Effect of Bifidobacterium upon Clostridium difficile Growth and Toxicity When Co-cultured in Different Prebiotic Substrates

The intestinal overgrowth of Clostridium difficile, often after disturbance of the gut microbiota by antibiotic treatment, leads to C. difficile infection (CDI) which manifestation ranges from mild diarrhea to life-threatening conditions. The increasing CDI incidence, not only in compromised subject...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in microbiology Vol. 7; p. 738
Main Authors Valdés-Varela, L., Hernández-Barranco, Ana M., Ruas-Madiedo, Patricia, Gueimonde, Miguel
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 18.05.2016
Subjects
Online AccessGet full text
ISSN1664-302X
1664-302X
DOI10.3389/fmicb.2016.00738

Cover

Abstract The intestinal overgrowth of Clostridium difficile, often after disturbance of the gut microbiota by antibiotic treatment, leads to C. difficile infection (CDI) which manifestation ranges from mild diarrhea to life-threatening conditions. The increasing CDI incidence, not only in compromised subjects but also in traditionally considered low-risk populations, together with the frequent relapses of the disease, has attracted the interest for prevention/therapeutic options. Among these, probiotics, prebiotics, or synbiotics constitute a promising approach. In this study we determined the potential of selected Bifidobacterium strains for the inhibition of C. difficile growth and toxicity in different carbon sources. We conducted co-cultures of the toxigenic strain C. difficile LMG21717 with four Bifidobacterium strains (Bifidobacterium longum IPLA20022, Bifidobacterium breve IPLA20006, Bifidobacterium bifidum IPLA20015, and Bifidobacterium animalis subsp. lactis Bb12) in the presence of various prebiotic substrates (Inulin, Synergy, and Actilight) or glucose, and compared the results with those obtained for the corresponding mono-cultures. C. difficile and bifidobacteria levels were quantified by qPCR; the pH and the production of short chain fatty acids was also determined. Moreover, supernatants of the cultures were collected to evaluate their toxicity using a recently developed model. Results showed that co-culture with B. longum IPLA20022 and B. breve IPLA20006 in the presence of short-chain fructooligosaccharides, but not of Inulin, as carbon source significantly reduced the growth of the pathogen. With the sole exception of B. animalis Bb12, whose growth was enhanced, the presence of C. difficile did not show major effects upon the growth of the bifidobacteria. In accordance with the growth data, B. longum and B. breve were the strains showing higher reduction in the toxicity of the co-culture supernatants.
AbstractList The intestinal overgrowth of Clostridium difficile, often after disturbance of the gut microbiota by antibiotic treatment, leads to C. difficile infection (CDI) which manifestation ranges from mild diarrhoea to life-threatening conditions. The increasing CDI incidence, not only in compromised subjects but also in traditionally considered low-risk populations, together with the frequent relapses of the disease, has attracted the interest for prevention/therapeutic options. Among these, probiotics, prebiotics or synbiotics constitute a promising approach. In this study we determined the potential of selected Bifidobacterium strains for the inhibition of C. difficile growth and toxicity in different carbon sources. We conducted co-cultures of the toxigenic strain C. difficile LMG21717 with four Bifidobacterium strains (Bifidobacterium longum IPLA20022, Bifidobacterium breve IPLA20006, Bifidobacterium bifidum IPLA20015, and Bifidobacterium animalis subsp. lactis Bb12) in the presence of various prebiotic substrates (Inulin, Synergy and Actilight) or glucose, and compared the results with those obtained for the corresponding mono-cultures. C. difficile and bifidobacteria levels were quantified by qPCR; the pH and the production of short chain fatty acids was also determined. Moreover, supernatants of the cultures were collected to evaluate their toxicity using a recently developed model. Results showed that co-culture with B. longum IPLA20022 and B. breve IPLA20006 in the presence of short-chain fructooligosaccharides, but not of Inulin, as carbon source significantly reduced the growth of the pathogen. With the sole exception of B. animalis Bb12, whose growth was enhanced, the presence of C. difficile did not show major effects upon the growth of the bifidobacteria. In accordance with the growth data, B. longum and B. breve were the strains showing higher reduction in the toxicity of the co-culture supernatants.
The intestinal overgrowth of Clostridium difficile , often after disturbance of the gut microbiota by antibiotic treatment, leads to C. difficile infection (CDI) which manifestation ranges from mild diarrhea to life-threatening conditions. The increasing CDI incidence, not only in compromised subjects but also in traditionally considered low-risk populations, together with the frequent relapses of the disease, has attracted the interest for prevention/therapeutic options. Among these, probiotics, prebiotics, or synbiotics constitute a promising approach. In this study we determined the potential of selected Bifidobacterium strains for the inhibition of C. difficile growth and toxicity in different carbon sources. We conducted co-cultures of the toxigenic strain C. difficile LMG21717 with four Bifidobacterium strains ( Bifidobacterium longum IPLA20022, Bifidobacterium breve IPLA20006, Bifidobacterium bifidum IPLA20015, and Bifidobacterium animalis subsp. lactis Bb12) in the presence of various prebiotic substrates (Inulin, Synergy, and Actilight) or glucose, and compared the results with those obtained for the corresponding mono-cultures. C. difficile and bifidobacteria levels were quantified by qPCR; the pH and the production of short chain fatty acids was also determined. Moreover, supernatants of the cultures were collected to evaluate their toxicity using a recently developed model. Results showed that co-culture with B. longum IPLA20022 and B. breve IPLA20006 in the presence of short-chain fructooligosaccharides, but not of Inulin, as carbon source significantly reduced the growth of the pathogen. With the sole exception of B. animalis Bb12, whose growth was enhanced, the presence of C. difficile did not show major effects upon the growth of the bifidobacteria. In accordance with the growth data, B. longum and B. breve were the strains showing higher reduction in the toxicity of the co-culture supernatants.
