Impact of Mitochondrial Fatty Acid Synthesis on Mitochondrial Biogenesis

Biology students today are taught that mitochondria are ‘the powerhouse of the cell’. This gross over-simplification of their cellular role has arguably led to a paucity of knowledge concerning the many other tasks carried out by this multifunctional organelle. Mitochondrial fatty acid synthesis (mt...

Full description

Saved in:
Bibliographic Details
Published inCurrent biology Vol. 28; no. 20; pp. R1212 - R1219
Main Authors Nowinski, Sara M., Van Vranken, Jonathan G., Dove, Katja K., Rutter, Jared
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 22.10.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Biology students today are taught that mitochondria are ‘the powerhouse of the cell’. This gross over-simplification of their cellular role has arguably led to a paucity of knowledge concerning the many other tasks carried out by this multifunctional organelle. Mitochondrial fatty acid synthesis (mtFAS) is one such under-appreciated pathway that is crucial for mitochondrial function, although even mitochondrial experts are often surprised to learn of its existence. For many years, the only function of mtFAS was thought to be the production of lipoic acid, an important co-factor for several mitochondrial enzymes. However, recent advances have revealed a far wider role for mtFAS in mitochondrial physiology. The discovery of human patients with mutations in mtFAS enzymes has brought renewed interest in understanding the full significance of this novel mode of mitochondrial metabolic regulation. We now appreciate that mtFAS is a nutrient-sensitive pathway that provides an elegant mechanism whereby acetyl-CoA regulates its own consumption via coordination of lipoic acid synthesis and tricarboxylic acid (TCA) cycle activity, iron–sulfur (FeS) cluster biogenesis, assembly of oxidative phosphorylation complexes, and mitochondrial translation. In this minireview, we describe and build upon the important discoveries that led to our current understanding of this elegant mechanism of coordination of nutrient status and metabolism. In this minireview, Nowinski et al. highlight the various roles of mitochondrial fatty acid synthesis in mitochondrial physiology and discuss recent studies implicating this pathway in the coordination of nutrient status and metabolism.
AbstractList Biology students today are taught that mitochondria are 'the powerhouse of the cell'. This gross over-simplification of their cellular role has arguably led to a paucity of knowledge concerning the many other tasks carried out by this multifunctional organelle. Mitochondrial fatty acid synthesis (mtFAS) is one such under-appreciated pathway that is crucial for mitochondrial function, although even mitochondrial experts are often surprised to learn of its existence. For many years, the only function of mtFAS was thought to be the production of lipoic acid, an important co-factor for several mitochondrial enzymes. However, recent advances have revealed a far wider role for mtFAS in mitochondrial physiology. The discovery of human patients with mutations in mtFAS enzymes has brought renewed interest in understanding the full significance of this novel mode of mitochondrial metabolic regulation. We now appreciate that mtFAS is a nutrient-sensitive pathway that provides an elegant mechanism whereby acetyl-CoA regulates its own consumption via coordination of lipoic acid synthesis and tricarboxylic acid (TCA) cycle activity, iron-sulfur (FeS) cluster biogenesis, assembly of oxidative phosphorylation complexes, and mitochondrial translation. In this minireview, we describe and build upon the important discoveries that led to our current understanding of this elegant mechanism of coordination of nutrient status and metabolism.
Biology students today are taught that mitochondria are ‘the powerhouse of the cell’. This gross over-simplification of their cellular role has arguably led to a paucity of knowledge concerning the many other tasks carried out by this multifunctional organelle. Mitochondrial fatty acid synthesis (mtFAS) is one such under-appreciated pathway that is crucial for mitochondrial function, although even mitochondrial experts are often surprised to learn of its existence. For many years, the only function of mtFAS was thought to be the production of lipoic acid, an important co-factor for several mitochondrial enzymes. However, recent advances have revealed a far wider role for mtFAS in mitochondrial physiology. The discovery of human patients with mutations in mtFAS enzymes has brought renewed interest in understanding the full significance of this novel mode of mitochondrial metabolic regulation. We now appreciate that mtFAS is a nutrient-sensitive pathway that provides an elegant mechanism whereby acetyl-CoA regulates its own consumption via coordination of lipoic acid synthesis and tricarboxylic acid (TCA) cycle activity, iron–sulfur (FeS) cluster biogenesis, assembly of oxidative phosphorylation complexes, and mitochondrial translation. In this minireview, we describe and build upon the important discoveries that led to our current understanding of this elegant mechanism of coordination of nutrient status and metabolism. In this minireview, Nowinski et al. highlight the various roles of mitochondrial fatty acid synthesis in mitochondrial physiology and discuss recent studies implicating this pathway in the coordination of nutrient status and metabolism.
Biology students today are taught that mitochondria are 'the powerhouse of the cell'. This gross over-simplification of their cellular role has arguably led to a paucity of knowledge concerning the many other tasks carried out by this multifunctional organelle. Mitochondrial fatty acid synthesis (mtFAS) is one such under-appreciated pathway that is crucial for mitochondrial function, although even mitochondrial experts are often surprised to learn of its existence. For many years, the only function of mtFAS was thought to be the production of lipoic acid, an important co-factor for several mitochondrial enzymes. However, recent advances have revealed a far wider role for mtFAS in mitochondrial physiology. The discovery of human patients with mutations in mtFAS enzymes has brought renewed interest in understanding the full significance of this novel mode of mitochondrial metabolic regulation. We now appreciate that mtFAS is a nutrient-sensitive pathway that provides an elegant mechanism whereby acetyl-CoA regulates its own consumption via coordination of lipoic acid synthesis and tricarboxylic acid (TCA) cycle activity, iron-sulfur (FeS) cluster biogenesis, assembly of oxidative phosphorylation complexes, and mitochondrial translation. In this minireview, we describe and build upon the important discoveries that led to our current understanding of this elegant mechanism of coordination of nutrient status and metabolism.Biology students today are taught that mitochondria are 'the powerhouse of the cell'. This gross over-simplification of their cellular role has arguably led to a paucity of knowledge concerning the many other tasks carried out by this multifunctional organelle. Mitochondrial fatty acid synthesis (mtFAS) is one such under-appreciated pathway that is crucial for mitochondrial function, although even mitochondrial experts are often surprised to learn of its existence. For many years, the only function of mtFAS was thought to be the production of lipoic acid, an important co-factor for several mitochondrial enzymes. However, recent advances have revealed a far wider role for mtFAS in mitochondrial physiology. The discovery of human patients with mutations in mtFAS enzymes has brought renewed interest in understanding the full significance of this novel mode of mitochondrial metabolic regulation. We now appreciate that mtFAS is a nutrient-sensitive pathway that provides an elegant mechanism whereby acetyl-CoA regulates its own consumption via coordination of lipoic acid synthesis and tricarboxylic acid (TCA) cycle activity, iron-sulfur (FeS) cluster biogenesis, assembly of oxidative phosphorylation complexes, and mitochondrial translation. In this minireview, we describe and build upon the important discoveries that led to our current understanding of this elegant mechanism of coordination of nutrient status and metabolism.
Author Dove, Katja K.
Rutter, Jared
Nowinski, Sara M.
Van Vranken, Jonathan G.
