neucom_2024_129266 crossref_primary_10_1093_bib_bbae649 crossref_primary_10_1109_TGRS_2022_3206783 crossref_primary_10_3390_app131810363 crossref_primary_10_1016_j_neucom_2021_05_075 crossref_primary_10_1109_JSTARS_2019_2953378 crossref_primary_10_1109_TIP_2020_2994411 crossref_primary_10_1002_mp_15387 crossref_primary_10_1007_s11432_022_3609_4 crossref_primary_10_1109_ACCESS_2020_2988684 crossref_primary_10_1109_TGRS_2020_3007945 crossref_primary_10_3390_rs15020490 crossref_primary_10_1109_JSTARS_2019_2940065 crossref_primary_10_1049_iet_ipr_2019_1763 crossref_primary_10_1109_TGRS_2019_2957153 crossref_primary_10_1016_j_jfranklin_2024_107282 crossref_primary_10_3390_rs14143338 crossref_primary_10_1109_TGRS_2024_3490773 crossref_primary_10_1016_j_neunet_2019_12_023 crossref_primary_10_1109_TNNLS_2023_3243808 crossref_primary_10_1109_TGRS_2018_2862384 crossref_primary_10_1016_j_neucom_2020_01_103 crossref_primary_10_3390_rs9101044 crossref_primary_10_1109_TPAMI_2022_3204203 crossref_primary_10_3390_rs16244721 crossref_primary_10_1109_TGRS_2022_3229301 crossref_primary_10_1109_TGRS_2018_2868796 crossref_primary_10_3389_fmars_2024_1447189 crossref_primary_10_1109_TGRS_2020_3006757 crossref_primary_10_1109_TGRS_2021_3061148 crossref_primary_10_1109_ACCESS_2022_3233831 crossref_primary_10_1109_TCYB_2022_3208095 crossref_primary_10_3390_rs16111937 crossref_primary_10_1109_TGRS_2020_2999634 crossref_primary_10_1109_ACCESS_2019_2911864 crossref_primary_10_1109_TNNLS_2020_2978756 crossref_primary_10_1016_j_neucom_2020_07_022 crossref_primary_10_1016_j_knosys_2022_108590 crossref_primary_10_1109_TNNLS_2024_3359852 crossref_primary_10_1109_TGRS_2023_3268944 crossref_primary_10_1109_TGRS_2017_2683719 crossref_primary_10_3390_rs16152694 crossref_primary_10_1109_TGRS_2020_3040879 crossref_primary_10_1109_TGRS_2019_2947333 crossref_primary_10_1109_TIP_2022_3196826 crossref_primary_10_1016_j_trc_2021_103228 crossref_primary_10_3390_rs10101631 crossref_primary_10_1109_TGRS_2024_3379199 crossref_primary_10_1109_LGRS_2021_3062657 crossref_primary_10_1016_j_trc_2024_104890 crossref_primary_10_1109_LGRS_2024_3383874 crossref_primary_10_3390_rs10060817 crossref_primary_10_1109_LGRS_2023_3307411 crossref_primary_10_1109_ACCESS_2023_3304005 crossref_primary_10_1016_j_amc_2024_128980 crossref_primary_10_1016_j_sigpro_2024_109718 crossref_primary_10_1002_mp_16550 crossref_primary_10_3390_rs9040335 crossref_primary_10_1002_nbm_5027 crossref_primary_10_1016_j_inffus_2021_07_003 crossref_primary_10_1109_TGRS_2020_3025601 crossref_primary_10_1109_TGRS_2021_3085779 crossref_primary_10_1016_j_ins_2024_121176 crossref_primary_10_1109_TGRS_2021_3131878 crossref_primary_10_1109_TGRS_2024_3493164 crossref_primary_10_1109_TGRS_2017_2771155 crossref_primary_10_1007_s13042_023_01942_2 crossref_primary_10_1109_TGRS_2020_2978276 crossref_primary_10_3390_rs14051276 crossref_primary_10_1049_iet_ipr_2017_0603 crossref_primary_10_1109_TAES_2023_3285195 crossref_primary_10_1109_ACCESS_2020_2996303 crossref_primary_10_1109_TCYB_2021_3051656 crossref_primary_10_1109_TIP_2024_3360902 crossref_primary_10_1049_ipr2_12585 crossref_primary_10_1109_ACCESS_2020_2982494 crossref_primary_10_1109_TGRS_2017_2711640 crossref_primary_10_1051_matecconf_201817303084 