Roles of Reactive Oxygen Species and Mitochondria in Seed Germination

Seed germination is crucial for the life cycle of plants and maximum crop production. This critical developmental step is regulated by diverse endogenous [hormones, reactive oxygen species (ROS)] and exogenous (light, temperature) factors. Reactive oxygen species promote the release of seed dormancy...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in plant science Vol. 12; p. 781734
Main Authors Farooq, Muhammad Awais, Zhang, Xiaomeng, Zafar, Muhammad Mubashar, Ma, Wei, Zhao, Jianjun
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 09.12.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Seed germination is crucial for the life cycle of plants and maximum crop production. This critical developmental step is regulated by diverse endogenous [hormones, reactive oxygen species (ROS)] and exogenous (light, temperature) factors. Reactive oxygen species promote the release of seed dormancy by biomolecules oxidation, testa weakening and endosperm decay. Reactive oxygen species modulate metabolic and hormone signaling pathways that induce and maintain seed dormancy and germination. Endosperm provides nutrients and senses environmental signals to regulate the growth of the embryo by secreting timely signals. The growing energy demand of the developing embryo and endosperm is fulfilled by functional mitochondria. Mitochondrial matrix-localized heat shock protein GhHSP24.7 controls seed germination in a temperature-dependent manner. In this review, we summarize comprehensive view of biochemical and molecular mechanisms, which coordinately control seed germination. We also discuss that the accurate and optimized coordination of ROS, mitochondria, heat shock proteins is required to permit testa rupture and subsequent germination.
AbstractList Seed germination is crucial for the life cycle of plants and maximum crop production. This critical developmental step is regulated by diverse endogenous [hormones, reactive oxygen species (ROS)] and exogenous (light, temperature) factors. Reactive oxygen species promote the release of seed dormancy by biomolecules oxidation, testa weakening and endosperm decay. Reactive oxygen species modulate metabolic and hormone signaling pathways that induce and maintain seed dormancy and germination. Endosperm provides nutrients and senses environmental signals to regulate the growth of the embryo by secreting timely signals. The growing energy demand of the developing embryo and endosperm is fulfilled by functional mitochondria. Mitochondrial matrix-localized heat shock protein GhHSP24.7 controls seed germination in a temperature-dependent manner. In this review, we summarize comprehensive view of biochemical and molecular mechanisms, which coordinately control seed germination. We also discuss that the accurate and optimized coordination of ROS, mitochondria, heat shock proteins is required to permit testa rupture and subsequent germination.
Seed germination is crucial for the life cycle of plants and maximum crop production. This critical developmental step is regulated by diverse endogenous [hormones, reactive oxygen species (ROS)] and exogenous (light, temperature) factors. Reactive oxygen species promote the release of seed dormancy by biomolecules oxidation, testa weakening and endosperm decay. Reactive oxygen species modulate metabolic and hormone signaling pathways that induce and maintain seed dormancy and germination. Endosperm provides nutrients and senses environmental signals to regulate the growth of the embryo by secreting timely signals. The growing energy demand of the developing embryo and endosperm is fulfilled by functional mitochondria. Mitochondrial matrix-localized heat shock protein GhHSP24.7 controls seed germination in a temperature-dependent manner. In this review, we summarize comprehensive view of biochemical and molecular mechanisms, which coordinately control seed germination. We also discuss that the accurate and optimized coordination of ROS, mitochondria, heat shock proteins is required to permit testa rupture and subsequent germination.Seed germination is crucial for the life cycle of plants and maximum crop production. This critical developmental step is regulated by diverse endogenous [hormones, reactive oxygen species (ROS)] and exogenous (light, temperature) factors. Reactive oxygen species promote the release of seed dormancy by biomolecules oxidation, testa weakening and endosperm decay. Reactive oxygen species modulate metabolic and hormone signaling pathways that induce and maintain seed dormancy and germination. Endosperm provides nutrients and senses environmental signals to regulate the growth of the embryo by secreting timely signals. The growing energy demand of the developing embryo and endosperm is fulfilled by functional mitochondria. Mitochondrial matrix-localized heat shock protein GhHSP24.7 controls seed germination in a temperature-dependent manner. In this review, we summarize comprehensive view of biochemical and molecular mechanisms, which coordinately control seed germination. We also discuss that the accurate and optimized coordination of ROS, mitochondria, heat shock proteins is required to permit testa rupture and subsequent germination.
Author Farooq, Muhammad Awais
Ma, Wei
Zhang, Xiaomeng
Zafar, Muhammad Mubashar
Zhao, Jianjun
AuthorAffiliation 3 Institute of Cotton Research, Chinese Academy of Agricultural Sciences , Anyang , China
2 Department of Plant Breeding and Genetics, University of Agriculture , Faisalabad , Pakistan
1 State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University , Baoding , China
AuthorAffiliation_xml – name: 1 State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University , Baoding , China
– name: 3 Institute of Cotton Research, Chinese Academy of Agricultural Sciences , Anyang , China
