Effect of Bifidobacterium upon Clostridium difficile Growth and Toxicity When Co-cultured in Different Prebiotic Substrates
The intestinal overgrowth of Clostridium difficile, often after disturbance of the gut microbiota by antibiotic treatment, leads to C. difficile infection (CDI) which manifestation ranges from mild diarrhea to life-threatening conditions. The increasing CDI incidence, not only in compromised subject...
Saved in:
Published in | Frontiers in microbiology Vol. 7; p. 738 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
18.05.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 1664-302X 1664-302X |
DOI | 10.3389/fmicb.2016.00738 |
Cover
Abstract | The intestinal overgrowth of Clostridium difficile, often after disturbance of the gut microbiota by antibiotic treatment, leads to C. difficile infection (CDI) which manifestation ranges from mild diarrhea to life-threatening conditions. The increasing CDI incidence, not only in compromised subjects but also in traditionally considered low-risk populations, together with the frequent relapses of the disease, has attracted the interest for prevention/therapeutic options. Among these, probiotics, prebiotics, or synbiotics constitute a promising approach. In this study we determined the potential of selected Bifidobacterium strains for the inhibition of C. difficile growth and toxicity in different carbon sources. We conducted co-cultures of the toxigenic strain C. difficile LMG21717 with four Bifidobacterium strains (Bifidobacterium longum IPLA20022, Bifidobacterium breve IPLA20006, Bifidobacterium bifidum IPLA20015, and Bifidobacterium animalis subsp. lactis Bb12) in the presence of various prebiotic substrates (Inulin, Synergy, and Actilight) or glucose, and compared the results with those obtained for the corresponding mono-cultures. C. difficile and bifidobacteria levels were quantified by qPCR; the pH and the production of short chain fatty acids was also determined. Moreover, supernatants of the cultures were collected to evaluate their toxicity using a recently developed model. Results showed that co-culture with B. longum IPLA20022 and B. breve IPLA20006 in the presence of short-chain fructooligosaccharides, but not of Inulin, as carbon source significantly reduced the growth of the pathogen. With the sole exception of B. animalis Bb12, whose growth was enhanced, the presence of C. difficile did not show major effects upon the growth of the bifidobacteria. In accordance with the growth data, B. longum and B. breve were the strains showing higher reduction in the toxicity of the co-culture supernatants. |
---|---|
AbstractList | The intestinal overgrowth of Clostridium difficile, often after disturbance of the gut microbiota by antibiotic treatment, leads to C. difficile infection (CDI) which manifestation ranges from mild diarrhoea to life-threatening conditions. The increasing CDI incidence, not only in compromised subjects but also in traditionally considered low-risk populations, together with the frequent relapses of the disease, has attracted the interest for prevention/therapeutic options. Among these, probiotics, prebiotics or synbiotics constitute a promising approach. In this study we determined the potential of selected Bifidobacterium strains for the inhibition of C. difficile growth and toxicity in different carbon sources. We conducted co-cultures of the toxigenic strain C. difficile LMG21717 with four Bifidobacterium strains (Bifidobacterium longum IPLA20022, Bifidobacterium breve IPLA20006, Bifidobacterium bifidum IPLA20015, and Bifidobacterium animalis subsp. lactis Bb12) in the presence of various prebiotic substrates (Inulin, Synergy and Actilight) or glucose, and compared the results with those obtained for the corresponding mono-cultures. C. difficile and bifidobacteria levels were quantified by qPCR; the pH and the production of short chain fatty acids was also determined. Moreover, supernatants of the cultures were collected to evaluate their toxicity using a recently developed model. Results showed that co-culture with B. longum IPLA20022 and B. breve IPLA20006 in the presence of short-chain fructooligosaccharides, but not of Inulin, as carbon source significantly reduced the growth of the pathogen. With the sole exception of B. animalis Bb12, whose growth was enhanced, the presence of C. difficile did not show major effects upon the growth of the bifidobacteria. In accordance with the growth data, B. longum and B. breve were the strains showing higher reduction in the toxicity of the co-culture supernatants. The intestinal overgrowth of Clostridium difficile , often after disturbance of the gut microbiota by antibiotic treatment, leads to C. difficile infection (CDI) which manifestation ranges from mild diarrhea to life-threatening conditions. The increasing CDI incidence, not only in compromised subjects but also in traditionally considered low-risk populations, together with the frequent relapses of the disease, has attracted the interest for