crossref_primary_10_1016_j_sigpro_2024_109706 crossref_primary_10_1109_TGRS_2022_3228927 crossref_primary_10_1109_TGRS_2024_3458395 crossref_primary_10_1109_TIP_2019_2907478 crossref_primary_10_1109_JSTARS_2024_3382325 crossref_primary_10_1109_MGRS_2021_3075491 crossref_primary_10_3390_s17092087 crossref_primary_10_1109_TGRS_2020_3024623 crossref_primary_10_1016_j_sigpro_2020_107645 crossref_primary_10_1109_TGRS_2022_3214542 crossref_primary_10_1109_JSTARS_2023_3301149 crossref_primary_10_1016_j_rse_2019_111416 crossref_primary_10_1109_LGRS_2023_3255413 crossref_primary_10_1109_TGRS_2023_3323955 crossref_primary_10_1109_TGRS_2023_3254505 crossref_primary_10_1109_TCI_2024_3384812 crossref_primary_10_1016_j_displa_2022_102197 crossref_primary_10_1109_JSEN_2024_3462305 crossref_primary_10_1016_j_patcog_2020_107505 crossref_primary_10_1109_TGRS_2022_3182745 crossref_primary_10_1109_TGRS_2017_2743110 crossref_primary_10_3390_s18010060 crossref_primary_10_1109_TNNLS_2023_3278866 crossref_primary_10_1109_JSTARS_2019_2915842 crossref_primary_10_3390_rs13214231 crossref_primary_10_1109_TGRS_2022_3227735 crossref_primary_10_3390_rs16101686 crossref_primary_10_1109_TGRS_2024_3458174 crossref_primary_10_1109_TMI_2024_3412033 crossref_primary_10_1016_j_neucom_2023_126772 crossref_primary_10_1016_j_infrared_2023_104729 crossref_primary_10_1155_2021_1589182 crossref_primary_10_3390_rs12020212 crossref_primary_10_3390_app10113694 crossref_primary_10_1109_TGRS_2023_3324821 crossref_primary_10_3390_rs17061021 crossref_primary_10_1109_LSP_2020_3047576 crossref_primary_10_1109_TGRS_2022_3167475 crossref_primary_10_3390_rs14030467 crossref_primary_10_3390_app9173583 crossref_primary_10_1117_1_JEI_33_4_043015 crossref_primary_10_1109_JSTARS_2016_2531178 crossref_primary_10_1080_01431161_2017_1382742 crossref_primary_10_3390_rs9111145 crossref_primary_10_1109_ACCESS_2018_2817071 crossref_primary_10_3390_s16101718 crossref_primary_10_1515_jisys_2018_0492 crossref_primary_10_1109_LGRS_2021_3073176 crossref_primary_10_1016_j_sigpro_2016_07_031 crossref_primary_10_1109_JSTARS_2018_2866815 crossref_primary_10_3390_rs11242897 crossref_primary_10_1109_TGRS_2019_2897316 crossref_primary_10_1109_ACCESS_2018_2808474 crossref_primary_10_1109_LGRS_2021_3066627 crossref_primary_10_1109_JSTARS_2020_3042966 crossref_primary_10_1109_JSTARS_2023_3327860 crossref_primary_10_1109_JSTARS_2018_2877722 crossref_primary_10_1109_TGRS_2022_3202359 crossref_primary_10_1109_TGRS_2018_2872888 crossref_primary_10_1016_j_infrared_2018_08_012 crossref_primary_10_1016_j_sigpro_2020_107607 crossref_primary_10_3390_s22197348 crossref_primary_10_1016_j_sigpro_2023_109248 crossref_primary_10_1109_TPAMI_2023_3259640 crossref_primary_10_1109_ACCESS_2018_2876038 crossref_primary_10_1016_j_apm_2018_06_044 crossref_primary_10_1016_j_neucom_2024_128912 crossref_primary_10_1109_TGRS_2022_3156646 crossref_primary_10_1007_s11045_020_00738_9 crossref_primary_10_1109_TGRS_2021_3069241 crossref_primary_10_1109_LSP_2018_2850218 crossref_primary_10_1109_JSTARS_2023_3281808 crossref_primary_10_1007_s00371_020_01951_0 crossref_primary_10_1109_TGRS_2020_3032168 crossref_primary_10_1109_LGRS_2016_2536658 crossref_primary_10_1016_j_neucom_2018_07_052 