Deletion of rRNA Operons of Sinorhizobium fredii Strain NGR234 and Impact on Symbiosis With Legumes
During their lifecycle, from free-living soil bacteria to endosymbiotic nitrogen-fixing bacteroids of legumes, rhizobia must colonize, and cope with environments where nutrient concentrations and compositions vary greatly. Bacterial colonization of legume rhizospheres and of root surfaces is subject...
Saved in:
Published in | Frontiers in microbiology Vol. 10; p. 154 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
13.02.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | During their lifecycle, from free-living soil bacteria to endosymbiotic nitrogen-fixing bacteroids of legumes, rhizobia must colonize, and cope with environments where nutrient concentrations and compositions vary greatly. Bacterial colonization of legume rhizospheres and of root surfaces is subject to a fierce competition for plant exudates. By contrast root nodules offer to rhizobia sheltered nutrient-rich environments within which the cells that successfully propagated via infection threads can rapidly multiply. To explore the effects on symbiosis of a slower rhizobia growth and metabolism, we deleted one or two copies of the three functional rRNA operons of the promiscuous
strain NGR234 and examined the impact of these mutations on free-living and symbiotic lifestyles. Strains with two functional rRNA operons (NGRΔrRNA1 and NGRΔrRNA3) grew almost as rapidly as NGR234, and NGRΔrRNA1 was as proficient as the parent strain on all of the five legume species tested. By contrast, the NGRΔrRNA1,3 double mutant, which carried a single rRNA operon and grew significantly slower than NGR234, had a reduced symbiotic proficiency on
, and
. In addition, while NGRΔrRNA1 and NGR234 equally competed for nodulation of
, strain NGRΔrRNA1,3 was clearly outcompeted by wild-type. Surprisingly, on
, NGRΔrRNA1,3 was the most proficient strain and competed equally NGR234 for nodule occupation. Together, these results indicate that for strains with otherwise identical repertoires of symbiotic genes, a faster growth on roots and/or inside plant tissues may contribute to secure access to nodules of some hosts. By contrast, other legumes such as
appear as less selective and capable of providing symbiotic environments susceptible to accommodate strains with a broader spectrum of competences. |
---|---|
AbstractList | During their lifecycle, from free-living soil bacteria to endosymbiotic nitrogen-fixing bacteroids of legumes, rhizobia must colonize, and cope with environments where nutrient concentrations and compositions vary greatly. Bacterial colonization of legume rhizospheres and of root surfaces is subject to a fierce competition for plant exudates. By contrast root nodules offer to rhizobia sheltered nutrient-rich environments within which the cells that successfully propagated via infection threads can rapidly multiply. To explore the effects on symbiosis of a slower rhizobia growth and metabolism, we deleted one or two copies of the three functional rRNA operons of the promiscuous
Sinorhizobium fredii
strain NGR234 and examined the impact of these mutations on free-living and symbiotic lifestyles. Strains with two functional rRNA operons (NGRΔrRNA1 and NGRΔrRNA3) grew almost as rapidly as NGR234, and NGRΔrRNA1 was as proficient as the parent strain on all of the five legume species tested. By contrast, the NGRΔrRNA1,3 double mutant, which carried a single rRNA operon and grew significantly slower than NGR234, had a reduced symbiotic proficiency on
Cajanus cajan, Macroptilium atropurpureum, Tephrosia vogelii
, and
Vigna unguiculata
. In addition, while NGRΔrRNA1 and NGR234 equally competed for nodulation of
V. unguiculata
, strain NGRΔrRNA1,3 was clearly outcompeted by wild-type. Surprisingly, on
Leucaena leucocephala
, NGRΔrRNA1,3 was the most proficient strain and competed equally NGR234 for nodule occupation. Together, these results indicate that for strains with otherwise identical repertoires of symbiotic genes, a faster growth on roots and/or inside plant tissues may contribute to secure access to nodules of some hosts. By contrast, other legumes such as
L. leucocephala
appear as less selective and capable of providing symbiotic environments susceptible to accommodate strains with a broader spectrum of competences. During their lifecycle, from free-living soil bacteria to endosymbiotic nitrogen-fixing bacteroids of legumes, rhizobia must colonize, and cope with environments where nutrient concentrations and compositions vary greatly. Bacterial colonization of legume rhizospheres and of root surfaces is subject to a fierce competition for plant exudates. By contrast root nodules offer to rhizobia sheltered nutrient-rich environments within which the cells that successfully propagated via infection threads can rapidly multiply. To explore the effects on symbiosis of a slower rhizobia growth and metabolism, we deleted one or two copies of the three functional rRNA operons of the promiscuous strain NGR234 and examined the impact of these mutations on free-living and symbiotic