prevention/therapeutic options. Among these, probiotics, prebiotics, or synbiotics constitute a promising approach. In this study we determined the potential of selected Bifidobacterium strains for the inhibition of C. difficile growth and toxicity in different carbon sources. We conducted co-cultures of the toxigenic strain C. difficile LMG21717 with four Bifidobacterium strains ( Bifidobacterium longum IPLA20022, Bifidobacterium breve IPLA20006, Bifidobacterium bifidum IPLA20015, and Bifidobacterium animalis subsp. lactis Bb12) in the presence of various prebiotic substrates (Inulin, Synergy, and Actilight) or glucose, and compared the results with those obtained for the corresponding mono-cultures. C. difficile and bifidobacteria levels were quantified by qPCR; the pH and the production of short chain fatty acids was also determined. Moreover, supernatants of the cultures were collected to evaluate their toxicity using a recently developed model. Results showed that co-culture with B. longum IPLA20022 and B. breve IPLA20006 in the presence of short-chain fructooligosaccharides, but not of Inulin, as carbon source significantly reduced the growth of the pathogen. With the sole exception of B. animalis Bb12, whose growth was enhanced, the presence of C. difficile did not show major effects upon the growth of the bifidobacteria. In accordance with the growth data, B. longum and B. breve were the strains showing higher reduction in the toxicity of the co-culture supernatants. The intestinal overgrowth of Clostridium difficile, often after disturbance of the gut microbiota by antibiotic treatment, leads to C. difficile infection (CDI) which manifestation ranges from mild diarrhea to life-threatening conditions. The increasing CDI incidence, not only in compromised subjects but also in traditionally considered low-risk populations, together with the frequent relapses of the disease, has attracted the interest for prevention/therapeutic options. Among these, probiotics, prebiotics, or synbiotics constitute a promising approach. In this study we determined the potential of selected Bifidobacterium strains for the inhibition of C. difficile growth and toxicity in different carbon sources. We conducted co-cultures of the toxigenic strain C. difficile LMG21717 with four Bifidobacterium strains (Bifidobacterium longum IPLA20022, Bifidobacterium breve IPLA20006, Bifidobacterium bifidum IPLA20015, and Bifidobacterium animalis subsp. lactis Bb12) in the presence of various prebiotic substrates (Inulin, Synergy, and Actilight) or glucose, and compared the results with those obtained for the corresponding mono-cultures. C. difficile and bifidobacteria levels were quantified by qPCR; the pH and the production of short chain fatty acids was also determined. Moreover, supernatants of the cultures were collected to evaluate their toxicity using a recently developed model. Results showed that co-culture with B. longum IPLA20022 and B. breve IPLA20006 in the presence of short-chain fructooligosaccharides, but not of Inulin, as carbon source significantly reduced the growth of the pathogen. With the sole exception of B. animalis Bb12, whose growth was enhanced, the presence of C. difficile did not show major effects upon the growth of the bifidobacteria. In accordance with the growth data, B. longum and B. breve were the strains showing higher reduction in the toxicity of the co-culture supernatants. The intestinal overgrowth of Clostridium difficile, often after disturbance of the gut microbiota by antibiotic treatment, leads to C. difficile infection (CDI) which manifestation ranges from mild diarrhea to life-threatening conditions. The increasing CDI incidence, not only in compromised subjects but also in traditionally considered low-risk populations, together with the frequent relapses of the disease, has attracted the interest for prevention/therapeutic options. Among these, probiotics, prebiotics, or synbiotics constitute a promising approach. In this study we determined the potential of selected Bifidobacterium strains for the inhibition of C. difficile growth and toxicity in different carbon sources. We conducted co-cultures of the toxigenic strain C. difficile LMG21717 with four Bifidobacterium strains (Bifidobacterium longum IPLA20022, Bifidobacterium breve IPLA20006, Bifidobacterium bifidum IPLA20015, and Bifidobacterium animalis subsp. lactis Bb12) in the presence of various prebiotic substrates (Inulin, Synergy, and Actilight) or glucose, and compared the results with those obtained for the corresponding mono-cultures. C. difficile and bifidobacteria levels were quantified by qPCR; the pH and the production of short chain fatty acids was also determined. Moreover, supernatants of the cultures were collected to evaluate their toxicity using a recently developed model. Results showed that co-culture with B. longum IPLA20022 and B. breve IPLA20006 in the presence of short-chain fructooligosaccharides, but not of Inulin, as carbon source significantly reduced