– name: 2 Department of Plant Breeding and Genetics, University of Agriculture , Faisalabad , Pakistan
Author_xml – sequence: 1
  givenname: Muhammad Awais
  surname: Farooq
  fullname: Farooq, Muhammad Awais
– sequence: 2
  givenname: Xiaomeng
  surname: Zhang
  fullname: Zhang, Xiaomeng
– sequence: 3
  givenname: Muhammad Mubashar
  surname: Zafar
  fullname: Zafar, Muhammad Mubashar
– sequence: 4
  givenname: Wei
  surname: Ma
  fullname: Ma, Wei
– sequence: 5
  givenname: Jianjun
  surname: Zhao
  fullname: Zhao, Jianjun
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34956279$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1rVDEUxYNU7Ifdu5K3dDNjvjPZCFJqLVQKVcFduC_vZpryJhmTN8X-92Y6bWkFs0nIOfecC79DspdyQkLeMToXYmE_hvVY55xyNjcLZoR8RQ6Y1nImNf-19-y9T45rvaHtKEqtNW_IvpBWaW7sATm9yiPWLofuCsFP8Ra7yz93S0zd9zX62CRIQ_ctTtlf5zSUCF1sGuLQnWFZxQRTzOkteR1grHj8cB-Rn19Of5x8nV1cnp2ffL6Y-bbINJNcCIZ9MEJgoFyFYKkWHIWkkitplJbBeAAaBtmz3iLvlaQCAhjZK8rFETnf5Q4Zbty6xBWUO5chuvuPXJYOyhT9iI4boSijmiIwaQyHgQkNlkIvsdfQt6xPu6z1pl_h4DFNBcYXoS-VFK_dMt-6hbZKWtkCPjwElPx7g3Vyq1g9jiMkzJvquG7FakENa9b3z7ueSh45NAPdGXzJtRYMTxZG3Za229J2W9puR7uN6H9GfJzuabRt4_j_wb8Vma6O
CitedBy_id crossref_primary_10_3390_plants12081627
crossref_primary_10_48130_seedbio_0024_0005
crossref_primary_10_1016_j_jplph_2025_154446
crossref_primary_10_3390_horticulturae10020174
crossref_primary_10_1016_j_plaphy_2024_108398
crossref_primary_10_3390_agriculture13071327
crossref_primary_10_1007_s00299_023_02988_w
crossref_primary_10_3390_seeds2040032
crossref_primary_10_1002_adma_202301810
crossref_primary_10_1016_j_heliyon_2024_e40020
crossref_primary_10_26898_0370_8799_2023_12_4
crossref_primary_10_3390_ijms232315051
crossref_primary_10_1038_s41598_024_60778_0
crossref_primary_10_1186_s12864_023_09202_x
crossref_primary_10_3389_fmicb_2025_1521692
crossref_primary_10_1038_s42003_024_07032_5
crossref_primary_10_1111_pbr_13229
crossref_primary_10_3390_antiox12091779
crossref_primary_10_1111_ppl_14548
crossref_primary_10_1016_j_cpb_2024_100373
crossref_primary_10_3390_plants11212853
crossref_primary_10_3389_fpls_2024_1344383
crossref_primary_10_3390_agriculture14112025
crossref_primary_10_1007_s11756_024_01605_9
crossref_primary_10_1111_ppl_14490
crossref_primary_10_3390_ijms241310431
crossref_primary_10_3390_molecules29184380
crossref_primary_10_3390_ijms23158502
crossref_primary_10_5802_crbiol_104
crossref_primary_10_1016_j_scienta_2024_113465
crossref_primary_10_1071_FP24216
crossref_primary_10_3390_plants12040765
crossref_primary_10_29133_yyutbd_1560914
crossref_primary_10_3390_ijms23041995
crossref_primary_10_1080_15440478_2023_2282048
crossref_primary_10_3389_fpls_2023_1265700
crossref_primary_10_3390_foods12102047
crossref_primary_10_1016_j_plana_2024_100105
crossref_primary_10_3389_fpls_2023_1267103
crossref_primary_10_1021_acsnano_3c06172
crossref_primary_10_1080_87559129_2024_2430652
Cites_doi 10.3390/ijms19030725
10.1016/j.molp.2015.08.010
10.3390/plants9050598
10.1002/pmic.200900810
10.1016/j.jplph.2010.01.019
10.1111/wre.12410
10.1016/s0014-5793(02)03260-x
10.1016/j.mito.2016.07.002
10.1016/j.scienta.2018.12.016
10.1080/15592324.2016.1180492
10.3390/plants9060703
10.3389/fpls.2017.02077
10.1371/journal.pone.0143173
10.1016/j.mito.2014.04.002
10.1016/j.plaphy.2016.10.025
10.1074/mcp.M113.032227
10.1104/pp.122.4.1099
10.1016/j.molp.2020.02.004
10.1111/tpj.13122
10.1038/s41598-018-32271-y
10.3389/fpls.2016.00864
10.3389/fpls.2019.00182
10.1379/1466-1268(2001)006<0225:tefoat>2.0.co;2
10.3389/fpls.2015.00963
10.1104/pp.125.2.662
10.1093/pcp/pcv207
10.3389/fpls.2016.02021
10.1016/j.plaphy.2011.12.002
10.1111/j.1365-313X.2008.03634.x
10.1007/s00709-019-01354-6
10.1038/s41598-017-13093-w
10.1104/pp.110.162214
10.1016/j.jplph.2012.11.018
10.1007/s11738-012-1140-6
10.1002/1873-3468.13499
10.1007/s10725-018-0402-8
10.1104/pp.111.192351
10.1111/j.1365-313X.2004.02035.x
10.1080/15592324.2019.1657343
10.1111/nph.16948
10.1093/jxb/erx012
10.1007/s00344-013-9408-7
10.1105/tpc.104.025163
10.1111/pce.12371
10.3389/fpls.2019.01706
10.1111/j.1365-3040.2011.02298.x
10.3390/proteomes4020019
10.1016/j.envexpbot.2018.07.009
10.1016/j.plaphy.2020.05.042
10.4161/psb.19919
10.1007/s10725-017-0299-7
10.1093/jxb/eraa571
10.1016/j.plantsci.2018.09.013
10.1038/nbt.3207
10.1038/s41422-018-0024-8
10.1093/jxb/erv244
10.1007/s00425-018-3017-4
10.1104/pp.111.183129
10.1007/s00425-013-1901-5
10.1002/pmic.200300776
10.1016/j.crvi.2008.07.022
10.1007/BF00388752
10.2478/s11756-013-0161-y
10.1007/s11103-017-0603-y
10.1111/tpj.13121
10.3923/jbs.2010.565.572
10.1016/j.cj.2017.08.007
10.1016/j.plantsci.2021.110981
10.1534/genetics.116.199331
10.1046/j.1432-1033.2003.03796.x
10.1111/j.1365-313X.2008.03581.x
10.1105/tpc.112.098707
10.4161/psb.3.3.5539
10.1093/pcp/pcr129
10.1093/jxb/eru167
10.1042/BCJ20190159
10.1089/ars.2019.7819
10.3389/fpls.2018.00251
10.3389/fpls.2016.00138
10.1186/s12870-019-1647-8
10.3390/ijms20235882
10.1093/aob/mcv108
10.1038/s41598-019-45102-5
10.3389/fpls.2019.00242
10.1534/genetics.117.300602
10.1093/jxb/erv168
10.3390/ijms18010110
10.1016/j.plaphy.2020.07.022
10.1007/s00425-015-2338-9
10.1134/s1021443717040021
10.1093/aob/mcs240
10.1007/s00299-011-1173-0
10.1007/s00299-015-1819-4
10.1105/tpc.105.039495
10.1093/jxb/erq125
10.1111/j.1365-313X.2007.03063.x
10.1016/j.sajb.2010.04.014
10.1016/j.plaphy.2018.11.016
10.1016/j.plantsci.2015.12.005
10.1104/pp.109.137901
10.1093/jxb/erz226
10.1093/jxb/ery432
10.3389/fpls.2017.00275
10.1104/pp.108.129874
10.1104/pp.109.138107
10.1021/acs.jafc.8b00333
10.1016/j.plaphy.2013.10.003
10.1073/pnas.1815790116
10.1074/mcp.M111.010025
10.1038/srep32517
10.1104/pp.17.01387
10.1186/s12870-019-1970-0
10.1016/j.plantsci.2018.01.014
10.1046/j.1365-313x.1996.09030357.x
ContentType Journal Article
Copyright Copyright © 2021 Farooq, Zhang, Zafar, Ma and Zhao.