crossref_primary_10_1109_TGRS_2017_2670021 crossref_primary_10_1109_TGRS_2021_3071799 crossref_primary_10_1109_TGRS_2023_3324606 crossref_primary_10_1109_TNNLS_2018_2874432 crossref_primary_10_3390_math11071682 crossref_primary_10_1109_TBDATA_2023_3254156 crossref_primary_10_1049_iet_ipr_2019_0803 crossref_primary_10_1109_TGRS_2023_3242728 crossref_primary_10_1109_TGRS_2019_2933555 crossref_primary_10_1109_MGRS_2021_3064051 crossref_primary_10_1109_TSP_2020_2971441 crossref_primary_10_12677_jisp_2024_132013 crossref_primary_10_1016_j_neucom_2019_08_017 crossref_primary_10_1109_LGRS_2023_3329936 crossref_primary_10_3390_rs9121286 crossref_primary_10_1016_j_ejrs_2024_01_005 crossref_primary_10_1109_TGRS_2021_3106380 crossref_primary_10_1109_TCI_2019_2911881 crossref_primary_10_1109_JSTARS_2017_2779539 crossref_primary_10_1089_cmb_2023_0107 crossref_primary_10_1109_TIP_2016_2593343 crossref_primary_10_12677_jisp_2024_132015 crossref_primary_10_1109_LGRS_2024_3370299 crossref_primary_10_1007_s10915_024_02509_1 crossref_primary_10_1109_TGRS_2021_3110769 crossref_primary_10_3390_rs12182979 crossref_primary_10_1109_LGRS_2022_3141801 crossref_primary_10_1109_TGRS_2016_2594080 crossref_primary_10_1109_JSTARS_2019_2896031 crossref_primary_10_1109_TIM_2023_3251399 crossref_primary_10_1109_TITS_2023_3247961 crossref_primary_10_1016_j_engappai_2025_110508 crossref_primary_10_1364_AO_421081 crossref_primary_10_1016_j_neucom_2017_05_018 crossref_primary_10_1109_LGRS_2022_3217581 crossref_primary_10_1109_TGRS_2023_3318521 crossref_primary_10_1109_TIP_2020_3007840 crossref_primary_10_1016_j_sigpro_2019_04_029 crossref_primary_10_3390_rs8060499 crossref_primary_10_1109_TGRS_2018_2852708 crossref_primary_10_1007_s11082_019_2092_5 crossref_primary_10_1109_TGRS_2023_3297627 crossref_primary_10_1007_s00530_021_00812_7 crossref_primary_10_1109_TGRS_2022_3202714 crossref_primary_10_1016_j_jfoodeng_2023_111662 crossref_primary_10_1016_j_sigpro_2025_109960 crossref_primary_10_1088_1742_6596_1438_1_012024 crossref_primary_10_1109_TGRS_2019_2937901 crossref_primary_10_1109_TGRS_2022_3158901 crossref_primary_10_1109_JSTARS_2024_3373466 crossref_primary_10_1109_TCYB_2019_2936042 crossref_primary_10_1109_TGRS_2023_3308936 crossref_primary_10_1109_TCYB_2020_2983102 crossref_primary_10_1109_TGRS_2024_3457010 crossref_primary_10_1016_j_bspc_2019_101766 crossref_primary_10_1155_2021_5535169 crossref_primary_10_1109_TGRS_2018_2859203 crossref_primary_10_1016_j_amc_2021_126342 crossref_primary_10_1002_nla_70013 crossref_primary_10_1137_24M1647758 crossref_primary_10_3390_rs10121956 crossref_primary_10_1109_TEVC_2021_3078478 crossref_primary_10_1109_JSTARS_2020_3038778 crossref_primary_10_1016_j_future_2018_07_065 crossref_primary_10_1109_TIP_2020_3005520 crossref_primary_10_1587_transfun_2020EAL2099 crossref_primary_10_1109_JSTARS_2018_2800701 crossref_primary_10_1109_TGRS_2017_2675961 crossref_primary_10_1109_TIP_2023_3245323 crossref_primary_10_1109_JSTARS_2021_3111404 crossref_primary_10_1016_j_sigpro_2024_109449 crossref_primary_10_1109_TAES_2023_3293783 crossref_primary_10_1016_j_neucom_2018_08_038 crossref_primary_10_1016_j_optlastec_2024_111865 crossref_primary_10_1109_TIP_2021_3120037 crossref_primary_10_1109_TGRS_2023_3319405 