Across Sessions and Subjects Domain Adaptation for Building Robust Myoelectric Interface

Gesture interaction via surface electromyography (sEMG) signal is a promising approach for advanced human-computer interaction systems. However, improving the performance of the myoelectric interface is challenging due to the domain shift caused by the signal's inherent variability. To enhance...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 32; pp. 2005 - 2015
Main Authors Li, Wei, Zhang, Xinran, Shi, Ping, Li, Sujiao, Li, Ping, Yu, Hongliu
Format Journal Article
LanguageEnglish
Published United States IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Gesture interaction via surface electromyography (sEMG) signal is a promising approach for advanced human-computer interaction systems. However, improving the performance of the myoelectric interface is challenging due to the domain shift caused by the signal's inherent variability. To enhance the interface's robustness, we propose a novel adaptive information fusion neural network (AIFNN) framework, which could effectively reduce the effects of multiple scenarios. Specifically, domain adversarial training is established to inhibit the shared network's weights from exploiting domain-specific representation, thus allowing for the extraction of domain-invariant features. Effectively, classification loss, domain diversence loss and domain discrimination loss are employed, which improve classification performance while reduce distribution mismatches between the two domains. To simulate the application of myoelectric interface, experiments were carried out involving three scenarios (intra-session, inter-session and inter-subject scenarios). Ten non-disabled subjects were recruited to perform sixteen gestures for ten consecutive days. The experimental results indicated that the performance of AIFNN was better than two other state-of-the-art transfer learning approaches, namely fine-tuning (FT) and domain adversarial network (DANN). This study demonstrates the capability of AIFNN to maintain robustness over time and generalize across users in practical myoelectric interface implementations. These findings could serve as a foundation for future deployments.
AbstractList Gesture interaction via surface electromyography (sEMG) signal is a promising approach for advanced human-computer interaction systems. However, improving the performance of the myoelectric interface is challenging due to the domain shift caused by the signal's inherent variability. To enhance the interface's robustness, we propose a novel adaptive information fusion neural network (AIFNN) framework, which could effectively reduce the effects of multiple scenarios. Specifically, domain adversarial training is established to inhibit the shared network's weights from exploiting domain-specific representation, thus allowing for the extraction of domain-invariant features. Effectively, classification loss, domain diversence loss and domain discrimination loss are employed, which improve classification performance while reduce distribution mismatches between the two domains. To simulate the application of myoelectric interface, experiments were carried out involving three scenarios (intra-session, inter-session and inter-subject scenarios). Ten non-disabled subjects were recruited to perform sixteen gestures for ten consecutive days. The experimental results indicated that the performance of AIFNN was better than two other state-of-the-art transfer learning approaches, namely fine-tuning (FT) and domain adversarial network (DANN). This study demonstrates the capability of AIFNN to maintain robustness over time and generalize across users in practical myoelectric interface implementations. These findings could serve as a foundation for future deployments.