Copyright © 2021 Farooq, Zhang, Zafar, Ma and Zhao. 2021 Farooq, Zhang, Zafar, Ma and Zhao
Copyright_xml – notice: Copyright © 2021 Farooq, Zhang, Zafar, Ma and Zhao.
– notice: Copyright © 2021 Farooq, Zhang, Zafar, Ma and Zhao. 2021 Farooq, Zhang, Zafar, Ma and Zhao
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fpls.2021.781734
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Open Access Journals (DOAJ)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList CrossRef


PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1664-462X
ExternalDocumentID oai_doaj_org_article_273501060ea14772ad136a90ab4eb6ab
PMC8695494
34956279
10_3389_fpls_2021_781734
Genre Journal Article
Review
GroupedDBID 5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
CITATION
EBD
ECGQY
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
PGMZT
RNS
RPM
IAO
IEA
IGS
IPNFZ
ISR
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c462t-42331ebf733ef025ff90632e34042547564f7caa0fd4b1b9e2b5403afa74b5023
IEDL.DBID M48
ISSN 1664-462X
IngestDate Wed Aug 27 01:21:56 EDT 2025
Thu Aug 21 14:11:47 EDT 2025
Fri Jul 11 06:00:11 EDT 2025
Thu Jan 02 22:55:19 EST 2025
Thu Apr 24 23:10:50 EDT 2025
Tue Jul 01 03:48:55 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords heat shock proteins (HSPs)
reactive oxygen species (ROS)
seed germination and dormancy
mitochondria
embryogenesis and endosperm
Language English
License Copyright © 2021 Farooq, Zhang, Zafar, Ma and Zhao.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c462t-42331ebf733ef025ff90632e34042547564f7caa0fd4b1b9e2b5403afa74b5023
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
Edited by: John Hancock, University of the West of England, United Kingdom
This article was submitted to Plant Physiology, a section of the journal Frontiers in Plant Science
Reviewed by: Alla I. Yemets, National Academy of Sciences of Ukraine (NAN Ukraine), Ukraine; Alma Balestrazzi, University of Pavia, Italy
These authors have contributed equally to this work
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fpls.2021.781734
PMID 34956279
PQID 2614758071
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_273501060ea14772ad136a90ab4eb6ab
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8695494
proquest_miscellaneous_2614758071
pubmed_primary_34956279
crossref_primary_10_3389_fpls_2021_781734
crossref_citationtrail_10_3389_fpls_2021_781734
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-09
PublicationDateYYYYMMDD 2021-12-09
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-09
  day: 09
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in plant science
PublicationTitleAlternate Front Plant Sci
PublicationYear 2021
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Rao (B83) 2017; 33
Chen (B19) 2016; 244
Meng (B71) 2017; 7
Morscher (B72) 2015; 116
Yang (B106) 2020; 154
Holloway (B44) 2021; 229
Anand (B3) 2019; 9
Beracochea (B11) 2015; 34
Kaur (B53) 2016
di Donato (B26) 2019; 593
Ye (B107) 2012; 7
Kranner (B54) 2010; 167
Betekhtin (B13) 2018; 19
Howell (B45) 2009; 149
Scharf (B84) 2001; 6
Best (B12) 2020; 9
Murgia (B73) 2017; 8
Oh (B77) 2004; 16
González-Calle (B37) 2015; 66
Lariguet (B56) 2013; 238
Taylor (B93) 2010; 154
Carrera-Castaño (B17) 2020; 9
Nourimand (B76) 2019; 135
Qi (B82) 2017; 205
Ahmed (B1) 2018; 66
Stawska (B89) 2019; 20
Zhang (B109) 2019; 249
Shu (B85) 2016; 9
Gomes (B35) 2013; 35
Baek (B4) 2015; 6
Kai (B52) 2016; 11
Oracz (B78) 2016; 7
Amooaghaie (B2) 2017; 64
Oracz (B80) 2009; 150
He (B42) 2019; 247
Leymarie (B59) 2012; 53
Choquet (B21) 2002; 529
He (B40) 2016; 57
Yamazaki (B102) 2004; 38
Bi (B14) 2017; 94
Krasuska (B55) 2014; 33
Ishibashi (B49) 2013; 111
Logan (B66) 2001; 125
Small (B88) 2004; 4
Ding (B27) 2020; 13
Jones (B51) 1974; 121
Zhang (B112) 2018; 8
Yang (B103); 10
Ma (B67) 2019; 116
Wang (B96) 2020; 60
Zhang (B111) 2014; 65
Su (B90) 2016; 109
Yang (B105) 2018; 277
Cai (B16) 2011; 13
Ma (B69) 2017; 5
Dębska (B25) 2013; 170
Bailly (B8) 2008; 331
Law (B57) 2014; 19
Xiu (B101) 2016; 85
Zhou (B115) 2012; 31
Cheng (B20) 2016; 85
Iglesias-Fernández (B46) 2020; 10
Wagner (B95) 2018; 176
Barrero (B10) 2009; 150
Oracz (B79) 2007; 50
Czarna (B22) 2016; 4
Sun (B92) 2019; 14
Ishibashi (B47) 2017; 8
Li (B61) 2017; 18
He (B41) 2012; 24
Yang (B104); 19
Bahin (B6) 2011; 34
Ma (B68) 2016; 6
Hajihashemi (B38) 2020; 154
Lin (B62) 2013; 73
Nakamura (B74) 2003; 270
Essemine (B31) 2010; 10
Henriet (B43) 2021; 72
Jänsch (B50) 1996; 9
Sun (B91) 2019; 70
Bailly (B7) 2019; 476
Zhang (B110) 2015; 33
Ortiz-Espín (B81) 2017; 68
Chateigner-Boutin (B18) 2008; 56
Singh (B87) 2015; 242
Galland (B33) 2014; 13
Zhao (B113) 2018; 28
Li (B60) 2012; 11
Bykova (B15) 2011; 11
Wang (B97) 2019; 19
Gong (B36) 2021; 310
Xia (B100) 2018; 269
Bahaji (B5) 2019; 10
Zhou (B114) 2018; 85
Ishibashi (B48) 2015; 10
De Longevialle (B24) 2008; 56
Foyer (B32) 2020; 32
Liu (B65) 2010; 61
Wehmeyer (B98) 2000; 122
Dai (B23) 2018; 208
Liu (B64) 2018; 9
Liu (B63) 2019; 256
Hao (B39) 2019; 70
Ding (B28) 2006; 18
Law (B58) 2012; 158
Ma (B70) 2016; 7
Zhang (B108) 2017; 83
Visscher (B94) 2018; 155
Whitaker (B99) 2010; 76
Shuai (B86) 2017; 7
El-Maarouf-Bouteau (B30) 2015; 38
Gomes (B34) 2013; 68
Narsai (B75) 2011; 157
Barba-Espin (B9) 2012; 59
El-Maarouf-Bouteau (B29) 2008; 3
References_xml – volume: 19
  year: 2018
  ident: B13
  article-title: Organ and tissue-specific localisation of selected cell wall epitopes in the zygotic embryo of Brachypodium distachyon.