The intestinal overgrowth of Clostridium difficile, often after disturbance of the gut microbiota by antibiotic treatment, leads to C. difficile infection (CDI) which manifestation ranges from mild diarrhea to life-threatening conditions. The increasing CDI incidence, not only in compromised subjects but also in traditionally considered low-risk populations, together with the frequent relapses of the disease, has attracted the interest for prevention/therapeutic options. Among these, probiotics, prebiotics, or synbiotics constitute a promising approach. In this study we determined the potential of selected Bifidobacterium strains for the inhibition of C. difficile growth and toxicity in different carbon sources. We conducted co-cultures of the toxigenic strain C. difficile LMG21717 with four Bifidobacterium strains (Bifidobacterium longum IPLA20022, Bifidobacterium breve IPLA20006, Bifidobacterium bifidum IPLA20015, and Bifidobacterium animalis subsp. lactis Bb12) in the presence of various prebiotic substrates (Inulin, Synergy, and Actilight) or glucose, and compared the results with those obtained for the corresponding mono-cultures. C. difficile and bifidobacteria levels were quantified by qPCR; the pH and the production of short chain fatty acids was also determined. Moreover, supernatants of the cultures were collected to evaluate their toxicity using a recently developed model. Results showed that co-culture with B. longum IPLA20022 and B. breve IPLA20006 in the presence of short-chain fructooligosaccharides, but not of Inulin, as carbon source significantly reduced the growth of the pathogen. With the sole exception of B. animalis Bb12, whose growth was enhanced, the presence of C. difficile did not show major effects upon the growth of the bifidobacteria. In accordance with the growth data, B. longum and B. breve were the strains showing higher reduction in the toxicity of the co-culture supernatants.
The intestinal overgrowth of Clostridium difficile, often after disturbance of the gut microbiota by antibiotic treatment, leads to C. difficile infection (CDI) which manifestation ranges from mild diarrhea to life-threatening conditions. The increasing CDI incidence, not only in compromised subjects but also in traditionally considered low-risk populations, together with the frequent relapses of the disease, has attracted the interest for prevention/therapeutic options. Among these, probiotics, prebiotics, or synbiotics constitute a promising approach. In this study we determined the potential of selected Bifidobacterium strains for the inhibition of C. difficile growth and toxicity in different carbon sources. We conducted co-cultures of the toxigenic strain C. difficile LMG21717 with four Bifidobacterium strains (Bifidobacterium longum IPLA20022, Bifidobacterium breve IPLA20006, Bifidobacterium bifidum IPLA20015, and Bifidobacterium animalis subsp. lactis Bb12) in the presence of various prebiotic substrates (Inulin, Synergy, and Actilight) or glucose, and compared the results with those obtained for the corresponding mono-cultures. C. difficile and bifidobacteria levels were quantified by qPCR; the pH and the production of short chain fatty acids was also determined. Moreover, supernatants of the cultures were collected to evaluate their toxicity using a recently developed model. Results showed that co-culture with B. longum IPLA20022 and B. breve IPLA20006 in the presence of short-chain fructooligosaccharides, but not of Inulin, as carbon source significantly reduced the growth of the pathogen. With the sole exception of B. animalis Bb12, whose growth was enhanced, the presence of C. difficile did not show major effects upon the growth of the bifidobacteria. In accordance with the growth data, B. longum and B. breve were the strains showing higher reduction in the toxicity of the co-culture supernatants.The intestinal overgrowth of Clostridium difficile, often after disturbance of the gut microbiota by antibiotic treatment, leads to C. difficile infection (CDI) which manifestation ranges from mild diarrhea to life-threatening conditions. The increasing CDI incidence, not only in compromised subjects but also in traditionally considered low-risk populations, together with the frequent relapses of the disease, has attracted the interest for prevention/therapeutic options. Among these, probiotics, prebiotics, or synbiotics constitute a promising approach. In this study we determined the potential of selected Bifidobacterium strains for the inhibition of C. difficile growth and toxicity in different carbon sources. We conducted co-cultures of the toxigenic strain C. difficile LMG21717 with four Bifidobacterium strains (Bifidobacterium longum IPLA20022, Bifidobacterium breve IPLA20006, Bifidobacterium bifidum IPLA20015, and Bifidobacterium animalis subsp. lactis Bb12) in the presence of various prebiotic substrates (Inulin, Synergy, and Actilight) or glucose, and compared the results with those obtained for the corresponding mono-cultures. C. difficile and bifidobacteria levels were quantified by qPCR; the pH and the production of short chain fatty acids was also determined. Moreover, supernatants of the cultures were collected to evaluate their toxicity using a recently developed model. Results showed that co-culture with B. longum IPLA20022 and B. breve IPLA20006 in the presence of short-chain fructooligosaccharides, but not of Inulin, as carbon source significantly reduced the growth of the pathogen. With the sole exception of B. animalis Bb12, whose growth was enhanced, the presence of C. difficile did not show major effects upon the growth of the bifidobacteria. In accordance with the growth data, B. longum and B. breve were the strains showing higher reduction in the toxicity of the co-culture supernatants.
Author Hernández-Barranco, Ana M.
Gueimonde, Miguel
Valdés-Varela, L.
Ruas-Madiedo, Patricia
AuthorAffiliation Microbiology and Biochemistry of Dairy Products, Probiotics and Prebiotics, Instituto de Productos Lácteos de Asturias–Consejo Superior de Investigaciones Científicas Villaviciosa, Spain
AuthorAffiliation_xml – name: Microbiology and Biochemistry of Dairy Products, Probiotics and Prebiotics, Instituto de Productos Lácteos de Asturias–Consejo Superior de Investigaciones Científicas Villaviciosa, Spain
Author_xml – sequence: 1
  givenname: L.
  surname: Valdés-Varela
  fullname: Valdés-Varela, L.
– sequence: 2
  givenname: Ana M.
  surname: Hernández-Barranco
  fullname: Hernández-Barranco, Ana M.