crossref_primary_10_1109_JSTARS_2018_2805290 crossref_primary_10_1016_j_sigpro_2023_109266 crossref_primary_10_1109_LGRS_2020_3037104 crossref_primary_10_1109_TPAMI_2024_3450575 crossref_primary_10_3390_rs14102348 crossref_primary_10_1109_JSTARS_2024_3398201 crossref_primary_10_1137_18M1202311 crossref_primary_10_1109_LGRS_2018_2811468 crossref_primary_10_3390_rs14133083 crossref_primary_10_1109_JSTARS_2023_3310215 crossref_primary_10_1109_TGRS_2020_2993631 crossref_primary_10_1016_j_patcog_2023_109699 crossref_primary_10_1587_essfr_14_2_138 crossref_primary_10_1109_LGRS_2018_2844555 crossref_primary_10_1080_10106049_2021_1996642 crossref_primary_10_1109_TCSVT_2019_2890880 crossref_primary_10_1109_JSTARS_2022_3185657 crossref_primary_10_1109_TPAMI_2024_3464875 crossref_primary_10_1007_s11263_022_01587_8 crossref_primary_10_1109_ACCESS_2019_2923255 crossref_primary_10_1109_ACCESS_2017_2768580 crossref_primary_10_1109_TGRS_2019_2912909 crossref_primary_10_1109_JSTARS_2021_3064243 crossref_primary_10_3390_e25020260 crossref_primary_10_1109_LGRS_2024_3412804 crossref_primary_10_1109_TIP_2019_2928627 crossref_primary_10_1109_TGRS_2017_2706326 crossref_primary_10_1109_JSTARS_2017_2714338 crossref_primary_10_1109_TGRS_2016_2623626 crossref_primary_10_1109_TGRS_2021_3068465 crossref_primary_10_3390_rs15215174 crossref_primary_10_1109_TIM_2023_3348910 crossref_primary_10_1016_j_neucom_2024_128885 crossref_primary_10_1109_TSP_2023_3290353 crossref_primary_10_1109_TGRS_2022_3201206 crossref_primary_10_3390_rs14133078 crossref_primary_10_1109_ACCESS_2019_2938633 crossref_primary_10_1109_TGRS_2018_2790262 crossref_primary_10_1016_j_neucom_2019_01_004 crossref_primary_10_1109_TGRS_2024_3450888 crossref_primary_10_1109_TGRS_2024_3357981 crossref_primary_10_1007_s11227_025_07037_9 crossref_primary_10_3389_fmed_2023_1061357 crossref_primary_10_1109_TCSVT_2019_2892848 crossref_primary_10_1109_TGRS_2020_2983063 crossref_primary_10_1109_TIP_2022_3169694 crossref_primary_10_1109_TGRS_2018_2833473 crossref_primary_10_1016_j_infrared_2021_103968 crossref_primary_10_1155_2022_7410364 crossref_primary_10_1109_ACCESS_2019_2909310 crossref_primary_10_1109_JSTARS_2020_3012443 crossref_primary_10_1109_MGRS_2017_2762087 crossref_primary_10_1109_TIP_2021_3093780 crossref_primary_10_1049_cit2_12355 crossref_primary_10_1109_JSTARS_2020_2968930 crossref_primary_10_1007_s11263_022_01660_2 crossref_primary_10_1109_TGRS_2025_3543920 crossref_primary_10_3788_LOP222268 crossref_primary_10_1016_j_sigpro_2022_108733 crossref_primary_10_1016_j_patcog_2024_110944 crossref_primary_10_3390_rs16010109 crossref_primary_10_1109_TGRS_2016_2547879 crossref_primary_10_3390_app8112317 crossref_primary_10_3390_ijgi7100412 crossref_primary_10_1109_ACCESS_2019_2944577 crossref_primary_10_3390_rs14184598 crossref_primary_10_1109_TGRS_2016_2524557 crossref_primary_10_1016_j_inffus_2025_102930 crossref_primary_10_1016_j_sigpro_2017_06_012 crossref_primary_10_3390_rs13040819 crossref_primary_10_1109_TGRS_2023_3324147 crossref_primary_10_1109_JSTARS_2022_3228942 crossref_primary_10_3390_rs16122071 crossref_primary_10_1016_j_neucom_2018_10_023 crossref_primary_10_3390_rs12050775 crossref_primary_10_1016_j_engappai_2024_109659 