the growth of the pathogen. With the sole exception of B. animalis Bb12, whose growth was enhanced, the presence of C. difficile did not show major effects upon the growth of the bifidobacteria. In accordance with the growth data, B. longum and B. breve were the strains showing higher reduction in the toxicity of the co-culture supernatants.The intestinal overgrowth of Clostridium difficile, often after disturbance of the gut microbiota by antibiotic treatment, leads to C. difficile infection (CDI) which manifestation ranges from mild diarrhea to life-threatening conditions. The increasing CDI incidence, not only in compromised subjects but also in traditionally considered low-risk populations, together with the frequent relapses of the disease, has attracted the interest for prevention/therapeutic options. Among these, probiotics, prebiotics, or synbiotics constitute a promising approach. In this study we determined the potential of selected Bifidobacterium strains for the inhibition of C. difficile growth and toxicity in different carbon sources. We conducted co-cultures of the toxigenic strain C. difficile LMG21717 with four Bifidobacterium strains (Bifidobacterium longum IPLA20022, Bifidobacterium breve IPLA20006, Bifidobacterium bifidum IPLA20015, and Bifidobacterium animalis subsp. lactis Bb12) in the presence of various prebiotic substrates (Inulin, Synergy, and Actilight) or glucose, and compared the results with those obtained for the corresponding mono-cultures. C. difficile and bifidobacteria levels were quantified by qPCR; the pH and the production of short chain fatty acids was also determined. Moreover, supernatants of the cultures were collected to evaluate their toxicity using a recently developed model. Results showed that co-culture with B. longum IPLA20022 and B. breve IPLA20006 in the presence of short-chain fructooligosaccharides, but not of Inulin, as carbon source significantly reduced the growth of the pathogen. With the sole exception of B. animalis Bb12, whose growth was enhanced, the presence of C. difficile did not show major effects upon the growth of the bifidobacteria. In accordance with the growth data, B. longum and B. breve were the strains showing higher reduction in the toxicity of the co-culture supernatants. |
Author | Hernández-Barranco, Ana M. Gueimonde, Miguel Valdés-Varela, L. Ruas-Madiedo, Patricia |
AuthorAffiliation | Microbiology and Biochemistry of Dairy Products, Probiotics and Prebiotics, Instituto de Productos Lácteos de Asturias–Consejo Superior de Investigaciones Científicas Villaviciosa, Spain |
AuthorAffiliation_xml | – name: Microbiology and Biochemistry of Dairy Products, Probiotics and Prebiotics, Instituto de Productos Lácteos de Asturias–Consejo Superior de Investigaciones Científicas Villaviciosa, Spain |
Author_xml | – sequence: 1 givenname: L. surname: Valdés-Varela fullname: Valdés-Varela, L. – sequence: 2 givenname: Ana M. surname: Hernández-Barranco fullname: Hernández-Barranco, Ana M. – sequence: 3 givenname: Patricia surname: Ruas-Madiedo fullname: Ruas-Madiedo, Patricia – sequence: 4 givenname: Miguel surname: Gueimonde fullname: Gueimonde, Miguel |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27242753$$D View this record in MEDLINE/PubMed |
BookMark | eNp1ks9vFCEUxyemxtbauyfD0cusb2AGZi4mutbapIkm1uiN8OPRpZkdVmDUxn9edrc1rYkcgDy-7_OF8H1aHUxhwqp63sCCsX545dbe6AWFhi8ABOsfVUcN523NgH47uLc_rE5SuoYyWqBlflIdUkFbKjp2VP0-dQ5NJsGRt955G7QyGaOf12TehIksx5By9HZbsN45b_yI5CyGn3lF1GTJZfhVavmGfF1hkYfazGOeI1riJ_KudGDEKZNPEbUP2RvyedaFqDKmZ9Vjp8aEJ7frcfXl_enl8kN98fHsfPnmojYtp7lmPTPYcyM4gOIwKCM6y3rqFJhGuA6NNYqJBgcE0BSs64wWPRpmlXCg2HF1vufaoK7lJvq1ijcyKC93hRCvpIrlaiPKzvYwNLq1lItWCFTGUqqLdasBrILCer1nbWa9RmvK26IaH0Afnkx-Ja_CD9n2AijjBfDyFhDD9xlTlmufDI6jmjDMSTZiYLTphk4U6Yv7Xn9N7n6vCPheYGJIKaKT5SdU9mFr7UfZgNwmRe6SIrdJkbuklEb4p_GO_d-WP1WDxPg |
CitedBy_id | crossref_primary_10_1007_s12088_019_00808_y crossref_primary_10_1016_j_lwt_2022_113982 crossref_primary_10_1111_jfbc_12944 crossref_primary_10_1097_MOG_0000000000000800 crossref_primary_10_3390_pathogens10080927 crossref_primary_10_21603_2308_4057_2022_2_543 crossref_primary_10_1128_JB_00584_19 crossref_primary_10_3389_fmicb_2019_00841 crossref_primary_10_1016_j_mib_2016_11_006 crossref_primary_10_1038_s41522_023_00448_7 crossref_primary_10_3390_pathogens13080646 crossref_primary_10_1007_s10123_023_00398_2 crossref_primary_10_1016_j_jksus_2024_103374 crossref_primary_10_1007_s00253_023_12825_5 crossref_primary_10_1080_1040841X_2022_2072705 crossref_primary_10_3389_fmicb_2021_755083 crossref_primary_10_1080_19490976_2016_1256525 crossref_primary_10_1007_s11274_019_2665_2 crossref_primary_10_3389_fmicb_2019_02871 crossref_primary_10_1016_j_neucom_2019_03_047 crossref_primary_10_1128_jb_00407_24 crossref_primary_10_21518_2079_701X_2021_17_1 crossref_primary_10_3389_fimmu_2017_01678 crossref_primary_10_1016_j_jff_2019_103669 crossref_primary_10_1016_j_carbpol_2020_116832 crossref_primary_10_1007_s00253_021_11668_2 crossref_primary_10_3390_antibiotics13050436 