– sequence: 3
  givenname: Patricia
  surname: Ruas-Madiedo
  fullname: Ruas-Madiedo, Patricia
– sequence: 4
  givenname: Miguel
  surname: Gueimonde
  fullname: Gueimonde, Miguel
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27242753$$D View this record in MEDLINE/PubMed
BookMark eNp1ks9vFCEUxyemxtbauyfD0cusb2AGZi4mutbapIkm1uiN8OPRpZkdVmDUxn9edrc1rYkcgDy-7_OF8H1aHUxhwqp63sCCsX545dbe6AWFhi8ABOsfVUcN523NgH47uLc_rE5SuoYyWqBlflIdUkFbKjp2VP0-dQ5NJsGRt955G7QyGaOf12TehIksx5By9HZbsN45b_yI5CyGn3lF1GTJZfhVavmGfF1hkYfazGOeI1riJ_KudGDEKZNPEbUP2RvyedaFqDKmZ9Vjp8aEJ7frcfXl_enl8kN98fHsfPnmojYtp7lmPTPYcyM4gOIwKCM6y3rqFJhGuA6NNYqJBgcE0BSs64wWPRpmlXCg2HF1vufaoK7lJvq1ijcyKC93hRCvpIrlaiPKzvYwNLq1lItWCFTGUqqLdasBrILCer1nbWa9RmvK26IaH0Afnkx-Ja_CD9n2AijjBfDyFhDD9xlTlmufDI6jmjDMSTZiYLTphk4U6Yv7Xn9N7n6vCPheYGJIKaKT5SdU9mFr7UfZgNwmRe6SIrdJkbuklEb4p_GO_d-WP1WDxPg
CitedBy_id crossref_primary_10_1007_s12088_019_00808_y
crossref_primary_10_1016_j_lwt_2022_113982
crossref_primary_10_1111_jfbc_12944
crossref_primary_10_1097_MOG_0000000000000800
crossref_primary_10_3390_pathogens10080927
crossref_primary_10_21603_2308_4057_2022_2_543
crossref_primary_10_1128_JB_00584_19
crossref_primary_10_3389_fmicb_2019_00841
crossref_primary_10_1016_j_mib_2016_11_006
crossref_primary_10_1038_s41522_023_00448_7
crossref_primary_10_3390_pathogens13080646
crossref_primary_10_1007_s10123_023_00398_2
crossref_primary_10_1016_j_jksus_2024_103374
crossref_primary_10_1007_s00253_023_12825_5
crossref_primary_10_1080_1040841X_2022_2072705
crossref_primary_10_3389_fmicb_2021_755083
crossref_primary_10_1080_19490976_2016_1256525
crossref_primary_10_1007_s11274_019_2665_2
crossref_primary_10_3389_fmicb_2019_02871
crossref_primary_10_1016_j_neucom_2019_03_047
crossref_primary_10_1128_jb_00407_24
crossref_primary_10_21518_2079_701X_2021_17_1
crossref_primary_10_3389_fimmu_2017_01678
crossref_primary_10_1016_j_jff_2019_103669
crossref_primary_10_1016_j_carbpol_2020_116832
crossref_primary_10_1007_s00253_021_11668_2
crossref_primary_10_3390_antibiotics13050436
crossref_primary_10_1136_bmjgast_2022_000871
crossref_primary_10_1016_j_biopha_2021_111817
crossref_primary_10_1007_s12602_021_09858_5
crossref_primary_10_1097_MOG_0000000000000410
crossref_primary_10_3390_microorganisms12061183
crossref_primary_10_1128_MRA_00197_20
crossref_primary_10_3389_fcimb_2019_00288
crossref_primary_10_1016_j_foodres_2020_109496
crossref_primary_10_7759_cureus_40261
crossref_primary_10_1136_gutjnl_2017_315306
crossref_primary_10_54044_RAMI_2022_02_04
crossref_primary_10_1016_j_celrep_2019_03_054
crossref_primary_10_1002_hsr2_1080
crossref_primary_10_1002_ame2_12441
crossref_primary_10_1016_j_jff_2018_12_014
crossref_primary_10_1007_s12602_019_09614_w
crossref_primary_10_1016_j_fshw_2021_07_017
crossref_primary_10_3389_fcimb_2023_1147585
crossref_primary_10_3389_fmicb_2021_651081
Cites_doi 10.2903/j.efsa.2011.1984
10.1128/JB.184.21.5971-5978.2002
10.1111/1348-0421.12184
10.1016/j.anaerobe.2012.08.004
10.4161/gmic.21757
10.1097/MPG.0b013e3181d29767
10.3168/jds.2014-7921
10.1128/IAI.00870-15
10.1038/nrmicro2164
10.1128/AEM.71.10.6150-6158.2005
10.1128/AEM.69.4.1920-1927.2003
10.1016/j.femsre.2004.01.003
10.1186/s12879-015-0759-5
10.1016/j.anaerobe.2012.08.005
10.1128/mBio.02368-14
10.1016/j.anaerobe.2010.02.004
10.1016/S0140-6736(13)61218-0
10.1111/j.1574-6941.2011.01261.x
10.1016/j.anaerobe.2011.11.002
10.1007/s10482-010-9424-6
10.1016/j.micpath.2015.03.001
10.1111/jam.12953
10.1099/jmm.0.05376-0
10.1016/j.tim.2011.11.003
10.1128/IAI.68.10.5881-5888.2000
10.3389/fmicb.2016.00577
10.1016/j.anaerobe.2013.09.011
10.1001/jama.2015.18098
10.1038/srep12666
10.1016/j.ijfoodmicro.2010.10.016
10.1016/j.mimet.2015.09.022
10.1038/nrgastro.2016.25
10.1016/j.anaerobe.2013.02.006
10.1017/S0022029913000216
10.1038/nrmicro2473
10.1016/j.ijfoodmicro.2010.10.036
10.4315/0362-028X-68.12.2672
10.1056/NEJMra1403772
10.1093/cid/civ179
10.1016/j.resmic.2014.10.002
10.1186/1757-4749-1-8
10.1128/IAI.64.12.5225-5232.1996
10.3402/mehd.v26.27988
10.5487/TR.2013.29.2.099
10.1128/IAI.02897-14
ContentType Journal Article
Copyright Copyright © 2016 Valdés-Varela, Hernández-Barranco, Ruas-Madiedo and Gueimonde. 2016 Valdés-Varela, Hernández-Barranco, Ruas-Madiedo and Gueimonde
Copyright_xml – notice: Copyright © 2016 Valdés-Varela, Hernández-Barranco, Ruas-Madiedo and Gueimonde. 2016 Valdés-Varela, Hernández-Barranco, Ruas-Madiedo and Gueimonde
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fmicb.2016.00738
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList

PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1664-302X
ExternalDocumentID oai_doaj_org_article_5d8091b4d267477eacd22bc764b00da0
PMC4870236
27242753
10_3389_fmicb_2016_00738
Genre Journal Article
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
ECGQY
GROUPED_DOAJ
GX1
HYE
IPNFZ
KQ8
M48
M~E
O5R
O5S
OK1
PGMZT
RIG
RNS
RPM
IAO
IEA
IHR
NPM
7X8
5PM
ID FETCH-LOGICAL-c462t-383ce86c7600a609ac75d382fa0c17f5ecdca371e9e00b20df5cb78ec3da7f0a3
IEDL.DBID M48
ISSN 1664-302X
IngestDate Wed Aug 27 01:21:04 EDT 2025
Thu Aug 21 14:15:01 EDT 2025
Fri Sep 05 09:32:59 EDT 2025
Thu Jan 02 22:24:53 EST 2025
Tue Jul 01 03:55:00 EDT 2025
Thu Apr 24 22:59:44 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords HT29
Bifidobacterium
toxin
RTCA
Clostridium difficile
inhibition
prebiotics
probiotics
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c462t-383ce86c7600a609ac75d382fa0c17f5ecdca371e9e00b20df5cb78ec3da7f0a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Edited by: David Berry, University of Vienna, Austria
This article was submitted to Microbial Symbioses, a section of the journal Frontiers in Microbiology
Reviewed by: Amparo Latorre, University of Valencia, Spain; Bärbel Stecher, Ludwig Maximilians Universität München, Germany
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fmicb.2016.00738
PMID 27242753
PQID 1793215957
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_5d8091b4d267477eacd22bc764b00da0
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4870236
proquest_miscellaneous_1793215957
pubmed_primary_27242753
crossref_citationtrail_10_3389_fmicb_2016_00738
crossref_primary_10_3389_fmicb_2016_00738
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-05-18
PublicationDateYYYYMMDD 2016-05-18
PublicationDate_xml – month: 05
  year: 2016
  text: 2016-05-18
  day: 18
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in microbiology
PublicationTitleAlternate Front Microbiol
PublicationYear 2016
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Arboleya (B5) 2011; 149
Hopkins (B16) 2003; 69
Yang (B44) 2015; 83
Vickers (B42) 2015; 15
Andersen (B3) 2015; 84
Schoster (B32) 2013; 20
Castagliuolo (B11) 1996; 64
Collado (B12) 2005; 68
Tejero-Sariñena (B36) 2012; 18
Arboleya (B4) 2012; 79
Auclair (B6) 2015; 60
Rupnik (B30) 2009; 7
Banerjee (B7) 2009; 1
Salazar (B31) 2011; 144
Valdés (B41) 2015; 119
Ozaki (B27) 2004; 53
Lee (B22) 2016; 315
Trejo (B38) 2013; 80
Reid (B28) 2011; 9
Leffler (B24) 2015; 372
Tejero-Sariñena (B37) 2013; 24
Senoh (B33) 2015; 81
Yakob (B43) 2015; 5
Valdés (B40) 2016; 7
Kondepudi (B20) 2014; 58
Rossi (B29) 2005; 71
Bouillaut (B8) 2015; 166
Lee (B23) 2013; 29
Allen (B1) 2013; 382
Karlsson (B18) 2000; 68
Servin (B34) 2004; 28
Trejo (B39) 2010; 98
EFSA Panel on Dietetic Products (B13) 2011; 9
Forssten (B14) 2015; 26
Ambalam (B2) 2015; 119
Kondepudi (B21) 2012; 18
Gebhart (B15) 2015; 6
Martin (B26) 2016; 13
Carter (B10) 2012; 20
Carasi (B9) 2012; 18
Jangi (B17) 2010; 51
Kolling (B19) 2012; 3
Mani (B25) 2002; 184
Yun (B45) 2014; 97
Solís (B35) 2010; 16
20512057 - J Pediatr Gastroenterol Nutr. 2010 Jul;51(1):2-7
25880933 - BMC Infect Dis. 2015 Feb 25;15:91
22126419 - FEMS Microbiol Ecol. 2012 Mar;79(3):763-72
26218654 - Sci Rep. 2015 Jul 28;5:12666
14729940 - J Med Microbiol. 2004 Feb;53(Pt 2):167-72
22895082 - Gut Microbes. 2012 Nov-Dec;3(6):523-9
21113182 - Nat Rev Microbiol. 2011 Jan;9(1):27-38
26956066 - Nat Rev Gastroenterol Hepatol. 2016 Apr;13(4):206-16
25745878 - Microb Pathog. 2015 Apr;81:1-5
23611644 - J Dairy Res. 2013 Aug;80(3):263-9
10992498 - Infect Immun. 2000 Oct;68(10):5881-8
27148250 - Front Microbiol. 2016 Apr 22;7:577
22126976 - Anaerobe. 2012 Feb;18(1):135-42
25922399 - Clin Infect Dis. 2015 May 15;60 Suppl 2:S135-43
15374659 - FEMS Microbiol Rev. 2004 Oct;28(4):405-40
26757463 - JAMA. 2016 Jan 12;315(2):142-9
24091275 - Anaerobe. 2013 Dec;24:60-5
25486992 - Infect Immun. 2015 Feb;83(2):822-31
22959627 - Anaerobe. 2012 Oct;18(5):530-8
12374831 - J Bacteriol. 2002 Nov;184(21):5971-8
19528959 - Nat Rev Microbiol. 2009 Jul;7(7):526-36
24856984 - J Dairy Sci. 2014;97(8):4745-58
8945570 - Infect Immun. 1996 Dec;64(12):5225-32
25805733 - MBio. 2015 Mar 24;6(2):null
16204533 - Appl Environ Microbiol. 2005 Oct;71(10):6150-8
20176122 - Anaerobe. 2010 Jun;16(3):307-10
12676665 - Appl Environ Microbiol. 2003 Apr;69(4):1920-7
24278635 - Toxicol Res. 2013 Jun;29(2):99-106
26468159 - Microb Ecol Health Dis. 2015 Oct 13;26:27988
16355841 - J Food Prot. 2005 Dec;68(12):2672-8