crossref_primary_10_1109_TGRS_2022_3229012 crossref_primary_10_2478_amns_2023_2_00294 crossref_primary_10_1109_TGRS_2024_3364573 crossref_primary_10_1109_TNNLS_2018_2860964 crossref_primary_10_1109_JSTARS_2018_2796570 crossref_primary_10_1109_TNNLS_2023_3293328 crossref_primary_10_1109_TGRS_2022_3177719 crossref_primary_10_1016_j_bspc_2019_101595 crossref_primary_10_1016_j_apm_2023_08_002 crossref_primary_10_1016_j_neucom_2019_04_066 crossref_primary_10_1016_j_artmed_2018_12_006 crossref_primary_10_3390_rs13040827 crossref_primary_10_1080_2150704X_2022_2077152 crossref_primary_10_1016_j_sigpro_2022_108712 crossref_primary_10_1109_TGRS_2022_3229361 crossref_primary_10_1016_j_neucom_2024_128572 crossref_primary_10_1080_01431161_2020_1851064 crossref_primary_10_1016_j_isprsjprs_2020_06_009 crossref_primary_10_1049_iet_ipr_2019_0283 crossref_primary_10_1016_j_isprsjprs_2024_02_018 crossref_primary_10_1007_s11042_018_6251_7 crossref_primary_10_1109_TGRS_2024_3457792 crossref_primary_10_1109_JSTARS_2016_2553520 crossref_primary_10_1109_JSTARS_2024_3356523 crossref_primary_10_1109_JSTARS_2024_3357732 crossref_primary_10_1016_j_neucom_2022_01_057 crossref_primary_10_1016_j_infrared_2023_105039 crossref_primary_10_1016_j_ins_2017_09_058 crossref_primary_10_1109_TGRS_2021_3065570 crossref_primary_10_1109_JSTSP_2018_2873148 crossref_primary_10_1080_01431161_2023_2187720 crossref_primary_10_3390_s24020327 crossref_primary_10_1109_TGRS_2021_3055516 crossref_primary_10_1109_TIP_2017_2718183 crossref_primary_10_3390_app9122529 crossref_primary_10_1109_JSTARS_2024_3437460 crossref_primary_10_1049_iet_ipr_2018_6594 crossref_primary_10_3390_rs9060559 crossref_primary_10_1080_13682199_2024_2449273 crossref_primary_10_1109_TNNLS_2022_3142425 crossref_primary_10_1016_j_jvcir_2018_09_009 crossref_primary_10_1109_TGRS_2024_3414956 crossref_primary_10_1109_JSTARS_2024_3352035 crossref_primary_10_1109_TIP_2019_2926736 crossref_primary_10_1109_ACCESS_2021_3087916 crossref_primary_10_3934_ipi_2021001 crossref_primary_10_1016_j_displa_2022_102200 crossref_primary_10_1016_j_amc_2021_126224 crossref_primary_10_3390_rs14081790 crossref_primary_10_1109_TPAMI_2024_3475249 crossref_primary_10_1109_TGRS_2023_3272906 crossref_primary_10_1109_TGRS_2020_2992032 crossref_primary_10_1016_j_patrec_2020_04_012 crossref_primary_10_1109_TSP_2019_2907264 crossref_primary_10_1016_j_sigpro_2018_12_006 crossref_primary_10_1007_s00034_021_01938_9 crossref_primary_10_1109_TPAMI_2017_2734888 crossref_primary_10_1109_TGRS_2020_3040221 crossref_primary_10_1007_s10994_019_05846_7 crossref_primary_10_1007_s11760_024_03353_4 crossref_primary_10_1109_TCYB_2019_2921827 crossref_primary_10_1007_s10851_020_01004_0 crossref_primary_10_1109_LGRS_2024_3441612 crossref_primary_10_3390_rs14235981 crossref_primary_10_1109_TGRS_2020_2987954 crossref_primary_10_1109_TGRS_2020_2987955 crossref_primary_10_1109_TGRS_2023_3329887 crossref_primary_10_1137_23M1580164 crossref_primary_10_1016_j_jappgeo_2023_104948 crossref_primary_10_1109_TGRS_2021_3137313 crossref_primary_10_1117_1_OE_62_11_118105 crossref_primary_10_1109_JSTARS_2021_3079210 crossref_primary_10_1016_j_engappai_2024_109973 crossref_primary_10_1109_TGRS_2023_3292518 crossref_primary_10_3390_rs12121956 crossref_primary_10_1109_TGRS_2021_3124240 |