crossref_primary_10_1136_bmjgast_2022_000871 crossref_primary_10_1016_j_biopha_2021_111817 crossref_primary_10_1007_s12602_021_09858_5 crossref_primary_10_1097_MOG_0000000000000410 crossref_primary_10_3390_microorganisms12061183 crossref_primary_10_1128_MRA_00197_20 crossref_primary_10_3389_fcimb_2019_00288 crossref_primary_10_1016_j_foodres_2020_109496 crossref_primary_10_7759_cureus_40261 crossref_primary_10_1136_gutjnl_2017_315306 crossref_primary_10_54044_RAMI_2022_02_04 crossref_primary_10_1016_j_celrep_2019_03_054 crossref_primary_10_1002_hsr2_1080 crossref_primary_10_1002_ame2_12441 crossref_primary_10_1016_j_jff_2018_12_014 crossref_primary_10_1007_s12602_019_09614_w crossref_primary_10_1016_j_fshw_2021_07_017 crossref_primary_10_3389_fcimb_2023_1147585 crossref_primary_10_3389_fmicb_2021_651081 |
Cites_doi | 10.2903/j.efsa.2011.1984 10.1128/JB.184.21.5971-5978.2002 10.1111/1348-0421.12184 10.1016/j.anaerobe.2012.08.004 10.4161/gmic.21757 10.1097/MPG.0b013e3181d29767 10.3168/jds.2014-7921 10.1128/IAI.00870-15 10.1038/nrmicro2164 10.1128/AEM.71.10.6150-6158.2005 10.1128/AEM.69.4.1920-1927.2003 10.1016/j.femsre.2004.01.003 10.1186/s12879-015-0759-5 10.1016/j.anaerobe.2012.08.005 10.1128/mBio.02368-14 10.1016/j.anaerobe.2010.02.004 10.1016/S0140-6736(13)61218-0 10.1111/j.1574-6941.2011.01261.x 10.1016/j.anaerobe.2011.11.002 10.1007/s10482-010-9424-6 10.1016/j.micpath.2015.03.001 10.1111/jam.12953 10.1099/jmm.0.05376-0 10.1016/j.tim.2011.11.003 10.1128/IAI.68.10.5881-5888.2000 10.3389/fmicb.2016.00577 10.1016/j.anaerobe.2013.09.011 10.1001/jama.2015.18098 10.1038/srep12666 10.1016/j.ijfoodmicro.2010.10.016 10.1016/j.mimet.2015.09.022 10.1038/nrgastro.2016.25 10.1016/j.anaerobe.2013.02.006 10.1017/S0022029913000216 10.1038/nrmicro2473 10.1016/j.ijfoodmicro.2010.10.036 10.4315/0362-028X-68.12.2672 10.1056/NEJMra1403772 10.1093/cid/civ179 10.1016/j.resmic.2014.10.002 10.1186/1757-4749-1-8 10.1128/IAI.64.12.5225-5232.1996 10.3402/mehd.v26.27988 10.5487/TR.2013.29.2.099 10.1128/IAI.02897-14 |
ContentType | Journal Article |
Copyright | Copyright © 2016 Valdés-Varela, Hernández-Barranco, Ruas-Madiedo and Gueimonde. 2016 Valdés-Varela, Hernández-Barranco, Ruas-Madiedo and Gueimonde |
Copyright_xml | – notice: Copyright © 2016 Valdés-Varela, Hernández-Barranco, Ruas-Madiedo and Gueimonde. 2016 Valdés-Varela, Hernández-Barranco, Ruas-Madiedo and Gueimonde |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3389/fmicb.2016.00738 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1664-302X |
ExternalDocumentID | oai_doaj_org_article_5d8091b4d267477eacd22bc764b00da0 PMC4870236 27242753 10_3389_fmicb_2016_00738 |
Genre | Journal Article |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK ECGQY GROUPED_DOAJ GX1 HYE IPNFZ KQ8 M48 M~E O5R O5S OK1 PGMZT RIG RNS RPM IAO IEA IHR NPM 7X8 5PM |
ID | FETCH-LOGICAL-c462t-383ce86c7600a609ac75d382fa0c17f5ecdca371e9e00b20df5cb78ec3da7f0a3 |
IEDL.DBID | M48 |
ISSN | 1664-302X |
IngestDate | Wed Aug 27 01:21:04 EDT 2025 Thu Aug 21 14:15:01 EDT 2025 Fri Sep 05 09:32:59 EDT 2025 Thu Jan 02 22:24:53 EST 2025 Tue Jul 01 03:55:00 EDT 2025 Thu Apr 24 22:59:44 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | HT29 Bifidobacterium toxin RTCA Clostridium difficile inhibition prebiotics probiotics |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c462t-383ce86c7600a609ac75d382fa0c17f5ecdca371e9e00b20df5cb78ec3da7f0a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Edited by: David Berry, University of Vienna, Austria This article was submitted to Microbial Symbioses, a section of the journal Frontiers in Microbiology Reviewed by: Amparo Latorre, University of Valencia, Spain; Bärbel Stecher, Ludwig Maximilians Universität München, Germany |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fmicb.2016.00738 |
PMID | 27242753 |
PQID | 1793215957 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5d8091b4d267477eacd22bc764b00da0 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4870236 proquest_miscellaneous_1793215957 pubmed_primary_27242753 crossref_citationtrail_10_3389_fmicb_2016_00738 crossref_primary_10_3389_fmicb_2016_00738 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-05-18 |
PublicationDateYYYYMMDD | 2016-05-18 |
PublicationDate_xml | – month: 05 year: 2016 text: 2016-05-18 day: 18 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in microbiology |
PublicationTitleAlternate | Front Microbiol |
PublicationYear | 2016 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Arboleya (B5) 2011; 149 Hopkins (B16) 2003; 69 Yang (B44) 2015; 83 Vickers (B42) 2015; 15 Andersen (B3) 2015; 84 Schoster (B32) 2013; 20 Castagliuolo (B11) 1996; 64 Collado (B12) 2005; 68 Tejero-Sariñena (B36) 2012; 18 Arboleya (B4) 2012; 79 Auclair (B6) 2015; 60 Rupnik (B30) 2009; 7 Banerjee (B7) 2009; 1 Salazar (B31) 2011; 144 Valdés (B41) 2015; 119 Ozaki (B27) 2004; 53 Lee (B22) 2016; 315 Trejo (B38) 2013; 80 Reid (B28) 2011; 9 Leffler (B24) 2015; 372 Tejero-Sariñena (B37) 2013; 24 Senoh (B33) 2015; 81 Yakob (B43) 2015; 5 Valdés (B40) 2016; 7 Kondepudi (B20) 2014; 58 Rossi (B29) 2005; 71 Bouillaut (B8) 2015; 166 Lee (B23) 2013; 29 Allen (B1) 2013; 382 Karlsson (B18) 2000; 68 Servin (B34) 2004; 28 Trejo (B39) 2010; 98 EFSA Panel on Dietetic Products (B13) 2011; 9 Forssten (B14) 2015; 26 Ambalam (B2) 2015; 119 Kondepudi (B21) 2012; 18 Gebhart (B15) 2015; 6 Martin (B26) 2016; 13 Carter (B10) 2012; 20 Carasi (B9) 2012; 18 Jangi (B17) 2010; 51 Kolling (B19) 2012; 3 Mani (B25) 2002; 184 Yun (B45) 2014; 97 Solís (B35) 2010; 16 20512057 - J Pediatr Gastroenterol Nutr. 2010 Jul;51(1):2-7 25880933 - BMC Infect Dis. 2015 Feb 25;15:91 22126419 - FEMS Microbiol Ecol. 2012 Mar;79(3):763-72 26218654 - Sci Rep. 2015 Jul 28;5:12666 14729940 - J Med Microbiol. 2004 Feb;53(Pt 2):167-72 22895082 - Gut Microbes. 2012 Nov-Dec;3(6):523-9 21113182 - Nat Rev Microbiol. 2011 Jan;9(1):27-38 26956066 - Nat Rev Gastroenterol Hepatol. 2016 Apr;13(4):206-16 25745878 - Microb Pathog. 2015 Apr;81:1-5 23611644 - J Dairy Res. 2013 Aug;80(3):263-9 10992498 - Infect Immun. 2000 Oct;68(10):5881-8 27148250 - Front Microbiol. 2016 Apr 22;7:577 22126976 - Anaerobe. 2012 Feb;18(1):135-42 25922399 - Clin Infect Dis. 2015 May 15;60 Suppl 2:S135-43 15374659 - FEMS Microbiol Rev. 2004 Oct;28(4):405-40 26757463 - JAMA. 2016 Jan 12;315(2):142-9 24091275 - Anaerobe. 2013 Dec;24:60-5 25486992 - Infect Immun. 2015 Feb;83(2):822-31 22959627 - Anaerobe. 2012 Oct;18(5):530-8 12374831 - J Bacteriol. 2002 Nov;184(21):5971-8 19528959 - Nat Rev Microbiol. 2009 Jul;7(7):526-36 24856984 - J Dairy Sci. 2014;97(8):4745-58 8945570 - Infect Immun. 1996 Dec;64(12):5225-32 25805733 - MBio. 2015 Mar 24;6(2):null 16204533 - Appl Environ Microbiol. 2005 Oct;71(10):6150-8 20176122 - Anaerobe. 2010 Jun;16(3):307-10 12676665 - Appl Environ Microbiol. 2003 Apr;69(4):1920-7 24278635 - Toxicol Res. 2013 Jun;29(2):99-106 26468159 - Microb Ecol Health Dis. 2015 Oct 13;26:27988 16355841 - J Food Prot. 2005 Dec;68(12):2672-8 20232250 - Antonie Van Leeuwenhoek. 2010 Jun;98(1):19-29 22940065 - Anaerobe. 2012 Oct;18(5):489-97 25059277 - Microbiol Immunol. 2014 Oct;58(10):552-8 26381324 - J Appl Microbiol. 2015 Dec;119(6):1672-82 19397787 - Gut Pathog. 2009 Apr 27;1(1):8 25445566 - Res Microbiol. 2015 May;166(4):375-83 23471038 - Anaerobe. 2013 Apr;20:36-41 23932219 - Lancet. 2013 Oct 12;382(9900):1249-57 25875259 - N Engl J Med. 2015 Apr 16;372(16):1539-48 21078530 - Int J Food Microbiol. 2011 Jan 5;144(3):342-51 21109322 - Int J Food Microbiol. 2011 Sep 1;149(1):28-36 26436983 - J Microbiol Methods. 2015 Dec;119:66-73 26573738 - Infect Immun. 2015 Nov 16;84(2):395-406 22154163 - Trends Microbiol. 2012 Jan;20(1):21-9 |
References_xml | – volume: 9 start-page: 1984 year: 2011 ident: B13 article-title: Guidance on the scientific requirements for health claims related to gut and immune function publication-title: EFSA J. doi: 10.2903/j.efsa.2011.1984 – volume: 184 start-page: 5971 year: 2002 ident: B25 article-title: Environmental response and autoregulation of Clostridium difficile TxeR, a sigma factor for toxin gene expression publication-title: J. Bacteriol. doi: 10.1128/JB.184.21.5971-5978.2002 – volume: 58 start-page: 552 year: 2014 ident: B20 article-title: A novel multi-strain probiotic and synbiotic supplement for prevention of Clostridium difficile infection in a murine model publication-title: Microbiol. Immunol. doi: 10.1111/1348-0421.12184 – volume: 18 start-page: 530 year: 2012 ident: B36 article-title: In vitro evaluation of the antimicrobial activity of a range of probiotics against pathogens: evidence for the effects of organic acids publication-title: Anaerobe doi: 10.1016/j.anaerobe.2012.08.004 – volume: 3 start-page: 523 year: 2012 ident: B19 article-title: Lactic acid production by Streptococcus thermophilus alters Clostridium difficile infection and in vitro Toxin A production publication-title: Gut Microbes. doi: 10.4161/gmic.21757 – volume: 51 start-page: 2 year: 2010 ident: B17 article-title: Asyntomatic colonization by Clostridium difficile in infants: implications for disease in later life publication-title: J. Pediatr. Gastroenterol. Nutr. doi: 10.1097/MPG.0b013e3181d29767 – volume: 97 start-page: 4745 year: 2014 ident: B45 publication-title: Lactobacillus acidophilus doi: 10.3168/jds.2014-7921 – volume: 84 start-page: 395 year: 2015 ident: B3 article-title: Neutralization of Clostridium difficile Toxin B mediated by engineered Lactobacilli that produce single-domain antibodies publication-title: Infect. Immun. doi: 10.1128/IAI.00870-15 – volume: 7 start-page: 526 year: 2009 ident: B30 article-title: Clostridium difficile infection: new developments in epidemiology and pathogenesis publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro2164 – volume: 71 start-page: 6150 year: 2005 ident: B29 article-title: Fermentation of fructooligosaccharides and inulin by bifidobacteria: a comparative study of pure and fecal cultures publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.71.10.6150-6158.2005 – volume: 69 start-page: 1920 year: 2003 ident: B16 article-title: Nondigestible oligosaccharides enhance bacterial colonization resistance against Clostridium difficile in vitro publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.69.4.1920-1927.2003 – volume: 28 start-page: 405 year: 2004 ident: B34 article-title: Antagonistic activities of lactobacilli and bifidobacteria against microbial pathogens publication-title: FEMS Microbiol. Rev. doi: 10.1016/j.femsre.2004.01.003 – volume: 15 start-page: 91 year: 2015 ident: B42 article-title: A randomised phase 1 study to investigate safety, pharmacokinetics and impact on gut microbiota following single and multiple oral doses in healthy male subjects of SMT19969, a novel agent for Clostridium difficile infections publication-title: BMC Infect. Dis. doi: 10.1186/s12879-015-0759-5 – volume: 18 start-page: 489 year: 2012 ident: B21 article-title: Prebiotic-non-digestible oligosaccharides preference of probiotics bifidobacteria and antimicrobial activity against Clostridium difficile publication-title: Anaerobe doi: 10.1016/j.anaerobe.2012.08.005 – volume: 6 start-page: e02368 year: 2015 ident: B15 article-title: A modified R-type bacteriocin specifically targeting Clostridium difficile prevents colonization of mice without affecting gut microbiota diversity publication-title: MBio. doi: 10.1128/mBio.02368-14 – volume: 16 start-page: 307 year: 2010 ident: B35 article-title: Establishment and development of lactic acid bacteria and bifidobacteria microbiota in breast-milk and the infant gut publication-title: Anaerobe doi: 10.1016/j.anaerobe.2010.02.004 – volume: 382 start-page: 1249 year: 2013 ident: B1 article-title: Lactobacilli and bifidobacteria in the prevention of antibiotic-associated diarrhoea and Clostridium difficile diarrhoea in older inpatients (PLACIDE): a randomised, double-blind, placebo-controlled, multicentre trial publication-title: Lancet doi: 10.1016/S0140-6736(13)61218-0 – volume: 79 start-page: 763 year: 2012 ident: B4 article-title: Establishment and development of intestinal microbiota in preterm neonates publication-title: FEMS Microbiol. Ecol. doi: 10.1111/j.1574-6941.2011.01261.x – volume: 18 start-page: 135 year: 2012 ident: B9 article-title: Surface proteins from Lactobacillus kefir antagonize in vitro cytotoxic effect of Clostridium difficile toxins publication-title: Anaerobe doi: 10.1016/j.anaerobe.2011.11.002 – volume: 98 start-page: 19 year: 2010 ident: B39 article-title: Co-culture with potentially probiotic microorganisms antagonises virulence factors of Clostridium difficile in vitro publication-title: Antonie Van Leeuwenhoek. doi: 10.1007/s10482-010-9424-6 – volume: 81 start-page: 1 year: 2015 ident: B33 article-title: Inhibition of adhesion of Clostridium difficile to human intestinal cells after treatment with serum and intestinal fluid isolated from mice immunized with nontoxigenic C. difficile membrane fraction publication-title: Microb. Pathog. doi: 10.1016/j.micpath.2015.03.001 – volume: 119 start-page: 1672 year: 2015 ident: B2 article-title: Prebiotic preferences of human lactobacilli strains in co-culture with bifidobacteria and antimicrobial activity against Clostridium difficile publication-title: J. Appl. Microbiol. doi: 10.1111/jam.12953 – volume: 53 start-page: 167 year: 2004 ident: B27 article-title: Clostridium difficile colonization in healthy adults: transient colonization and correlation with enterococcal colonization publication-title: J. Med. Microbiol. doi: 10.1099/jmm.0.05376-0 – volume: 20 start-page: 21 year: 2012 ident: B10 article-title: The role of toxin A and toxin B in the virulence of Clostridium difficile publication-title: Trends Microbiol. doi: 10.1016/j.tim.2011.11.003 – volume: 68 start-page: 5881 year: 2000 ident: B18 article-title: Toxins, butyric acid, and other short-chain fatty acids are coordinatedly expressed and down-regulated by cysteine in Clostridium difficile publication-title: Infect. Immun. doi: 10.1128/IAI.68.10.5881-5888.2000 – volume: 7 start-page: 577 year: 2016 ident: B40 article-title: Selection of bifidobacteria and lactobacilli able to antagonise the cytotoxic effect of Clostridium difficile upon intestinal epithelial HT29 monolayer publication-title: Front. Microbiol. doi: 10.3389/fmicb.2016.00577 – volume: 24 start-page: 60 year: 2013 ident: B37 article-title: Antipathogenic activity of probiotics against Salmonella Typhimurium and Clostridium difficile in anaerobic batch culture systems: is it due to synergies in probiotic mixtures or the specificity of single strains? publication-title: Anaerobe doi: 10.1016/j.anaerobe.2013.09.011 – volume: 315 start-page: 142 year: 2016 ident: B22 article-title: Frozen vs fresh fecal microbiota transplantation and clinical resolution of diarrhea in patients with recurrent Clostridium difficile infection: a randomized clinical trial publication-title: J. Am. Med. Assoc. doi: 10.1001/jama.2015.18098 – volume: 5 start-page: 12666 year: 2015 ident: B43 article-title: Mechanisms of hypervirulent Clostridium difficile ribotype 027 displacement of endemic strains: an epidemiological model publication-title: Sci. Rep. doi: 10.1038/srep12666 – volume: 144 start-page: 342 year: 2011 ident: B31 article-title: Safety and intestinal microbiota modulation by the exopolysaccharide-producing strains Bifidobacterium animalis IPLA R1 and Bifidobacterium longum IPLA E44 orally administered to Wistar rats publication-title: Int. J. Food Microbiol. doi: 10.1016/j.ijfoodmicro.2010.10.016 – volume: 119 start-page: 66 year: 2015 ident: B41 article-title: Monitoring in real time the cytotoxic effect of Clostridium difficile upon the intestinal epithelial cell line HT29 publication-title: J. Microbiol. Methods doi: 10.1016/j.mimet.2015.09.022 – volume: 13 start-page: 206 year: 2016 ident: B26 article-title: Clostridium difficile infection: epidemiology, diagnosis and understanding transmission publication-title: Nat. Rev. Gastroenterol. Hepatol. doi: 10.1038/nrgastro.2016.25 – volume: 20 start-page: 36 year: 2013 ident: B32 article-title: In vitro inhibition of Clostridium difficile and Clostridium perfringens by commercial probiotic strains publication-title: Anaerobe. doi: 10.1016/j.anaerobe.2013.02.006 – volume: 80 start-page: 263 year: 2013 ident: B38 article-title: Protective effect of bifidobacteria in an experimental model of Clostridium difficile associated colitis publication-title: J. Dairy Res. doi: 10.1017/S0022029913000216 – volume: 9 start-page: 27 year: 2011 ident: B28 article-title: Microbiota restoration: natural and supplemented recovery of human microbial communities publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro2473 – volume: 149 start-page: 28 year: 2011 ident: B5 article-title: Characterization and in vitro properties of potentially probiotic Bifidobacterium strains isolated from breast-milk publication-title: Int. J. Food Microbiol. doi: 10.1016/j.ijfoodmicro.2010.10.036 – volume: 68 start-page: 2672 year: 2005 ident: B12 article-title: Adhesion of selected Bifidobacterium strains to human intestinal mucus and its role in enteropathogen exclusion publication-title: J. Food Protect. doi: 10.4315/0362-028X-68.12.2672 – volume: 372 start-page: 1539 year: 2015 ident: B24 article-title: Clostridium difficile infection publication-title: N. Engl. J. Med. doi: 10.1056/NEJMra1403772 – volume: 60 start-page: S135 year: 2015 ident: B6 article-title: Lactobacillus acidophilus CL1285, Lactobacillus casei LBC80R, and Lactobacillus rhamnosus CLR2 (Bio-K+): characterization, manufacture, mechanisms of action, and quality control of a specific probiotic combination for primary prevention of Clostridium difficile infection publication-title: Clin. Infect. Dis. doi: 10.1093/cid/civ179 – volume: 166 start-page: 375 year: 2015 ident: B8 article-title: Integration of metabolism and virulence in Clostridium difficile publication-title: Res. Microbiol. doi: 10.1016/j.resmic.2014.10.002 – volume: 1 start-page: 8 year: 2009 ident: B7 article-title: Lactobacillus delbrueckii ssp. bulgaricus B-30892 can inhibit cytotoxic effects and adhesion of pathogenic Clostridium difficile to Caco-2 cells publication-title: Gut Pathog. doi: 10.1186/1757-4749-1-8 – volume: 64 start-page: 5225 year: 1996 ident: B11 article-title: Saccharomyces boulardii protease inhibits Clostridium difficile Toxin A effects in the rat ileum publication-title: Infect. Immun. doi: 10.1128/IAI.64.12.5225-5232.1996 – volume: 26 start-page: 27988 year: 2015 ident: B14 article-title: The effect of polydextrose and probiotic lactobacilli in a Clostridium difficile-infected human colonic model publication-title: Microb. Ecol. Health Dis. doi: 10.3402/mehd.v26.27988 – volume: 29 start-page: 99 year: 2013 ident: B23 article-title: In vitro evaluation of antimicrobial activity of lactic acid bacteria against Clostridium difficile publication-title: Toxicol. Res. doi: 10.5487/TR.2013.29.2.099 – volume: 83 start-page: 822 year: 2015 ident: B44 article-title: Mechanisms of protection against Clostridium difficile infection by the monoclonal antitoxin antibodies actoxumab and bezlotoxumab publication-title: Infect. Immun. doi: 10.1128/IAI.02897-14 – reference: 23471038 - Anaerobe. 2013 Apr;20:36-41 – reference: 26381324 - J Appl Microbiol. 2015 Dec;119(6):1672-82 – reference: 21109322 - Int J Food Microbiol. 2011 Sep 1;149(1):28-36 – reference: 25880933 - BMC Infect Dis. 2015 Feb 25;15:91 – reference: 20512057 - J Pediatr Gastroenterol Nutr. 2010 Jul;51(1):2-7 – reference: 26218654 - Sci Rep. 2015 Jul 28;5:12666 – reference: 25445566 - Res Microbiol. 2015 May;166(4):375-83 – reference: 26956066 - Nat Rev Gastroenterol Hepatol. 2016 Apr;13(4):206-16 – reference: 12374831 - J Bacteriol. 2002 Nov;184(21):5971-8 – reference: 20176122 - Anaerobe. 2010 Jun;16(3):307-10 – reference: 20232250 - Antonie Van Leeuwenhoek. 2010 Jun;98(1):19-29 – reference: 16355841 - J Food Prot. 2005 Dec;68(12):2672-8 – reference: 26573738 - Infect Immun. 2015 Nov 16;84(2):395-406 – reference: 25745878 - Microb Pathog. 