lifestyles. Strains with two functional rRNA operons (NGRΔrRNA1 and NGRΔrRNA3) grew almost as rapidly as NGR234, and NGRΔrRNA1 was as proficient as the parent strain on all of the five legume species tested. By contrast, the NGRΔrRNA1,3 double mutant, which carried a single rRNA operon and grew significantly slower than NGR234, had a reduced symbiotic proficiency on , and . In addition, while NGRΔrRNA1 and NGR234 equally competed for nodulation of , strain NGRΔrRNA1,3 was clearly outcompeted by wild-type. Surprisingly, on , NGRΔrRNA1,3 was the most proficient strain and competed equally NGR234 for nodule occupation. Together, these results indicate that for strains with otherwise identical repertoires of symbiotic genes, a faster growth on roots and/or inside plant tissues may contribute to secure access to nodules of some hosts. By contrast, other legumes such as appear as less selective and capable of providing symbiotic environments susceptible to accommodate strains with a broader spectrum of competences. During their lifecycle, from free-living soil bacteria to endosymbiotic nitrogen-fixing bacteroids of legumes, rhizobia must colonize, and cope with environments where nutrient concentrations and compositions vary greatly. Bacterial colonization of legume rhizospheres and of root surfaces is subject to a fierce competition for plant exudates. By contrast root nodules offer to rhizobia sheltered nutrient-rich environments within which the cells that successfully propagated via infection threads can rapidly multiply. To explore the effects on symbiosis of a slower rhizobia growth and metabolism, we deleted one or two copies of the three functional rRNA operons of the promiscuous Sinorhizobium fredii strain NGR234 and examined the impact of these mutations on free-living and symbiotic lifestyles. Strains with two functional rRNA operons (NGRΔrRNA1 and NGRΔrRNA3) grew almost as rapidly as NGR234, and NGRΔrRNA1 was as proficient as the parent strain on all of the five legume species tested. By contrast, the NGRΔrRNA1,3 double mutant, which carried a single rRNA operon and grew significantly slower than NGR234, had a reduced symbiotic proficiency on Cajanus cajan, Macroptilium atropurpureum, Tephrosia vogelii, and Vigna unguiculata. In addition, while NGRΔrRNA1 and NGR234 equally competed for nodulation of V. unguiculata, strain NGRΔrRNA1,3 was clearly outcompeted by wild-type. Surprisingly, on Leucaena leucocephala, NGRΔrRNA1,3 was the most proficient strain and competed equally NGR234 for nodule occupation. Together, these results indicate that for strains with otherwise identical repertoires of symbiotic genes, a faster growth on roots and/or inside plant tissues may contribute to secure access to nodules of some hosts. By contrast, other legumes such as L. leucocephala appear as less selective and capable of providing symbiotic environments susceptible to accommodate strains with a broader spectrum of competences.During their lifecycle, from free-living soil bacteria to endosymbiotic nitrogen-fixing bacteroids of legumes, rhizobia must colonize, and cope with environments where nutrient concentrations and compositions vary greatly. Bacterial colonization of legume rhizospheres and of root surfaces is subject to a fierce competition for plant exudates. By contrast root nodules offer to rhizobia sheltered nutrient-rich environments within which the cells that successfully propagated via infection threads can rapidly multiply. To explore the effects on symbiosis of a slower rhizobia growth and metabolism, we deleted one or two copies of the three functional rRNA operons of the promiscuous Sinorhizobium fredii strain NGR234 and examined the impact of these mutations on free-living and symbiotic lifestyles. Strains with two functional rRNA operons (NGRΔrRNA1 and NGRΔrRNA3) grew almost as rapidly as NGR234, and NGRΔrRNA1 was as proficient as the parent strain on all of the five legume species tested. By contrast, the NGRΔrRNA1,3 double mutant, which carried a single rRNA operon and grew significantly slower than NGR234, had a reduced symbiotic proficiency on Cajanus cajan, Macroptilium atropurpureum, Tephrosia vogelii, and Vigna unguiculata. In addition, while NGRΔrRNA1 and NGR234 equally competed for nodulation of V. unguiculata, strain NGRΔrRNA1,3 was clearly outcompeted by wild-type. Surprisingly, on Leucaena leucocephala, NGRΔrRNA1,3 was the most proficient strain and competed equally NGR234 for nodule occupation. Together, these results indicate that for strains with otherwise identical repertoires of symbiotic genes, a faster growth on roots and/or inside plant tissues may contribute to secure access to nodules of some hosts. By contrast, other legumes such as L. leucocephala appear as less selective and capable of providing symbiotic environments susceptible to accommodate strains with a broader spectrum of competences. During their lifecycle, from free-living soil bacteria to endosymbiotic nitrogen-fixing bacteroids of legumes, rhizobia must colonize, and cope with environments where nutrient concentrations and compositions