Author_xml – sequence: 1
  givenname: Sara M.
  surname: Nowinski
  fullname: Nowinski, Sara M.
  organization: Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
– sequence: 2
  givenname: Jonathan G.
  surname: Van Vranken
  fullname: Van Vranken, Jonathan G.
  organization: Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
– sequence: 3
  givenname: Katja K.
  surname: Dove
  fullname: Dove, Katja K.
  organization: Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
– sequence: 4
  givenname: Jared
  surname: Rutter
  fullname: Rutter, Jared
  email: rutter@biochem.utah.edu
  organization: Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30352195$$D View this record in MEDLINE/PubMed
BookMark eNp9kM9KAzEQh4Mo2lYfwIvs0cvWSXY3u4unWvxTUDyo55BkZzVlm9QkFfo2PotP5paqoAfhB3OY7xuY35DsWmeRkGMKYwqUn83HeqXGDGg1hj6M7ZABrco6hTwvdskAag5pXTF2QIYhzAEoq2q-Tw4yyApG62JAZrPFUuqYuDa5M9HpF2cbb2SXXMkY18lEmyZ5WNv4gsGExNmP99_YhXHPaDfLQ7LXyi7g0dcckaery8fpTXp7fz2bTm5TnXMW06xEqDJQVKHiUOY15woQgWOBJYAsZSuBSg28lKBlxlvkmVJAm4pqpXk2Iqfbu0vvXlcYoliYoLHrpEW3CoJRVrC6pnnVoydf6EotsBFLbxbSr8X3-z1At4D2LgSP7Q9CQWwqFnPRVyw2FQvow1jvlH8cbaKMxtnopen-Nc-3Jvb1vBn0ImiDVmNjPOooGmf-sT8Bz8OWOQ
CitedBy_id crossref_primary_10_1016_j_jep_2022_115398
crossref_primary_10_1016_j_bbamcr_2019_118540
crossref_primary_10_1371_journal_pbio_3001934
crossref_primary_10_1016_j_foodchem_2022_135276
crossref_primary_10_1016_j_cej_2024_158987
crossref_primary_10_1016_j_jbc_2023_104715
crossref_primary_10_1016_j_ymgme_2022_09_011
crossref_primary_10_1038_s41586_022_04795_x
crossref_primary_10_1042_BST20230947
crossref_primary_10_1016_j_bbamcr_2020_118863
crossref_primary_10_1177_10738584221139761
crossref_primary_10_1080_13816810_2022_2135112
crossref_primary_10_1016_j_brainres_2024_149424
crossref_primary_10_1016_j_hjc_2024_05_010
crossref_primary_10_1073_pnas_2221150120
crossref_primary_10_1016_j_bbabio_2020_148153
crossref_primary_10_1038_s42255_023_00873_0
crossref_primary_10_1038_s41598_021_98548_x
crossref_primary_10_1021_acs_chemrestox_3c00367
crossref_primary_10_3390_biom12121885
crossref_primary_10_1016_j_lfs_2023_121378
crossref_primary_10_1111_tpj_70028
crossref_primary_10_1039_D0CS01610A
crossref_primary_10_1016_j_envpol_2021_118390
crossref_primary_10_3233_JAD_221199
crossref_primary_10_2174_1381612829666230313111314
crossref_primary_10_3390_ijms242115693
crossref_primary_10_7554_eLife_58041
crossref_primary_10_1038_s41467_020_19778_7
crossref_primary_10_1042_BCJ20230161
crossref_primary_10_1074_jbc_RA119_011791
crossref_primary_10_1038_s41556_023_01117_9
crossref_primary_10_7554_eLife_75426
crossref_primary_10_1021_acs_biochem_3c00455
crossref_primary_10_3390_biomedicines9020225
crossref_primary_10_1021_acssensors_2c00792
crossref_primary_10_1080_10408398_2022_2131730
crossref_primary_10_1098_rsob_240021
crossref_primary_10_1016_j_cmet_2023_11_017
crossref_primary_10_1016_j_mito_2020_12_014
crossref_primary_10_1038_s41580_022_00572_w
crossref_primary_10_1242_jeb_238915
crossref_primary_10_1002_iub_2802
crossref_primary_10_1515_hsz_2020_0117
crossref_primary_10_1146_annurev_biochem_013118_111540
crossref_primary_10_1038_s42255_024_01059_y
crossref_primary_10_1093_toxsci_kfac086
crossref_primary_10_1098_rsob_200369
crossref_primary_10_7717_peerj_11681
crossref_primary_10_3390_antiox13080897
crossref_primary_10_3390_life11050455
crossref_primary_10_1080_14728222_2022_2049756
crossref_primary_10_1002_advs_202414141
crossref_primary_10_7554_eLife_71636
Cites_doi 10.1104/pp.104.4.1221
10.1016/S0014-5793(97)00360-8
10.1111/j.1432-1033.1991.tb16205.x
10.1074/jbc.M302851200
10.1016/j.cell.2015.06.043
10.1073/pnas.1702849114
10.1128/MCB.21.18.6243-6253.2001
10.1074/jbc.273.35.22334
10.1074/jbc.272.29.17903
10.1096/fj.07-8986
10.1007/BF00313188
10.1002/yea.320090612
10.1016/S0021-9258(17)36598-5
10.1016/j.molcel.2016.06.033
10.1016/j.ajhg.2016.09.021
10.1038/368032a0
10.1074/jbc.M413686200
10.1002/j.1460-2075.1994.tb06890.x
10.1074/jbc.M306121200
10.7554/eLife.17828
10.1038/nature19794
10.1016/j.cell.2016.11.012
10.1016/j.cell.2017.07.050
10.1007/s002940050292
10.1046/j.1432-1327.1998.2540520.x
10.1007/s004380050012
10.1016/j.bbabio.2010.03.006
10.1038/nsmb.3464
10.1074/jbc.M305459200
10.1016/S0014-5793(97)00428-6
10.1111/j.1432-1033.1988.tb14005.x
10.1016/0304-4157(85)90002-4
10.1128/MCB.01162-08
10.1074/mcp.M300014-MCP200
10.1074/jbc.M401071200
10.1016/0014-5793(91)80955-3
10.1111/mmi.12402
10.1016/j.bbamcr.2017.08.006
10.1111/j.1432-1033.1989.tb15061.x
10.1042/BCJ20170416
10.1038/nature19095
10.1111/j.1432-1033.1990.tb15322.x
10.1073/pnas.94.4.1591
10.1038/s41467-017-01497-1
10.1016/j.molcel.2018.06.039
10.1096/fj.09-133587
10.1023/A:1005402020569
10.1111/j.1365-2958.1993.tb01715.x
10.3390/biology4010133
10.1111/j.1365-2958.2004.04191.x
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright © 2018 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Copyright © 2018 Elsevier Ltd. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.cub.2018.08.022
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1879-0445
EndPage R1219
ExternalDocumentID 30352195
10_1016_j_cub_2018_08_022
S0960982218310674
Genre Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDDK NIH HHS
  grantid: T32 DK091317
– fundername: NHLBI NIH HHS
  grantid: T32 HL007576
– fundername: NIGMS NIH HHS
  grantid: R01 GM115174
– fundername: NIGMS NIH HHS
  grantid: R01 GM115129
– fundername: NIGMS NIH HHS
  grantid: R01 GM110755
GroupedDBID ---
--K
-DZ
-~X
0R~
1RT
1~5
2WC
4.4
457
4G.