Cites_doi | 10.3934/ipi.2008.2.187 10.1016/j.isprsjprs.2013.06.001 10.1109/ICASSP.2014.6855117 10.1109/TIP.2014.2333661 10.1109/TGRS.2012.2185054 10.1109/JSTARS.2013.2264720 10.1109/JSTARS.2015.2398433 10.1145/1970392.1970395 10.1109/TGRS.2012.2191590 10.1109/TGRS.2014.2321557 10.5194/isprsannals-I-7-95-2012 10.1109/TIP.2007.901238 10.1137/120866452 10.1109/JSTARS.2012.2194696 10.1109/ICIP.2012.6467014 10.1109/TGRS.2005.860982 10.1109/JSTARS.2014.2360409 10.1016/j.sigpro.2012.01.020 10.1109/TPAMI.2012.88 10.1109/TGRS.2010.2075937 10.1137/110843642 10.1109/TGRS.2011.2144605 10.1109/LGRS.2011.2169041 10.1137/090761793 10.1109/36.789637 10.1109/TGRS.2008.916641 10.1109/JSTARS.2012.2232904 10.1109/TGRS.2010.2098413 10.1109/79.974730 10.1109/TGRS.2013.2284280 10.1109/TGRS.2008.918089 10.1137/040605412 10.1016/0167-2789(92)90242-F 10.1137/120868281 10.1109/36.3001 10.1109/TIP.2003.819861 10.1109/JSTARS.2014.2311585 10.1109/TIP.2009.2028250 10.1109/JSTARS.2014.2370062 10.1137/080738970 10.1109/TIP.2006.881969 10.1109/TIP.2011.2156801 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2016 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2016 |
DBID | 97E RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M 7SP F28 |
DOI | 10.1109/TGRS.2015.2452812 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Electronics & Communications Abstracts ANTE: Abstracts in New Technology & Engineering |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management Electronics & Communications Abstracts ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Aerospace Database Aerospace Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1558-0644 |
EndPage | 188 |
ExternalDocumentID | 3867029561 10_1109_TGRS_2015_2452812 7167714 |
Genre | orig-research |
GrantInformation_xml | – fundername: Fundamental Research Funds for Central Universities grantid: (2015904020202) – fundername: National Basic Research Program of China (973 Program) grantid: 2011CB707105 – fundername: Key Laboratory of Mapping from Space, National Administration of Surveying, Mapping and Geoinformation – fundername: National Natural Science Foundation of China grantid: 61201342; 41431175 funderid: 10.13039/501100001809 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 Y6R AAYOK AAYXX CITATION RIG 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M 7SP F28 |
ID | FETCH-LOGICAL-c462t-466f9a7af5113ba4f0ec8c798af6f09a542bdace71e24940dd2fd1e5bfc3cc643 |
IEDL.DBID | RIE |
ISSN | 0196-2892 |
IngestDate | Fri Jul 11 03:41:25 EDT 2025 Mon Jun 30 08:28:52 EDT 2025 Tue Jul 01 01:33:59 EDT 2025 Thu Apr 24 23:02:55 EDT 2025 Tue Aug 26 16:42:45 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | rank constraint Hyperspectral image (HSI) low-rank matrix factorization total variation (TV) restoration |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c462t-466f9a7af5113ba4f0ec8c798af6f09a542bdace71e24940dd2fd1e5bfc3cc643 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 1733170157 |
PQPubID | 85465 |
PageCount | 11 |