vary greatly. Bacterial colonization of legume rhizospheres and of root surfaces is subject to a fierce competition for plant exudates. By contrast root nodules offer to rhizobia sheltered nutrient-rich environments within which the cells that successfully propagated via infection threads can rapidly multiply. To explore the effects on symbiosis of a slower rhizobia growth and metabolism, we deleted one or two copies of the three functional rRNA operons of the promiscuous Sinorhizobium fredii strain NGR234 and examined the impact of these mutations on free-living and symbiotic lifestyles. Strains with two functional rRNA operons (NGRΔrRNA1 and NGRΔrRNA3) grew almost as rapidly as NGR234, and NGRΔrRNA1 was as proficient as the parent strain on all of the five legume species tested. By contrast, the NGRΔrRNA1,3 double mutant, which carried a single rRNA operon and grew significantly slower than NGR234, had a reduced symbiotic proficiency on Cajanus cajan, Macroptilium atropurpureum, Tephrosia vogelii, and Vigna unguiculata. In addition, while NGRΔrRNA1 and NGR234 equally competed for nodulation of V. unguiculata, strain NGRΔrRNA1,3 was clearly outcompeted by wild-type. Surprisingly, on Leucaena leucocephala, NGRΔrRNA1,3 was the most proficient strain and competed equally NGR234 for nodule occupation. Together, these results indicate that for strains with otherwise identical repertoires of symbiotic genes, a faster growth on roots and/or inside plant tissues may contribute to secure access to nodules of some hosts. By contrast, other legumes such as L. leucocephala appear as less selective and capable of providing symbiotic environments susceptible to accommodate strains with a broader spectrum of competences. |
Author | Cherni, Ala Eddine Perret, Xavier |
AuthorAffiliation | Microbiology Unit, Department of Botany and Plant Biology, Sciences III, University of Geneva , Geneva , Switzerland |
AuthorAffiliation_xml | – name: Microbiology Unit, Department of Botany and Plant Biology, Sciences III, University of Geneva , Geneva , Switzerland |
Author_xml | – sequence: 1 givenname: Ala Eddine surname: Cherni fullname: Cherni, Ala Eddine – sequence: 2 givenname: Xavier surname: Perret fullname: Perret, Xavier |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30814981$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kttrFDEUxgep2Fr77pPk0Zddc5vZ5EUordaFpYWuom8hk5zspswkazIj1L_ezG4trWAIuX7nl8v5XldHIQaoqrcEzxkT8oPrvWnnFBM5x5jU_EV1QpqGzximP46ejI-rs5zvcCkc09K-qo4ZFoRLQU4qcwkdDD4GFB1Kt9fn6GYHKYY8zdc-xLT1v2Prxx65BNZ7tB6S9gFdX91SxpEOFi37nTYDKoz1fd_6mH1G3_2wRSvYjD3kN9VLp7sMZw_9afXt86evF19mq5ur5cX5amZ4Q4cZcwDWUua41rbRmBsunMQN5sIaa8SCSd1abuWi1EX5AWKFcY2WToPFjLDTanng2qjv1C75Xqd7FbVX-4WYNkqnwZsOFFBna26kKDxOOZVQA9NA2rqlDRgorI8H1m5se7AGQnl29wz6fCf4rdrEX6phglA5Xeb9AyDFnyPkQfU-G-g6HSCOWVEiFpixuuZF-u7pWY-H_M1SEeCDwKSYcwL3KCFYTV5Qey-oyQtq74US0vwTYvygp0RP6ev-H_gHPPO64A |
CitedBy_id | crossref_primary_10_1007_s00284_024_03991_4 crossref_primary_10_3389_fmicb_2020_576800 crossref_primary_10_3390_genes11050521 crossref_primary_10_1111_nph_16045 |
Cites_doi | 10.1128/MMBR.68.2.280-300.2004 10.1146/annurev-genet-110410-132549 10.1146/annurev-arplant-050312-120235 10.1094/Mpmi.2001.14.8.1016 10.1094/Mpmi-06-14-0168-R 10.1094/MPMI.1999.12.4.293 10.1128/JB.181.12.3803-3809.1999 10.1038/ismej.2015.191 10.1128/JB.00165-09 10.1016/S1369-5274(99)00035-1 10.1099/00221287-84-1-188 10.1128/Jb.01009-12 10.1126/science.215.4540.1631 10.1073/pnas.1704217114 10.1126/science.8248780 10.1094/MPMI.2004.17.3.292 10.1104/pp.108.125674 10.1093/nar/gkv040 10.1371/journal.pone.0037189 10.1073/pnas.88.5.1923 10.1038/nrmicro.2017.171 10.1016/0378-1119(93)90611-6 10.1099/mic.0.067025-0 10.1038/387394a0 10.1094/MPMI-07-18-0188-R 10.1016/0022-2836(89)90002-8 10.1073/pnas.0600912103 10.1128/jb.174.18.5941-5952.1992 10.1128/Jb.186.9.2629-2635.2004 10.1093/nar/gkv1309 10.1099/mic.0.035295-0 10.1111/j.1462-2920.2007.01364.x 10.1083/jcb.102.4.1173 10.1016/j.sajb.2013.06.011 10.1146/annurev.mi.44.100190.000541 10.1016/S0378-1097(03)00717-1 10.1094/Mpmi-11-17-0284-R 10.1101/gr.076448.108 10.1099/mic.0.28691-0 10.1073/pnas.0407269101 10.1146/annurev.mi.46.100192.002151 10.2307/4450800 10.1104/pp.114.253302 10.9734/JAERI/2015/13163 10.1093/nar/29.1.181 10.1016/j.cell.2009.10.025 10.1093/nar/9.3.563 10.1038/Nmicrobiol.2016.160 10.1046/j.1365-2958.1996.01532.x 10.1128/JB.184.24.7042-7046.2002 10.1128/Aem.01972-10 10.1128/JB.182.20.5641-5652.2000 10.1002/j.1460-2075.1993.tb06115.x 10.1016/j.tim.2009.07.004 10.1111/j.1744-7909.2010.00899.x 10.1128/AEM.00515-09 10.1038/nrmicro1705 10.1099/mic.0.049999-0 10.1128/Aem.02358-10 10.1042/bj1251075 10.1038/nmeth.2019 10.1007/BF00017990 10.1128/MMBR.64.1.180-201.2000 10.1186/gb-2000-1-6-research0014 10.1242/dev.110775 10.1016/0378-1119(84)90059-3 10.1016/0378-1119(87)90041-2 10.1016/S0168-6496(03)00132-6 10.1094/MPMI-19-0363 10.1099/mic.0.057281-0 10.1099/00207713-45-4-706 10.4056/sigs.4861021 10.1073/pnas.76.4.1648 10.1038/nature01931 10.1128/AEM.52.4.807-811.1986 10.1099/00221287-130-7-1809 10.3389/fmicb.2016.01793 10.1016/S1097-2765(03)00346-0 10.1111/nph.14474 10.1128/Aem.70.11.6670-6677.2004 10.18174/429101 |