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms19030725
– volume: 9
  start-page: 34
  year: 2016
  ident: B85
  article-title: Two faces of one seed, hormonal regulation of dormancy and germination.
  publication-title: Mol. Plant
  doi: 10.1016/j.molp.2015.08.010
– volume: 13
  start-page: 25
  year: 2011
  ident: B16
  article-title: Lipid peroxidation and antioxidant responses during seed germination of Jatropha curcas.
  publication-title: Int. J. Agric. Biol.
– volume: 9
  year: 2020
  ident: B12
  article-title: Why so complex? the intricacy of genome structure and gene expression, associated with angiosperm mitochondria, may relate to the regulation of embryo quiescence or dormancy-intrinsic blocks to early plant life.
  publication-title: Plants
  doi: 10.3390/plants9050598
– volume: 11
  start-page: 865
  year: 2011
  ident: B15
  article-title: Redox-sensitive proteome and antioxidant strategies in wheat seed dormancy control.
  publication-title: Proteomics
  doi: 10.1002/pmic.200900810
– volume: 167
  start-page: 805
  year: 2010
  ident: B54
  article-title: Extracellular production of reactive oxygen species during seed germination and early seedling growth in Pisum sativum.
  publication-title: J. Plant Physiol.
  doi: 10.1016/j.jplph.2010.01.019
– volume: 60
  start-page: 171
  year: 2020
  ident: B96
  article-title: Factors affecting seed germination and emergence of Aegilops tauschii.
  publication-title: Weed Res.
  doi: 10.1111/wre.12410
– volume: 529
  start-page: 39
  year: 2002
  ident: B21
  article-title: Translational regulations as specific traits of chloroplast gene expression.
  publication-title: FEBS Lett.
  doi: 10.1016/s0014-5793(02)03260-x
– volume: 33
  start-page: 22
  year: 2017
  ident: B83
  article-title: The proteome of higher plant mitochondria.
  publication-title: Mitochondrion
  doi: 10.1016/j.mito.2016.07.002
– volume: 247
  start-page: 184
  year: 2019
  ident: B42
  article-title: Glyoxylate cycle and reactive oxygen species metabolism are involved in the improvement of seed vigor in watermelon by exogenous GA3.
  publication-title: Sci. Hortic.
  doi: 10.1016/j.scienta.2018.12.016
– volume: 11
  year: 2016
  ident: B52
  article-title: Role of reactive oxygen species produced by NADPH oxidase in gibberellin biosynthesis during barley seed germination.
  publication-title: Plant Signal. Behav.
  doi: 10.1080/15592324.2016.1180492
– volume: 9
  year: 2020
  ident: B17
  article-title: An updated overview on the regulation of seed germination.
  publication-title: Plants
  doi: 10.3390/plants9060703
– volume: 8
  year: 2017
  ident: B73
  article-title: Iron deficiency prolongs seed dormancy in Arabidopsis plants.
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.02077
– volume: 10
  year: 2015
  ident: B48
  article-title: A role for reactive oxygen species produced by NADPH oxidases in the embryo and aleurone cells in barley seed germination.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0143173
– volume: 19
  start-page: 214
  year: 2014
  ident: B57
  article-title: Mitochondrial biogenesis in plants during seed germination.
  publication-title: Mitochondrion
  doi: 10.1016/j.mito.2014.04.002
– volume: 109
  start-page: 406
  year: 2016
  ident: B90
  article-title: Reactive oxygen species induced by cold stratification promote germination of Hedysarum scoparium seeds.
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2016.10.025
– volume: 13
  start-page: 252
  year: 2014
  ident: B33
  article-title: Dynamic proteomics emphasizes the importance of selective mRNA translation and protein turnover during Arabidopsis seed germination.
  publication-title: Mol. Cell Proteomics
  doi: 10.1074/mcp.M113.032227
– volume: 122
  start-page: 1099
  year: 2000
  ident: B98
  article-title: The expression of small heat shock proteins in seeds responds to discrete developmental signals and suggests a general protective role in desiccation tolerance.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.122.4.1099
– volume: 13
  start-page: 544
  year: 2020
  ident: B27
  article-title: Molecular regulation of plant responses to environmental temperatures.
  publication-title: Mol. Plant.
  doi: 10.1016/j.molp.2020.02.004
– volume: 85
  start-page: 507
  year: 2016
  ident: B101
  article-title: EMPTY PERICARP 16 is required for mitochondrial nad2 intron 4 cis-splicing, complex I assembly and seed development in maize.
  publication-title: Plant J.
  doi: 10.1111/tpj.13122
– volume: 8
  year: 2018
  ident: B112
  article-title: Mutagen-induced phytotoxicity in maize seed germination is dependent on ROS scavenging capacity.
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-32271-y
– volume: 7
  year: 2016
  ident: B78
  article-title: Phytohormones signaling pathways and ROS involvement in seed germination.
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.00864
– volume: 10
  ident: B103
  article-title: Cytosolic glucose-6-phosphate dehydrogenase is involved in seed germination and root growth under salinity in Arabidopsis.
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2019.00182
– volume: 6
  year: 2001
  ident: B84
  article-title: The expanding family of Arabidopsis thaliana small heat stress proteins and a new family of proteins containing α-crystallin domains (Acd proteins).
  publication-title: Cell Stress Chaperones
  doi: 10.1379/1466-1268(2001)006<0225:tefoat>2.0.co;2
– volume: 6
  year: 2015
  ident: B4
  article-title: The Arabidopsis a zinc finger domain protein ARS1 is essential for seed germination and ROS homeostasis in response to ABA and oxidative stress.