Gesture interaction via surface electromyography (sEMG) signal is a promising approach for advanced human-computer interaction systems. However, improving the performance of the myoelectric interface is challenging due to the domain shift caused by the signal's inherent variability. To enhance the interface's robustness, we propose a novel adaptive information fusion neural network (AIFNN) framework, which could effectively reduce the effects of multiple scenarios. Specifically, domain adversarial training is established to inhibit the shared network's weights from exploiting domain-specific representation, thus allowing for the extraction of domain-invariant features. Effectively, classification loss, domain diversence loss and domain discrimination loss are employed, which improve classification performance while reduce distribution mismatches between the two domains. To simulate the application of myoelectric interface, experiments were carried out involving three scenarios (intra-session, inter-session and inter-subject scenarios). Ten non-disabled subjects were recruited to perform sixteen gestures for ten consecutive days. The experimental results indicated that the performance of AIFNN was better than two other state-of-the-art transfer learning approaches, namely fine-tuning (FT) and domain adversarial network (DANN). This study demonstrates the capability of AIFNN to maintain robustness over time and generalize across users in practical myoelectric interface implementations. These findings could serve as a foundation for future deployments.Gesture interaction via surface electromyography (sEMG) signal is a promising approach for advanced human-computer interaction systems. However, improving the performance of the myoelectric interface is challenging due to the domain shift caused by the signal's inherent variability. To enhance the interface's robustness, we propose a novel adaptive information fusion neural network (AIFNN) framework, which could effectively reduce the effects of multiple scenarios. Specifically, domain adversarial training is established to inhibit the shared network's weights from exploiting domain-specific representation, thus allowing for the extraction of domain-invariant features. Effectively, classification loss, domain diversence loss and domain discrimination loss are employed, which improve classification performance while reduce distribution mismatches between the two domains. To simulate the application of myoelectric interface, experiments were carried out involving three scenarios (intra-session, inter-session and inter-subject scenarios). Ten non-disabled subjects were recruited to perform sixteen gestures for ten consecutive days. The experimental results indicated that the performance of AIFNN was better than two other state-of-the-art transfer learning approaches, namely fine-tuning (FT) and domain adversarial network (DANN). This study demonstrates the capability of AIFNN to maintain robustness over time and generalize across users in practical myoelectric interface implementations. These findings could serve as a foundation for future deployments.
Author Li, Wei
Zhang, Xinran
Shi, Ping
Yu, Hongliu
Li, Ping
Li, Sujiao
Author_xml – sequence: 1
  givenname: Wei
  orcidid: 0000-0002-4808-4659
  surname: Li
  fullname: Li, Wei
  organization: Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, Shanghai, China
– sequence: 2
  givenname: Xinran
  orcidid: 0000-0002-0604-4771
  surname: Zhang
  fullname: Zhang, Xinran
  organization: Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, Shanghai, China
– sequence: 3
  givenname: Ping
  orcidid: 0000-0001-7955-5567
  surname: Shi
  fullname: Shi, Ping