20232250 - Antonie Van Leeuwenhoek. 2010 Jun;98(1):19-29
22940065 - Anaerobe. 2012 Oct;18(5):489-97
25059277 - Microbiol Immunol. 2014 Oct;58(10):552-8
26381324 - J Appl Microbiol. 2015 Dec;119(6):1672-82
19397787 - Gut Pathog. 2009 Apr 27;1(1):8
25445566 - Res Microbiol. 2015 May;166(4):375-83
23471038 - Anaerobe. 2013 Apr;20:36-41
23932219 - Lancet. 2013 Oct 12;382(9900):1249-57
25875259 - N Engl J Med. 2015 Apr 16;372(16):1539-48
21078530 - Int J Food Microbiol. 2011 Jan 5;144(3):342-51
21109322 - Int J Food Microbiol. 2011 Sep 1;149(1):28-36
26436983 - J Microbiol Methods. 2015 Dec;119:66-73
26573738 - Infect Immun. 2015 Nov 16;84(2):395-406
22154163 - Trends Microbiol. 2012 Jan;20(1):21-9
References_xml – volume: 9
  start-page: 1984
  year: 2011
  ident: B13
  article-title: Guidance on the scientific requirements for health claims related to gut and immune function
  publication-title: EFSA J.
  doi: 10.2903/j.efsa.2011.1984
– volume: 184
  start-page: 5971
  year: 2002
  ident: B25
  article-title: Environmental response and autoregulation of Clostridium difficile TxeR, a sigma factor for toxin gene expression
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.184.21.5971-5978.2002
– volume: 58
  start-page: 552
  year: 2014
  ident: B20
  article-title: A novel multi-strain probiotic and synbiotic supplement for prevention of Clostridium difficile infection in a murine model
  publication-title: Microbiol. Immunol.
  doi: 10.1111/1348-0421.12184
– volume: 18
  start-page: 530
  year: 2012
  ident: B36
  article-title: In vitro evaluation of the antimicrobial activity of a range of probiotics against pathogens: evidence for the effects of organic acids
  publication-title: Anaerobe
  doi: 10.1016/j.anaerobe.2012.08.004
– volume: 3
  start-page: 523
  year: 2012
  ident: B19
  article-title: Lactic acid production by Streptococcus thermophilus alters Clostridium difficile infection and in vitro Toxin A production
  publication-title: Gut Microbes.
  doi: 10.4161/gmic.21757
– volume: 51
  start-page: 2
  year: 2010
  ident: B17
  article-title: Asyntomatic colonization by Clostridium difficile in infants: implications for disease in later life
  publication-title: J. Pediatr. Gastroenterol. Nutr.
  doi: 10.1097/MPG.0b013e3181d29767
– volume: 97
  start-page: 4745
  year: 2014
  ident: B45
  publication-title: Lactobacillus acidophilus
  doi: 10.3168/jds.2014-7921
– volume: 84
  start-page: 395
  year: 2015
  ident: B3
  article-title: Neutralization of Clostridium difficile Toxin B mediated by engineered Lactobacilli that produce single-domain antibodies
  publication-title: Infect. Immun.
  doi: 10.1128/IAI.00870-15
– volume: 7
  start-page: 526
  year: 2009
  ident: B30
  article-title: Clostridium difficile infection: new developments in epidemiology and pathogenesis
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro2164
– volume: 71
  start-page: 6150
  year: 2005
  ident: B29
  article-title: Fermentation of fructooligosaccharides and inulin by bifidobacteria: a comparative study of pure and fecal cultures
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.71.10.6150-6158.2005
– volume: 69
  start-page: 1920
  year: 2003
  ident: B16
  article-title: Nondigestible oligosaccharides enhance bacterial colonization resistance against Clostridium difficile in vitro
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.69.4.1920-1927.2003
– volume: 28
  start-page: 405
  year: 2004
  ident: B34
  article-title: Antagonistic activities of lactobacilli and bifidobacteria against microbial pathogens
  publication-title: FEMS Microbiol. Rev.
  doi: 10.1016/j.femsre.2004.01.003
– volume: 15
  start-page: 91
  year: 2015
  ident: B42
  article-title: A randomised phase 1 study to investigate safety, pharmacokinetics and impact on gut microbiota following single and multiple oral doses in healthy male subjects of SMT19969, a novel agent for Clostridium difficile infections
  publication-title: BMC Infect. Dis.
  doi: 10.1186/s12879-015-0759-5
– volume: 18
  start-page: 489
  year: 2012
  ident: B21
  article-title: Prebiotic-non-digestible oligosaccharides preference of probiotics bifidobacteria and antimicrobial activity against Clostridium difficile
  publication-title: Anaerobe
  doi: 10.1016/j.anaerobe.2012.08.005
– volume: 6
  start-page: e02368
  year: 2015
  ident: B15
  article-title: A modified R-type bacteriocin specifically targeting Clostridium difficile prevents colonization of mice without affecting gut microbiota diversity
  publication-title: MBio.