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2015.00963
– volume: 125
  start-page: 662
  year: 2001
  ident: B66
  article-title: Mitochondrial biogenesis during germination in maize embryos.
  publication-title: Plant Phsyiol.
  doi: 10.1104/pp.125.2.662
– volume: 57
  start-page: 473
  year: 2016
  ident: B40
  article-title: Effects of parental temperature and nitrate on seed performance are reflected by partly overlapping genetic and metabolic pathways.
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcv207
– volume: 7
  year: 2017
  ident: B71
  article-title: Karrikins: regulators involved in phytohormone signaling networks during seed germination and seedling development.
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.02021
– volume: 59
  start-page: 30
  year: 2012
  ident: B9
  article-title: Role of thioproline on seed germination: interaction ROS-ABA and effects on antioxidative metabolism.
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2011.12.002
– volume: 56
  start-page: 590
  year: 2008
  ident: B18
  article-title: CLB19, a pentatricopeptide repeat protein required for editing of rpoA and clpP chloroplast transcripts.
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2008.03634.x
– volume: 256
  start-page: 1217
  year: 2019
  ident: B63
  article-title: High temperature and drought stress cause abscisic acid and reactive oxygen species accumulation and suppress seed germination growth in rice.
  publication-title: Protoplasma
  doi: 10.1007/s00709-019-01354-6
– volume: 7
  year: 2017
  ident: B86
  article-title: Exogenous auxin represses soybean seed germination through decreasing the gibberellin/abscisic acid (GA/ABA) ratio.
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-13093-w
– volume: 154
  start-page: 691
  year: 2010
  ident: B93
  article-title: Analysis of the rice mitochondrial carrier family reveals anaerobic accumulation of a basic amino acid carrier involved in arginine metabolism during seed germination.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.110.162214
– volume: 170
  start-page: 480
  year: 2013
  ident: B25
  article-title: Dormancy removal of apple seeds by cold stratification is associated with fluctuation in H2O2. NO production and protein carbonylation level.
  publication-title: J. Plant Physiol.
  doi: 10.1016/j.jplph.2012.11.018
– volume: 35
  start-page: 1011
  year: 2013
  ident: B35
  article-title: The system modulating ROS content in germinating seeds of two Brazilian savanna tree species exposed to As and Zn.
  publication-title: Acta Physiol. Plant.
  doi: 10.1007/s11738-012-1140-6
– volume: 593
  start-page: 1415
  year: 2019
  ident: B26
  article-title: HSP 90 and co-chaperones, a multitaskers’ view on plant hormone biology.
  publication-title: FEBS Lett.
  doi: 10.1002/1873-3468.13499
– volume: 85
  start-page: 411
  year: 2018
  ident: B114
  article-title: Suppression of ROS generation mediated by higher InsP 3 level is critical for the delay of seed germination in lpa rice.
  publication-title: Plant Growth Regul.
  doi: 10.1007/s10725-018-0402-8
– volume: 158
  start-page: 1610
  year: 2012
  ident: B58
  article-title: Nucleotide and RNA metabolism prime translational initiation in the earliest events of mitochondrial biogenesis during Arabidopsis germination.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.111.192351
– volume: 38
  start-page: 152
  year: 2004
  ident: B102
  article-title: PPR motifs of the nucleus-encoded factor, PGR3, function in the selective and distinct steps of chloroplast gene expression in Arabidopsis.
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2004.02035.x
– volume: 14
  year: 2019
  ident: B92
  article-title: NADPH oxidases, essential players of hormone signalings in plant development and response to stresses.
  publication-title: Plant Signal. Behav.
  doi: 10.1080/15592324.2019.1657343
– volume: 229
  start-page: 2179
  year: 2021
  ident: B44
  article-title: Coleorhiza-enforced seed dormancy: a novel mechanism to control germination in grasses.
  publication-title: New Phytol.
  doi: 10.1111/nph.16948
– volume: 68
  start-page: 1025
  year: 2017
  ident: B81
  article-title: Mitochondrial AtTrxo1 is transcriptionally regulated by AtbZIP9 and AtAZF2 and affects seed germination under saline conditions.
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erx012
– volume: 33
  start-page: 590
  year: 2014
  ident: B55
  article-title: Polyamines and nitric oxide link in regulation of dormancy removal and germination of apple (Malus domestica Borkh.) embryos.
  publication-title: J. Plant Growth Regul.
  doi: 10.1007/s00344-013-9408-7
– volume: 16
  start-page: 3045
  year: 2004
  ident: B77
  article-title: PIL5, a phytochrome-interacting basic helix-loop-helix protein, is a key negative regulator of seed germination in Arabidopsis thaliana.
  publication-title: Plant Cell
  doi: 10.1105/tpc.104.025163
– volume: 38
  start-page: 364
  year: 2015
  ident: B30
  article-title: Reactive oxygen species, abscisic acid and ethylene interact to regulate sunflower seed germination.
  publication-title: Plant Cell and Environ.
  doi: 10.1111/pce.12371
– volume: 10
  year: 2020
  ident: B46
  article-title: A possible role of the aleurone expressed gene HvMAN1 in the hydrolysis of the cell wall mannans of the starchy endosperm in germinating Hordeum vulgare L. seeds.
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2019.01706
– volume: 34
  start-page: 980
  year: 2011
  ident: B6
  article-title: Crosstalk between reactive oxygen species and hormonal signalling pathways regulates grain dormancy in barley.
  publication-title: Plant Cell Environ.
  doi: 10.1111/j.1365-3040.2011.02298.x
– volume: 4
  year: 2016
  ident: B22
  article-title: Mitochondrial proteome studies in seeds during germination.
  publication-title: Proteomes
  doi: 10.3390/proteomes4020019
– volume: 155
  start-page: 272
  year: 2018
  ident: B94
  article-title: Dry heat exposure increases hydrogen peroxide levels and breaks physiological seed coat-imposed dormancy in Mesembryanthemum crystallinum (Aizoaceae) seeds.
  publication-title: Env. Exp. Bot.
  doi: 10.1016/j.envexpbot.2018.07.009
– volume: 154
  start-page: 751
  year: 2020
  ident: B106
  article-title: The NADPH-oxidase LsRbohC1 plays a role in lettuce (Lactuca sativa) seed germination.
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2020.05.042
– volume: 7
  start-page: 563
  year: 2012
  ident: B107
  article-title: Antagonism between abscisic acid and gibberellins is partially mediated by ascorbic acid during seed germination in rice.
  publication-title: Plant Signal. Behav.
  doi: 10.4161/psb.19919
– volume: 83
  start-page: 335
  year: 2017
  ident: B108
  article-title: Carbonylated protein changes between active germinated embryos and quiescent embryos give insights into rice seed germination regulation.
  publication-title: Plant Growth Regul.
  doi: 10.1007/s10725-017-0299-7
– volume: 72
  start-page: 2611
  year: 2021
  ident: B43
  article-title: Proteomics of developing pea seeds reveals a complex antioxidant network underlying the response to sulfur deficiency and water stress.