53G
5GY
62-
6I.
6J9
7-5
AACTN
AAEDW
AAFTH
AAFWJ
AAIAV
AAKRW
AALRI
AAUCE
AAVLU
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFTJW
AGHSJ
AGKMS
AGUBO
AHHHB
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FIRID
IHE
IXB
J1W
JIG
LX5
M3Z
M41
NCXOZ
O-L
O9-
OK1
P2P
RCE
RIG
ROL
RPZ
SCP
SDG
SES
SSZ
TR2
WQ6
ZA5
29F
5VS
AAEDT
AAIKJ
AAMRU
AAQFI
AAQXK
AAYWO
AAYXX
ABDGV
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEUPX
AFPUW
AGCQF
AGHFR
AGQPQ
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
ASPBG
AVWKF
CAG
CITATION
COF
FEDTE
FGOYB
G-2
HVGLF
HZ~
OZT
R2-
SEW
UHS
XIH
XPP
Y6R
ZGI
CGR
CUY
CVF
ECM
EIF
NPM
7X8
EFKBS
ID FETCH-LOGICAL-c462t-37e0830b1beb6074966b0ee06e5e700a7afa01ac067a0ca36fe63bb01d81cbc63
IEDL.DBID IXB
ISSN 0960-9822
1879-0445
IngestDate Tue Aug 05 11:35:17 EDT 2025
Thu Apr 03 06:56:27 EDT 2025
Tue Jul 01 01:57:07 EDT 2025
Thu Apr 24 23:03:23 EDT 2025
Fri Feb 23 02:28:32 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Language English
License This article is made available under the Elsevier license.
Copyright © 2018 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c462t-37e0830b1beb6074966b0ee06e5e700a7afa01ac067a0ca36fe63bb01d81cbc63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0960982218310674
PMID 30352195
PQID 2125299148
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2125299148
pubmed_primary_30352195
crossref_primary_10_1016_j_cub_2018_08_022
crossref_citationtrail_10_1016_j_cub_2018_08_022
elsevier_sciencedirect_doi_10_1016_j_cub_2018_08_022
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-10-22
PublicationDateYYYYMMDD 2018-10-22
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-22
  day: 22
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Current biology
PublicationTitleAlternate Curr Biol
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Chen, Kastaniotis, Miinalainen, Rajaram, Wierenga, Hiltunen (bib29) 2009; 23
Mikolajczyk, Brody (bib3) 1990; 187
Triepels, Smeitink, Loeffen, Smeets, Buskens, Trijbels, van den Heuvel (bib10) 1999; 22
Autio, Kastaniotis, Pospiech, Miinalainen, Schonauer, Dieckmann, Hiltunen (bib28) 2008; 22
Chuman, Brody (bib6) 1989; 184
Hiltunen, Autio, Schonauer, Kursu, Dieckmann, Kastaniotis (bib37) 2010; 1797
Cheret, Mattheakis, Sor (bib13) 1993; 9
Floyd, Wilkerson, Veling, Minogue, Xia, Beebe, Wrobel, Cho, Kremer, Alston (bib40) 2016; 63
Brody, Oh, Hoja, Schweizer (bib15) 1997; 408
Ragone, Caizzi, Moschetti, Barsanti, De Pinto, Caggese (bib9) 1999; 261
Miinalainen, Chen, Torkko, Pirilä, Sormunen, Bergmann, Qin, Hiltunen (bib27) 2003; 278
Monteuuis, Suomi, Keratar, Masud, Kastaniotis (bib34) 2017; 474
Hoja, Marthol, Hofmann, Stegner, Schulz, Meier, Greiner, Schweizer (bib32) 2004; 279
Schneider, Brors, Massow, Weiss (bib11) 1997; 407
Schneider, Brors, Burger, Camrath, Weiss (bib19) 1997; 32
Cory, Van Vranken, Brignole, Patra, Winge, Drennan, Rutter, Barondeau (bib42) 2017; 114
Torkko, Koivuranta, Miinalainen, Yagi, Schmitz, Kastaniotis, Airenne, Gurvitz, Hiltunen (bib21) 2001; 21
Harington, Schwarz, Slonimski, Herbert (bib23) 1994; 13
Angerer (bib38) 2015; 4
Angerer, Schonborn, Gorka, Bahr, Karas, Wittig, Heidler, Hoffmann, Morgner, Zickermann (bib50) 2017; 1864
Brown, Rathore, Kimanius, Aibara, Bai, Rorbach, Amunts, Ramakrishnan (bib36) 2017; 24
Fiedorczuk, Letts, Degliesposti, Kaszuba, Skehel, Sazanov (bib44) 2016; 538
Van Vranken, Nowinski, Clowers, Jeong, Ouyang, Berg, Gygi, Gygi, Winge, Rutter (bib48) 2018; 71
Runswick, Fearnley, Skehel, Walker (bib5) 1991; 286
Guo, Zong, Wu, Gu, Yang (bib46) 2017; 170
Heimer, Keratar, Riley, Balasubramaniam, Eyal, Pietikainen, Hiltunen, Marek-Yagel, Hamada, Gregory (bib1) 2016; 99
Shintani, Ohlrogge (bib8) 1994; 104
Carroll, Fearnley, Shannon, Hirst, Walker (bib49) 2003; 2
Wada, Shintani, Ohlrogge (bib17) 1997; 94
Kastaniotis, Autio, Sormunen, Hiltunen (bib22) 2004; 53
Huttlin, Ting, Bruckner, Gebreab, Gygi, Szpyt, Tam, Zarraga, Colby, Baltier (bib39) 2015; 162
Jordan, Cronan (bib16) 1997; 272
Harington, Herbert, Tung, Getz, Slonimski (bib18) 1993; 9
Stuible, Meier, Wagner, Hannappel, Schweizer (bib30) 1998; 273
Daum (bib12) 1985; 822
Schneider, Massow, Lisowsky, Weiss (bib14) 1995; 29
Yamazoe, Shirahige, Rashid, Kaneko, Nakayama, Ogasawara, Yoshikawa (bib20) 1994; 269
Zhang, Joshi, Hofmann, Schweizer, Smith (bib25) 2005; 280
Schonauer, Kastaniotis, Hiltunen, Dieckmann (bib33) 2008; 28
Boniecki, Freibert, Muhlenhoff, Lill, Cygler (bib43) 2017; 8
Wu, Gu, Guo, Huang, Yang (bib47) 2016; 167
Wilson, Ainscough, Anderson, Baynes, Berks, Bonfield, Burton, Connell, Copsey, Cooper (bib7) 1994; 368
Zhang, Joshi, Smith (bib26) 2003; 278
Brody, Mikolajczyk (bib2) 1988; 173
Joshi, Zhang, Rangan, Smith (bib24) 2003; 278
Van Vranken, Jeong, Wei, Chen, Gygi, Winge, Rutter (bib41) 2016; 5
Hoja, Wellein, Greiner, Schweizer (bib31) 1998; 254
Kursu, Pietikainen, Fontanesi, Aaltonen, Suomi, Raghavan Nair, Schonauer, Dieckmann, Barrientos, Hiltunen (bib35) 2013; 90
Zhu, Vinothkumar, Hirst (bib45) 2016; 536
Sackmann, Zensen, Rohlen, Jahnke, Weiss (bib4) 1991; 200
Monteuuis (10.1016/j.cub.2018.08.022_bib34) 2017; 474