ParticipantIDs | ieee_primary_7167714 crossref_citationtrail_10_1109_TGRS_2015_2452812 proquest_journals_1733170157 crossref_primary_10_1109_TGRS_2015_2452812 proquest_miscellaneous_1778020841 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-01-01 |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – month: 01 year: 2016 text: 2016-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on geoscience and remote sensing |
PublicationTitleAbbrev | TGRS |
PublicationYear | 2016 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref11 ref10 ref17 ref16 (ref51) 0 ref19 ref18 ref50 (ref49) 0 cai (ref21) 2008; 2 ref45 ref47 ref42 ref44 mazumder (ref43) 2010; 11 ref8 ref7 ref9 ref4 ref3 ref6 ref5 he (ref31) 0 ref40 (ref48) 0 ref35 ref34 ref37 ref30 ref33 ref32 ref2 ref1 ref39 mnih (ref41) 0 ref38 lin (ref36) 2009 ref23 ref26 ref25 ref20 ref22 ref28 (ref52) 0 ref27 ref29 bertsekas (ref46) 2014 wang (ref24) 0 |
References_xml | – volume: 2 start-page: 187 year: 2008 ident: ref21 article-title: Two-phase approach for deblurring images corrupted by impulse plus Gaussian noise publication-title: Inverse Problems Imag doi: 10.3934/ipi.2008.2.187 – ident: ref11 doi: 10.1016/j.isprsjprs.2013.06.001 – ident: ref18 doi: 10.1109/ICASSP.2014.6855117 – ident: ref35 doi: 10.1109/TIP.2014.2333661 – ident: ref19 doi: 10.1109/TGRS.2012.2185054 – ident: ref1 doi: 10.1109/JSTARS.2013.2264720 – ident: ref30 doi: 10.1109/JSTARS.2015.2398433 – ident: ref23 doi: 10.1145/1970392.1970395 – ident: ref38 doi: 10.1109/TGRS.2012.2191590 – ident: ref33 doi: 10.1109/TGRS.2014.2321557 – year: 0 ident: ref51 – year: 0 ident: ref52 – ident: ref17 doi: 10.5194/isprsannals-I-7-95-2012 – ident: ref6 doi: 10.1109/TIP.2007.901238 – start-page: 1257 year: 0 ident: ref41 article-title: Probabilistic matrix factorization publication-title: Proc Adv Neural Inf Process Syst – ident: ref20 doi: 10.1137/120866452 – year: 2014 ident: ref46 publication-title: Constrained Optimization and Lagrange Multiplier Methods – year: 2009 ident: ref36 publication-title: The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices – ident: ref3 doi: 10.1109/JSTARS.2012.2194696 – ident: ref34 doi: 10.1109/ICIP.2012.6467014 – ident: ref8 doi: 10.1109/TGRS.2005.860982 – ident: ref22 doi: 10.1109/JSTARS.2014.2360409 – ident: ref15 doi: 10.1016/j.sigpro.2012.01.020 – ident: ref37 doi: 10.1109/TPAMI.2012.88 – ident: ref32 doi: 10.1109/TGRS.2010.2075937 – ident: ref25 doi: 10.1137/110843642 – ident: ref2 doi: 10.1109/TGRS.2011.2144605 – ident: ref10 doi: 10.1109/LGRS.2011.2169041 – ident: ref44 doi: 10.1137/090761793 – ident: ref26 doi: 10.1109/36.789637 – ident: ref9 doi: 10.1109/TGRS.2008.916641 – ident: ref12 doi: 10.1109/JSTARS.2012.2232904 – ident: ref14 doi: 10.1109/TGRS.2010.2098413 – ident: ref4 doi: 10.1109/79.974730 – ident: ref27 doi: 10.1109/TGRS.2013.2284280 – start-page: 126 year: 0 ident: ref24 article-title: A probabilistic approach to robust matrix factorization publication-title: Computer Vision-ECCV – start-page: 1536 year: 0 ident: ref31 article-title: A noise-adjusted iterative randomized singular value decomposition method for hyperspectral image denoising publication-title: Proc IEEE IGARSS – ident: ref47 doi: 10.1109/TGRS.2008.918089 – ident: ref13 doi: 10.1137/040605412 – ident: ref39 doi: 10.1016/0167-2789(92)90242-F – ident: ref16 doi: 10.1137/120868281 – ident: ref7 doi: 10.1109/36.3001 – ident: ref50 doi: 