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/eraa571
– volume: 277
  start-page: 229
  year: 2018
  ident: B105
  article-title: Miscanthus NAC transcription factor MlNAC12 positively mediates abiotic stress tolerance in transgenic Arabidopsis.
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2018.09.013
– volume: 33
  start-page: 531
  year: 2015
  ident: B110
  article-title: Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement.
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3207
– volume: 28
  start-page: 448
  year: 2018
  ident: B113
  article-title: Malate transported from chloroplast to mitochondrion triggers production of ROS and PCD in Arabidopsis thaliana.
  publication-title: Cell Res.
  doi: 10.1038/s41422-018-0024-8
– year: 2016
  ident: B53
  article-title: Small heat shock proteins, roles in development, desiccation tolerance and seed longevity
  publication-title: Heat Shock Proteins and Plants. Heat Shock Proteins
  doi: 10.1093/jxb/erv244
– volume: 249
  start-page: 291
  year: 2019
  ident: B109
  article-title: A review of the seed biology of Paeonia species (Paeoniaceae), with particular reference to dormancy and germination.
  publication-title: Planta
  doi: 10.1007/s00425-018-3017-4
– volume: 157
  start-page: 1342
  year: 2011
  ident: B75
  article-title: In-depth temporal transcriptome profiling reveals a crucial developmental switch with roles for RNA processing and organelle metabolism that are essential for germination in Arabidopsis.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.111.183129
– volume: 238
  start-page: 381
  year: 2013
  ident: B56
  article-title: Identification of a hydrogen peroxide signalling pathway in the control of light-dependent germination in Arabidopsis.
  publication-title: Planta
  doi: 10.1007/s00425-013-1901-5
– volume: 4
  start-page: 1581
  year: 2004
  ident: B88
  article-title: Predotar: a tool for rapidly screening proteomes for N-terminal targeting sequences.
  publication-title: Proteomics
  doi: 10.1002/pmic.200300776
– volume: 331
  start-page: 806
  year: 2008
  ident: B8
  article-title: From intracellular signaling networks to cell death: the dual role of reactive oxygen species in seed physiology.
  publication-title: C. R. Biol.
  doi: 10.1016/j.crvi.2008.07.022
– volume: 121
  start-page: 133
  year: 1974
  ident: B51
  article-title: The structure of the lettuce endosperm.
  publication-title: Planta
  doi: 10.1007/BF00388752
– volume: 68
  start-page: 351
  year: 2013
  ident: B34
  article-title: Reactive oxygen species and seed germination.
  publication-title: Biologia
  doi: 10.2478/s11756-013-0161-y
– volume: 94
  start-page: 197
  year: 2017
  ident: B14
  article-title: Arabidopsis ABI5 plays a role in regulating ROS homeostasis by activating CATALASE 1 transcription in seed germination.
  publication-title: Plant Mol. Biol.
  doi: 10.1007/s11103-017-0603-y
– volume: 85
  start-page: 532
  year: 2016
  ident: B20
  article-title: Redefining the structural motifs that determine RNA binding and RNA editing by pentatricopeptide repeat proteins in land plants.
  publication-title: Plant J.
  doi: 10.1111/tpj.13121
– volume: 10
  start-page: 565
  year: 2010
  ident: B31
  article-title: Impact of heat stress on germination and growth in higher plants, physiological, biochemical and molecular repercussions and mechanisms of defence.
  publication-title: J. Biol. Sci.
  doi: 10.3923/jbs.2010.565.572
– volume: 5
  start-page: 459
  year: 2017
  ident: B69
  article-title: Cell signaling mechanisms and metabolic regulation of germination and dormancy in barley seeds.
  publication-title: Crop J.
  doi: 10.1016/j.cj.2017.08.007
– volume: 310
  year: 2021
  ident: B36
  article-title: H2O2 response gene 1/2 are novel sensors or responders of H2O2 and involve in maintaining embryonic root meristem activity in Arabidopsis thaliana.
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2021.110981
– volume: 205
  start-page: 1489
  year: 2017
  ident: B82
  article-title: Editing of mitochondrial transcripts nad3 and cox2 by Dek10 is essential for mitochondrial function and maize plant development.
  publication-title: Genetics
  doi: 10.1534/genetics.116.199331
– volume: 270
  start-page: 4070
  year: 2003
  ident: B74
  article-title: RNA-binding properties of HCF152, an Arabidopsis PPR protein involved in the processing of chloroplast RNA.
  publication-title: Eur. J. Biochem.
  doi: 10.1046/j.1432-1033.2003.03796.x
– volume: 56
  start-page: 157
  year: 2008
  ident: B24
  article-title: The pentatricopeptide repeat gene OTP51 with two LAGLIDADG motifs is required for the cis-splicing of plastid ycf3 intron 2 in Arabidopsis thaliana.
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2008.03581.x
– volume: 24
  start-page: 1815
  year: 2012
  ident: B41
  article-title: DEXH box RNA helicase–mediated mitochondrial reactive oxygen species production in Arabidopsis mediates crosstalk between abscisic acid and auxin signaling.
  publication-title: Plant Cell
  doi: 10.1105/tpc.112.098707
– volume: 3
  start-page: 175
  year: 2008
  ident: B29
  article-title: Oxidative signaling in seed germination and dormancy.
  publication-title: Plant Signal. Behav.
  doi: 10.4161/psb.3.3.5539
– volume: 53
  start-page: 96
  year: 2012
  ident: B59
  article-title: Role of reactive oxygen species in the regulation of Arabidopsis seed dormancy.
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcr129
– volume: 65
  start-page: 3189
  year: 2014
  ident: B111
  article-title: Involvement of reactive oxygen species in endosperm cap weakening and embryo elongation growth during lettuce seed germination.
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/eru167
– volume: 476
  start-page: 3019
  year: 2019
  ident: B7
  article-title: The signalling role of ROS in the regulation of seed germination and dormancy.
  publication-title: Biochem. J.
  doi: 10.1042/BCJ20190159
– volume: 32
  start-page: 463
  year: 2020
  ident: B32
  article-title: Vitamin C in plants: novel concepts, new perspectives, and outstanding issues.
  publication-title: Antioxid. Redox. Signal.
  doi: 10.1089/ars.2019.7819
– volume: 9
  year: 2018
  ident: B64
  article-title: Antagonistic regulation of ABA and GA in metabolism and signaling pathways.