Heimer (10.1016/j.cub.2018.08.022_bib1) 2016; 99
Schneider (10.1016/j.cub.2018.08.022_bib14) 1995; 29
Schonauer (10.1016/j.cub.2018.08.022_bib33) 2008; 28
Wada (10.1016/j.cub.2018.08.022_bib17) 1997; 94
Zhu (10.1016/j.cub.2018.08.022_bib45) 2016; 536
Torkko (10.1016/j.cub.2018.08.022_bib21) 2001; 21
Angerer (10.1016/j.cub.2018.08.022_bib50) 2017; 1864
Floyd (10.1016/j.cub.2018.08.022_bib40) 2016; 63
Boniecki (10.1016/j.cub.2018.08.022_bib43) 2017; 8
Hoja (10.1016/j.cub.2018.08.022_bib31) 1998; 254
Harington (10.1016/j.cub.2018.08.022_bib23) 1994; 13
Brody (10.1016/j.cub.2018.08.022_bib15) 1997; 408
Triepels (10.1016/j.cub.2018.08.022_bib10) 1999; 22
Harington (10.1016/j.cub.2018.08.022_bib18) 1993; 9
Runswick (10.1016/j.cub.2018.08.022_bib5) 1991; 286
Ragone (10.1016/j.cub.2018.08.022_bib9) 1999; 261
Schneider (10.1016/j.cub.2018.08.022_bib11) 1997; 407
Yamazoe (10.1016/j.cub.2018.08.022_bib20) 1994; 269
Miinalainen (10.1016/j.cub.2018.08.022_bib27) 2003; 278
Brody (10.1016/j.cub.2018.08.022_bib2) 1988; 173
Cory (10.1016/j.cub.2018.08.022_bib42) 2017; 114
Shintani (10.1016/j.cub.2018.08.022_bib8) 1994; 104
Cheret (10.1016/j.cub.2018.08.022_bib13) 1993; 9
Hiltunen (10.1016/j.cub.2018.08.022_bib37) 2010; 1797
Brown (10.1016/j.cub.2018.08.022_bib36) 2017; 24
Zhang (10.1016/j.cub.2018.08.022_bib26) 2003; 278
Huttlin (10.1016/j.cub.2018.08.022_bib39) 2015; 162
Carroll (10.1016/j.cub.2018.08.022_bib49) 2003; 2
Van Vranken (10.1016/j.cub.2018.08.022_bib41) 2016; 5
Fiedorczuk (10.1016/j.cub.2018.08.022_bib44) 2016; 538
Chen (10.1016/j.cub.2018.08.022_bib29) 2009; 23
Van Vranken (10.1016/j.cub.2018.08.022_bib48) 2018; 71
Daum (10.1016/j.cub.2018.08.022_bib12) 1985; 822
Angerer (10.1016/j.cub.2018.08.022_bib38) 2015; 4
Mikolajczyk (10.1016/j.cub.2018.08.022_bib3) 1990; 187
Schneider (10.1016/j.cub.2018.08.022_bib19) 1997; 32
Sackmann (10.1016/j.cub.2018.08.022_bib4) 1991; 200
Chuman (10.1016/j.cub.2018.08.022_bib6) 1989; 184
Jordan (10.1016/j.cub.2018.08.022_bib16) 1997; 272
Autio (10.1016/j.cub.2018.08.022_bib28) 2008; 22
Kursu (10.1016/j.cub.2018.08.022_bib35) 2013; 90
Wu (10.1016/j.cub.2018.08.022_bib47) 2016; 167
Zhang (10.1016/j.cub.2018.08.022_bib25) 2005; 280
Stuible (10.1016/j.cub.2018.08.022_bib30) 1998; 273
Kastaniotis (10.1016/j.cub.2018.08.022_bib22) 2004; 53
Joshi (10.1016/j.cub.2018.08.022_bib24) 2003; 278
Guo (10.1016/j.cub.2018.08.022_bib46) 2017; 170
Wilson (10.1016/j.cub.2018.08.022_bib7) 1994; 368
Hoja (10.1016/j.cub.2018.08.022_bib32) 2004; 279
References_xml – volume: 28
  start-page: 6646
  year: 2008
  end-page: 6657
  ident: bib33
  article-title: Intersection of RNA processing and the type II fatty acid synthesis pathway in yeast mitochondria
  publication-title: Mol. Cell. Biol.
– volume: 261
  start-page: 690
  year: 1999
  end-page: 697
  ident: bib9
  article-title: The Drosophila melanogaster gene for the NADH:ubiquinone oxidoreductase acyl carrier protein: developmental expression analysis and evidence for alternatively spliced forms
  publication-title: Mol. Gen. Genet.
– volume: 114
  start-page: E5325
  year: 2017
  end-page: E5334
  ident: bib42
  article-title: Structure of human Fe-S assembly subcomplex reveals unexpected cysteine desulfurase architecture and acyl-ACP-ISD11 interactions
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 94
  start-page: 1591
  year: 1997
  end-page: 1596
  ident: bib17
  article-title: Why do mitochondria synthesize fatty acids? Evidence for involvement in lipoic acid production
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 71
  start-page: 567
  year: 2018
  end-page: 580.e564
  ident: bib48
  article-title: ACP acylation is an acetyl-CoA-dependent modification required for electron transport chain assembly
  publication-title: Mol. Cell
– volume: 162
  start-page: 425
  year: 2015
  end-page: 440
  ident: bib39
  article-title: The BioPlex network: a systematic exploration of the human interactome
  publication-title: Cell
– volume: 278
  start-page: 33142
  year: 2003
  end-page: 33149
  ident: bib24
  article-title: Cloning, expression, and characterization of a human 4′-phosphopantetheinyl transferase with broad substrate specificity
  publication-title: J. Biol. Chem.
– volume: 173
  start-page: 353
  year: 1988
  end-page: 359
  ident: bib2
  article-title: Neurospora mitochondria contain an acyl-carrier protein
  publication-title: Eur. J. Biochem.
– volume: 63
  start-page: 621
  year: 2016
  end-page: 632
  ident: bib40
  article-title: Mitochondrial protein interaction mapping identifies regulators of respiratory chain function
  publication-title: Mol. Cell
– volume: 184
  start-page: 643
  year: 1989
  end-page: 649
  ident: bib6
  article-title: Acyl carrier protein is present in the mitochondria of plants and eucaryotic micro-organisms
  publication-title: Eur. J. Biochem.
– volume: 408
  start-page: 217
  year: 1997
  end-page: 220
  ident: bib15
  article-title: Mitochondrial acyl carrier protein is involved in lipoic acid synthesis in Saccharomyces cerevisiae
  publication-title: FEBS Lett.
– volume: 4
  start-page: 133
  year: 2015
  end-page: 150
  ident: bib38
  article-title: Eukaryotic LYR proteins interact with mitochondrial protein complexes
  publication-title: Biology
– volume: 1864
  start-page: 1913
  year: 2017
  end-page: 1920
  ident: bib50
  article-title: Acyl modification and binding of mitochondrial ACP to multiprotein complexes
  publication-title: Biochim. Biophys. Acta
– volume: 538
  start-page: 406
  year: 2016
  end-page: 410
  ident: bib44
  article-title: Atomic structure of the entire mammalian mitochondrial complex I
  publication-title: Nature
– volume: 2
  start-page: 117
  year: 2003
  end-page: 126
  ident: bib49
  article-title: Analysis of the subunit composition of complex I from bovine heart mitochondria
  publication-title: Mol. Cell. Proteomics
– volume: 822
  start-page: 1
  year: 1985
  end-page: 42
  ident: bib12
  article-title: Lipids of mitochondria
  publication-title: Biochim. Biophys. Acta
– volume: 9
  start-page: 661
  year: 1993
  end-page: 667
  ident: bib13
  article-title: DNA sequence analysis of the YCN2 region of chromosome XI in Saccharomyces cerevisiae
  publication-title: Yeast
– volume: 1797
  start-page: 1195
  year: 2010
  end-page: 1202
  ident: bib37
  article-title: Mitochondrial fatty acid synthesis and respiration
  publication-title: Biochim. Biophys. Acta
– volume: 22
  start-page: 569
  year: 2008
  end-page: 578
  ident: bib28
  article-title: An ancient genetic link between vertebrate mitochondrial fatty acid synthesis and RNA processing
  publication-title: FASEB J.
– volume: 8
  start-page: 1287
  year: 2017
  ident: bib43
  article-title: Structure and functional dynamics of the mitochondrial Fe/S cluster synthesis complex
  publication-title: Nat. Commun.
– volume: 21
  start-page: 6243
  year: 2001
  end-page: 6253
  ident: bib21
  article-title: Candida tropicalis Etr1p and Saccharomyces cerevisiae Ybr026p (Mrf1'p), 2-enoyl thioester reductases essential for mitochondrial respiratory competence
  publication-title: Mol. Cell. Biol.
– volume: 286
  start-page: 121
  year: 1991
  end-page: 124
  ident: bib5
  article-title: Presence of an acyl carrier protein in NADH:ubiquinone oxidoreductase from bovine heart mitochondria
  publication-title: FEBS Lett.
– volume: 269
  start-page: 15244
  year: 1994
  end-page: 15252
  ident: bib20
  article-title: A protein which binds preferentially to single-stranded core sequence of autonomously replicating sequence is essential for respiratory function in mitochondrial of Saccharomyces cerevisiae
  publication-title: J. Biol. Chem.
– volume: 22
  start-page: 163
  year: 1999
  end-page: 173
  ident: bib10
  article-title: The human nuclear-encoded acyl carrier subunit (NDUFAB1) of the mitochondrial complex I in human pathology
  publication-title: J. Inherit. Metab. Dis.
– volume: 272
  start-page: 17903
  year: 1997
  end-page: 17906
  ident: bib16
  article-title: A new metabolic link. The acyl carrier protein of lipid synthesis donates lipoic acid to the pyruvate dehydrogenase complex in Escherichia coli and mitochondria
  publication-title: J. Biol. Chem.
– volume: 280
  start-page: 12422
  year: 2005
  end-page: 12429
  ident: bib25
  article-title: Cloning, expression, and characterization of the human mitochondrial beta-ketoacyl synthase. Complementation of the yeast CEM1 knock-out strain
  publication-title: J. Biol. Chem.
– volume: 9
  start-page: 545
  year: 1993
  end-page: 555
  ident: bib18
  article-title: Identification of a new nuclear gene (CEM1) encoding a protein homologous to a beta-keto-acyl synthase which is essential for mitochondrial respiration in Saccharomyces cerevisiae
  publication-title: Mol. Microbiol.
– volume: 254
  start-page: 520
  year: 1998
  end-page: 526
  ident: bib31
  article-title: Pleiotropic phenotype of acetyl-CoA-carboxylase-defective yeast cells–viability of a BPL1-amber mutation depending on its readthrough by normal tRNA(Gln)(CAG)
  publication-title: Eur. J. Biochem.
– volume: 29
  start-page: 10
  year: 1995
  end-page: 17
  ident: bib14
  article-title: Different respiratory-defective phenotypes of Neurospora crassa and Saccharomyces cerevisiae after inactivation of the gene encoding the mitochondrial acyl carrier protein
  publication-title: Curr. Genet.
– volume: 23
  start-page: 3682
  year: 2009
  end-page: 3691
  ident: bib29
  article-title: 17beta-hydroxysteroid dehydrogenase type 8 and carbonyl reductase type 4 assemble as a ketoacyl reductase of human mitochondrial FAS
  publication-title: FASEB J.
– volume: 5
  start-page: e17828
  year: 2016
  ident: bib41
  article-title: The mitochondrial acyl carrier protein (ACP) coordinates mitochondrial fatty acid synthesis with iron sulfur cluster biogenesis
  publication-title: eLife
– volume: 24
  start-page: 866
  year: 2017
  end-page: 869
  ident: bib36
  article-title: Structures of the human mitochondrial ribosome in native states of assembly
  publication-title: Nat. Struct. Mol. Biol.
– volume: 278
  start-page: 40067
  year: 2003
  end-page: 40074
  ident: bib26
  article-title: Cloning, expression, characterization, and interaction of two components of a human mitochondrial fatty acid synthase: malonyltransferase and acyl carrier protein
  publication-title: J. Biol. Chem.
– volume: 278
  start-page: 20154
  year: 2003
  end-page: 20161
  ident: bib27
  article-title: Characterization of 2-enoyl thioester reductase from mammals: an ortholog of Ybr026p/Mrf1′p of the yeast mitochondrial fatty acid synthesis type II
  publication-title: J. Biol. Chem.
– volume: 32
  start-page: 384
  year: 1997
  end-page: 388
  ident: bib19
  article-title: Two genes of the putative mitochondrial fatty acid synthase in the genome of Saccharomyces cerevisiae
  publication-title: Curr. Genet.
– volume: 99
  start-page: 1229
  year: 2016
  end-page: 1244
  ident: bib1
  article-title: MECR mutations cause childhood-onset dystonia and optic atrophy, a mitochondrial fatty acid synthesis disorder
  publication-title: Am. J. Hum. Genet.
– volume: 279
  start-page: 21779
  year: 2004
  end-page: 21786
  ident: bib32
  article-title: HFA1 encoding an organelle-specific acetyl-CoA carboxylase controls mitochondrial fatty acid synthesis in Saccharomyces cerevisiae
  publication-title: J. Biol. Chem.
– volume: 474
  start-page: 3783
  year: 2017
  end-page: 3797
  ident: bib34
  article-title: A conserved mammalian mitochondrial isoform of acetyl-CoA carboxylase ACC1 provides the malonyl-CoA essential for mitochondrial biogenesis in tandem with ACSF3
  publication-title: Biochem. J.
– volume: 200
  start-page: 463
  year: 1991
  end-page: 469
  ident: bib4
  article-title: The acyl-carrier protein in Neurospora crassa mitochondria is a subunit of NADH:ubiquinone reductase (complex I)
  publication-title: Eur. J. Biochem.
– volume: 407
  start-page: 249
  year: 1997
  end-page: 252
  ident: bib11
  article-title: Mitochondrial fatty acid synthesis: a relic of endosymbiontic origin and a specialized means for respiration
  publication-title: FEBS Lett.
– volume: 273
  start-page: 22334
  year: 1998
  end-page: 22339
  ident: bib30
  article-title: A novel phosphopantetheine:protein transferase activating yeast mitochondrial acyl carrier protein
  publication-title: J. Biol. Chem.
– volume: 53
  start-page: 1407
  year: 2004
  end-page: 1421
  ident: bib22
  article-title: Htd2p/Yhr067p is a yeast 3-hydroxyacyl-ACP dehydratase essential for mitochondrial function and morphology
  publication-title: Mol. Mcirobiol.
– volume: 13
  start-page: 5531
  year: 1994
  end-page: 5538
  ident: bib23
  article-title: Subcellular relocalization of a long-chain fatty acid CoA ligase by a suppressor mutation alleviates a respiration deficiency in Saccharomyces cerevisiae
  publication-title: EMBO J.
– volume: 368
  start-page: 32
  year: 1994
  end-page: 38
  ident: bib7
  article-title: 2.2 Mb of contiguous nucleotide sequence from chromosome III of C. elegans
  publication-title: Nature
– volume: 104
  start-page: 1221
  year: 1994
  end-page: 1229
  ident: bib8
  article-title: The characterization of a mitochondrial acyl carrier protein isoform isolated from Arabidopsis thaliana
  publication-title: Plant Physiol.
– volume: 167
  start-page: 1598
  year: 2016
  end-page: 1609.e1510
  ident: bib47
  article-title: Structure of mammalian respiratory supercomplex I1III2IV1
  publication-title: Cell
– volume: 187
  start-page: 431
  year: 1990
  end-page: 437
  ident: bib3
  article-title: De novo fatty acid synthesis mediated by acyl-carrier protein in Neurospora crassa mitochondria
  publication-title: Eur. J. Biochem.
– volume: 170
  start-page: 1247
  year: 2017
  end-page: 1257.e1212
  ident: bib46
  article-title: Architecture of human mitochondrial respiratory megacomplex I2III2IV2
  publication-title: Cell
– volume: 90
  start-page: 824
  year: 2013
  end-page: 840
  ident: bib35
  article-title: Defects in mitochondrial fatty acid synthesis result in failure of multiple aspects of mitochondrial biogenesis in Saccharomyces cerevisiae
  publication-title: Mol. Microbiol.
– volume: 536
  start-page: 354
  year: 2016
  end-page: 358
  ident: bib45
  article-title: Structure of mammalian respiratory complex I
  publication-title: Nature
– volume: 104
  start-page: 1221
  year: 1994
  ident: 10.1016/j.cub.2018.08.022_bib8
  article-title: The characterization of a mitochondrial acyl carrier protein isoform isolated from Arabidopsis thaliana
  publication-title: Plant Physiol.
  doi: 10.1104/pp.104.4.1221
– volume: 407
  start-page: 249
  year: 1997
  ident: 10.1016/j.cub.2018.08.022_bib11
  article-title: Mitochondrial fatty acid synthesis: a relic of endosymbiontic origin and a specialized means for respiration
  publication-title: FEBS Lett.
  doi: 10.1016/S0014-5793(97)00360-8
– volume: 200
  start-page: 463
  year: 1991
  ident: 10.1016/j.cub.2018.08.022_bib4
  article-title: The acyl-carrier protein in Neurospora crassa mitochondria is a subunit of NADH:ubiquinone reductase (complex I)
  publication-title: Eur. J. Biochem.
  doi: 10.1111/j.1432-1033.1991.tb16205.x
– volume: 278
  start-page: 20154
  year: 2003
  ident: 10.1016/j.cub.2018.08.022_bib27
  article-title: Characterization of 2-enoyl thioester reductase from mammals: an ortholog of Ybr026p/Mrf1′p of the yeast mitochondrial fatty acid synthesis type II
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M302851200
– volume: 162
  start-page: 425
  year: 2015
  ident: 10.1016/j.cub.2018.08.022_bib39
  article-title: The BioPlex network: a systematic exploration of the human interactome
  publication-title: Cell
  doi: 10.1016/j.cell.2015.06.043
– volume: 114
  start-page: E5325
  year: 2017
  ident: 10.1016/j.cub.2018.08.022_bib42
  article-title: Structure of human Fe-S assembly subcomplex reveals unexpected cysteine desulfurase architecture and acyl-ACP-ISD11 interactions
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1702849114
– volume: 21
  start-page: 6243
  year: 2001
  ident: 10.1016/j.cub.2018.08.022_bib21
  article-title: Candida tropicalis Etr1p and Saccharomyces cerevisiae Ybr026p (Mrf1'p), 2-enoyl thioester reductases essential for mitochondrial respiratory competence
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.21.18.6243-6253.2001
– volume: 273
  start-page: 22334
  year: 1998
  ident: 10.1016/j.cub.2018.08.022_bib30
  article-title: A novel phosphopantetheine:protein transferase activating yeast mitochondrial acyl carrier protein
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.273.35.22334
– volume: 272
  start-page: 17903
  year: 1997
  ident: 10.1016/j.cub.2018.08.022_bib16
  article-title: A new metabolic link. The acyl carrier protein of lipid synthesis donates lipoic acid to the pyruvate dehydrogenase complex in Escherichia coli and mitochondria
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.272.29.17903
– volume: 22
  start-page: 569
  year: 2008
  ident: 10.1016/j.cub.2018.08.022_bib28
  article-title: An ancient genetic link between vertebrate mitochondrial fatty acid synthesis and RNA processing
  publication-title: FASEB J.
  doi: 10.1096/fj.07-8986
– volume: 29
  start-page: 10
  year: 1995
  ident: 10.1016/j.cub.2018.08.022_bib14
  article-title: Different respiratory-defective phenotypes of Neurospora crassa and Saccharomyces cerevisiae after inactivation of the gene encoding the mitochondrial acyl carrier protein
  publication-title: Curr. Genet.
  doi: 10.1007/BF00313188
– volume: 9
  start-page: 661
  year: 1993
  ident: 10.1016/j.cub.2018.08.022_bib13
  article-title: DNA sequence analysis of the YCN2 region of chromosome XI in Saccharomyces cerevisiae
  publication-title: Yeast
  doi: 10.1002/yea.320090612
– volume: 269
  start-page: 15244
  year: 1994
  ident: 10.1016/j.cub.2018.08.022_bib20
  article-title: A protein which binds preferentially to single-stranded core sequence of autonomously replicating sequence is essential for respiratory function in mitochondrial of Saccharomyces cerevisiae
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(17)36598-5
– volume: 63
  start-page: 621
  year: 2016
  ident: 10.1016/j.cub.2018.08.022_bib40
  article-title: Mitochondrial protein interaction mapping identifies regulators of respiratory chain function
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2016.06.033
– volume: 99
  start-page: 1229
  year: 2016
  ident: 10.1016/j.cub.2018.08.022_bib1
  article-title: MECR mutations cause childhood-onset dystonia and optic atrophy, a mitochondrial fatty acid synthesis disorder
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2016.09.021
– volume: 368
  start-page: 32
  year: 1994
  ident: 10.1016/j.cub.2018.08.022_bib7
  article-title: 2.2 Mb of contiguous nucleotide sequence from chromosome III of C. elegans
  publication-title: Nature
  doi: 10.1038/368032a0
– volume: 280
  start-page: 12422
  year: 2005
  ident: 10.1016/j.cub.2018.08.022_bib25
  article-title: Cloning, expression, and characterization of the human mitochondrial beta-ketoacyl synthase. Complementation of the yeast CEM1 knock-out strain
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M413686200
– volume: 13
  start-page: 5531
  year: 1994
  ident: 10.1016/j.cub.2018.08.022_bib23
  article-title: Subcellular relocalization of a long-chain fatty acid CoA ligase by a suppressor mutation alleviates a respiration deficiency in Saccharomyces cerevisiae
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1994.tb06890.x
– volume: 278
  start-page: 40067
  year: 2003
  ident: 10.1016/j.cub.2018.08.022_bib26
  article-title: Cloning, expression, characterization, and interaction of two components of a human mitochondrial fatty acid synthase: malonyltransferase and acyl carrier protein
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M306121200
– volume: 5
  start-page: e17828
  year: 2016
  ident: 10.1016/j.cub.2018.08.022_bib41
  article-title: The mitochondrial acyl carrier protein (ACP) coordinates mitochondrial fatty acid synthesis with iron sulfur cluster biogenesis
  publication-title: eLife
  doi: 10.7554/eLife.17828
– volume: 538
  start-page: 406
  year: 2016
  ident: 10.1016/j.cub.2018.08.022_bib44
  article-title: Atomic structure of the entire mammalian mitochondrial complex I
  publication-title: Nature
  doi: 10.1038/nature19794
– volume: 167
  start-page: 1598
  year: 2016
  ident: 10.1016/j.cub.2018.08.022_bib47
  article-title: Structure of mammalian respiratory supercomplex I1III2IV1
  publication-title: Cell
  doi: 10.1016/j.cell.2016.11.012
– volume: 170
  start-page: 1247
  year: 2017
  ident: 10.1016/j.cub.2018.08.022_bib46
  article-title: Architecture of human mitochondrial respiratory megacomplex I2III2IV2
  publication-title: Cell
  doi: 10.1016/j.cell.2017.07.050
– volume: 32
  start-page: 384
  year: 1997
  ident: 10.1016/j.cub.2018.08.022_bib19
  article-title: Two genes of the putative mitochondrial fatty acid synthase in the genome of Saccharomyces cerevisiae
  publication-title: Curr. Genet.
  doi: 10.1007/s002940050292
– volume: 254
  start-page: 520
  year: 1998
  ident: 10.1016/j.cub.2018.08.022_bib31
  article-title: Pleiotropic phenotype of acetyl-CoA-carboxylase-defective yeast cells–viability of a BPL1-amber mutation depending on its readthrough by normal tRNA(Gln)(CAG)
  publication-title: Eur. J. Biochem.
  doi: 10.1046/j.1432-1327.1998.2540520.x
– volume: 261
  start-page: 690
  year: 1999
  ident: 10.1016/j.cub.2018.08.022_bib9
  article-title: The Drosophila melanogaster gene for the NADH:ubiquinone oxidoreductase acyl carrier protein: developmental expression analysis and evidence for alternatively spliced forms
  publication-title: Mol. Gen. Genet.
  doi: 10.1007/s004380050012
– volume: 1797
  start-page: 1195
  year: 2010
  ident: 10.1016/j.cub.2018.08.022_bib37
  article-title: Mitochondrial fatty acid synthesis and respiration
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbabio.2010.03.006
– volume: 24
  start-page: 866
  year: 2017
  ident: 10.1016/j.cub.2018.08.022_bib36
  article-title: Structures of the human mitochondrial ribosome in native states of assembly
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.3464
– volume: 278
  start-page: 33142
  year: 2003
  ident: 10.1016/j.cub.2018.08.022_bib24
  article-title: Cloning, expression, and characterization of a human 4′-phosphopantetheinyl transferase with broad substrate specificity
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M305459200
– volume: 408
  start-page: 217
  year: 1997
  ident: 10.1016/j.cub.2018.08.022_bib15
  article-title: Mitochondrial acyl carrier protein is involved in lipoic acid synthesis in Saccharomyces cerevisiae
  publication-title: FEBS Lett.
  doi: 10.1016/S0014-5793(97)00428-6
– volume: 173
  start-page: 353
  year: 1988
  ident: 10.1016/j.cub.2018.08.022_bib2
  article-title: Neurospora mitochondria contain an acyl-carrier protein
  publication-title: Eur. J. Biochem.
  doi: 10.1111/j.1432-1033.1988.tb14005.x
– volume: 822
  start-page: 1
  year: 1985
  ident: 10.1016/j.cub.2018.08.022_bib12
  article-title: Lipids of mitochondria
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0304-4157(85)90002-4
– volume: 28
  start-page: 6646
  year: 2008
  ident: 10.1016/j.cub.2018.08.022_bib33
  article-title: Intersection of RNA processing and the type II fatty acid synthesis pathway in yeast mitochondria
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.01162-08
– volume: 2
  start-page: 117
  year: 2003
  ident: 10.1016/j.cub.2018.08.022_bib49
  article-title: Analysis of the subunit composition of complex I from bovine heart mitochondria
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.M300014-MCP200
– volume: 279
  start-page: 21779
  year: 2004
  ident: 10.1016/j.cub.2018.08.022_bib32
  article-title: HFA1 encoding an organelle-specific acetyl-CoA carboxylase controls mitochondrial fatty acid synthesis in Saccharomyces cerevisiae
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M401071200
– volume: 286
  start-page: 121
  year: 1991
  ident: 10.1016/j.cub.2018.08.022_bib5
  article-title: Presence of an acyl carrier protein in NADH:ubiquinone oxidoreductase from bovine heart mitochondria
  publication-title: FEBS Lett.
  doi: 10.1016/0014-5793(91)80955-3
– volume: 90
  start-page: 824
  year: 2013
  ident: 10.1016/j.cub.2018.08.022_bib35
  article-title: Defects in mitochondrial fatty acid synthesis result in failure of multiple aspects of mitochondrial biogenesis in Saccharomyces cerevisiae
  publication-title: Mol. Microbiol.
  doi: 10.1111/mmi.12402
– volume: 1864
  start-page: 1913
  year: 2017
  ident: 10.1016/j.cub.2018.08.022_bib50
  article-title: Acyl modification and binding of mitochondrial ACP to multiprotein complexes
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamcr.2017.08.006
– volume: 184
  start-page: 643
  year: 1989
  ident: 10.1016/j.cub.2018.08.022_bib6
  article-title: Acyl carrier protein is present in the mitochondria of plants and eucaryotic micro-organisms
  publication-title: Eur. J. Biochem.
  doi: 10.1111/j.1432-1033.1989.tb15061.x
– volume: 474
  start-page: 3783
  year: 2017
  ident: 10.1016/j.cub.2018.08.022_bib34
  article-title: A conserved mammalian mitochondrial isoform of acetyl-CoA carboxylase ACC1 provides the malonyl-CoA essential for mitochondrial biogenesis in tandem with ACSF3
  publication-title: Biochem. J.