  doi: 10.1128/mBio.02368-14
– volume: 16
  start-page: 307
  year: 2010
  ident: B35
  article-title: Establishment and development of lactic acid bacteria and bifidobacteria microbiota in breast-milk and the infant gut
  publication-title: Anaerobe
  doi: 10.1016/j.anaerobe.2010.02.004
– volume: 382
  start-page: 1249
  year: 2013
  ident: B1
  article-title: Lactobacilli and bifidobacteria in the prevention of antibiotic-associated diarrhoea and Clostridium difficile diarrhoea in older inpatients (PLACIDE): a randomised, double-blind, placebo-controlled, multicentre trial
  publication-title: Lancet
  doi: 10.1016/S0140-6736(13)61218-0
– volume: 79
  start-page: 763
  year: 2012
  ident: B4
  article-title: Establishment and development of intestinal microbiota in preterm neonates
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1111/j.1574-6941.2011.01261.x
– volume: 18
  start-page: 135
  year: 2012
  ident: B9
  article-title: Surface proteins from Lactobacillus kefir antagonize in vitro cytotoxic effect of Clostridium difficile toxins
  publication-title: Anaerobe
  doi: 10.1016/j.anaerobe.2011.11.002
– volume: 98
  start-page: 19
  year: 2010
  ident: B39
  article-title: Co-culture with potentially probiotic microorganisms antagonises virulence factors of Clostridium difficile in vitro
  publication-title: Antonie Van Leeuwenhoek.
  doi: 10.1007/s10482-010-9424-6
– volume: 81
  start-page: 1
  year: 2015
  ident: B33
  article-title: Inhibition of adhesion of Clostridium difficile to human intestinal cells after treatment with serum and intestinal fluid isolated from mice immunized with nontoxigenic C. difficile membrane fraction
  publication-title: Microb. Pathog.
  doi: 10.1016/j.micpath.2015.03.001
– volume: 119
  start-page: 1672
  year: 2015
  ident: B2
  article-title: Prebiotic preferences of human lactobacilli strains in co-culture with bifidobacteria and antimicrobial activity against Clostridium difficile
  publication-title: J. Appl. Microbiol.
  doi: 10.1111/jam.12953
– volume: 53
  start-page: 167
  year: 2004
  ident: B27
  article-title: Clostridium difficile colonization in healthy adults: transient colonization and correlation with enterococcal colonization
  publication-title: J. Med. Microbiol.
  doi: 10.1099/jmm.0.05376-0
– volume: 20
  start-page: 21
  year: 2012
  ident: B10
  article-title: The role of toxin A and toxin B in the virulence of Clostridium difficile
  publication-title: Trends Microbiol.
  doi: 10.1016/j.tim.2011.11.003
– volume: 68
  start-page: 5881
  year: 2000
  ident: B18
  article-title: Toxins, butyric acid, and other short-chain fatty acids are coordinatedly expressed and down-regulated by cysteine in Clostridium difficile
  publication-title: Infect. Immun.
  doi: 10.1128/IAI.68.10.5881-5888.2000
– volume: 7
  start-page: 577
  year: 2016
  ident: B40
  article-title: Selection of bifidobacteria and lactobacilli able to antagonise the cytotoxic effect of Clostridium difficile upon intestinal epithelial HT29 monolayer
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2016.00577
– volume: 24
  start-page: 60
  year: 2013
  ident: B37
  article-title: Antipathogenic activity of probiotics against Salmonella Typhimurium and Clostridium difficile in anaerobic batch culture systems: is it due to synergies in probiotic mixtures or the specificity of single strains?
  publication-title: Anaerobe
  doi: 10.1016/j.anaerobe.2013.09.011
– volume: 315
  start-page: 142
  year: 2016
  ident: B22
  article-title: Frozen vs fresh fecal microbiota transplantation and clinical resolution of diarrhea in patients with recurrent Clostridium difficile infection: a randomized clinical trial
  publication-title: J. Am. Med. Assoc.
  doi: 10.1001/jama.2015.18098
– volume: 5
  start-page: 12666
  year: 2015
  ident: B43
  article-title: Mechanisms of hypervirulent Clostridium difficile ribotype 027 displacement of endemic strains: an epidemiological model
  publication-title: Sci. Rep.
  doi: 10.1038/srep12666
– volume: 144
  start-page: 342
  year: 2011
  ident: B31
  article-title: Safety and intestinal microbiota modulation by the exopolysaccharide-producing strains Bifidobacterium animalis IPLA R1 and Bifidobacterium longum IPLA E44 orally administered to Wistar rats
  publication-title: Int. J. Food Microbiol.
  doi: 10.1016/j.ijfoodmicro.2010.10.016
– volume: 119
  start-page: 66
  year: 2015
  ident: B41
  article-title: Monitoring in real time the cytotoxic effect of Clostridium difficile upon the intestinal epithelial cell line HT29
  publication-title: J. Microbiol. Methods
  doi: 10.1016/j.mimet.2015.09.022
– volume: 13
  start-page: 206
  year: 2016
  ident: B26
  article-title: Clostridium difficile infection: epidemiology, diagnosis and understanding transmission
  publication-title: Nat. Rev. Gastroenterol. Hepatol.
  doi: 10.1038/nrgastro.2016.25
– volume: 20
  start-page: 36
  year: 2013
  ident: B32
  article-title: In vitro inhibition of Clostridium difficile and Clostridium perfringens by commercial probiotic strains
  publication-title: Anaerobe.
  doi: 10.1016/j.anaerobe.2013.02.006
– volume: 80
  start-page: 263
  year: 2013
  ident: B38
  article-title: Protective effect of bifidobacteria in an experimental model of Clostridium difficile associated colitis
  publication-title: J. Dairy Res.