ContentType | Journal Article |
Copyright | Copyright © 2019 Cherni and Perret. 2019 Cherni and Perret |
Copyright_xml | – notice: Copyright © 2019 Cherni and Perret. 2019 Cherni and Perret |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3389/fmicb.2019.00154 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1664-302X |
ExternalDocumentID | oai_doaj_org_article_e2fd54c98d4d42429e5e3ae1b5b26ece PMC6381291 30814981 10_3389_fmicb_2019_00154 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung grantid: 31003A-146548; 31003A-173191 |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK ECGQY GROUPED_DOAJ GX1 HYE KQ8 M48 M~E O5R O5S OK1 PGMZT RNS RPM IAO IEA IHR IPNFZ NPM RIG 7X8 5PM |
ID | FETCH-LOGICAL-c462t-3feedd23f4aad6a04c48f906048dcdc8739abd4d97d9773891d8cf6a9faed0313 |
IEDL.DBID | M48 |
ISSN | 1664-302X |
IngestDate | Wed Aug 27 01:31:25 EDT 2025 Thu Aug 21 17:51:06 EDT 2025 Thu Jul 10 22:20:29 EDT 2025 Thu Jan 02 23:03:15 EST 2025 Tue Jul 01 00:44:33 EDT 2025 Thu Apr 24 23:06:23 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | competition nodulation nitrogen fixation colonization rhizosphere |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c462t-3feedd23f4aad6a04c48f906048dcdc8739abd4d97d9773891d8cf6a9faed0313 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Edited by: Ana E. Escalante, National Autonomous University of Mexico, Mexico This article was submitted to Microbial Symbioses, a section of the journal Frontiers in Microbiology Reviewed by: Esperanza Martinez-Romero, National Autonomous University of Mexico, Mexico; Julie Ardley, Murdoch University, Australia |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fmicb.2019.00154 |
PMID | 30814981 |
PQID | 2187033554 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e2fd54c98d4d42429e5e3ae1b5b26ece pubmedcentral_primary_oai_pubmedcentral_nih_gov_6381291 proquest_miscellaneous_2187033554 pubmed_primary_30814981 crossref_primary_10_3389_fmicb_2019_00154 crossref_citationtrail_10_3389_fmicb_2019_00154 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-02-13 |
PublicationDateYYYYMMDD | 2019-02-13 |
PublicationDate_xml | – month: 02 year: 2019 text: 2019-02-13 day: 13 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in microbiology |
PublicationTitleAlternate | Front Microbiol |
PublicationYear | 2019 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Markwell (B43) 1999; 61 Pueppke (B61) 1999; 12 Oke (B53) 1999; 2 Xiao (B80) 2014; 141 Montiel (B48) 2017; 114 Poole (B59) 2018; 16 Saad (B66) 2018 Becker (B6) 2004; 17 Klappenbach (B36) 2001; 29 Figurski (B21) 1979; 76 Karunakaran (B33) 2009; 191 Gyorfy (B31) 2015; 43 Lewin (B40) 1987; 8 Ferguson (B20) 2010; 52 Amadou (B2) 2008; 18 Pastorino (B55) 2015; 2 Xu (B81) 1995; 45 Gage (B28) 2002; 184 Acinas (B1) 2004; 186 Barnett (B5) 2004; 101 Perret (B57) 2003; 41 Broughton (B10) 1971; 125 Bollenbach (B9) 2009; 139 Monshupanee (B47) 2006; 152 Srivastava (B75) 1990; 44 Sprent (B73) 2017; 215 Broughton (B12) 1986; 102 Prentki (B60) 1984; 29 Fournier (B23) 2015; 167 Ren (B63) 2018 Masson-Boivin (B45) 2009; 17 Jones (B32) 2007; 5 Berg (B7) 1989; 209 Keyser (B34) 1982; 215 Nanamiya (B50) 2010; 156 Chan (B14) 2016; 44 Lagares (B38) 1992; 174 Gage (B29) 2004; 68 Fry (B26) 2001; 14 Schindelin (B69) 2012; 9 Sprent (B74) 2013; 89 Bakkou (B4) 2011; 4286 Marx (B44) 2012; 194 Shrestha (B71) 2007; 9 Quandt (B62) 1993; 127 Mergaert (B46) 2006; 103 Fossou (B22) 2016; 7 Oldroyd (B54) 2011; 45 Schmeisser (B70) 2009; 75 Perret (B56) 1991; 88 Beringer (B8) 1974; 84 Fumeaux (B27) 2011; 157 Yano (B82) 2013; 159 Kohler (B37) 2010; 76 Ledermann (B39) 2018; 31 Saroso (B68) 1984; 130 Soma (B72) 2003; 12 Li (B41) 1986; 52 Perret (B58) 2000; 64 Coenye (B15) 2003; 228 Fournier (B24) 2008; 148 Udvardi (B78) 2013; 64 Ding (B17) 2012; 158 Fellay (B19) 1987; 52 Stevenson (B76) 2004; 70 Okazaki (B52) 2003; 45 Farnham (B18) 1981; 9 Broughton (B11) 2000; 182 Geddes (B30) 2014; 27 Ziegler (B83) 2012; 7 Moulin (B49) 2014; 9 Nemergut (B51) 2016; 10 Condon (B16) 1993; 12 Asai (B3) 1999; 181 Kiers (B35) 2003; 425 Triplett (B77) 1992; 46 Viprey (B79) 2000; 1 Roller (B64) 2016; 1 Sander (B67) 1996; 22 Ross (B65) 1993; 262 Freiberg (B25) 1997; 387 Capela (B13) 2006; 19 Marchetti (B42) 2011; 77 |
References_xml | – volume: 68 start-page: 280 year: 2004 ident: B29 article-title: Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes. publication-title: Microbiol. Mol. Biol. Rev. doi: 10.1128/MMBR.68.2.280-300.2004 – volume: 45 start-page: 119 year: 2011 ident: B54 article-title: The rules of engagement in the legume-rhizobial symbiosis. publication-title: Annu. Rev. Genet. doi: 10.1146/annurev-genet-110410-132549 – volume: 64 start-page: 781 year: 2013 ident: B78 article-title: Transport and metabolism in legume-rhizobia symbioses. publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev-arplant-050312-120235 – volume: 14 start-page: 1016 year: 2001 ident: B26 article-title: Investigation of myo-inositol catabolism in Rhizobium leguminosarum bv. viciae and its effect on nodulation competitiveness. publication-title: Mol. Plant Microbe Interact. doi: 10.1094/Mpmi.2001.14.8.1016 – volume: 27 start-page: 1307 year: 2014 ident: B30 article-title: Exopolysaccharide production in response to medium acidification is correlated with an increase in competition for nodule occupancy. publication-title: Mol. Plant Microbe Interact. doi: 10.1094/Mpmi-06-14-0168-R – volume: 12 start-page: 293 year: 1999 ident: B61 article-title: Rhizobium sp. strain NGR234 and R. fredii USDA257 share exceptionally broad, nested host ranges. publication-title: Mol. Plant Microbe Interact. doi: 10.1094/MPMI.1999.12.4.293 – volume: 181 start-page: 3803 year: 1999 ident: B3 article-title: Construction and initial characterization of Escherichia coli strains with few or no intact chromosomal rRNA operons. publication-title: J. Bacteriol. doi: 10.1128/JB.181.12.3803-3809.1999 – volume: 10 start-page: 1147 year: 2016 ident: B51 article-title: Decreases in average bacterial community rRNA operon copy number during succession. publication-title: ISME J. doi: 10.1038/ismej.2015.191 – volume: 191 start-page: 4002 year: 2009 ident: B33 article-title: Transcriptomic analysis of Rhizobium leguminosarum biovar viciae in symbiosis with host plants Pisum sativum and Vicia cracca. publication-title: J. Bacteriol. doi: 10.1128/JB.00165-09 – volume: 2 start-page: 641 year: 1999 ident: B53 article-title: Bacteroid formation in the Rhizobium-legume symbiosis. publication-title: Curr. Opin. Microbiol. doi: 10.1016/S1369-5274(99)00035-1 – volume: 84 start-page: 188 year: 1974 ident: B8 article-title: R factor transfer in Rhizobium leguminosarum. publication-title: J. Gen. Microbiol. doi: 10.1099/00221287-84-1-188 – volume: 194 start-page: 4746 year: 2012 ident: B44 article-title: Complete genome sequences of six strains of the genus Methylobacterium. publication-title: J. Bacteriol. doi: 10.1128/Jb.01009-12 – volume: 215 start-page: 1631 year: 1982 ident: B34 article-title: Fast-growing rhizobia isolated from root nodules of soybean. publication-title: Science doi: 10.1126/science.215.4540.1631 – volume: 114 start-page: 5041 year: 2017 ident: B48 article-title: Morphotype of bacteroids in different legumes correlates with the number and type of symbiotic NCR peptides. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1704217114 – volume: 262 start-page: 1407 year: 1993 ident: B65 article-title: A third recognition element in bacterial promoters - DNA-binding by the alpha-subunit of RNA-polymerase. publication-title: Science doi: 10.1126/science.8248780 – volume: 17 start-page: 292 year: 2004 ident: B6 article-title: Global changes in gene expression in Sinorhizobium meliloti 1021 under microoxic and symbiotic conditions. publication-title: Mol. Plant Microbe Interact. doi: 10.1094/MPMI.2004.17.3.292 – volume: 148 start-page: 1985 year: 2008 ident: B24 article-title: Mechanism of infection thread elongation in root hairs of Medicago truncatula and dynamic interplay with associated rhizobial colonization. publication-title: Plant Physiol. doi: 10.1104/pp.108.125674 – volume: 43 start-page: 1783 year: 2015 ident: B31 article-title: Engineered ribosomal RNA operon copy-number variants of E. coli reveal the evolutionary trade-offs shaping rRNA operon number. publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv040 – volume: 7 year: 2012 ident: B83 article-title: In situ identification of plant-invasive bacteria with MALDI-TOF mass spectrometry. publication-title: PLoS One doi: 10.1371/journal.pone.0037189 – volume: 88 start-page: 1923 year: 1991 ident: B56 article-title: Canonical ordered cosmid library of the symbiotic plasmid of Rhizobium species NGR234. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.88.5.1923 – volume: 16 start-page: 291 year: 2018 ident: B59 article-title: Rhizobia: from saprophytes to endosymbionts. publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro.2017.171 – volume: 127 start-page: 15 year: 1993 ident: B62 article-title: Versatile suicide vectors which allow direct selection for gene replacement in Gram-negative bacteria. publication-title: Gene doi: 10.1016/0378-1119(93)90611-6 – volume: 159 start-page: 2225 year: 2013 ident: B82 article-title: Multiple rRNA operons are essential for efficient cell growth and sporulation as well as outgrowth in Bacillus subtilis. publication-title: Microbiology doi: 10.1099/mic.0.067025-0 – volume: 387 start-page: 394 year: 1997 ident: B25 article-title: Molecular basis of symbiosis between Rhizobium and legumes. publication-title: Nature doi: 10.1038/387394a0 – year: 2018 ident: B66 article-title: Loss of NifQ leads to accumulation of porphyrins and altered metal-homeostasis in nitrogen-fixing symbioses. publication-title: Mol. Plant Microbe Interact. doi: 10.1094/MPMI-07-18-0188-R – volume: 209 start-page: 345 year: 1989 ident: B7 article-title: Ribosomal-RNA operon anti-termination. Function of leader and spacer region box-B box-A sequences and their conservation in diverse microorganisms. publication-title: J. Mol. Biol. doi: 10.1016/0022-2836(89)90002-8 – volume: 103 start-page: 5230 year: 2006 ident: B46 article-title: Eukaryotic control on bacterial cell cycle and differentiation in the Rhizobium-legume symbiosis. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0600912103 – volume: 174 start-page: 5941 year: 1992 ident: B38 article-title: A Rhizobium meliloti lipopolysaccharide mutant altered in competitiveness for nodulation of Alfalfa. publication-title: J. Bacteriol. doi: 10.1128/jb.174.18.5941-5952.1992 – volume: 186 start-page: 2629 year: 2004 ident: B1 article-title: Divergence and redundancy of 16S rRNA sequences in genomes with multiple rrn operons. publication-title: J. Bacteriol. doi: 10.1128/Jb.186.9.2629-2635.2004 – volume: 4286 year: 2011 ident: B4 publication-title: Characterization of the Endosymbiotic forms of Sinorhizobium sp. Strain NGR234. – volume: 44 start-page: D184 year: 2016 ident: B14 article-title: GtRNAdb 2.0: an expanded database of transfer RNA genes identified in complete and draft genomes. publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv1309 – volume: 156 start-page: 2944 year: 2010 ident: B50 article-title: Bacillus subtilis mutants harbouring a single copy of the rRNA operon exhibit severe defects in growth and sporulation. publication-title: Microbiology doi: 10.1099/mic.0.035295-0 – volume: 9 start-page: 2464 year: 2007 ident: B71 article-title: Phylogenetic identity, growth-response time and rRNA operon copy number of soil bacteria indicate different stages of community succession. publication-title: Environ. Microbiol. doi: 10.1111/j.1462-2920.2007.01364.x – volume: 102 start-page: 1173 year: 1986 ident: B12 article-title: Identification of Rhizobium plasmid sequences involved in recognition of Psophocarpus, Vigna, and other legumes. publication-title: J. Cell Biol. doi: 10.1083/jcb.102.4.1173 – volume: 89 start-page: 31 year: 2013 ident: B74 article-title: From North to South: a latitudinal look at legume nodulation processes. publication-title: S. Afr. J. Bot. doi: 10.1016/j.sajb.2013.06.011 – volume: 44 start-page: 105 year: 1990 ident: B75 article-title: Mechanism and regulation of bacterial ribosomal-RNA processing. publication-title: Annu. Rev. Microbiol. doi: 10.1146/annurev.mi.44.100190.000541 – volume: 228 start-page: 45 year: 2003 ident: B15 article-title: Intragenomic heterogeneity between multiple 16S ribosomal RNA operons in sequenced bacterial genomes. publication-title: FEMS Microbiol. Lett. doi: 10.1016/S0378-1097(03)00717-1 – volume: 31 start-page: 537 year: 2018 ident: B39 article-title: A functional general stress response of Bradyrhizobium diazoefficiens is required for early stages of host plant infection. publication-title: Mol. Plant Microbe Interact. doi: 10.1094/Mpmi-11-17-0284-R – volume: 18 start-page: 1472 year: 2008 ident: B2 article-title: Genome sequence of the β-rhizobium Cupriavidus taiwanensis and comparative genomics of rhizobia. publication-title: Genome Res. doi: 10.1101/gr.076448.108 – volume: 152 start-page: 1417 year: 2006 ident: B47 article-title: A cyanobacterial strain with all chromosomal rRNA operons inactivated: a single nucleotide mutation of 23S rRNA confers temperature-sensitive phenotypes. publication-title: Microbiology doi: 10.1099/mic.0.28691-0 – volume: 101 start-page: 16636 year: 2004 ident: B5 article-title: A dual-genome symbiosis chip for coordinate study of signal exchange and development in a prokaryote-host interaction. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0407269101 – volume: 46 start-page: 399 year: 1992 ident: B77 article-title: Genetics of competition for nodulation of legumes. publication-title: Annu. Rev. Microbiol. doi: 10.1146/annurev.mi.46.100192.002151 – volume: 61 start-page: 672 year: 1999 ident: B43 article-title: The minolta SPAD-502 leaf chlorophyll meter: an exciting new tool for education in the plant sciences. publication-title: Am. Biol. Teach. doi: 10.2307/4450800 – volume: 167 start-page: 1233 year: 2015 ident: B23 article-title: Remodeling of the infection chamber before infection thread formation reveals a two-step mechanism for rhizobial entry into the host legume root hair. publication-title: Plant Physiol. doi: 10.1104/pp.114.253302 – volume: 2 start-page: 10 year: 2015 ident: B55 article-title: Ensifer (Sinorhizobium) fredii interacted more efficiently than Bradyrhizobium japonicum with soybean. publication-title: J. Agric. Ecol. Res. Int. doi: 10.9734/JAERI/2015/13163 – volume: 29 start-page: 181 year: 2001 ident: B36 article-title: rrndb: the ribosomal RNA operon copy number database. publication-title: Nucleic Acids Res. doi: 10.1093/nar/29.1.181 – volume: 139 start-page: 707 year: 2009 ident: B9 article-title: Nonoptimal microbial response to antibiotics underlies suppressive drug interactions. publication-title: Cell doi: 10.1016/j.cell.2009.10.025 – volume: 9 start-page: 563 year: 1981 ident: B18 article-title: Rho-independent termination: dyad symmetry in DNA causes RNA-polymerase to pause during transcription in vitro. publication-title: Nucleic Acids Res. doi: 10.1093/nar/9.3.563 – volume: 1 year: 2016 ident: B64 article-title: Exploiting rRNA operon copy number to investigate bacterial reproductive strategies. publication-title: Nat. Microbiol. doi: 10.1038/Nmicrobiol.2016.160 – volume: 22 start-page: 841 year: 1996 ident: B67 article-title: Introducing mutations into a chromosomal rRNA gene using a genetically modified eubacterial host with a single rRNA operon. publication-title: Mol. Microbiol. doi: 10.1046/j.1365-2958.1996.01532.x – volume: 184 start-page: 7042 year: 2002 ident: B28 article-title: Analysis of infection thread development using Gfp- and DsRed-expressing Sinorhizobium meliloti. publication-title: J. Bacteriol. doi: 10.1128/JB.184.24.7042-7046.2002 – volume: 76 start-page: 7972 year: 2010 ident: B37 article-title: Inositol catabolism, a key pathway in Sinorhizobium meliloti for competitive host nodulation. publication-title: Appl. Environ. Microbiol. doi: 10.1128/Aem.01972-10 – volume: 182 start-page: 5641 year: 2000 ident: B11 article-title: Keys to symbiotic harmony. publication-title: J. Bacteriol. doi: 10.1128/JB.182.20.5641-5652.2000 – volume: 12 start-page: 4305 year: 1993 ident: B16 article-title: Depletion of functional ribosomal RNA operons in Escherichia coli causes increased expression of the remaining intact copies. publication-title: EMBO J. doi: 10.1002/j.1460-2075.1993.tb06115.x – volume: 17 start-page: 458 year: 2009 ident: B45 article-title: Establishing nitrogen-fixing symbiosis with legumes: how many rhizobium recipes? publication-title: Trends Microbiol. doi: 10.1016/j.tim.2009.07.004 – volume: 52 start-page: 61 year: 2010 ident: B20 article-title: Molecular analysis of legume nodule development and autoregulation. publication-title: J. Integr. Plant Biol. doi: 10.1111/j.1744-7909.2010.00899.x – volume: 75 start-page: 4035 year: 2009 ident: B70 article-title: Rhizobium sp. NGR234 possesses a remarkable number of secretion systems. publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00515-09 – volume: 5 start-page: 619 year: 2007 ident: B32 article-title: How rhizobial symbionts invade plants: the Sinorhizobium-Medicago model. publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro1705 – volume: 157 start-page: 2745 year: 2011 ident: B27 article-title: Functional analysis of the nifQdctA1y4vGHIJ operon of Sinorhizobium fredii strain NGR234 using a transposon with a NifA-dependent read-out promoter. publication-title: Microbiology doi: 10.1099/mic.0.049999-0 – volume: 77 start-page: 2161 year: 2011 ident: B42 article-title: Cupriavidus taiwanensis bacteroids in Mimosa pudica indeterminate nodules are not terminally differentiated. publication-title: Appl. Environ. Microb. doi: 10.1128/Aem.02358-10 – volume: 125 start-page: 1075 year: 1971 ident: B10 article-title: Control of leghaemoglobin synthesis in snake beans. publication-title: Biochem. J. doi: 10.1042/bj1251075 – volume: 9 start-page: 676 year: 2012 ident: B69 article-title: Fiji: an open-source platform for biological-image analysis. publication-title: Nat. Methods doi: 10.1038/nmeth.2019 – volume: 8 start-page: 447 year: 1987 ident: B40 article-title: Multiple host-specificity loci of the broad host range Rhizobium sp. NGR234 selected using the widely compatible legume Vigna unguiculata. publication-title: Plant Mol. Biol. doi: 10.1007/BF00017990 – volume: 41 start-page: 1101 year: 2003 ident: B57 article-title: Regulation of expression of symbiotic genes in Rhizobium sp. NGR234. publication-title: Indian J. Exp. Biol. – volume: 64 start-page: 180 year: 2000 ident: B58 article-title: Molecular basis of symbiotic promiscuity. publication-title: Microbiol. Mol. Biol. Rev. doi: 10.1128/MMBR.64.1.180-201.2000 – volume: 1 year: 2000 ident: B79 article-title: Genetic snapshots of the Rhizobium species NGR234 genome. publication-title: Genome Biol. doi: 10.1186/gb-2000-1-6-research0014 – volume: 141 start-page: 3517 year: 2014 ident: B80 article-title: Fate map of Medicago truncatula root nodules. publication-title: Development doi: 10.1242/dev.110775 – volume: 29 start-page: 303 year: 1984 ident: B60 article-title: In vitro insertional mutagenesis with a selectable DNA fragment. publication-title: Gene doi: 10.1016/0378-1119(84)90059-3 – volume: 52 start-page: 147 year: 1987 ident: B19 article-title: Interposon mutagenesis of soil and water bacteria: a family of DNA fragments designed for in vitro insertional mutagenesis of Gram-negative bacteria. publication-title: Gene doi: 10.1016/0378-1119(87)90041-2 – volume: 45 start-page: 155 year: 2003 ident: B52 article-title: Quantitative and time-course evaluation of nodulation competitiveness of rhizobitoxine-producing Bradyrhizobium elkanii. publication-title: FEMS Microbiol. Ecol. doi: 10.1016/S0168-6496(03)00132-6 – volume: 19 start-page: 363 year: 2006 ident: B13 article-title: Sinorhizobium meliloti differentiation during symbiosis with alfalfa: a transcriptomic dissection. publication-title: Mol. Plant Microbe Interact. doi: 10.1094/MPMI-19-0363 – volume: 158 start-page: 1369 year: 2012 ident: B17 article-title: Glycerol utilization by Rhizobium leguminosarum requires an ABC transporter and affects competition for