  doi: 10.1042/BCJ20170416
– volume: 536
  start-page: 354
  year: 2016
  ident: 10.1016/j.cub.2018.08.022_bib45
  article-title: Structure of mammalian respiratory complex I
  publication-title: Nature
  doi: 10.1038/nature19095
– volume: 187
  start-page: 431
  year: 1990
  ident: 10.1016/j.cub.2018.08.022_bib3
  article-title: De novo fatty acid synthesis mediated by acyl-carrier protein in Neurospora crassa mitochondria
  publication-title: Eur. J. Biochem.
  doi: 10.1111/j.1432-1033.1990.tb15322.x
– volume: 94
  start-page: 1591
  year: 1997
  ident: 10.1016/j.cub.2018.08.022_bib17
  article-title: Why do mitochondria synthesize fatty acids? Evidence for involvement in lipoic acid production
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.94.4.1591
– volume: 8
  start-page: 1287
  year: 2017
  ident: 10.1016/j.cub.2018.08.022_bib43
  article-title: Structure and functional dynamics of the mitochondrial Fe/S cluster synthesis complex
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01497-1
– volume: 71
  start-page: 567
  year: 2018
  ident: 10.1016/j.cub.2018.08.022_bib48
  article-title: ACP acylation is an acetyl-CoA-dependent modification required for electron transport chain assembly
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2018.06.039
– volume: 23
  start-page: 3682
  year: 2009
  ident: 10.1016/j.cub.2018.08.022_bib29
  article-title: 17beta-hydroxysteroid dehydrogenase type 8 and carbonyl reductase type 4 assemble as a ketoacyl reductase of human mitochondrial FAS
  publication-title: FASEB J.
  doi: 10.1096/fj.09-133587
– volume: 22
  start-page: 163
  year: 1999
  ident: 10.1016/j.cub.2018.08.022_bib10
  article-title: The human nuclear-encoded acyl carrier subunit (NDUFAB1) of the mitochondrial complex I in human pathology
  publication-title: J. Inherit. Metab. Dis.
  doi: 10.1023/A:1005402020569
– volume: 9
  start-page: 545
  year: 1993
  ident: 10.1016/j.cub.2018.08.022_bib18
  article-title: Identification of a new nuclear gene (CEM1) encoding a protein homologous to a beta-keto-acyl synthase which is essential for mitochondrial respiration in Saccharomyces cerevisiae
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.1993.tb01715.x
– volume: 4
  start-page: 133
  year: 2015
  ident: 10.1016/j.cub.2018.08.022_bib38
  article-title: Eukaryotic LYR proteins interact with mitochondrial protein complexes
  publication-title: Biology
  doi: 10.3390/biology4010133
– volume: 53
  start-page: 1407
  year: 2004
  ident: 10.1016/j.cub.2018.08.022_bib22
  article-title: Htd2p/Yhr067p is a yeast 3-hydroxyacyl-ACP dehydratase essential for mitochondrial function and morphology
  publication-title: Mol. Mcirobiol.
  doi: 10.1111/j.1365-2958.2004.04191.x
SSID ssj0012896
Score 2.5045595
SecondaryResourceType review_article
Snippet Biology students today are taught that mitochondria are ‘the powerhouse of the cell’. This gross over-simplification of their cellular role has arguably led to...
Biology students today are taught that mitochondria are 'the powerhouse of the cell'. This gross over-simplification of their cellular role has arguably led to...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage R1212
SubjectTerms Animals
Fatty Acids - biosynthesis
Humans
Mammals - physiology
Mitochondria - physiology
Organelle Biogenesis
Yeasts - physiology
Title Impact of Mitochondrial Fatty Acid Synthesis on Mitochondrial Biogenesis
URI https://dx.doi.org/10.1016/j.cub.2018.08.022
https://www.ncbi.nlm.nih.gov/pubmed/30352195
https://www.proquest.com/docview/2125299148
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KIngR39ZHieBJCN0km4fHWiytpR6sxd6W3c1GIpIUmx76b_wt_jJnNkmhh_Yg5JIwmyyzm_m-ZV6E3CmHhX6SCJsBNthMJ8yOpIxxQWJFdeS7Jst19BL0J-x56k8bpFvnwmBYZWX7S5turHX1pF1psz1L0_bYFEsDfHOwV1YQYk1Qj0UmiW_6uPIkwIHC-CtB2Ebp2rNpYrzUQmJ0V2SqeLruJmzaxD0NBvUOyUFFHq1OOb8j0tDZMdkr20kuT8hgYFIerTyxRvCjgmHLYtxfVk8UxdLqqDS2xssMKN88nVt59vuzLgYv-kDTl85PyaT39Nbt21WrBFuxwC3ATGjgUlQ6UssAWAEcYiTVmgba1yGlIhSJoI5QoCdBlfCCRAeelNSJI0dJFXhnZCfLM31BLIHO4ZixJPEi5sVM-liBHi6gOlo4uklorSSuqjri2M7ii9cBY58c9MpRrxxbXLpuk9yvhszKIhrbhFmteb62EzgY-W3DbutV4vCHoNtDZDpfzDmAsw-gC-e-Jjkvl281Cw_LwToP_uX_PnpF9vEOscx1r8lO8b3QN0BSCtkiu53h6_uwZXbjH2Le5N4
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLYGCMEF8WY8i8QJqVrapg-OMDFtwLgA0m5RkqaoCHUT6w77N_wWfhl22k7iAAeknlKnjZzE3xfZsQEutMfjMMukyxEbXG4y7iZKpTQhqWYmCX17y3X4GPVf-N0oHLWg29yFobDK2vZXNt1a67qlU2uzM8nzzpNNlob45lGtrCjmS7CCbCCm3TkY3SxcCXiisA5LlHZJvHFt2iAvPVMU3pXYNJ6-_xs4_UY-LQj1NmGjZo_OdTXALWiZYhtWq3qS8x0YDOydR2ecOUPcqWjZipQWmNOTZTl3rnWeOk_zAjnfNJ864-Lr86cYfuiVbF8-3YWX3u1zt-_WtRJczSO_RDthkEwx5SmjIqQFeIpRzBgWmdDEjMlYZpJ5UqOiJNMyiDITBUoxL008rXQU7MFyMS7MATiSvMMp51kWJDxIuQopBT0-yHWM9EwbWKMkoetE4lTP4l00EWNvAvUqSK-Calz6fhsuF10mVRaNv4R5o3nxYykItPJ_dTtvZkngFiG_hyzMeDYViM4hoi4e_NqwX03fYhQB5YP1rsLD__30DNb6z8MH8TB4vD-CdXpDwOb7x7BcfszMCTKWUp3aFfkNubDmWw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+Mitochondrial+Fatty+Acid+Synthesis+on%C2%A0Mitochondrial+Biogenesis&rft.jtitle=Current+biology&rft.au=Nowinski%2C+Sara+M.&rft.au=Van+Vranken%2C+Jonathan+G.&rft.au=Dove%2C+Katja+K.&rft.au=Rutter%2C+Jared&rft.date=2018-10-22&rft.issn=0960-9822&rft.volume=28&rft.issue=20&rft.spage=R1212&rft.epage=R1219&rft_id=info:doi/10.1016%2Fj.cub.2018.08.022&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cub_2018_08_022
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-9822&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-9822&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-9822&client=summon