10.1109/TIP.2003.819861 – ident: ref28 doi: 10.1109/JSTARS.2014.2311585 – volume: 11 start-page: 2287 year: 2010 ident: ref43 article-title: Spectral regularization algorithms for learning large incomplete matrices publication-title: J Mach Learn Res – year: 0 ident: ref48 – ident: ref40 doi: 10.1109/TIP.2009.2028250 – ident: ref29 doi: 10.1109/JSTARS.2014.2370062 – ident: ref45 doi: 10.1137/080738970 – ident: ref5 doi: 10.1109/TIP.2006.881969 – ident: ref42 doi: 10.1109/TIP.2011.2156801 – year: 0 ident: ref49 |
SSID | ssj0014517 |
Score | 2.6504722 |
Snippet | In this paper, we present a spatial spectral hyperspectral image (HSI) mixed-noise removal method named total variation (TV)-regularized low-rank matrix... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 178 |
SubjectTerms | Factorization Gaussian Gaussian noise Hyperspectral image (HSI) Hyperspectral imaging Image restoration low-rank matrix factorization Noise Norms rank constraint Regularization restoration Sparse matrices Spectra Television total variation (TV) |
Title | Total-Variation-Regularized Low-Rank Matrix Factorization for Hyperspectral Image Restoration |
URI | https://ieeexplore.ieee.org/document/7167714 https://www.proquest.com/docview/1733170157 https://www.proquest.com/docview/1778020841 |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS9xAFD6oIOiD15auN1LoU-msmexMJnkUcV2l24d1Lb6UMJkLFDWRdRfFX--ZyWxQW8S3QM7JBL65nDPn8gF841mqNBeUZFwLwmTOSNbLDEkEzg9jU2k9a8nwVzq4ZOdX_GoBfrS1MMYYn3xmuu7Rx_J1rWbuquwQbXshHGv1IjpuTa1WGzFgnIbS6JSgE5GECCaN88Px6ejCJXHxrgszZjR5dQZ5UpV_dmJ_vPTXYTj_sSar5Lo7m5Zd9fSmZ-NH_3wD1oKdGR01E2MTFky1Basvug9uwbLP_lT32_BnXKMNTn6j3-yBIiPPUD_5-2R09LN-ICNZXUdD183_Mep7hp5QvhmhzRsN0JdtSjYnOOTZLW5R0cgz1niZT3DZPxkfD0jgXSCKpcmUsDS1uRTSojHWKyWzsVGZEnkmbWrjXHKWlFoqI6hB543FWidWU8NLq3pKoYnzGZaqujJfIKIl6qB6HEvHuq7yXEjHYUUl14xz24F4jkShQlNyx41xU3jnJM4LB17hwCsCeB343qrcNR053hPedmC0ggGHDuzN4S7Cmr0vqKOvFKgsOvC1fY2rzYVQZGXqmZMRmaM1ZXTn_1_ehRUcP1zS7MHSdDIz-2i2TMsDP1-fAXHL6kM |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEB4hUNVygBaKCKXFlXqq2MTr7HrtI0KkgSYc0oC4VNZ6HxICbBQSgfj1nV1vrL5U9WbJM_ZK3z5mdh4fwCeepUpzQUnGtSBM5oxk_cyQROD8MDaV1rOWjM_T4QU7u-JXK3DY1sIYY3zymem6Rx_L17VauKuyHtr2QjjW6jU89zltqrXamAHjNBRHpwTdiCTEMGmc96ZfJt9cGhfvukBjRpNfTiFPq_LHXuwPmMEmjJdDa_JKbrqLedlVz791bfzfsb-GjWBpRkfN1HgDK6bagvWf-g9uwQuf_6ketuH7tEYrnFyi5-yhIhPPUT-7fjY6GtWPZCKrm2js-vk_RQPP0RMKOCO0eqMherNN0eYMf3l6h5tUNPGcNV7mLVwMTqbHQxKYF4hiaTInLE1tLoW0aI71S8lsbFSmRJ5Jm9o4l5wlpZbKCGrQfWOx1onV1PDSqr5SaOTswGpVV2YXIlqiDqrHsXS86yrPhXQsVlRyjSDaDsRLJAoV2pI7dozbwrsncV448AoHXhHA68DnVuW-6cnxL-FtB0YrGHDowP4S7iKs2oeCOgJLgcqiAx_b17jeXBBFVqZeOBmROWJTRvf-_uUDeDmcjkfF6PT86zt4hWMJVzb7sDqfLcx7NGLm5Qc_d38AzZHtjA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Total-Variation-Regularized+Low-Rank+Matrix+Factorization+for+Hyperspectral+Image+Restoration&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=He%2C+Wei&rft.au=Zhang%2C+Hongyan&rft.au=Zhang%2C+Liangpei&rft.au=Shen%2C+Huanfeng&rft.date=2016-01-01&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=54&rft.issue=1&rft.spage=178&rft.epage=188&rft_id=info:doi/10.1109%2FTGRS.2015.2452812&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGRS_2015_2452812 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |