Impact of Mitochondrial Fatty Acid Synthesis on Mitochondrial Biogenesis
Biology students today are taught that mitochondria are ‘the powerhouse of the cell’. This gross over-simplification of their cellular role has arguably led to a paucity of knowledge concerning the many other tasks carried out by this multifunctional organelle. Mitochondrial fatty acid synthesis (mt...
Saved in:
Published in | Current biology Vol. 28; no. 20; pp. R1212 - R1219 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
22.10.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Biology students today are taught that mitochondria are ‘the powerhouse of the cell’. This gross over-simplification of their cellular role has arguably led to a paucity of knowledge concerning the many other tasks carried out by this multifunctional organelle. Mitochondrial fatty acid synthesis (mtFAS) is one such under-appreciated pathway that is crucial for mitochondrial function, although even mitochondrial experts are often surprised to learn of its existence. For many years, the only function of mtFAS was thought to be the production of lipoic acid, an important co-factor for several mitochondrial enzymes. However, recent advances have revealed a far wider role for mtFAS in mitochondrial physiology. The discovery of human patients with mutations in mtFAS enzymes has brought renewed interest in understanding the full significance of this novel mode of mitochondrial metabolic regulation. We now appreciate that mtFAS is a nutrient-sensitive pathway that provides an elegant mechanism whereby acetyl-CoA regulates its own consumption via coordination of lipoic acid synthesis and tricarboxylic acid (TCA) cycle activity, iron–sulfur (FeS) cluster biogenesis, assembly of oxidative phosphorylation complexes, and mitochondrial translation. In this minireview, we describe and build upon the important discoveries that led to our current understanding of this elegant mechanism of coordination of nutrient status and metabolism.
In this minireview, Nowinski et al. highlight the various roles of mitochondrial fatty acid synthesis in mitochondrial physiology and discuss recent studies implicating this pathway in the coordination of nutrient status and metabolism. |
---|---|
AbstractList | Biology students today are taught that mitochondria are 'the powerhouse of the cell'. This gross over-simplification of their cellular role has arguably led to a paucity of knowledge concerning the many other tasks carried out by this multifunctional organelle. Mitochondrial fatty acid synthesis (mtFAS) is one such under-appreciated pathway that is crucial for mitochondrial function, although even mitochondrial experts are often surprised to learn of its existence. For many years, the only function of mtFAS was thought to be the production of lipoic acid, an important co-factor for several mitochondrial enzymes. However, recent advances have revealed a far wider role for mtFAS in mitochondrial physiology. The discovery of human patients with mutations in mtFAS enzymes has brought renewed interest in understanding the full significance of this novel mode of mitochondrial metabolic regulation. We now appreciate that mtFAS is a nutrient-sensitive pathway that provides an elegant mechanism whereby acetyl-CoA regulates its own consumption via coordination of lipoic acid synthesis and tricarboxylic acid (TCA) cycle activity, iron-sulfur (FeS) cluster biogenesis, assembly of oxidative phosphorylation complexes, and mitochondrial translation. In this minireview, we describe and build upon the important discoveries that led to our current understanding of this elegant mechanism of coordination of nutrient status and metabolism. Biology students today are taught that mitochondria are ‘the powerhouse of the cell’. This gross over-simplification of their cellular role has arguably led to a paucity of knowledge concerning the many other tasks carried out by this multifunctional organelle. Mitochondrial fatty acid synthesis (mtFAS) is one such under-appreciated pathway that is crucial for mitochondrial function, although even mitochondrial experts are often surprised to learn of its existence. For many years, the only function of mtFAS was thought to be the production of lipoic acid, an important co-factor for several mitochondrial enzymes. However, recent advances have revealed a far wider role for mtFAS in mitochondrial physiology. The discovery of human patients with mutations in mtFAS enzymes has brought renewed interest in understanding the full significance of this novel mode of mitochondrial metabolic regulation. We now appreciate that mtFAS is a nutrient-sensitive pathway that provides an elegant mechanism whereby acetyl-CoA regulates its own consumption via coordination of lipoic acid synthesis and tricarboxylic acid (TCA) cycle activity, iron–sulfur (FeS) cluster biogenesis, assembly of oxidative phosphorylation complexes, and mitochondrial translation. In this minireview, we describe and build upon the important discoveries that led to our current understanding of this elegant mechanism of coordination of nutrient status and metabolism. In this minireview, Nowinski et al. highlight the various roles of mitochondrial fatty acid synthesis in mitochondrial physiology and discuss recent studies implicating this pathway in the coordination of nutrient status and metabolism. Biology students today are taught that mitochondria are 'the powerhouse of the cell'. This gross over-simplification of their cellular role has arguably led to a paucity of knowledge concerning the many other tasks carried out by this multifunctional organelle. Mitochondrial fatty acid synthesis (mtFAS) is one such under-appreciated pathway that is crucial for mitochondrial function, although even mitochondrial experts are often surprised to learn of its existence. For many years, the only function of mtFAS was thought to be the production of lipoic acid, an important co-factor for several mitochondrial enzymes. However, recent advances have revealed a far wider role for mtFAS in mitochondrial physiology. The discovery of human patients with mutations in mtFAS enzymes has brought renewed interest in understanding the full significance of this novel mode of mitochondrial metabolic regulation. We now appreciate that mtFAS is a nutrient-sensitive pathway that provides an elegant mechanism whereby acetyl-CoA regulates its own consumption via coordination of lipoic acid synthesis and tricarboxylic acid (TCA) cycle activity, iron-sulfur (FeS) cluster biogenesis, assembly of oxidative phosphorylation complexes, and mitochondrial translation. In this minireview, we describe and build upon the important discoveries that led to our current understanding of this elegant mechanism of coordination of nutrient status and metabolism.Biology students today are taught that mitochondria are 'the powerhouse of the cell'. This gross over-simplification of their cellular role has arguably led to a paucity of knowledge concerning the many other tasks carried out by this multifunctional organelle. Mitochondrial fatty acid synthesis (mtFAS) is one such under-appreciated pathway that is crucial for mitochondrial function, although even mitochondrial experts are often surprised to learn of its existence. For many years, the only function of mtFAS was thought to be the production of lipoic acid, an important co-factor for several mitochondrial enzymes. However, recent advances have revealed a far wider role for mtFAS in mitochondrial physiology. The discovery of human patients with mutations in mtFAS enzymes has brought renewed interest in understanding the full significance of this novel mode of mitochondrial metabolic regulation. We now appreciate that mtFAS is a nutrient-sensitive pathway that provides an elegant mechanism whereby acetyl-CoA regulates its own consumption via coordination of lipoic acid synthesis and tricarboxylic acid (TCA) cycle activity, iron-sulfur (FeS) cluster biogenesis, assembly of oxidative phosphorylation complexes, and mitochondrial translation. In this minireview, we describe and build upon the important discoveries that led to our current understanding of this elegant mechanism of coordination of nutrient status and metabolism. |
Author | Dove, Katja K. Rutter, Jared Nowinski, Sara M. Van Vranken, Jonathan G. |
Author_xml | – sequence: 1 givenname: Sara M. surname: Nowinski fullname: Nowinski, Sara M. organization: Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84132, USA – sequence: 2 givenname: Jonathan G. surname: Van Vranken fullname: Van Vranken, Jonathan G. organization: Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84132, USA – sequence: 3 givenname: Katja K. surname: Dove fullname: Dove, Katja K. organization: Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84132, USA – sequence: 4 givenname: Jared surname: Rutter fullname: Rutter, Jared email: rutter@biochem.utah.edu organization: Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84132, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30352195$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kM9KAzEQh4Mo2lYfwIvs0cvWSXY3u4unWvxTUDyo55BkZzVlm9QkFfo2PotP5paqoAfhB3OY7xuY35DsWmeRkGMKYwqUn83HeqXGDGg1hj6M7ZABrco6hTwvdskAag5pXTF2QIYhzAEoq2q-Tw4yyApG62JAZrPFUuqYuDa5M9HpF2cbb2SXXMkY18lEmyZ5WNv4gsGExNmP99_YhXHPaDfLQ7LXyi7g0dcckaery8fpTXp7fz2bTm5TnXMW06xEqDJQVKHiUOY15woQgWOBJYAsZSuBSg28lKBlxlvkmVJAm4pqpXk2Iqfbu0vvXlcYoliYoLHrpEW3CoJRVrC6pnnVoydf6EotsBFLbxbSr8X3-z1At4D2LgSP7Q9CQWwqFnPRVyw2FQvow1jvlH8cbaKMxtnopen-Nc-3Jvb1vBn0ImiDVmNjPOooGmf-sT8Bz8OWOQ |
CitedBy_id | crossref_primary_10_1016_j_jep_2022_115398 crossref_primary_10_1016_j_bbamcr_2019_118540 crossref_primary_10_1371_journal_pbio_3001934 crossref_primary_10_1016_j_foodchem_2022_135276 crossref_primary_10_1016_j_cej_2024_158987 crossref_primary_10_1016_j_jbc_2023_104715 crossref_primary_10_1016_j_ymgme_2022_09_011 crossref_primary_10_1038_s41586_022_04795_x crossref_primary_10_1042_BST20230947 crossref_primary_10_1016_j_bbamcr_2020_118863 crossref_primary_10_1177_10738584221139761 crossref_primary_10_1080_13816810_2022_2135112 crossref_primary_10_1016_j_brainres_2024_149424 crossref_primary_10_1016_j_hjc_2024_05_010 crossref_primary_10_1073_pnas_2221150120 crossref_primary_10_1016_j_bbabio_2020_148153 crossref_primary_10_1038_s42255_023_00873_0 crossref_primary_10_1038_s41598_021_98548_x crossref_primary_10_1021_acs_chemrestox_3c00367 crossref_primary_10_3390_biom12121885 crossref_primary_10_1016_j_lfs_2023_121378 crossref_primary_10_1111_tpj_70028 crossref_primary_10_1039_D0CS01610A crossref_primary_10_1016_j_envpol_2021_118390 crossref_primary_10_3233_JAD_221199 crossref_primary_10_2174_1381612829666230313111314 crossref_primary_10_3390_ijms242115693 crossref_primary_10_7554_eLife_58041 crossref_primary_10_1038_s41467_020_19778_7 crossref_primary_10_1042_BCJ20230161 crossref_primary_10_1074_jbc_RA119_011791 crossref_primary_10_1038_s41556_023_01117_9 crossref_primary_10_7554_eLife_75426 crossref_primary_10_1021_acs_biochem_3c00455 crossref_primary_10_3390_biomedicines9020225 crossref_primary_10_1021_acssensors_2c00792 crossref_primary_10_1080_10408398_2022_2131730 crossref_primary_10_1098_rsob_240021 crossref_primary_10_1016_j_cmet_2023_11_017 crossref_primary_10_1016_j_mito_2020_12_014 crossref_primary_10_1038_s41580_022_00572_w crossref_primary_10_1242_jeb_238915 crossref_primary_10_1002_iub_2802 crossref_primary_10_1515_hsz_2020_0117 crossref_primary_10_1146_annurev_biochem_013118_111540 crossref_primary_10_1038_s42255_024_01059_y crossref_primary_10_1093_toxsci_kfac086 crossref_primary_10_1098_rsob_200369 crossref_primary_10_7717_peerj_11681 crossref_primary_10_3390_antiox13080897 crossref_primary_10_3390_life11050455 crossref_primary_10_1080_14728222_2022_2049756 crossref_primary_10_1002_advs_202414141 crossref_primary_10_7554_eLife_71636 |
Cites_doi | 10.1104/pp.104.4.1221 10.1016/S0014-5793(97)00360-8 10.1111/j.1432-1033.1991.tb16205.x 10.1074/jbc.M302851200 10.1016/j.cell.2015.06.043 10.1073/pnas.1702849114 10.1128/MCB.21.18.6243-6253.2001 10.1074/jbc.273.35.22334 10.1074/jbc.272.29.17903 10.1096/fj.07-8986 10.1007/BF00313188 10.1002/yea.320090612 10.1016/S0021-9258(17)36598-5 10.1016/j.molcel.2016.06.033 10.1016/j.ajhg.2016.09.021 10.1038/368032a0 10.1074/jbc.M413686200 10.1002/j.1460-2075.1994.tb06890.x 10.1074/jbc.M306121200 10.7554/eLife.17828 10.1038/nature19794 10.1016/j.cell.2016.11.012 10.1016/j.cell.2017.07.050 10.1007/s002940050292 10.1046/j.1432-1327.1998.2540520.x 10.1007/s004380050012 10.1016/j.bbabio.2010.03.006 10.1038/nsmb.3464 10.1074/jbc.M305459200 10.1016/S0014-5793(97)00428-6 10.1111/j.1432-1033.1988.tb14005.x 10.1016/0304-4157(85)90002-4 10.1128/MCB.01162-08 10.1074/mcp.M300014-MCP200 10.1074/jbc.M401071200 10.1016/0014-5793(91)80955-3 10.1111/mmi.12402 10.1016/j.bbamcr.2017.08.006 10.1111/j.1432-1033.1989.tb15061.x 10.1042/BCJ20170416 10.1038/nature19095 10.1111/j.1432-1033.1990.tb15322.x 10.1073/pnas.94.4.1591 10.1038/s41467-017-01497-1 10.1016/j.molcel.2018.06.039 10.1096/fj.09-133587 10.1023/A:1005402020569 10.1111/j.1365-2958.1993.tb01715.x 10.3390/biology4010133 10.1111/j.1365-2958.2004.04191.x |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd Copyright © 2018 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Copyright © 2018 Elsevier Ltd. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.cub.2018.08.022 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1879-0445 |
EndPage | R1219 |
ExternalDocumentID | 30352195 10_1016_j_cub_2018_08_022 S0960982218310674 |
Genre | Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: T32 DK091317 – fundername: NHLBI NIH HHS grantid: T32 HL007576 – fundername: NIGMS NIH HHS grantid: R01 GM115174 – fundername: NIGMS NIH HHS grantid: R01 GM115129 – fundername: NIGMS NIH HHS grantid: R01 GM110755 |
GroupedDBID | --- --K -DZ -~X 0R~ 1RT 1~5 2WC 4.4 457 4G. 53G 5GY 62- 6I. 6J9 7-5 AACTN AAEDW AAFTH AAFWJ AAIAV AAKRW AALRI AAUCE AAVLU AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFTJW AGHSJ AGKMS AGUBO AHHHB AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FIRID IHE IXB J1W JIG LX5 M3Z M41 NCXOZ O-L O9- OK1 P2P RCE RIG ROL RPZ SCP SDG SES SSZ TR2 WQ6 ZA5 29F 5VS AAEDT AAIKJ AAMRU AAQFI AAQXK AAYWO AAYXX ABDGV ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEUPX AFPUW AGCQF AGHFR AGQPQ AIGII AKAPO AKBMS AKRWK AKYEP APXCP ASPBG AVWKF CAG CITATION COF FEDTE FGOYB G-2 HVGLF HZ~ OZT R2- SEW UHS XIH XPP Y6R ZGI CGR CUY CVF ECM EIF NPM 7X8 EFKBS |
ID | FETCH-LOGICAL-c462t-37e0830b1beb6074966b0ee06e5e700a7afa01ac067a0ca36fe63bb01d81cbc63 |
IEDL.DBID | IXB |
ISSN | 0960-9822 1879-0445 |
IngestDate | Tue Aug 05 11:35:17 EDT 2025 Thu Apr 03 06:56:27 EDT 2025 Tue Jul 01 01:57:07 EDT 2025 Thu Apr 24 23:03:23 EDT 2025 Fri Feb 23 02:28:32 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Language | English |
License | This article is made available under the Elsevier license. Copyright © 2018 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c462t-37e0830b1beb6074966b0ee06e5e700a7afa01ac067a0ca36fe63bb01d81cbc63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0960982218310674 |
PMID | 30352195 |
PQID | 2125299148 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2125299148 pubmed_primary_30352195 crossref_primary_10_1016_j_cub_2018_08_022 crossref_citationtrail_10_1016_j_cub_2018_08_022 elsevier_sciencedirect_doi_10_1016_j_cub_2018_08_022 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-10-22 |
PublicationDateYYYYMMDD | 2018-10-22 |
PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-22 day: 22 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Current biology |
PublicationTitleAlternate | Curr Biol |
PublicationYear | 2018 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Chen, Kastaniotis, Miinalainen, Rajaram, Wierenga, Hiltunen (bib29) 2009; 23 Mikolajczyk, Brody (bib3) 1990; 187 Triepels, Smeitink, Loeffen, Smeets, Buskens, Trijbels, van den Heuvel (bib10) 1999; 22 Autio, Kastaniotis, Pospiech, Miinalainen, Schonauer, Dieckmann, Hiltunen (bib28) 2008; 22 Chuman, Brody (bib6) 1989; 184 Hiltunen, Autio, Schonauer, Kursu, Dieckmann, Kastaniotis (bib37) 2010; 1797 Cheret, Mattheakis, Sor (bib13) 1993; 9 Floyd, Wilkerson, Veling, Minogue, Xia, Beebe, Wrobel, Cho, Kremer, Alston (bib40) 2016; 63 Brody, Oh, Hoja, Schweizer (bib15) 1997; 408 Ragone, Caizzi, Moschetti, Barsanti, De Pinto, Caggese (bib9) 1999; 261 Miinalainen, Chen, Torkko, Pirilä, Sormunen, Bergmann, Qin, Hiltunen (bib27) 2003; 278 Monteuuis, Suomi, Keratar, Masud, Kastaniotis (bib34) 2017; 474 Hoja, Marthol, Hofmann, Stegner, Schulz, Meier, Greiner, Schweizer (bib32) 2004; 279 Schneider, Brors, Massow, Weiss (bib11) 1997; 407 Schneider, Brors, Burger, Camrath, Weiss (bib19) 1997; 32 Cory, Van Vranken, Brignole, Patra, Winge, Drennan, Rutter, Barondeau (bib42) 2017; 114 Torkko, Koivuranta, Miinalainen, Yagi, Schmitz, Kastaniotis, Airenne, Gurvitz, Hiltunen (bib21) 2001; 21 Harington, Schwarz, Slonimski, Herbert (bib23) 1994; 13 Angerer (bib38) 2015; 4 Angerer, Schonborn, Gorka, Bahr, Karas, Wittig, Heidler, Hoffmann, Morgner, Zickermann (bib50) 2017; 1864 Brown, Rathore, Kimanius, Aibara, Bai, Rorbach, Amunts, Ramakrishnan (bib36) 2017; 24 Fiedorczuk, Letts, Degliesposti, Kaszuba, Skehel, Sazanov (bib44) 2016; 538 Van Vranken, Nowinski, Clowers, Jeong, Ouyang, Berg, Gygi, Gygi, Winge, Rutter (bib48) 2018; 71 Runswick, Fearnley, Skehel, Walker (bib5) 1991; 286 Guo, Zong, Wu, Gu, Yang (bib46) 2017; 170 Heimer, Keratar, Riley, Balasubramaniam, Eyal, Pietikainen, Hiltunen, Marek-Yagel, Hamada, Gregory (bib1) 2016; 99 Shintani, Ohlrogge (bib8) 1994; 104 Carroll, Fearnley, Shannon, Hirst, Walker (bib49) 2003; 2 Wada, Shintani, Ohlrogge (bib17) 1997; 94 Kastaniotis, Autio, Sormunen, Hiltunen (bib22) 2004; 53 Huttlin, Ting, Bruckner, Gebreab, Gygi, Szpyt, Tam, Zarraga, Colby, Baltier (bib39) 2015; 162 Jordan, Cronan (bib16) 1997; 272 Harington, Herbert, Tung, Getz, Slonimski (bib18) 1993; 9 Stuible, Meier, Wagner, Hannappel, Schweizer (bib30) 1998; 273 Daum (bib12) 1985; 822 Schneider, Massow, Lisowsky, Weiss (bib14) 1995; 29 Yamazoe, Shirahige, Rashid, Kaneko, Nakayama, Ogasawara, Yoshikawa (bib20) 1994; 269 Zhang, Joshi, Hofmann, Schweizer, Smith (bib25) 2005; 280 Schonauer, Kastaniotis, Hiltunen, Dieckmann (bib33) 2008; 28 Boniecki, Freibert, Muhlenhoff, Lill, Cygler (bib43) 2017; 8 Wu, Gu, Guo, Huang, Yang (bib47) 2016; 167 Wilson, Ainscough, Anderson, Baynes, Berks, Bonfield, Burton, Connell, Copsey, Cooper (bib7) 1994; 368 Zhang, Joshi, Smith (bib26) 2003; 278 Brody, Mikolajczyk (bib2) 1988; 173 Joshi, Zhang, Rangan, Smith (bib24) 2003; 278 Van Vranken, Jeong, Wei, Chen, Gygi, Winge, Rutter (bib41) 2016; 5 Hoja, Wellein, Greiner, Schweizer (bib31) 1998; 254 Kursu, Pietikainen, Fontanesi, Aaltonen, Suomi, Raghavan Nair, Schonauer, Dieckmann, Barrientos, Hiltunen (bib35) 2013; 90 Zhu, Vinothkumar, Hirst (bib45) 2016; 536 Sackmann, Zensen, Rohlen, Jahnke, Weiss (bib4) 1991; 200 Monteuuis (10.1016/j.cub.2018.08.022_bib34) 2017; 474 Heimer (10.1016/j.cub.2018.08.022_bib1) 2016; 99 Schneider (10.1016/j.cub.2018.08.022_bib14) 1995; 29 Schonauer (10.1016/j.cub.2018.08.022_bib33) 2008; 28 Wada (10.1016/j.cub.2018.08.022_bib17) 1997; 94 Zhu (10.1016/j.cub.2018.08.022_bib45) 2016; 536 Torkko (10.1016/j.cub.2018.08.022_bib21) 2001; 21 Angerer (10.1016/j.cub.2018.08.022_bib50) 2017; 1864 Floyd (10.1016/j.cub.2018.08.022_bib40) 2016; 63 Boniecki (10.1016/j.cub.2018.08.022_bib43) 2017; 8 Hoja (10.1016/j.cub.2018.08.022_bib31) 1998; 254 Harington (10.1016/j.cub.2018.08.022_bib23) 1994; 13 Brody (10.1016/j.cub.2018.08.022_bib15) 1997; 408 Triepels (10.1016/j.cub.2018.08.022_bib10) 1999; 22 Harington (10.1016/j.cub.2018.08.022_bib18) 1993; 9 Runswick (10.1016/j.cub.2018.08.022_bib5) 1991; 286 Ragone (10.1016/j.cub.2018.08.022_bib9) 1999; 261 Schneider (10.1016/j.cub.2018.08.022_bib11) 1997; 407 Yamazoe (10.1016/j.cub.2018.08.022_bib20) 1994; 269 Miinalainen (10.1016/j.cub.2018.08.022_bib27) 2003; 278 Brody (10.1016/j.cub.2018.08.022_bib2) 1988; 173 Cory (10.1016/j.cub.2018.08.022_bib42) 2017; 114 Shintani (10.1016/j.cub.2018.08.022_bib8) 1994; 104 Cheret (10.1016/j.cub.2018.08.022_bib13) 1993; 9 Hiltunen (10.1016/j.cub.2018.08.022_bib37) 2010; 1797 Brown (10.1016/j.cub.2018.08.022_bib36) 2017; 24 Zhang (10.1016/j.cub.2018.08.022_bib26) 2003; 278 Huttlin (10.1016/j.cub.2018.08.022_bib39) 2015; 162 Carroll (10.1016/j.cub.2018.08.022_bib49) 2003; 2 Van Vranken (10.1016/j.cub.2018.08.022_bib41) 2016; 5 Fiedorczuk (10.1016/j.cub.2018.08.022_bib44) 2016; 538 Chen (10.1016/j.cub.2018.08.022_bib29) 2009; 23 Van Vranken (10.1016/j.cub.2018.08.022_bib48) 2018; 71 Daum (10.1016/j.cub.2018.08.022_bib12) 1985; 822 Angerer (10.1016/j.cub.2018.08.022_bib38) 2015; 4 Mikolajczyk (10.1016/j.cub.2018.08.022_bib3) 1990; 187 Schneider (10.1016/j.cub.2018.08.022_bib19) 1997; 32 Sackmann (10.1016/j.cub.2018.08.022_bib4) 1991; 200 Chuman (10.1016/j.cub.2018.08.022_bib6) 1989; 184 Jordan (10.1016/j.cub.2018.08.022_bib16) 1997; 272 Autio (10.1016/j.cub.2018.08.022_bib28) 2008; 22 Kursu (10.1016/j.cub.2018.08.022_bib35) 2013; 90 Wu (10.1016/j.cub.2018.08.022_bib47) 2016; 167 Zhang (10.1016/j.cub.2018.08.022_bib25) 2005; 280 Stuible (10.1016/j.cub.2018.08.022_bib30) 1998; 273 Kastaniotis (10.1016/j.cub.2018.08.022_bib22) 2004; 53 Joshi (10.1016/j.cub.2018.08.022_bib24) 2003; 278 Guo (10.1016/j.cub.2018.08.022_bib46) 2017; 170 Wilson (10.1016/j.cub.2018.08.022_bib7) 1994; 368 Hoja (10.1016/j.cub.2018.08.022_bib32) 2004; 279 |
References_xml | – volume: 28 start-page: 6646 year: 2008 end-page: 6657 ident: bib33 article-title: Intersection of RNA processing and the type II fatty acid synthesis pathway in yeast mitochondria publication-title: Mol. Cell. Biol. – volume: 261 start-page: 690 year: 1999 end-page: 697 ident: bib9 article-title: The Drosophila melanogaster gene for the NADH:ubiquinone oxidoreductase acyl carrier protein: developmental expression analysis and evidence for alternatively spliced forms publication-title: Mol. Gen. Genet. – volume: 114 start-page: E5325 year: 2017 end-page: E5334 ident: bib42 article-title: Structure of human Fe-S assembly subcomplex reveals unexpected cysteine desulfurase architecture and acyl-ACP-ISD11 interactions publication-title: Proc. Natl. Acad. Sci. USA – volume: 94 start-page: 1591 year: 1997 end-page: 1596 ident: bib17 article-title: Why do mitochondria synthesize fatty acids? Evidence for involvement in lipoic acid production publication-title: Proc. Natl. Acad. Sci. USA – volume: 71 start-page: 567 year: 2018 end-page: 580.e564 ident: bib48 article-title: ACP acylation is an acetyl-CoA-dependent modification required for electron transport chain assembly publication-title: Mol. Cell – volume: 162 start-page: 425 year: 2015 end-page: 440 ident: bib39 article-title: The BioPlex network: a systematic exploration of the human interactome publication-title: Cell – volume: 278 start-page: 33142 year: 2003 end-page: 33149 ident: bib24 article-title: Cloning, expression, and characterization of a human 4′-phosphopantetheinyl transferase with broad substrate specificity publication-title: J. Biol. Chem. – volume: 173 start-page: 353 year: 1988 end-page: 359 ident: bib2 article-title: Neurospora mitochondria contain an acyl-carrier protein publication-title: Eur. J. Biochem. – volume: 63 start-page: 621 year: 2016 end-page: 632 ident: bib40 article-title: Mitochondrial protein interaction mapping identifies regulators of respiratory chain function publication-title: Mol. Cell – volume: 184 start-page: 643 year: 1989 end-page: 649 ident: bib6 article-title: Acyl carrier protein is present in the mitochondria of plants and eucaryotic micro-organisms publication-title: Eur. J. Biochem. – volume: 408 start-page: 217 year: 1997 end-page: 220 ident: bib15 article-title: Mitochondrial acyl carrier protein is involved in lipoic acid synthesis in Saccharomyces cerevisiae publication-title: FEBS Lett. – volume: 4 start-page: 133 year: 2015 end-page: 150 ident: bib38 article-title: Eukaryotic LYR proteins interact with mitochondrial protein complexes publication-title: Biology – volume: 1864 start-page: 1913 year: 2017 end-page: 1920 ident: bib50 article-title: Acyl modification and binding of mitochondrial ACP to multiprotein complexes publication-title: Biochim. Biophys. Acta – volume: 538 start-page: 406 year: 2016 end-page: 410 ident: bib44 article-title: Atomic structure of the entire mammalian mitochondrial complex I publication-title: Nature – volume: 2 start-page: 117 year: 2003 end-page: 126 ident: bib49 article-title: Analysis of the subunit composition of complex I from bovine heart mitochondria publication-title: Mol. Cell. Proteomics – volume: 822 start-page: 1 year: 1985 end-page: 42 ident: bib12 article-title: Lipids of mitochondria publication-title: Biochim. Biophys. Acta – volume: 9 start-page: 661 year: 1993 end-page: 667 ident: bib13 article-title: DNA sequence analysis of the YCN2 region of chromosome XI in Saccharomyces cerevisiae publication-title: Yeast – volume: 1797 start-page: 1195 year: 2010 end-page: 1202 ident: bib37 article-title: Mitochondrial fatty acid synthesis and respiration publication-title: Biochim. Biophys. Acta – volume: 22 start-page: 569 year: 2008 end-page: 578 ident: bib28 article-title: An ancient genetic link between vertebrate mitochondrial fatty acid synthesis and RNA processing publication-title: FASEB J. – volume: 8 start-page: 1287 year: 2017 ident: bib43 article-title: Structure and functional dynamics of the mitochondrial Fe/S cluster synthesis complex publication-title: Nat. Commun. – volume: 21 start-page: 6243 year: 2001 end-page: 6253 ident: bib21 article-title: Candida tropicalis Etr1p and Saccharomyces cerevisiae Ybr026p (Mrf1'p), 2-enoyl thioester reductases essential for mitochondrial respiratory competence publication-title: Mol. Cell. Biol. – volume: 286 start-page: 121 year: 1991 end-page: 124 ident: bib5 article-title: Presence of an acyl carrier protein in NADH:ubiquinone oxidoreductase from bovine heart mitochondria publication-title: FEBS Lett. – volume: 269 start-page: 15244 year: 1994 end-page: 15252 ident: bib20 article-title: A protein which binds preferentially to single-stranded core sequence of autonomously replicating sequence is essential for respiratory function in mitochondrial of Saccharomyces cerevisiae publication-title: J. Biol. Chem. – volume: 22 start-page: 163 year: 1999 end-page: 173 ident: bib10 article-title: The human nuclear-encoded acyl carrier subunit (NDUFAB1) of the mitochondrial complex I in human pathology publication-title: J. Inherit. Metab. Dis. – volume: 272 start-page: 17903 year: 1997 end-page: 17906 ident: bib16 article-title: A new metabolic link. The acyl carrier protein of lipid synthesis donates lipoic acid to the pyruvate dehydrogenase complex in Escherichia coli and mitochondria publication-title: J. Biol. Chem. – volume: 280 start-page: 12422 year: 2005 end-page: 12429 ident: bib25 article-title: Cloning, expression, and characterization of the human mitochondrial beta-ketoacyl synthase. Complementation of the yeast CEM1 knock-out strain publication-title: J. Biol. Chem. – volume: 9 start-page: 545 year: 1993 end-page: 555 ident: bib18 article-title: Identification of a new nuclear gene (CEM1) encoding a protein homologous to a beta-keto-acyl synthase which is essential for mitochondrial respiration in Saccharomyces cerevisiae publication-title: Mol. Microbiol. – volume: 254 start-page: 520 year: 1998 end-page: 526 ident: bib31 article-title: Pleiotropic phenotype of acetyl-CoA-carboxylase-defective yeast cells–viability of a BPL1-amber mutation depending on its readthrough by normal tRNA(Gln)(CAG) publication-title: Eur. J. Biochem. – volume: 29 start-page: 10 year: 1995 end-page: 17 ident: bib14 article-title: Different respiratory-defective phenotypes of Neurospora crassa and Saccharomyces cerevisiae after inactivation of the gene encoding the mitochondrial acyl carrier protein publication-title: Curr. Genet. – volume: 23 start-page: 3682 year: 2009 end-page: 3691 ident: bib29 article-title: 17beta-hydroxysteroid dehydrogenase type 8 and carbonyl reductase type 4 assemble as a ketoacyl reductase of human mitochondrial FAS publication-title: FASEB J. – volume: 5 start-page: e17828 year: 2016 ident: bib41 article-title: The mitochondrial acyl carrier protein (ACP) coordinates mitochondrial fatty acid synthesis with iron sulfur cluster biogenesis publication-title: eLife – volume: 24 start-page: 866 year: 2017 end-page: 869 ident: bib36 article-title: Structures of the human mitochondrial ribosome in native states of assembly publication-title: Nat. Struct. Mol. Biol. – volume: 278 start-page: 40067 year: 2003 end-page: 40074 ident: bib26 article-title: Cloning, expression, characterization, and interaction of two components of a human mitochondrial fatty acid synthase: malonyltransferase and acyl carrier protein publication-title: J. Biol. Chem. – volume: 278 start-page: 20154 year: 2003 end-page: 20161 ident: bib27 article-title: Characterization of 2-enoyl thioester reductase from mammals: an ortholog of Ybr026p/Mrf1′p of the yeast mitochondrial fatty acid synthesis type II publication-title: J. Biol. Chem. – volume: 32 start-page: 384 year: 1997 end-page: 388 ident: bib19 article-title: Two genes of the putative mitochondrial fatty acid synthase in the genome of Saccharomyces cerevisiae publication-title: Curr. Genet. – volume: 99 start-page: 1229 year: 2016 end-page: 1244 ident: bib1 article-title: MECR mutations cause childhood-onset dystonia and optic atrophy, a mitochondrial fatty acid synthesis disorder publication-title: Am. J. Hum. Genet. – volume: 279 start-page: 21779 year: 2004 end-page: 21786 ident: bib32 article-title: HFA1 encoding an organelle-specific acetyl-CoA carboxylase controls mitochondrial fatty acid synthesis in Saccharomyces cerevisiae publication-title: J. Biol. Chem. – volume: 474 start-page: 3783 year: 2017 end-page: 3797 ident: bib34 article-title: A conserved mammalian mitochondrial isoform of acetyl-CoA carboxylase ACC1 provides the malonyl-CoA essential for mitochondrial biogenesis in tandem with ACSF3 publication-title: Biochem. J. – volume: 200 start-page: 463 year: 1991 end-page: 469 ident: bib4 article-title: The acyl-carrier protein in Neurospora crassa mitochondria is a subunit of NADH:ubiquinone reductase (complex I) publication-title: Eur. J. Biochem. – volume: 407 start-page: 249 year: 1997 end-page: 252 ident: bib11 article-title: Mitochondrial fatty acid synthesis: a relic of endosymbiontic origin and a specialized means for respiration publication-title: FEBS Lett. – volume: 273 start-page: 22334 year: 1998 end-page: 22339 ident: bib30 article-title: A novel phosphopantetheine:protein transferase activating yeast mitochondrial acyl carrier protein publication-title: J. Biol. Chem. – volume: 53 start-page: 1407 year: 2004 end-page: 1421 ident: bib22 article-title: Htd2p/Yhr067p is a yeast 3-hydroxyacyl-ACP dehydratase essential for mitochondrial function and morphology publication-title: Mol. Mcirobiol. – volume: 13 start-page: 5531 year: 1994 end-page: 5538 ident: bib23 article-title: Subcellular relocalization of a long-chain fatty acid CoA ligase by a suppressor mutation alleviates a respiration deficiency in Saccharomyces cerevisiae publication-title: EMBO J. – volume: 368 start-page: 32 year: 1994 end-page: 38 ident: bib7 article-title: 2.2 Mb of contiguous nucleotide sequence from chromosome III of C. elegans publication-title: Nature – volume: 104 start-page: 1221 year: 1994 end-page: 1229 ident: bib8 article-title: The characterization of a mitochondrial acyl carrier protein isoform isolated from Arabidopsis thaliana publication-title: Plant Physiol. – volume: 167 start-page: 1598 year: 2016 end-page: 1609.e1510 ident: bib47 article-title: Structure of mammalian respiratory supercomplex I1III2IV1 publication-title: Cell – volume: 187 start-page: 431 year: 1990 end-page: 437 ident: bib3 article-title: De novo fatty acid synthesis mediated by acyl-carrier protein in Neurospora crassa mitochondria publication-title: Eur. J. Biochem. – volume: 170 start-page: 1247 year: 2017 end-page: 1257.e1212 ident: bib46 article-title: Architecture of human mitochondrial respiratory megacomplex I2III2IV2 publication-title: Cell – volume: 90 start-page: 824 year: 2013 end-page: 840 ident: bib35 article-title: Defects in mitochondrial fatty acid synthesis result in failure of multiple aspects of mitochondrial biogenesis in Saccharomyces cerevisiae publication-title: Mol. Microbiol. – volume: 536 start-page: 354 year: 2016 end-page: 358 ident: bib45 article-title: Structure of mammalian respiratory complex I publication-title: Nature – volume: 104 start-page: 1221 year: 1994 ident: 10.1016/j.cub.2018.08.022_bib8 article-title: The characterization of a mitochondrial acyl carrier protein isoform isolated from Arabidopsis thaliana publication-title: Plant Physiol. doi: 10.1104/pp.104.4.1221 – volume: 407 start-page: 249 year: 1997 ident: 10.1016/j.cub.2018.08.022_bib11 article-title: Mitochondrial fatty acid synthesis: a relic of endosymbiontic origin and a specialized means for respiration publication-title: FEBS Lett. doi: 10.1016/S0014-5793(97)00360-8 – volume: 200 start-page: 463 year: 1991 ident: 10.1016/j.cub.2018.08.022_bib4 article-title: The acyl-carrier protein in Neurospora crassa mitochondria is a subunit of NADH:ubiquinone reductase (complex I) publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.1991.tb16205.x – volume: 278 start-page: 20154 year: 2003 ident: 10.1016/j.cub.2018.08.022_bib27 article-title: Characterization of 2-enoyl thioester reductase from mammals: an ortholog of Ybr026p/Mrf1′p of the yeast mitochondrial fatty acid synthesis type II publication-title: J. Biol. Chem. doi: 10.1074/jbc.M302851200 – volume: 162 start-page: 425 year: 2015 ident: 10.1016/j.cub.2018.08.022_bib39 article-title: The BioPlex network: a systematic exploration of the human interactome publication-title: Cell doi: 10.1016/j.cell.2015.06.043 – volume: 114 start-page: E5325 year: 2017 ident: 10.1016/j.cub.2018.08.022_bib42 article-title: Structure of human Fe-S assembly subcomplex reveals unexpected cysteine desulfurase architecture and acyl-ACP-ISD11 interactions publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1702849114 – volume: 21 start-page: 6243 year: 2001 ident: 10.1016/j.cub.2018.08.022_bib21 article-title: Candida tropicalis Etr1p and Saccharomyces cerevisiae Ybr026p (Mrf1'p), 2-enoyl thioester reductases essential for mitochondrial respiratory competence publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.21.18.6243-6253.2001 – volume: 273 start-page: 22334 year: 1998 ident: 10.1016/j.cub.2018.08.022_bib30 article-title: A novel phosphopantetheine:protein transferase activating yeast mitochondrial acyl carrier protein publication-title: J. Biol. Chem. doi: 10.1074/jbc.273.35.22334 – volume: 272 start-page: 17903 year: 1997 ident: 10.1016/j.cub.2018.08.022_bib16 article-title: A new metabolic link. The acyl carrier protein of lipid synthesis donates lipoic acid to the pyruvate dehydrogenase complex in Escherichia coli and mitochondria publication-title: J. Biol. Chem. doi: 10.1074/jbc.272.29.17903 – volume: 22 start-page: 569 year: 2008 ident: 10.1016/j.cub.2018.08.022_bib28 article-title: An ancient genetic link between vertebrate mitochondrial fatty acid synthesis and RNA processing publication-title: FASEB J. doi: 10.1096/fj.07-8986 – volume: 29 start-page: 10 year: 1995 ident: 10.1016/j.cub.2018.08.022_bib14 article-title: Different respiratory-defective phenotypes of Neurospora crassa and Saccharomyces cerevisiae after inactivation of the gene encoding the mitochondrial acyl carrier protein publication-title: Curr. Genet. doi: 10.1007/BF00313188 – volume: 9 start-page: 661 year: 1993 ident: 10.1016/j.cub.2018.08.022_bib13 article-title: DNA sequence analysis of the YCN2 region of chromosome XI in Saccharomyces cerevisiae publication-title: Yeast doi: 10.1002/yea.320090612 – volume: 269 start-page: 15244 year: 1994 ident: 10.1016/j.cub.2018.08.022_bib20 article-title: A protein which binds preferentially to single-stranded core sequence of autonomously replicating sequence is essential for respiratory function in mitochondrial of Saccharomyces cerevisiae publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(17)36598-5 – volume: 63 start-page: 621 year: 2016 ident: 10.1016/j.cub.2018.08.022_bib40 article-title: Mitochondrial protein interaction mapping identifies regulators of respiratory chain function publication-title: Mol. Cell doi: 10.1016/j.molcel.2016.06.033 – volume: 99 start-page: 1229 year: 2016 ident: 10.1016/j.cub.2018.08.022_bib1 article-title: MECR mutations cause childhood-onset dystonia and optic atrophy, a mitochondrial fatty acid synthesis disorder publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2016.09.021 – volume: 368 start-page: 32 year: 1994 ident: 10.1016/j.cub.2018.08.022_bib7 article-title: 2.2 Mb of contiguous nucleotide sequence from chromosome III of C. elegans publication-title: Nature doi: 10.1038/368032a0 – volume: 280 start-page: 12422 year: 2005 ident: 10.1016/j.cub.2018.08.022_bib25 article-title: Cloning, expression, and characterization of the human mitochondrial beta-ketoacyl synthase. Complementation of the yeast CEM1 knock-out strain publication-title: J. Biol. Chem. doi: 10.1074/jbc.M413686200 – volume: 13 start-page: 5531 year: 1994 ident: 10.1016/j.cub.2018.08.022_bib23 article-title: Subcellular relocalization of a long-chain fatty acid CoA ligase by a suppressor mutation alleviates a respiration deficiency in Saccharomyces cerevisiae publication-title: EMBO J. doi: 10.1002/j.1460-2075.1994.tb06890.x – volume: 278 start-page: 40067 year: 2003 ident: 10.1016/j.cub.2018.08.022_bib26 article-title: Cloning, expression, characterization, and interaction of two components of a human mitochondrial fatty acid synthase: malonyltransferase and acyl carrier protein publication-title: J. Biol. Chem. doi: 10.1074/jbc.M306121200 – volume: 5 start-page: e17828 year: 2016 ident: 10.1016/j.cub.2018.08.022_bib41 article-title: The mitochondrial acyl carrier protein (ACP) coordinates mitochondrial fatty acid synthesis with iron sulfur cluster biogenesis publication-title: eLife doi: 10.7554/eLife.17828 – volume: 538 start-page: 406 year: 2016 ident: 10.1016/j.cub.2018.08.022_bib44 article-title: Atomic structure of the entire mammalian mitochondrial complex I publication-title: Nature doi: 10.1038/nature19794 – volume: 167 start-page: 1598 year: 2016 ident: 10.1016/j.cub.2018.08.022_bib47 article-title: Structure of mammalian respiratory supercomplex I1III2IV1 publication-title: Cell doi: 10.1016/j.cell.2016.11.012 – volume: 170 start-page: 1247 year: 2017 ident: 10.1016/j.cub.2018.08.022_bib46 article-title: Architecture of human mitochondrial respiratory megacomplex I2III2IV2 publication-title: Cell doi: 10.1016/j.cell.2017.07.050 – volume: 32 start-page: 384 year: 1997 ident: 10.1016/j.cub.2018.08.022_bib19 article-title: Two genes of the putative mitochondrial fatty acid synthase in the genome of Saccharomyces cerevisiae publication-title: Curr. Genet. doi: 10.1007/s002940050292 – volume: 254 start-page: 520 year: 1998 ident: 10.1016/j.cub.2018.08.022_bib31 article-title: Pleiotropic phenotype of acetyl-CoA-carboxylase-defective yeast cells–viability of a BPL1-amber mutation depending on its readthrough by normal tRNA(Gln)(CAG) publication-title: Eur. J. Biochem. doi: 10.1046/j.1432-1327.1998.2540520.x – volume: 261 start-page: 690 year: 1999 ident: 10.1016/j.cub.2018.08.022_bib9 article-title: The Drosophila melanogaster gene for the NADH:ubiquinone oxidoreductase acyl carrier protein: developmental expression analysis and evidence for alternatively spliced forms publication-title: Mol. Gen. Genet. doi: 10.1007/s004380050012 – volume: 1797 start-page: 1195 year: 2010 ident: 10.1016/j.cub.2018.08.022_bib37 article-title: Mitochondrial fatty acid synthesis and respiration publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbabio.2010.03.006 – volume: 24 start-page: 866 year: 2017 ident: 10.1016/j.cub.2018.08.022_bib36 article-title: Structures of the human mitochondrial ribosome in native states of assembly publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.3464 – volume: 278 start-page: 33142 year: 2003 ident: 10.1016/j.cub.2018.08.022_bib24 article-title: Cloning, expression, and characterization of a human 4′-phosphopantetheinyl transferase with broad substrate specificity publication-title: J. Biol. Chem. doi: 10.1074/jbc.M305459200 – volume: 408 start-page: 217 year: 1997 ident: 10.1016/j.cub.2018.08.022_bib15 article-title: Mitochondrial acyl carrier protein is involved in lipoic acid synthesis in Saccharomyces cerevisiae publication-title: FEBS Lett. doi: 10.1016/S0014-5793(97)00428-6 – volume: 173 start-page: 353 year: 1988 ident: 10.1016/j.cub.2018.08.022_bib2 article-title: Neurospora mitochondria contain an acyl-carrier protein publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.1988.tb14005.x – volume: 822 start-page: 1 year: 1985 ident: 10.1016/j.cub.2018.08.022_bib12 article-title: Lipids of mitochondria publication-title: Biochim. Biophys. Acta doi: 10.1016/0304-4157(85)90002-4 – volume: 28 start-page: 6646 year: 2008 ident: 10.1016/j.cub.2018.08.022_bib33 article-title: Intersection of RNA processing and the type II fatty acid synthesis pathway in yeast mitochondria publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.01162-08 – volume: 2 start-page: 117 year: 2003 ident: 10.1016/j.cub.2018.08.022_bib49 article-title: Analysis of the subunit composition of complex I from bovine heart mitochondria publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.M300014-MCP200 – volume: 279 start-page: 21779 year: 2004 ident: 10.1016/j.cub.2018.08.022_bib32 article-title: HFA1 encoding an organelle-specific acetyl-CoA carboxylase controls mitochondrial fatty acid synthesis in Saccharomyces cerevisiae publication-title: J. Biol. Chem. doi: 10.1074/jbc.M401071200 – volume: 286 start-page: 121 year: 1991 ident: 10.1016/j.cub.2018.08.022_bib5 article-title: Presence of an acyl carrier protein in NADH:ubiquinone oxidoreductase from bovine heart mitochondria publication-title: FEBS Lett. doi: 10.1016/0014-5793(91)80955-3 – volume: 90 start-page: 824 year: 2013 ident: 10.1016/j.cub.2018.08.022_bib35 article-title: Defects in mitochondrial fatty acid synthesis result in failure of multiple aspects of mitochondrial biogenesis in Saccharomyces cerevisiae publication-title: Mol. Microbiol. doi: 10.1111/mmi.12402 – volume: 1864 start-page: 1913 year: 2017 ident: 10.1016/j.cub.2018.08.022_bib50 article-title: Acyl modification and binding of mitochondrial ACP to multiprotein complexes publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamcr.2017.08.006 – volume: 184 start-page: 643 year: 1989 ident: 10.1016/j.cub.2018.08.022_bib6 article-title: Acyl carrier protein is present in the mitochondria of plants and eucaryotic micro-organisms publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.1989.tb15061.x – volume: 474 start-page: 3783 year: 2017 ident: 10.1016/j.cub.2018.08.022_bib34 article-title: A conserved mammalian mitochondrial isoform of acetyl-CoA carboxylase ACC1 provides the malonyl-CoA essential for mitochondrial biogenesis in tandem with ACSF3 publication-title: Biochem. J. doi: 10.1042/BCJ20170416 – volume: 536 start-page: 354 year: 2016 ident: 10.1016/j.cub.2018.08.022_bib45 article-title: Structure of mammalian respiratory complex I publication-title: Nature doi: 10.1038/nature19095 – volume: 187 start-page: 431 year: 1990 ident: 10.1016/j.cub.2018.08.022_bib3 article-title: De novo fatty acid synthesis mediated by acyl-carrier protein in Neurospora crassa mitochondria publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.1990.tb15322.x – volume: 94 start-page: 1591 year: 1997 ident: 10.1016/j.cub.2018.08.022_bib17 article-title: Why do mitochondria synthesize fatty acids? Evidence for involvement in lipoic acid production publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.94.4.1591 – volume: 8 start-page: 1287 year: 2017 ident: 10.1016/j.cub.2018.08.022_bib43 article-title: Structure and functional dynamics of the mitochondrial Fe/S cluster synthesis complex publication-title: Nat. Commun. doi: 10.1038/s41467-017-01497-1 – volume: 71 start-page: 567 year: 2018 ident: 10.1016/j.cub.2018.08.022_bib48 article-title: ACP acylation is an acetyl-CoA-dependent modification required for electron transport chain assembly publication-title: Mol. Cell doi: 10.1016/j.molcel.2018.06.039 – volume: 23 start-page: 3682 year: 2009 ident: 10.1016/j.cub.2018.08.022_bib29 article-title: 17beta-hydroxysteroid dehydrogenase type 8 and carbonyl reductase type 4 assemble as a ketoacyl reductase of human mitochondrial FAS publication-title: FASEB J. doi: 10.1096/fj.09-133587 – volume: 22 start-page: 163 year: 1999 ident: 10.1016/j.cub.2018.08.022_bib10 article-title: The human nuclear-encoded acyl carrier subunit (NDUFAB1) of the mitochondrial complex I in human pathology publication-title: J. Inherit. Metab. Dis. doi: 10.1023/A:1005402020569 – volume: 9 start-page: 545 year: 1993 ident: 10.1016/j.cub.2018.08.022_bib18 article-title: Identification of a new nuclear gene (CEM1) encoding a protein homologous to a beta-keto-acyl synthase which is essential for mitochondrial respiration in Saccharomyces cerevisiae publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.1993.tb01715.x – volume: 4 start-page: 133 year: 2015 ident: 10.1016/j.cub.2018.08.022_bib38 article-title: Eukaryotic LYR proteins interact with mitochondrial protein complexes publication-title: Biology doi: 10.3390/biology4010133 – volume: 53 start-page: 1407 year: 2004 ident: 10.1016/j.cub.2018.08.022_bib22 article-title: Htd2p/Yhr067p is a yeast 3-hydroxyacyl-ACP dehydratase essential for mitochondrial function and morphology publication-title: Mol. Mcirobiol. doi: 10.1111/j.1365-2958.2004.04191.x |
SSID | ssj0012896 |
Score | 2.5045595 |
SecondaryResourceType | review_article |
Snippet | Biology students today are taught that mitochondria are ‘the powerhouse of the cell’. This gross over-simplification of their cellular role has arguably led to... Biology students today are taught that mitochondria are 'the powerhouse of the cell'. This gross over-simplification of their cellular role has arguably led to... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | R1212 |
SubjectTerms | Animals Fatty Acids - biosynthesis Humans Mammals - physiology Mitochondria - physiology Organelle Biogenesis Yeasts - physiology |
Title | Impact of Mitochondrial Fatty Acid Synthesis on Mitochondrial Biogenesis |
URI | https://dx.doi.org/10.1016/j.cub.2018.08.022 https://www.ncbi.nlm.nih.gov/pubmed/30352195 https://www.proquest.com/docview/2125299148 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KIngR39ZHieBJCN0km4fHWiytpR6sxd6W3c1GIpIUmx76b_wt_jJnNkmhh_Yg5JIwmyyzm_m-ZV6E3CmHhX6SCJsBNthMJ8yOpIxxQWJFdeS7Jst19BL0J-x56k8bpFvnwmBYZWX7S5turHX1pF1psz1L0_bYFEsDfHOwV1YQYk1Qj0UmiW_6uPIkwIHC-CtB2Ebp2rNpYrzUQmJ0V2SqeLruJmzaxD0NBvUOyUFFHq1OOb8j0tDZMdkr20kuT8hgYFIerTyxRvCjgmHLYtxfVk8UxdLqqDS2xssMKN88nVt59vuzLgYv-kDTl85PyaT39Nbt21WrBFuxwC3ATGjgUlQ6UssAWAEcYiTVmgba1yGlIhSJoI5QoCdBlfCCRAeelNSJI0dJFXhnZCfLM31BLIHO4ZixJPEi5sVM-liBHi6gOlo4uklorSSuqjri2M7ii9cBY58c9MpRrxxbXLpuk9yvhszKIhrbhFmteb62EzgY-W3DbutV4vCHoNtDZDpfzDmAsw-gC-e-Jjkvl281Cw_LwToP_uX_PnpF9vEOscx1r8lO8b3QN0BSCtkiu53h6_uwZXbjH2Le5N4 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLYGCMEF8WY8i8QJqVrapg-OMDFtwLgA0m5RkqaoCHUT6w77N_wWfhl22k7iAAeknlKnjZzE3xfZsQEutMfjMMukyxEbXG4y7iZKpTQhqWYmCX17y3X4GPVf-N0oHLWg29yFobDK2vZXNt1a67qlU2uzM8nzzpNNlob45lGtrCjmS7CCbCCm3TkY3SxcCXiisA5LlHZJvHFt2iAvPVMU3pXYNJ6-_xs4_UY-LQj1NmGjZo_OdTXALWiZYhtWq3qS8x0YDOydR2ecOUPcqWjZipQWmNOTZTl3rnWeOk_zAjnfNJ864-Lr86cYfuiVbF8-3YWX3u1zt-_WtRJczSO_RDthkEwx5SmjIqQFeIpRzBgWmdDEjMlYZpJ5UqOiJNMyiDITBUoxL008rXQU7MFyMS7MATiSvMMp51kWJDxIuQopBT0-yHWM9EwbWKMkoetE4lTP4l00EWNvAvUqSK-Calz6fhsuF10mVRaNv4R5o3nxYykItPJ_dTtvZkngFiG_hyzMeDYViM4hoi4e_NqwX03fYhQB5YP1rsLD__30DNb6z8MH8TB4vD-CdXpDwOb7x7BcfszMCTKWUp3aFfkNubDmWw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+Mitochondrial+Fatty+Acid+Synthesis+on%C2%A0Mitochondrial+Biogenesis&rft.jtitle=Current+biology&rft.au=Nowinski%2C+Sara+M.&rft.au=Van+Vranken%2C+Jonathan+G.&rft.au=Dove%2C+Katja+K.&rft.au=Rutter%2C+Jared&rft.date=2018-10-22&rft.issn=0960-9822&rft.volume=28&rft.issue=20&rft.spage=R1212&rft.epage=R1219&rft_id=info:doi/10.1016%2Fj.cub.2018.08.022&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cub_2018_08_022 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-9822&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-9822&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-9822&client=summon |