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2018.00251
– volume: 7
  year: 2016
  ident: B70
  article-title: Nitric oxide and reactive oxygen species mediate metabolic changes in barley seed embryo during germination.
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.00138
– volume: 19
  ident: B104
  article-title: Involvement of G6PD5 in ABA response during seed germination and root growth in Arabidopsis.
  publication-title: BMC Plant Biol.
  doi: 10.1186/s12870-019-1647-8
– volume: 20
  year: 2019
  ident: B89
  article-title: PhyB and HY5 are involved in the blue light-mediated alleviation of dormancy of Arabidopsis seeds possibly via the modulation of expression of genes related to light, GA, and ABA.
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms20235882
– volume: 116
  start-page: 669
  year: 2015
  ident: B72
  article-title: Glutathione redox state, tocochromanols, fatty acids, antioxidant enzymes and protein carbonylation in sunflower seed embryos associated with after-ripening and ageing.
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mcv108
– volume: 9
  year: 2019
  ident: B3
  article-title: Hydrogen peroxide signaling integrates with phytohormones during the germination of magnetoprimed tomato seeds.
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-45102-5
– volume: 10
  year: 2019
  ident: B5
  article-title: Mitochondrial Zea mays Brittle1-1 is a major determinant of the metabolic fate of incoming sucrose and mitochondrial function in developing maize endosperms.
  publication-title: Front. Plant. Sci.
  doi: 10.3389/fpls.2019.00242
– volume: 208
  start-page: 1069
  year: 2018
  ident: B23
  article-title: Maize Dek37 encodes a P-type PPR protein that affects cis-splicing of mitochondrial nad2 intron 1 and seed development.
  publication-title: Genetics
  doi: 10.1534/genetics.117.300602
– volume: 66
  start-page: 3753
  year: 2015
  ident: B37
  article-title: Mannans and endo-β-mannanases (MAN) in Brachypodium distachyon: expression profiling and possible role of the BdMAN genes during coleorhiza-limited seed germination.
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erv168
– volume: 18
  year: 2017
  ident: B61
  article-title: Reactive oxygen species generated by NADPH oxidases promote radicle protrusion and root elongation during rice seed germination.
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms18010110
– volume: 154
  start-page: 657
  year: 2020
  ident: B38
  article-title: Cross-talk between nitric oxide, hydrogen peroxide and calcium in salt-stressed Chenopodium quinoa Willd. at seed germination stage.
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2020.07.022
– volume: 242
  start-page: 997
  year: 2015
  ident: B87
  article-title: Role of peroxidase activity and Ca2+ in axis growth during seed germination.
  publication-title: Planta
  doi: 10.1007/s00425-015-2338-9
– volume: 64
  start-page: 588
  year: 2017
  ident: B2
  article-title: Triangular interplay between ROS, ABA and GA in dormancy alleviation of Bunium persicum seeds by cold stratification.
  publication-title: Russ. J. Plant Physiol.
  doi: 10.1134/s1021443717040021
– volume: 111
  start-page: 95
  year: 2013
  ident: B49
  article-title: Regulation of soybean seed germination through ethylene production in response to reactive oxygen species.
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mcs240
– volume: 31
  start-page: 379
  year: 2012
  ident: B115
  article-title: NnHSP17.5, a cytosolic class II small heat shock protein gene from Nelumbo nucifera, contributes to seed germination vigor and seedling thermotolerance in transgenic Arabidopsis.
  publication-title: Plant Cell Rep.
  doi: 10.1007/s00299-011-1173-0
– volume: 34
  start-page: 1717
  year: 2015
  ident: B11
  article-title: Sunflower germin-like protein HaGLP1 promotes ROS accumulation and enhances protection against fungal pathogens in transgenic Arabidopsis thaliana.
  publication-title: Plant Cell Rep.
  doi: 10.1007/s00299-015-1819-4
– volume: 18
  start-page: 815
  year: 2006
  ident: B28
  article-title: Arabidopsis GLUTAMINE-RICH PROTEIN23 is essential for early embryogenesis and encodes a novel nuclear PPR motif protein that interacts with RNA polymerase II subunit III.
  publication-title: Plant Cell
  doi: 10.1105/tpc.105.039495
– volume: 61
  start-page: 2979
  year: 2010
  ident: B65
  article-title: H2O2 mediates the regulation of ABA catabolism and GA biosynthesis in Arabidopsis seed dormancy and germination.
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erq125
– volume: 50
  start-page: 452
  year: 2007
  ident: B79
  article-title: ROS production and protein oxidation as a novel mechanism for seed dormancy alleviation.
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2007.03063.x
– volume: 76
  start-page: 601
  year: 2010
  ident: B99
  article-title: Alleviation of dormancy by reactive oxygen species in Bidens pilosa L. seeds.
  publication-title: S. Afr. J. Bot.
  doi: 10.1016/j.sajb.2010.04.014
– volume: 135
  start-page: 441
  year: 2019
  ident: B76
  article-title: There is a direct link between allantoin concentration and cadmium tolerance in Arabidopsis.
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2018.11.016
– volume: 244
  start-page: 31
  year: 2016
  ident: B19
  article-title: Specific roles of tocopherols and tocotrienols in seed longevity and germination tolerance to abiotic stress in transgenic rice.
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2015.12.005
– volume: 150
  start-page: 1006
  year: 2009
  ident: B10
  article-title: Anatomical and transcriptomic studies of the coleorhiza reveal the importance of this tissue in regulating dormancy in barley.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.109.137901
– volume: 70
  start-page: 4705
  year: 2019
  ident: B39
  article-title: The nuclear-localized PPR protein OsNPPR1 is important for mitochondrial function and endosperm development in rice.
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erz226
– volume: 70
  start-page: 963
  year: 2019
  ident: B91
  article-title: The mitochondrial pentatricopeptide repeat protein EMP12 is involved in the splicing of three nad2 introns and seed development in maize.
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/ery432
– volume: 8
  year: 2017
  ident: B47
  article-title: The interrelationship between abscisic acid and reactive oxygen species plays a key role in barley seed dormancy and germination.
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.00275
– volume: 149
  start-page: 961
  year: 2009
  ident: B45
  article-title: Mapping metabolic and transcript temporal switches during germination in rice highlights specific transcription factors and the role of RNA instability in the germination process.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.108.129874
– volume: 150
  start-page: 494
  year: 2009
  ident: B80
  article-title: The mechanisms involved in seed dormancy alleviation by hydrogen cyanide unravel the role of reactive oxygen species as key factors of cellular signaling during germination.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.109.138107
– volume: 66
  start-page: 5117
  year: 2018
  ident: B1
  article-title: Influences of air, oxygen, nitrogen, and carbon dioxide nanobubbles on seed germination and plant growth.