  organization: Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, Shanghai, China
– sequence: 4
  givenname: Sujiao
  surname: Li
  fullname: Li, Sujiao
  organization: Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, Shanghai, China
– sequence: 5
  givenname: Ping
  orcidid: 0000-0003-0361-4895
  surname: Li
  fullname: Li, Ping
  organization: Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, Shanghai, China
– sequence: 6
  givenname: Hongliu
  orcidid: 0000-0001-6886-5498
  surname: Yu
  fullname: Yu, Hongliu
  email: yhl98@hotmail.com
  organization: Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, Shanghai, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38147425$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtv1DAUhSNURB_wBxBCkdiwyeD3YzmUtoxUQOoUiZ3l2NeVR5l4sJNF_z2ZyRShLlhdX_s7R9f3nFcnfeqhqt5itMAY6U_339d3VwuCCF1QyiRn6EV1hjlXDSIYnezPlDWMEnRanZeyQQhLweWr6pQqzCQj_Kz6tXQ5lVKvoZSY-lLb3tfrsd2AG0r9JW1t7Oult7vBDtN7HVKuP4-x87F_qO9SO5ah_vaYoJv4HF296gfIwTp4Xb0Mtivw5lgvqp_XV_eXX5vbHzery-Vt45ggQ0MFsi0HwMwTHqxwTAqsmA9YWaEFx0p7EGCF1C3VDONWE-TBBSVbGXSgF9Vq9vXJbswux63NjybZaA4XKT8Ym4foOjBAFOJMU8WQZM4HOzWEI6o9DeBtO3l9nL12Of0eoQxmG4uDrrM9pLEYopGQknCtJ_TDM3STxtxPPzUUCcy4FopP1PsjNbZb8H_He9r_BKgZOKSQIRgX500P2cbOYGT2UZtD1GYftTlGPUnJM-mT-39F72ZRBIB_BFQyqjT9A7apsxk
CODEN ITNSB3
CitedBy_id crossref_primary_10_1016_j_ish_2024_12_002
crossref_primary_10_1109_TNSRE_2025_3545818
Cites_doi 10.1109/TMRB.2019.2957061
10.3390/s17030458
10.1088/1741-2552/acae0b
10.1016/j.medengphy.2015.02.005
10.1016/j.bspc.2016.08.017
10.1109/tnsre.2022.3178384
10.3389/fnbot.2016.00009
10.3390/bdcc2030021
10.1016/j.compbiomed.2020.104188
10.1109/TNSRE.2019.2896269
10.1109/JSEN.2021.3068521
10.1109/ACCESS.2019.2891350
10.1016/j.bspc.2020.101981
10.1109/TNSRE.2019.2962189
10.1016/j.bspc.2007.11.005
10.1109/JIOT.2022.3218739
10.3389/fnins.2021.657958
10.1109/TBME.2011.2177662
10.1186/1743-0003-11-22
10.1682/jrrd.2010.09.0177
10.1016/1050-6411(95)00015-1
10.1682/JRRD.2010.08.0149
10.3389/fnins.2017.00379
10.1109/TNSRE.2015.2492619
10.1109/TNSRE.2010.2100828
10.1109/TNSRE.2014.2305111
10.1038/sdata.2014.53
10.1016/j.bspc.2019.101572
10.1109/JIOT.2020.2979328
10.1109/TNSRE.2019.2946625
10.1007/11861898_36
10.1109/TNSRE.2021.3086401
10.1088/1741-2552/ab0e2e
10.3389/fnins.2021.621885
10.1109/JIOT.2021.3067382
10.1007/s00521-019-04553-7
10.1109/JIOT.2018.2856119
10.1109/TNSRE.2021.3073751
10.1109/TBME.2019.2899222
10.1109/ICARCV.2018.8581206
10.1016/j.patcog.2018.03.005
10.1109/ICCV.2015.463
10.1038/srep36571
10.1080/03093640600994581
10.3389/fbioe.2020.00158
10.1371/journal.pone.0203835
10.1109/tnsre.2017.2687520
10.1109/JBHI.2022.3159792
10.1109/ACCESS.2020.3027497
10.1109/SMC.2017.8122854
10.3389/fnbot.2021.699174
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOA
DOI 10.1109/TNSRE.2023.3347540
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Neurosciences Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
MEDLINE
Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Occupational Therapy & Rehabilitation
EISSN 1558-0210
EndPage 2015
ExternalDocumentID oai_doaj_org_article_e280549384074cdfa54925039d3fedab
38147425
10_1109_TNSRE_2023_3347540
10374389
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2020YFC2007902
  funderid: 10.13039/501100012166
GroupedDBID ---
-~X
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACGFO
ACGFS
ACIWK
ACPRK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
AIBXA
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
GROUPED_DOAJ
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OK1
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c462t-360ab5ee14d25fa6c476184df18a6965189de6ea679b39411b920decf87b7f9f3
IEDL.DBID DOA
ISSN 1534-4320
1558-0210