2015 Apr;81:1-5 – reference: 27148250 - Front Microbiol. 2016 Apr 22;7:577 – reference: 22126976 - Anaerobe. 2012 Feb;18(1):135-42 – reference: 22959627 - Anaerobe. 2012 Oct;18(5):530-8 – reference: 19397787 - Gut Pathog. 2009 Apr 27;1(1):8 – reference: 25059277 - Microbiol Immunol. 2014 Oct;58(10):552-8 – reference: 8945570 - Infect Immun. 1996 Dec;64(12):5225-32 – reference: 15374659 - FEMS Microbiol Rev. 2004 Oct;28(4):405-40 – reference: 12676665 - Appl Environ Microbiol. 2003 Apr;69(4):1920-7 – reference: 10992498 - Infect Immun. 2000 Oct;68(10):5881-8 – reference: 24278635 - Toxicol Res. 2013 Jun;29(2):99-106 – reference: 26757463 - JAMA. 2016 Jan 12;315(2):142-9 – reference: 14729940 - J Med Microbiol. 2004 Feb;53(Pt 2):167-72 – reference: 24856984 - J Dairy Sci. 2014;97(8):4745-58 – reference: 25805733 - MBio. 2015 Mar 24;6(2):null – reference: 21078530 - Int J Food Microbiol. 2011 Jan 5;144(3):342-51 – reference: 26468159 - Microb Ecol Health Dis. 2015 Oct 13;26:27988 – reference: 26436983 - J Microbiol Methods. 2015 Dec;119:66-73 – reference: 21113182 - Nat Rev Microbiol. 2011 Jan;9(1):27-38 – reference: 16204533 - Appl Environ Microbiol. 2005 Oct;71(10):6150-8 – reference: 24091275 - Anaerobe. 2013 Dec;24:60-5 – reference: 25875259 - N Engl J Med. 2015 Apr 16;372(16):1539-48 – reference: 23611644 - J Dairy Res. 2013 Aug;80(3):263-9 – reference: 22895082 - Gut Microbes. 2012 Nov-Dec;3(6):523-9 – reference: 22940065 - Anaerobe. 2012 Oct;18(5):489-97 – reference: 19528959 - Nat Rev Microbiol. 2009 Jul;7(7):526-36 – reference: 22154163 - Trends Microbiol. 2012 Jan;20(1):21-9 – reference: 22126419 - FEMS Microbiol Ecol. 2012 Mar;79(3):763-72 – reference: 25922399 - Clin Infect Dis. 2015 May 15;60 Suppl 2:S135-43 – reference: 23932219 - Lancet. 2013 Oct 12;382(9900):1249-57 – reference: 25486992 - Infect Immun. 2015 Feb;83(2):822-31 |
SSID | ssj0000402000 |
Score | 2.3543394 |
Snippet | The intestinal overgrowth of Clostridium difficile, often after disturbance of the gut microbiota by antibiotic treatment, leads to C. difficile infection... The intestinal overgrowth of Clostridium difficile , often after disturbance of the gut microbiota by antibiotic treatment, leads to C. difficile infection... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 738 |
SubjectTerms | Bifidobacterium Clostridium difficile inhibition Microbiology Prebiotics Probiotics toxin |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixQxEA6yIHgR37arEsGLh2bT3Xl0ju7isnjw5MLeQjoPp2FNDzs96OKf36pkZpgR0YvXdJouUpWq-qjqrwh5r7kPmmNfmI6u5rJvattZUfcQOpsmU1jlBtkv8uKSf74SV3ujvrAnrNADl4M7Eb6HkDZw30rIfBX4Cd-2g1OSg8F4m9E602wPTGUfjLCIsVKXBBSmQU2jG7CVC4sP-XeUvTiU6fr_lGP-3iq5F3vOH5GHm6SRfizCPib3QnpC7pcxkrdPya9CQUynSE_HOHq4opmCef2drpdTomfXE07n8LiAA1FGB66AfgMAPi-oTZ7O009Ym2_pj0VI1E114eMIno6JbkeozHR5E4ZxAhnoCtxNprVdPSOX55--nl3Um6EKteOynWtApC700mFBzkqmrVPCd30bLXONiiI472ynmqADY0PLfBRuUH1wnbcqMts9J0dpSuEloZD5hE4PwgoeeGi8tl7GKJ2FNLBrh74iJ9sjNm7DOI6DL64NIA9UislKMagUk5VSkQ-7N5aFbeMve09Ra7t9yJOdF8B6zMZ6zL-spyLvtjo3cK-wWGJTmNYrg44L0iEtVEVeFBvYfapVkNgAzquIOrCOA1kOn6Rxkbm7AR8iZ_-r_yH8MXmAx4G9DE3_mhzNN-vwBlKkeXibb8MdIgUSiA priority: 102 providerName: Directory of Open Access Journals |
Title | Effect of Bifidobacterium upon Clostridium difficile Growth and Toxicity When Co-cultured in Different Prebiotic Substrates |
URI | https://www.ncbi.nlm.nih.gov/pubmed/27242753 https://www.proquest.com/docview/1793215957 https://pubmed.ncbi.nlm.nih.gov/PMC4870236 https://doaj.org/article/5d8091b4d267477eacd22bc764b00da0 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgERIXxJsssDISFw6BPPzKASF2xbJCghOVeosc29lGKnZpU-1W_HlmnLRQVHHikoPjqK4nM_N99fQbQl5VzLqKYV1Y1ZqUCZWnutQ8VZA68zxKWMUC2a_iYsI-T_n099-jxw1cHaR22E9qspy_uf6xeQ8O_w4ZJ-RbsEBnGqzSwnMFWaqb5BbkJYFU7MsI9mNcRqqUZcNZ5cEH93JTlPA_hDv_Lp_8Ix-d3yN3RyBJPwyWv09uOP-A3B5aS24ekp-DLDENLT3t2s6C20ZZ5vV3ul4ET8_mATt2WBzAJimdgfBAL4GU9zOqvaV9uIaxfkOvZs5TE9JBo8NZ2nm6bavS08XSNV2ANdAVhKAodbt6RCbnH7-dXaRjo4XUMFH0KbBU45QweEinRVZpI7ktVdHqzOSy5c5Yo0uZu8plWVNktuWmkcqZ0mrZZrp8TI588O4poYCGXFk1XHPmmMttpa1oW2E0QMOyaFRC3m63uDajCjk2w5jXwEbQKHU0So1GqaNREvJ698RiUOD4x9xTtNpuHmpnx4GwvKxHV6y5VQCSGmYLAVxKQuaxRdHAl2cQgqzOEvJya_MafA0PULR3Yb2qMZgBRKq4TMiT4R3YfVQhAewA90uI3Hs79tayf8d3s6jnDZwRdfyP_8fin5E7uB1Y35Cr5-SoX67dC4BNfXMSf26A66dpfhI94xcONRyI |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Bifidobacterium+upon+Clostridium+difficile+growth+and+toxicity+when+co-cultured+in+different+prebiotic+substrates&rft.jtitle=Frontiers+in+microbiology&rft.au=Lorena+Vald%C3%A9s+Varela&rft.au=Ana+M.+Hern%C3%A1ndez-Barranco&rft.au=Patricia+eRuas-Madiedo&rft.au=Miguel+eGueimonde&rft.date=2016-05-18&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-302X&rft.volume=7&rft_id=info:doi/10.3389%2Ffmicb.2016.00738&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_5d8091b4d267477eacd22bc764b00da0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-302X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-302X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-302X&client=summon |