  doi: 10.1017/S0022029913000216
– volume: 9
  start-page: 27
  year: 2011
  ident: B28
  article-title: Microbiota restoration: natural and supplemented recovery of human microbial communities
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro2473
– volume: 149
  start-page: 28
  year: 2011
  ident: B5
  article-title: Characterization and in vitro properties of potentially probiotic Bifidobacterium strains isolated from breast-milk
  publication-title: Int. J. Food Microbiol.
  doi: 10.1016/j.ijfoodmicro.2010.10.036
– volume: 68
  start-page: 2672
  year: 2005
  ident: B12
  article-title: Adhesion of selected Bifidobacterium strains to human intestinal mucus and its role in enteropathogen exclusion
  publication-title: J. Food Protect.
  doi: 10.4315/0362-028X-68.12.2672
– volume: 372
  start-page: 1539
  year: 2015
  ident: B24
  article-title: Clostridium difficile infection
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMra1403772
– volume: 60
  start-page: S135
  year: 2015
  ident: B6
  article-title: Lactobacillus acidophilus CL1285, Lactobacillus casei LBC80R, and Lactobacillus rhamnosus CLR2 (Bio-K+): characterization, manufacture, mechanisms of action, and quality control of a specific probiotic combination for primary prevention of Clostridium difficile infection
  publication-title: Clin. Infect. Dis.
  doi: 10.1093/cid/civ179
– volume: 166
  start-page: 375
  year: 2015
  ident: B8
  article-title: Integration of metabolism and virulence in Clostridium difficile
  publication-title: Res. Microbiol.
  doi: 10.1016/j.resmic.2014.10.002
– volume: 1
  start-page: 8
  year: 2009
  ident: B7
  article-title: Lactobacillus delbrueckii ssp. bulgaricus B-30892 can inhibit cytotoxic effects and adhesion of pathogenic Clostridium difficile to Caco-2 cells
  publication-title: Gut Pathog.
  doi: 10.1186/1757-4749-1-8
– volume: 64
  start-page: 5225
  year: 1996
  ident: B11
  article-title: Saccharomyces boulardii protease inhibits Clostridium difficile Toxin A effects in the rat ileum
  publication-title: Infect. Immun.
  doi: 10.1128/IAI.64.12.5225-5232.1996
– volume: 26
  start-page: 27988
  year: 2015
  ident: B14
  article-title: The effect of polydextrose and probiotic lactobacilli in a Clostridium difficile-infected human colonic model
  publication-title: Microb. Ecol. Health Dis.
  doi: 10.3402/mehd.v26.27988
– volume: 29
  start-page: 99
  year: 2013
  ident: B23
  article-title: In vitro evaluation of antimicrobial activity of lactic acid bacteria against Clostridium difficile
  publication-title: Toxicol. Res.
  doi: 10.5487/TR.2013.29.2.099
– volume: 83
  start-page: 822
  year: 2015
  ident: B44
  article-title: Mechanisms of protection against Clostridium difficile infection by the monoclonal antitoxin antibodies actoxumab and bezlotoxumab
  publication-title: Infect. Immun.
  doi: 10.1128/IAI.02897-14
– reference: 23471038 - Anaerobe. 2013 Apr;20:36-41
– reference: 26381324 - J Appl Microbiol. 2015 Dec;119(6):1672-82
– reference: 21109322 - Int J Food Microbiol. 2011 Sep 1;149(1):28-36
– reference: 25880933 - BMC Infect Dis. 2015 Feb 25;15:91
– reference: 20512057 - J Pediatr Gastroenterol Nutr. 2010 Jul;51(1):2-7
– reference: 26218654 - Sci Rep. 2015 Jul 28;5:12666
– reference: 25445566 - Res Microbiol. 2015 May;166(4):375-83
– reference: 26956066 - Nat Rev Gastroenterol Hepatol. 2016 Apr;13(4):206-16
– reference: 12374831 - J Bacteriol. 2002 Nov;184(21):5971-8
– reference: 20176122 - Anaerobe. 2010 Jun;16(3):307-10
– reference: 20232250 - Antonie Van Leeuwenhoek. 2010 Jun;98(1):19-29
– reference: 16355841 - J Food Prot. 2005 Dec;68(12):2672-8
– reference: 26573738 - Infect Immun. 2015 Nov 16;84(2):395-406
– reference: 25745878 - Microb Pathog. 2015 Apr;81:1-5
– reference: 27148250 - Front Microbiol. 2016 Apr 22;7:577
– reference: 22126976 - Anaerobe. 2012 Feb;18(1):135-42
– reference: 22959627 - Anaerobe. 2012 Oct;18(5):530-8
– reference: 19397787 - Gut Pathog. 2009 Apr 27;1(1):8
– reference: 25059277 - Microbiol Immunol. 2014 Oct;58(10):552-8
– reference: 8945570 - Infect Immun. 1996 Dec;64(12):5225-32
– reference: 15374659 - FEMS Microbiol Rev. 2004 Oct;28(4):405-40
– reference: 12676665 - Appl Environ Microbiol. 2003 Apr;69(4):1920-7
– reference: 10992498 - Infect Immun. 2000 Oct;68(10):5881-8
– reference: 24278635 - Toxicol Res. 2013 Jun;29(2):99-106
– reference: 26757463 - JAMA. 2016 Jan 12;315(2):142-9
– reference: 14729940 - J Med Microbiol. 2004 Feb;53(Pt 2):167-72
– reference: 24856984 - J Dairy Sci. 2014;97(8):4745-58
– reference: 25805733 - MBio. 2015 Mar 24;6(2):null
– reference: 21078530 - Int J Food Microbiol. 2011 Jan 5;144(3):342-51
– reference: 26468159 - Microb Ecol Health Dis. 2015 Oct 13;26:27988
– reference: 26436983 - J Microbiol Methods. 2015 Dec;119:66-73
– reference: 21113182 - Nat Rev Microbiol. 2011 Jan;9(1):27-38
– reference: 16204533 - Appl Environ Microbiol. 2005 Oct;71(10):6150-8
– reference: 24091275 - Anaerobe. 2013 Dec;24:60-5
– reference: 25875259 - N Engl J Med. 2015 Apr 16;372(16):1539-48
– reference: 23611644 - J Dairy Res. 2013 Aug;80(3):263-9
– reference: 22895082 - Gut Microbes. 2012 Nov-Dec;3(6):523-9
– reference: 22940065 - Anaerobe. 2012 Oct;18(5):489-97
– reference: 19528959 - Nat Rev Microbiol. 2009 Jul;7(7):526-36
– reference: 22154163 - Trends Microbiol. 2012 Jan;20(1):21-9
– reference: 22126419 - FEMS Microbiol Ecol. 2012 Mar;79(3):763-72
– reference: 25922399 - Clin Infect Dis. 2015 May 15;60 Suppl 2:S135-43
– reference: 23932219 - Lancet. 2013 Oct 12;382(9900):1249-57
– reference: 25486992 - Infect Immun. 2015 Feb;83(2):822-31
SSID ssj0000402000
Score 2.3543394
Snippet The intestinal overgrowth of Clostridium difficile, often after disturbance of the gut microbiota by antibiotic treatment, leads to C. difficile infection...