IngestDate Wed Aug 27 01:31:54 EDT 2025
Fri Jul 11 12:43:20 EDT 2025
Fri Jul 25 04:40:50 EDT 2025
Wed Feb 19 01:58:14 EST 2025
Tue Jul 01 00:43:29 EDT 2025
Thu Apr 24 23:09:09 EDT 2025
Wed Aug 27 02:05:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c462t-360ab5ee14d25fa6c476184df18a6965189de6ea679b39411b920decf87b7f9f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7955-5567
0000-0002-0604-4771
0000-0002-4808-4659
0000-0003-0361-4895
0000-0001-6886-5498
OpenAccessLink https://doaj.org/article/e280549384074cdfa54925039d3fedab
PMID 38147425
PQID 3061459685
PQPubID 85423
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_e280549384074cdfa54925039d3fedab
crossref_citationtrail_10_1109_TNSRE_2023_3347540
proquest_miscellaneous_2906772599
pubmed_primary_38147425
crossref_primary_10_1109_TNSRE_2023_3347540
proquest_journals_3061459685
ieee_primary_10374389
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on neural systems and rehabilitation engineering
PublicationTitleAbbrev TNSRE
PublicationTitleAlternate IEEE Trans Neural Syst Rehabil Eng
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref14
ref53
ref11
ref55
ref10
Shu (ref51) 2018
ref54
ref17
ref16
ref19
ref18
Long (ref49)
ref50
ref46
ref45
ref42
ref41
ref44
ref43
ref8
ref7
ref9
ref4
ref3
Long (ref48)
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
Ganin (ref47) 2015; 17
ref24
Müller (ref52); 32
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref3
  doi: 10.1109/TMRB.2019.2957061
– ident: ref26
  doi: 10.3390/s17030458
– ident: ref23
  doi: 10.1088/1741-2552/acae0b
– ident: ref54
  doi: 10.1016/j.medengphy.2015.02.005
– ident: ref57
  doi: 10.1016/j.bspc.2016.08.017
– ident: ref44
  doi: 10.1109/tnsre.2022.3178384
– ident: ref6
  doi: 10.3389/fnbot.2016.00009
– ident: ref39
  doi: 10.3390/bdcc2030021
– ident: ref53
  doi: 10.1016/j.compbiomed.2020.104188
– ident: ref9
  doi: 10.1109/TNSRE.2019.2896269
– ident: ref46
  doi: 10.1109/JSEN.2021.3068521
– start-page: 2208
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref49
  article-title: Deep transfer learning with joint adaptation networks
– ident: ref45
  doi: 10.1109/ACCESS.2019.2891350
– ident: ref19
  doi: 10.1016/j.bspc.2020.101981
– ident: ref12
  doi: 10.1109/TNSRE.2019.2962189
– ident: ref11
  doi: 10.1016/j.bspc.2007.11.005
– ident: ref22
  doi: 10.1109/JIOT.2022.3218739
– volume: 32
  start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref52
  article-title: When does label smoothing help?
– ident: ref30
  doi: 10.3389/fnins.2021.657958
– ident: ref18
  doi: 10.1109/TBME.2011.2177662
– ident: ref56
  doi: 10.1186/1743-0003-11-22
– ident: ref4
  doi: 10.1682/jrrd.2010.09.0177
– ident: ref20
  doi: 10.1016/1050-6411(95)00015-1
– ident: ref36
  doi: 10.1682/JRRD.2010.08.0149
– ident: ref24
  doi: 10.3389/fnins.2017.00379
– ident: ref15
  doi: 10.1109/TNSRE.2015.2492619
– ident: ref35
  doi: 10.1109/TNSRE.2010.2100828
– ident: ref5
  doi: 10.1109/TNSRE.2014.2305111
– ident: ref25
  doi: 10.1038/sdata.2014.53
– ident: ref34
  doi: 10.1016/j.bspc.2019.101572
– ident: ref2
  doi: 10.1109/JIOT.2020.2979328
– ident: ref10
  doi: 10.1109/TNSRE.2019.2946625
– ident: ref41
  doi: 10.1007/11861898_36
– year: 2018
  ident: ref51
  article-title: A DIRT-T approach to unsupervised domain adaptation
  publication-title: arXiv:1802.08735
– ident: ref31
  doi: 10.1109/TNSRE.2021.3086401
– ident: ref38
  doi: 10.1088/1741-2552/ab0e2e
– ident: ref40
  doi: 10.3389/fnins.2021.621885
– ident: ref55
  doi: 10.1109/JIOT.2021.3067382
– ident: ref17
  doi: 10.1007/s00521-019-04553-7
– volume: 17
  start-page: 2030
  issue: 1
  year: 2015
  ident: ref47
  article-title: Domain-adversarial training of neural networks
  publication-title: J. Mach. Learn. Res.