nodulation. publication-title: Microbiology doi: 10.1099/mic.0.057281-0 – volume: 45 start-page: 706 year: 1995 ident: B81 article-title: Bradyrhizobium liaoningense sp. nov., isolated from the root nodules of soybeans. publication-title: Int. J. Syst. Bacteriol. doi: 10.1099/00207713-45-4-706 – volume: 9 start-page: 763 year: 2014 ident: B49 article-title: Complete genome sequence of Burkholderia phymatum STM815, a broad host range and efficient nitrogen-fixing symbiont of Mimosa species. publication-title: Stand. Genomic Sci. doi: 10.4056/sigs.4861021 – volume: 76 start-page: 1648 year: 1979 ident: B21 article-title: Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.76.4.1648 – volume: 425 start-page: 78 year: 2003 ident: B35 article-title: Host sanctions and the legume-rhizobium mutualism. publication-title: Nature doi: 10.1038/nature01931 – volume: 52 start-page: 807 year: 1986 ident: B41 article-title: Bacterial growth rates and competition affect nodulation and root colonization by Rhizobium meliloti. publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.52.4.807-811.1986 – volume: 130 start-page: 1809 year: 1984 ident: B68 article-title: Carbon utilization by free-living and bacteroid forms of cowpea Rhizobium strain NGR234. publication-title: J. Gen. Microbiol. doi: 10.1099/00221287-130-7-1809 – volume: 7 year: 2016 ident: B22 article-title: Two major clades of bradyrhizobia dominate symbiotic interactions with pigeonpea in fields of Côte d’Ivoire. publication-title: Front. Microbiol. doi: 10.3389/fmicb.2016.01793 – volume: 12 start-page: 689 year: 2003 ident: B72 article-title: An RNA-modifying enzyme that governs both the codon and amino acid specificities of isoleucine tRNA. publication-title: Mol. Cell doi: 10.1016/S1097-2765(03)00346-0 – volume: 215 start-page: 40 year: 2017 ident: B73 article-title: Biogeography of nodulated legumes and their nitrogen-fixing symbionts. publication-title: New Phytol. doi: 10.1111/nph.14474 – volume: 70 start-page: 6670 year: 2004 ident: B76 article-title: Life history implications of rRNA gene copy number in Escherichia coli. publication-title: Appl. Environ. Microbiol. doi: 10.1128/Aem.70.11.6670-6677.2004 – year: 2018 ident: B63 publication-title: The Evolution of Determinate and Indeterminate Nodules Within the Papilionoideae Subfamily. doi: 10.18174/429101 |
SSID | ssj0000402000 |
Score | 2.2181041 |
Snippet | During their lifecycle, from free-living soil bacteria to endosymbiotic nitrogen-fixing bacteroids of legumes, rhizobia must colonize, and cope with... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 154 |
SubjectTerms | colonization competition Microbiology nitrogen fixation nodulation rhizosphere |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQEhIXVJ5NC5WReuEQsZs4TnykvFFZJBZUbpafbKTiVJvdA_--M86y2q0qeqmUixMnccbjmW80k8-EfLWACmypRArYtpcyZ3iq4VyaFQbQrK08j4n22wG_emQ3T8XTwlZfWBPW0QN3gjt2mbcFM6KyzDLwJ8IVLleurwudcWccWl_weQvBVLTBGBb1el1eEqIwAdNUG42lXJGfsmBLfijS9f8NY_5ZKrngey4-kI0ZaKQn3WA3yYoLW2St20bydZuYM4cU2k2gjafj-8EJvUP679Bie1iHZoyFdbqevlA_BmdV02HcGYIOLu-znFEVLL2Of0tSeMbw9UXXTVu39Ec9GdHv7hnMV7tDHi_OH06v0tnmCalhPJukuQfvZ7PcM6UsVz1mWOUFUuVU1lhTlblQGmQqSjhKzFbayniuhFfOIqHjLlkNTXAfCTXQzrkrjYboq2SuYgq8PKxkw3VhS5-Q4zdRSjNjFsfP-CkhwkDhyyh8icKXUfgJOZrf8atj1Xin7zecnXk_5MOOJ0BL5ExL5L-0JCGHb3MrYf1gUkQF10xbCRAHjB6iroTsdXM9f1UOeImJqp-QckkLlsayfCXUo8jRDWYNkFT_0_8Y_GeyjuLAWvF-vk9WJ-OpOwAoNNFfotb_BsXICTA priority: 102 providerName: Directory of Open Access Journals |
Title | Deletion of rRNA Operons of Sinorhizobium fredii Strain NGR234 and Impact on Symbiosis With Legumes |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30814981 https://www.proquest.com/docview/2187033554 https://pubmed.ncbi.nlm.nih.gov/PMC6381291 https://doaj.org/article/e2fd54c98d4d42429e5e3ae1b5b26ece |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bi9QwFA66Ivgi3q2XJYIvPlS3bZq0DyLrZXcVd4QdB-ct5Lpb2E21nQHn33tO2h0dGUQohbRp2pzk5HynJ_lCyHMLqMAKVaeAbfdS5gxPNVxL89IAmrWV5zHQfjzhRzP2aV7Ofy-PHgXYb3XtcD-pWXf-8ueP1RtQ-NfocYK9hRZojMZZWpF6smRXyTWwSwLV9HgE-3FcRlcprknJOMdwQD4f4pZbC9mwU5HOfxsG_Xsq5R-26eAWuTmCSro_9ILb5IoLd8j1YZvJ1V1i3juk2G4DbT3tTib79AvSg4ce09MmtB1OvNPN8oL6DoxZQ6dx5wg6OTzJC0ZVsPRjXE1JoYzp6kI3bd_09FuzOKOf3SkMb_09Mjv48PXdUTpurpAaxvNFWniwjjYvPFPKcrXHDKt8jVQ6lTXWVKKolbbM1gIOgdFMWxnPVe2Vs0j4eJ_shDa4h4QaSBfcCaPBOxPMVUwBCgBNN1yXVviEvLoUpTQj8zhW41yCB4LCl1H4EoUvo_AT8mL9xPeBdeMfed9i66zzIV92vNB2p3JUP-lyb0tm6gpqxACV1K50hXKZLnXOnXEJeXbZthL0C4MmKrh22UuAQDAoIipLyIOhrdevKgBPsbrKEiI2esHGt2zeCc1Z5PCGYQ-QVvboP977mNzA2uJU8ax4QnYW3dI9BSS00LvxDwKcD-fZbuzsvwBQ_Qji |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deletion+of+rRNA+Operons+of+Sinorhizobium+fredii+Strain+NGR234+and+Impact+on+Symbiosis+With+Legumes&rft.jtitle=Frontiers+in+microbiology&rft.au=Cherni%2C+Ala+Eddine&rft.au=Perret%2C+Xavier&rft.date=2019-02-13&rft.issn=1664-302X&rft.eissn=1664-302X&rft.volume=10&rft.spage=154&rft_id=info:doi/10.3389%2Ffmicb.2019.00154&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-302X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-302X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-302X&client=summon |