The intestinal overgrowth of Clostridium difficile , often after disturbance of the gut microbiota by antibiotic treatment, leads to C. difficile infection...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 738
SubjectTerms Bifidobacterium
Clostridium difficile
inhibition
Microbiology
Prebiotics
Probiotics
toxin
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixQxEA6yIHgR37arEsGLh2bT3Xl0ju7isnjw5MLeQjoPp2FNDzs96OKf36pkZpgR0YvXdJouUpWq-qjqrwh5r7kPmmNfmI6u5rJvattZUfcQOpsmU1jlBtkv8uKSf74SV3ujvrAnrNADl4M7Eb6HkDZw30rIfBX4Cd-2g1OSg8F4m9E602wPTGUfjLCIsVKXBBSmQU2jG7CVC4sP-XeUvTiU6fr_lGP-3iq5F3vOH5GHm6SRfizCPib3QnpC7pcxkrdPya9CQUynSE_HOHq4opmCef2drpdTomfXE07n8LiAA1FGB66AfgMAPi-oTZ7O009Ym2_pj0VI1E114eMIno6JbkeozHR5E4ZxAhnoCtxNprVdPSOX55--nl3Um6EKteOynWtApC700mFBzkqmrVPCd30bLXONiiI472ynmqADY0PLfBRuUH1wnbcqMts9J0dpSuEloZD5hE4PwgoeeGi8tl7GKJ2FNLBrh74iJ9sjNm7DOI6DL64NIA9UislKMagUk5VSkQ-7N5aFbeMve09Ra7t9yJOdF8B6zMZ6zL-spyLvtjo3cK-wWGJTmNYrg44L0iEtVEVeFBvYfapVkNgAzquIOrCOA1kOn6Rxkbm7AR8iZ_-r_yH8MXmAx4G9DE3_mhzNN-vwBlKkeXibb8MdIgUSiA
  priority: 102
  providerName: Directory of Open Access Journals
Title Effect of Bifidobacterium upon Clostridium difficile Growth and Toxicity When Co-cultured in Different Prebiotic Substrates
URI https://www.ncbi.nlm.nih.gov/pubmed/27242753
https://www.proquest.com/docview/1793215957
https://pubmed.ncbi.nlm.nih.gov/PMC4870236
https://doaj.org/article/5d8091b4d267477eacd22bc764b00da0
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgERIXxJsssDISFw6BPPzKASF2xbJCghOVeosc29lGKnZpU-1W_HlmnLRQVHHikoPjqK4nM_N99fQbQl5VzLqKYV1Y1ZqUCZWnutQ8VZA68zxKWMUC2a_iYsI-T_n099-jxw1cHaR22E9qspy_uf6xeQ8O_w4ZJ-RbsEBnGqzSwnMFWaqb5BbkJYFU7MsI9mNcRqqUZcNZ5cEH93JTlPA_hDv_Lp_8Ix-d3yN3RyBJPwyWv09uOP-A3B5aS24ekp-DLDENLT3t2s6C20ZZ5vV3ul4ET8_mATt2WBzAJimdgfBAL4GU9zOqvaV9uIaxfkOvZs5TE9JBo8NZ2nm6bavS08XSNV2ANdAVhKAodbt6RCbnH7-dXaRjo4XUMFH0KbBU45QweEinRVZpI7ktVdHqzOSy5c5Yo0uZu8plWVNktuWmkcqZ0mrZZrp8TI588O4poYCGXFk1XHPmmMttpa1oW2E0QMOyaFRC3m63uDajCjk2w5jXwEbQKHU0So1GqaNREvJ698RiUOD4x9xTtNpuHmpnx4GwvKxHV6y5VQCSGmYLAVxKQuaxRdHAl2cQgqzOEvJya_MafA0PULR3Yb2qMZgBRKq4TMiT4R3YfVQhAewA90uI3Hs79tayf8d3s6jnDZwRdfyP_8fin5E7uB1Y35Cr5-SoX67dC4BNfXMSf26A66dpfhI94xcONRyI
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Bifidobacterium+upon+Clostridium+difficile+growth+and+toxicity+when+co-cultured+in+different+prebiotic+substrates&rft.jtitle=Frontiers+in+microbiology&rft.au=Lorena+Vald%C3%A9s+Varela&rft.au=Ana+M.+Hern%C3%A1ndez-Barranco&rft.au=Patricia+eRuas-Madiedo&rft.au=Miguel+eGueimonde&rft.date=2016-05-18&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-302X&rft.volume=7&rft_id=info:doi/10.3389%2Ffmicb.2016.00738&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_5d8091b4d267477eacd22bc764b00da0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-302X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-302X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-302X&client=summon