– ident: ref1
  doi: 10.1109/JIOT.2018.2856119
– ident: ref14
  doi: 10.1016/j.bspc.2019.101572
– ident: ref42
  doi: 10.1109/TNSRE.2021.3073751
– ident: ref7
  doi: 10.1109/TBME.2019.2899222
– ident: ref32
  doi: 10.1109/ICARCV.2018.8581206
– ident: ref27
  doi: 10.1016/j.patcog.2018.03.005
– start-page: 136
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref48
  article-title: Unsupervised domain adaptation with residual transfer networks
– ident: ref50
  doi: 10.1109/ICCV.2015.463
– ident: ref8
  doi: 10.1038/srep36571
– ident: ref21
  doi: 10.1080/03093640600994581
– ident: ref29
  doi: 10.3389/fbioe.2020.00158
– ident: ref37
  doi: 10.1371/journal.pone.0203835
– ident: ref43
  doi: 10.1109/tnsre.2017.2687520
– ident: ref16
  doi: 10.1109/JBHI.2022.3159792
– ident: ref28
  doi: 10.1109/ACCESS.2020.3027497
– ident: ref33
  doi: 10.1109/SMC.2017.8122854
– ident: ref13
  doi: 10.3389/fnbot.2021.699174
SSID ssj0017657
Score 2.4148877
Snippet Gesture interaction via surface electromyography (sEMG) signal is a promising approach for advanced human-computer interaction systems. However, improving the...
SourceID doaj
proquest
pubmed
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2005
SubjectTerms Adaptation models
Adult
Algorithms
Classification
Data integration
domain adaptation
domain adversarial training
Electromyography
Electromyography - methods
Female
Gestures
Healthy Volunteers
Human-computer interface
Humans
Indexes
Male
Muscle, Skeletal - physiology
Myoelectric interface
Myoelectricity
Neural networks
Neural Networks, Computer
Robustness
surface electromyography
Thumb
Training
Transfer learning
User-Computer Interface
Young Adult
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Jb9QwFLZoD6gXylIgUJCRgAvKNIm3-DiFVhVS5zCdSnOLHC9SVUgqkhzKr-fZTqIWqYhLlMVLrPfst9jvewh9rAUFscHBLKHUpiChdSpJ6VKjlWPagYIbsDvPV_zskn7fsu0YrB5iYay14fCZXfjbsJdvWj14V9mRj2nz2bp30A5YbjFYa94yEDzAesIMpiklRTZFyGTyaLO6WJ8sfKLwBSFUgJKyhx6DqKJgF7J7Aing9o-JVh7WOYPsOd1Hq-mv45GT68XQ1wv9-y9Ax_8e1lP0ZNRC8TKyzTP0yDbP0ae7iMN4E-EG8Ge8vgfm_QJtl2Ek-CJCenRYNQbDAuQ9Oh3-1v5UVw1eGnUTK2BQi_HxmH0br9t66Hp8ftvGBDxXGgenpFPaHqDL05PN17N0TNCQasqLPiU8UzWzNqemYE5xTYXPH2NcXiouOctLaSy3igtZE0nzvJZFZqx2paiFk468RLtN29jXCBeC6YwKuNYElAYthXGCKQcPLmOFTVA-UanS44B9Eo0fVbBiMlkFIleeyNVI5AR9mevcROyOf5Y-9sSfS3rc7fACaFWN07iyRQk6LnAz2MFUG6c8wB3LiDTEWaPqBB14-t7pLpI2QYcTL1XjItFVxFvjTPKSJejD_Bmmt9-zUY1th67yaPxgADEJTbyKPDg3PnHwmwc6fYv2YIA0OowO0W7_a7DvQIXq6_dh6vwBE3sThw