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/acs.jafc.8b00333
– volume: 73
  start-page: 211
  year: 2013
  ident: B62
  article-title: Ethylene promotes germination of Arabidopsis seed under salinity by decreasing reactive oxygen species: evidence for the involvement of nitric oxide simulated by sodium nitroprusside.
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2013.10.003
– volume: 116
  start-page: 4716
  year: 2019
  ident: B67
  article-title: Mitochondrial small heat shock protein mediates seed germination via thermal sensing.
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1815790116
– volume: 11
  year: 2012
  ident: B60
  article-title: Determining degradation and synthesis rates of Arabidopsis proteins using the kinetics of progressive 15N labeling of two-dimensional gel-separated protein spots.
  publication-title: Mol. Cell Proteomics
  doi: 10.1074/mcp.M111.010025
– volume: 6
  year: 2016
  ident: B68
  article-title: Identification and characterization of the GhHsp20 gene family in Gossypium hirsutum.
  publication-title: Sci. Rep.
  doi: 10.1038/srep32517
– volume: 176
  start-page: 1156
  year: 2018
  ident: B95
  article-title: Mitochondrial energy signaling and its role in the low-oxygen stress response of plants.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.17.01387
– volume: 19
  year: 2019
  ident: B97
  article-title: Integrative omics analysis on phytohormones involved in oil palm seed germination.
  publication-title: BMC Plant Biol.
  doi: 10.1186/s12870-019-1970-0
– volume: 269
  start-page: 118
  year: 2018
  ident: B100
  article-title: Integrating proteomics and enzymatic profiling to decipher seed metabolism affected by temperature in seed dormancy and germination.
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2018.01.014
– volume: 9
  start-page: 357
  year: 1996
  ident: B50
  article-title: New insights into the composition, molecular mass and stoichiometry of the protein complexes of plant mitochondria.
  publication-title: Plant J.
  doi: 10.1046/j.1365-313x.1996.09030357.x
SSID ssj0000500997
Score 2.4876282
SecondaryResourceType review_article
Snippet Seed germination is crucial for the life cycle of plants and maximum crop production. This critical developmental step is regulated by diverse endogenous...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 781734
SubjectTerms embryogenesis and endosperm
heat shock proteins (HSPs)
mitochondria
Plant Science
reactive oxygen species (ROS)
seed germination and dormancy
SummonAdditionalLinks – databaseName: Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwEA8yfPBF_HZ-EcEXH-raJk2WRyfTIUxhONhbSdoEB6MbsoH7771rurGK6IuvTdqkd5fc78jld4TccHBxGRM2yGKhAt62MjBR7AKVK5sLK9qZwQvO_RfRG_LnUTLaKPWFOWGeHtgLrgXuNcG4JbQ64gAFdR4xoVWoDbdGaIO7L_i8jWDKs3oj9JH-XBKiMNVyswmyc8fRnWxHkvGaHyrp-n_CmN9TJTd8z-Me2a1AI733k90nW7Y4INudKQC75SHpDpCUiU4dHVhdbl_09XMJhkHL4vLQpIuc9mHpwlZX5GBxdAxt4Lbok0-FQeUckeFj9-2hF1TVEYKMi3geAA5ikTVOMmYdIBfnFMCN2DKO65DLRHAnM61Dl3MTGWVjA-iMaaclNwm46mPSKKaFPSVUhjl4dauMwavxLlOZjuCTodCJwYCvSVorWaVZRR2OFSwmKYQQKN0UpZuidFMv3Sa5Xb8x87QZv_TtoPjX_ZDwunwAZpBWZpD-ZQZNcr1SXgoLBE89dGGnCxgJAAgEReVvnHhlrodiGB7GUjWJrKm5Npd6SzF-L0m42wIPSPnZf0z-nOygPMosGXVBGvOPhb0ErDM3V6VZfwEx5PsT
  priority: 102
  providerName: Directory of Open Access Journals
Title Roles of Reactive Oxygen Species and Mitochondria in Seed Germination
URI https://www.ncbi.nlm.nih.gov/pubmed/34956279
https://www.proquest.com/docview/2614758071
https://pubmed.ncbi.nlm.nih.gov/PMC8695494
https://doaj.org/article/273501060ea14772ad136a90ab4eb6ab
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Na9swFBf9OvRS9tGPtFvQYJcd3FqWLEWHMZbRJAzSQVggNyPZUhsIdpqm0Pz3fU9202WEsYsPlixZ7-n5_Z4l_R4hnwW4uJxLF-WJ1JHoOBVZlvhIF9oV0slObvGA8_BGDsbi5ySdvB6PbgT4sDW0w3xS48Xs8ul-9Q0M_itGnOBvr_x8hsTbCbtUHaa42CX74JcU5jMYNmC_ZvpGOBSyrUgpIiGTSb1uubWRDT8V6Py3YdC_t1L-4Zt6b8hRAyrp93oWvCU7rnxHDroVAL_Ve3I9QtImWnk6ciZ83uivpxVMHBqSz0ORKQs6BNMGaZQFzEg6hTJwa7Rfb5VB5R2Tce_6949B1GRPiHIY2jICnMSZs15x7jwgG-81wJHEcYF2KlQqhVe5MbEvhGVWu8QCeuPGGyVsCq78hOyVVenOCFVxAV7faWvx6LzPdW4YNBlLk1oMCFvk6kVWWd5Qi2OGi1kGIQZKN0PpZijdrJZui3xZPzGvaTX-UbeL4l_XQ0LscKNa3GaNfWWAwlIMb2NnmICIwRSMS6NjY4Wz0tgW-fSivAwMCFdFTOmqR-gJAAoETWEYp7Uy111xDB8TpVtEbah54102S8rpXSDp7khcQBXn_9HvBTnE4YZNMvoD2VsuHt1HgDpL2w6_CODan7B2mM3PdpX8hw
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Roles+of+Reactive+Oxygen+Species+and+Mitochondria+in+Seed+Germination&rft.jtitle=Frontiers+in+plant+science&rft.au=Farooq%2C+Muhammad+Awais&rft.au=Zhang%2C+Xiaomeng&rft.au=Zafar%2C+Muhammad+Mubashar&rft.au=Ma%2C+Wei&rft.date=2021-12-09&rft.issn=1664-462X&rft.eissn=1664-462X&rft.volume=12&rft.spage=781734&rft_id=info:doi/10.3389%2Ffpls.2021.781734&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-462X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-462X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-462X&client=summon