  priority: 102
  providerName: IEEE
Title Across Sessions and Subjects Domain Adaptation for Building Robust Myoelectric Interface
URI https://ieeexplore.ieee.org/document/10374389
https://www.ncbi.nlm.nih.gov/pubmed/38147425
https://www.proquest.com/docview/3061459685
https://www.proquest.com/docview/2906772599
https://doaj.org/article/e280549384074cdfa54925039d3fedab
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jb9QwFLZQT1wQS4FAqVyp5YLSJvEWH6fQqqrUHqZTaW6WV6kSJFUzc-Df87zMaDgAFy6RkniLn-23OP4-hI6NoKA2OLgllPoaNLStJelD7awOzAYwcBN2580tv7qn10u23KH6iv-EZXjg3HFnvuvBqoD84HlQ64KOkGKsIdKR4J02cfUFnbdxpsr-geAJ4xOmM60p6ZrNcZlGni1u7-YXp5E1_JQQKlLYY0clJeT-QrXyZ6szaZ_Ll-hFMRvxLDf3FXrmh9foZBciGC8yPgD-jOe_oW-_QctZqhjfZQyOCevBYVgxYghmwt_GH_phwDOnH3MGDHYsPi902Xg-mvW0wjc_x8yY82BxiiIGbf0-ur-8WHy9qgujQm0p71Y14Y02zPuWuo4FzS0VkfDFhbbXXHLW9tJ57jUX0hBJ29bIrnHehl4YEWQgb9HeMA7-PcKdYLahAq6GgJa3UrggmA5wExrW-Qq1m05VtnxwZL34rpLb0UiVBKGiIFQRRIW-bPM8ZrCNv6Y-j7LapoxA2ekBDB9Vho_61_Cp0H6U9E51RERC-AodbESvyqyeFInuM5O8ZxU62r6G-Rg3WfTgx_WkInw-eCxMQhHv8pDZFg7WERWwSH74Hy3_iJ5Db9AcDjpAe6untf8EBtLKHKa5cJjOMv4CHogIew
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Jb9QwFLagSNALawsDBYwEXFCmSbzFxym0GqAzh-lUmpvleJEqIKmYmQP8ep7tJGqRirhEWbzEes9-i_2-h9DbWlAQGxzMEkpdBhLaZJJUPrNGe2Y8KLgRu3M259Nz-mXFVl2weoyFcc7Fw2duHG7jXr5tzTa4yg5DTFvI1n0b3QHBz8oUrjVsGggegT1hDtOMkjLvY2Ryebicny2OxyFV-JgQKkBN2UV3QVhRsAzZNZEUkfu7VCs3a51R-pw8QPP-v9Ohk2_j7aYem99_QTr-98AeovudHooniXEeoVuueYzeXcUcxssEOIDf48U1OO8naDWJI8FnCdRjjXVjMSxBwaezxp_aH_qiwROrL1MFDIoxPuryb-NFW2_XGzz71aYUPBcGR7ek18btofOT4-XHadalaMgM5eUmIzzXNXOuoLZkXnNDRcggY31RaS45KyppHXeaC1kTSYuilmVunfGVqIWXnuyjnaZt3DOES8FMTgVcawJqg5HCesG0hwefs9KNUNFTSZluwCGNxncV7ZhcqkhkFYisOiKP0IehzmVC7_hn6aNA_KFkQN6OL4BWqpvIypUVaLnAz2AJU2O9DhB3LCfSEu-srkdoL9D3SneJtCN00POS6paJtSLBHmeSV2yE3gyfYYKHXRvduHa7VgGPH0wgJqGJp4kHh8Z7Dn5-Q6ev0b3pcnaqTj_Pv75AuzBYmtxHB2hn83PrXoJCtalfxWn0B5VyFtE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Across+Sessions+and+Subjects+Domain+Adaptation+for+Building+Robust+Myoelectric+Interface&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Li%2C+Wei&rft.au=Zhang%2C+Xinran&rft.au=Shi%2C+Ping&rft.au=Li%2C+Sujiao&rft.date=2024&rft.issn=1534-4320&rft.eissn=1558-0210&rft.volume=32&rft.spage=2005&rft.epage=2015&rft_id=info:doi/10.1109%2FTNSRE.2023.3347540&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNSRE_2023_3347540
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon