Highly aligned hierarchical intrafibrillar mineralization of collagen induced by periodic fluid shear stress

Periodic fluid shear stress (FSS) is one of the main mechanical microenvironments in mineralization of bone matrix. To elucidate the mechanism of periodic FSS in collagen mineralization, a mechanical loading induced mineralization system is developed and compared with traditional polyacrylic acid (P...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. B, Materials for biology and medicine Vol. 8; no. 13; pp. 2562 - 2572
Main Authors Du, Tianming, Niu, Xufeng, Hou, Sen, Xu, Menghan, Li, Zhengwei, Li, Ping, Fan, Yubo
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 01.04.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Periodic fluid shear stress (FSS) is one of the main mechanical microenvironments in mineralization of bone matrix. To elucidate the mechanism of periodic FSS in collagen mineralization, a mechanical loading induced mineralization system is developed and compared with traditional polyacrylic acid (PAA) induced mineralization. Fourier transform infrared (FTIR) spectroscopy, calcium-to-phosphorus molar ratio and transmission electron microscopy (TEM) demonstrate that both periodic FSS and PAA can control the size of amorphous calcium phosphate (ACP) to avoid aggregation and help the formation of intrafibrillar mineralization. Differently, periodic FSS under a proper cycle and range can accelerate the conversion of ACP to apatite crystals and alleviate the reduced transformation caused by PAA. Under the action of template analogues, periodic FSS can also promote the formation of highly oriented hierarchical intrafibrillar mineralized (HIM) collagen. These findings are helpful for understanding the mechanism of collagen mineralization in natural bone matrix and contribute to the design of novel bone substitute materials with hierarchical structures. Periodic fluid shear stress plays a dominant role in promoting the preparation of highly oriented HIM of collagen fibers.
AbstractList Periodic fluid shear stress (FSS) is one of the main mechanical microenvironments in mineralization of bone matrix. To elucidate the mechanism of periodic FSS in collagen mineralization, a mechanical loading induced mineralization system is developed and compared with traditional polyacrylic acid (PAA) induced mineralization. Fourier transform infrared (FTIR) spectroscopy, calcium-to-phosphorus molar ratio and transmission electron microscopy (TEM) demonstrate that both periodic FSS and PAA can control the size of amorphous calcium phosphate (ACP) to avoid aggregation and help the formation of intrafibrillar mineralization. Differently, periodic FSS under a proper cycle and range can accelerate the conversion of ACP to apatite crystals and alleviate the reduced transformation caused by PAA. Under the action of template analogues, periodic FSS can also promote the formation of highly oriented hierarchical intrafibrillar mineralized (HIM) collagen. These findings are helpful for understanding the mechanism of collagen mineralization in natural bone matrix and contribute to the design of novel bone substitute materials with hierarchical structures.
Periodic fluid shear stress (FSS) is one of the main mechanical microenvironments in mineralization of bone matrix. To elucidate the mechanism of periodic FSS in collagen mineralization, a mechanical loading induced mineralization system is developed and compared with traditional polyacrylic acid (PAA) induced mineralization. Fourier transform infrared (FTIR) spectroscopy, calcium-to-phosphorus molar ratio and transmission electron microscopy (TEM) demonstrate that both periodic FSS and PAA can control the size of amorphous calcium phosphate (ACP) to avoid aggregation and help the formation of intrafibrillar mineralization. Differently, periodic FSS under a proper cycle and range can accelerate the conversion of ACP to apatite crystals and alleviate the reduced transformation caused by PAA. Under the action of template analogues, periodic FSS can also promote the formation of highly oriented hierarchical intrafibrillar mineralized (HIM) collagen. These findings are helpful for understanding the mechanism of collagen mineralization in natural bone matrix and contribute to the design of novel bone substitute materials with hierarchical structures. Periodic fluid shear stress plays a dominant role in promoting the preparation of highly oriented HIM of collagen fibers.
Periodic fluid shear stress (FSS) is one of the main mechanical microenvironments in mineralization of bone matrix. To elucidate the mechanism of periodic FSS in collagen mineralization, a mechanical loading induced mineralization system is developed and compared with traditional polyacrylic acid (PAA) induced mineralization. Fourier transform infrared (FTIR) spectroscopy, calcium-to-phosphorus molar ratio and transmission electron microscopy (TEM) demonstrate that both periodic FSS and PAA can control the size of amorphous calcium phosphate (ACP) to avoid aggregation and help the formation of intrafibrillar mineralization. Differently, periodic FSS under a proper cycle and range can accelerate the conversion of ACP to apatite crystals and alleviate the reduced transformation caused by PAA. Under the action of template analogues, periodic FSS can also promote the formation of highly oriented hierarchical intrafibrillar mineralized (HIM) collagen. These findings are helpful for understanding the mechanism of collagen mineralization in natural bone matrix and contribute to the design of novel bone substitute materials with hierarchical structures.Periodic fluid shear stress (FSS) is one of the main mechanical microenvironments in mineralization of bone matrix. To elucidate the mechanism of periodic FSS in collagen mineralization, a mechanical loading induced mineralization system is developed and compared with traditional polyacrylic acid (PAA) induced mineralization. Fourier transform infrared (FTIR) spectroscopy, calcium-to-phosphorus molar ratio and transmission electron microscopy (TEM) demonstrate that both periodic FSS and PAA can control the size of amorphous calcium phosphate (ACP) to avoid aggregation and help the formation of intrafibrillar mineralization. Differently, periodic FSS under a proper cycle and range can accelerate the conversion of ACP to apatite crystals and alleviate the reduced transformation caused by PAA. Under the action of template analogues, periodic FSS can also promote the formation of highly oriented hierarchical intrafibrillar mineralized (HIM) collagen. These findings are helpful for understanding the mechanism of collagen mineralization in natural bone matrix and contribute to the design of novel bone substitute materials with hierarchical structures.
Author Hou, Sen
Li, Ping
Du, Tianming
Fan, Yubo
Niu, Xufeng
Xu, Menghan
Li, Zhengwei
AuthorAffiliation Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability
Beijing Advanced Innovation Center for Biomedical Engineering
School of Biological Science and Medical Engineering
Research Institute of Beihang University in Shenzhen
National Research Center for Rehabilitation Technical Aids
Beihang University
Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education
AuthorAffiliation_xml – name: Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education
– name: Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability
– name: Beijing Advanced Innovation Center for Biomedical Engineering
– name: School of Biological Science and Medical Engineering
– name: Beihang University
– name: Research Institute of Beihang University in Shenzhen
– name: National Research Center for Rehabilitation Technical Aids
Author_xml – sequence: 1
  givenname: Tianming
  surname: Du
  fullname: Du, Tianming
– sequence: 2
  givenname: Xufeng
  surname: Niu
  fullname: Niu, Xufeng
– sequence: 3
  givenname: Sen
  surname: Hou
  fullname: Hou, Sen
– sequence: 4
  givenname: Menghan
  surname: Xu
  fullname: Xu, Menghan
– sequence: 5
  givenname: Zhengwei
  surname: Li
  fullname: Li, Zhengwei
– sequence: 6
  givenname: Ping
  surname: Li
  fullname: Li, Ping
– sequence: 7
  givenname: Yubo
  surname: Fan
  fullname: Fan, Yubo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32101230$$D View this record in MEDLINE/PubMed
BookMark eNqFks1rXCEUxaWkNGmaTfcJlm5KYVI_34zLdGiaQiCbFLITn15nDI5O9L3F9K-vk8kHhJKKoHh_56Dn-h7tpZwAoY-UnFLC1Terhp6wTnD_Bh0wIslkKuls72lPbvbRUa23pI0Z7WZcvEP7nFFCGScHKF6ExTJusIlhkcDhZYBiil0GayIOaSjGh76EGE3Bq5BaMYY_Zgg54eyxza2wgNRIN9om7zd4DSVkFyz2cQwO1yU0aR0K1PoBvfUmVjh6WA_R7_Mf1_OLyeXVz1_zs8uJFR0bJgyATRkTBJQHa5UThkhPnaVAem46Ja2xhLqunYgp90IyL7l0VBnFPef8EH3Z-a5LvhuhDnoVqoV21wR5rJoJTmdiKqX6P8o7yRjlcuv6-QV6m8eS2kMatbVrkzTq5IEa-xU4vS5hZcpGP0beALIDbMm1FvDahuE-0RZ2iJoSvW2snqvr7_eNPW-Sry8kj67_hD_t4FLtE_f8S_Ta-cYcv8bwv8jXuCQ
CitedBy_id crossref_primary_10_1002_adem_202201258
crossref_primary_10_1016_j_ceramint_2023_06_305
crossref_primary_10_1016_j_bioadv_2022_212937
crossref_primary_10_1016_j_dental_2024_06_013
crossref_primary_10_1016_j_ijbiomac_2021_05_019
crossref_primary_10_1016_j_mbm_2024_100042
crossref_primary_10_1021_acsbiomaterials_1c01070
crossref_primary_10_3390_jfb15120356
crossref_primary_10_1515_mr_2024_0023
crossref_primary_10_1016_j_mtcomm_2021_103064
crossref_primary_10_1021_acsabm_3c00549
crossref_primary_10_1016_j_ijbiomac_2025_140225
crossref_primary_10_1016_j_matlet_2022_132784
crossref_primary_10_1088_1748_605X_ac49f7
crossref_primary_10_1007_s10924_021_02348_3
crossref_primary_10_1039_D1BM00884F
crossref_primary_10_1016_j_apmt_2020_100902
crossref_primary_10_1038_s41413_022_00223_y
crossref_primary_10_1088_1758_5090_ac8dc7
crossref_primary_10_1021_acs_biomac_1c00375
crossref_primary_10_1016_j_apmt_2023_101810
crossref_primary_10_1155_2020_8887323
crossref_primary_10_1002_elsc_202100040
crossref_primary_10_1093_rb_rbac059
crossref_primary_10_2147_IJN_S354127
crossref_primary_10_3390_jfb13020057
crossref_primary_10_3390_jfb14040212
crossref_primary_10_1039_D4BM00842A
crossref_primary_10_1016_j_compositesb_2024_111603
crossref_primary_10_1016_j_ijbiomac_2024_138323
crossref_primary_10_1038_s41368_021_00147_z
crossref_primary_10_3390_ijms22020944
crossref_primary_10_1002_adma_202004418
crossref_primary_10_1177_20417314231172573
crossref_primary_10_1016_j_mtcomm_2022_104682
crossref_primary_10_1016_j_ijbiomac_2024_130380
crossref_primary_10_1016_j_trechm_2022_02_002
crossref_primary_10_1039_D2CS00513A
crossref_primary_10_1016_j_bioactmat_2020_11_004
crossref_primary_10_1002_marc_202200827
crossref_primary_10_1016_j_matdes_2024_112830
crossref_primary_10_1039_D1NR06016C
crossref_primary_10_1016_j_mtchem_2021_100579
crossref_primary_10_1016_j_medntd_2022_100198
crossref_primary_10_1016_j_medntd_2023_100211
Cites_doi 10.1126/science.1220854
10.1016/j.msec.2016.04.095
10.1002/jbmr.3638
10.1016/j.biomaterials.2008.06.016
10.1038/nmat2875
10.1111/ijac.12820
10.1038/natrevmats.2016.41
10.1038/nmat3787
10.1039/C7TB02223A
10.7150/ijms.6611
10.1111/j.1525-1594.2011.01274.x
10.1016/j.jsb.2013.04.003
10.1021/acsbiomaterials.5b00088
10.1016/j.jmbbm.2015.09.024
10.1002/adfm.201000993
10.1016/j.matbio.2016.02.004
10.1016/j.biomaterials.2017.02.029
10.1002/adma.201003882
10.1021/acsbiomaterials.8b00512
10.1016/j.biomaterials.2010.10.018
10.1016/j.ijbiomac.2018.02.136
10.1002/jbmr.3730
10.1002/jbm.a.36747
10.1126/science.aao2189
10.1002/jbmr.3859
10.1186/s11671-016-1669-1
10.1039/C8NR02078G
10.1039/c3tb21296c
10.1039/C8NR00677F
10.1006/jsbi.1999.4107
10.1016/j.matbio.2016.02.011
10.1039/c3ce40449h
10.1016/j.dental.2011.01.008
10.1146/annurev.fluid.010908.165136
10.1038/nmat3362
10.1039/C8NR02002G
10.1021/ja9628821
10.1038/nmat4089
10.1038/nmat4789
10.1016/j.matbio.2017.06.004
10.1167/iovs.13-12633
10.1016/j.actbio.2010.11.028
10.1016/j.biomaterials.2019.03.041
10.1016/j.ijbiomac.2015.10.039
10.1016/j.bone.2013.10.023
10.1016/j.bone.2015.03.022
10.1016/j.msec.2016.12.079
10.1038/nmat4719
10.1016/j.matbio.2016.02.002
10.1016/j.matbio.2009.03.006
10.1039/C7NR05013E
10.1039/C8NR09417A
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2020
Copyright_xml – notice: Copyright Royal Society of Chemistry 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
7X8
7S9
L.6
DOI 10.1039/c9tb02643f
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
Materials Research Database

CrossRef
MEDLINE - Academic
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2050-7518
EndPage 2572
ExternalDocumentID 32101230
10_1039_C9TB02643F
c9tb02643f
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID 0-7
0R
4.4
53G
705
AAEMU
AAGNR
AAIWI
AANOJ
ABDVN
ABGFH
ABRYZ
ACGFS
ACIWK
ACLDK
ACPRK
ADMRA
ADSRN
AENEX
AFRAH
AFVBQ
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ASKNT
AUDPV
BLAPV
BSQNT
C6K
CKLOX
D0L
EBS
ECGLT
EE0
EF-
GNO
HZ
H~N
J3I
JG
O-G
O9-
R7C
RCNCU
RIG
RNS
RPMJG
RRC
RSCEA
SKA
SKF
SLH
UCJ
0R~
AAJAE
AAWGC
AAXHV
AAYXX
ABASK
ABEMK
ABJNI
ABPDG
ABXOH
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AGEGJ
AGRSR
AHGCF
AKMSF
ALUYA
ANUXI
APEMP
CITATION
GGIMP
H13
HZ~
RAOCF
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
7X8
7S9
L.6
ID FETCH-LOGICAL-c462t-2ee272240e9fecc9d4a05f1dc1e0b3a695cac01d6dc1473f452f535d19a93f333
ISSN 2050-750X
2050-7518
IngestDate Fri Jul 11 07:41:20 EDT 2025
Fri Jul 11 02:20:41 EDT 2025
Mon Jun 30 08:12:37 EDT 2025
Mon Jul 21 05:57:49 EDT 2025
Tue Jul 01 01:00:24 EDT 2025
Thu Apr 24 22:51:49 EDT 2025
Sat Jan 08 03:37:34 EST 2022
Wed Nov 11 00:36:15 EST 2020
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c462t-2ee272240e9fecc9d4a05f1dc1e0b3a695cac01d6dc1473f452f535d19a93f333
Notes 10.1039/c9tb02643f
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2669-2028
0000-0001-8868-8054
PMID 32101230
PQID 2384754750
PQPubID 2047522
PageCount 11
ParticipantIDs proquest_miscellaneous_2431847559
crossref_primary_10_1039_C9TB02643F
pubmed_primary_32101230
crossref_citationtrail_10_1039_C9TB02643F
rsc_primary_c9tb02643f
proquest_journals_2384754750
proquest_miscellaneous_2365221353
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200401
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 4
  year: 2020
  text: 20200401
  day: 1
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Journal of materials chemistry. B, Materials for biology and medicine
PublicationTitleAlternate J Mater Chem B
PublicationYear 2020
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Reznikov (C9TB02643F-(cit20)/*[position()=1]) 2016; 1
Yang (C9TB02643F-(cit3)/*[position()=1]) 2019; 207
Reznikov (C9TB02643F-(cit49)/*[position()=1]) 2014; 59
Niu (C9TB02643F-(cit42)/*[position()=1]) 2016; 54
Niu (C9TB02643F-(cit47)/*[position()=1]) 2017; 73
Stocco (C9TB02643F-(cit36)/*[position()=1]) 2018; 10
Reznikov (C9TB02643F-(cit1)/*[position()=1]) 2018; 360
Cristofaro (C9TB02643F-(cit50)/*[position()=1]) 2018; 10
Liu (C9TB02643F-(cit29)/*[position()=1]) 2011; 27
Niu (C9TB02643F-(cit13)/*[position()=1]) 2011; 35
Wang (C9TB02643F-(cit27)/*[position()=1]) 2018; 10
Nudelman (C9TB02643F-(cit8)/*[position()=1]) 2010; 9
Lanfer (C9TB02643F-(cit51)/*[position()=1]) 2008; 29
Curry (C9TB02643F-(cit7)/*[position()=1]) 2016; 52
Zhao (C9TB02643F-(cit14)/*[position()=1]) 2019; 11
Niu (C9TB02643F-(cit21)/*[position()=1]) 2017; 16
Nudelman (C9TB02643F-(cit16)/*[position()=1]) 2013; 183
Campi (C9TB02643F-(cit5)/*[position()=1]) 2017; 9
Gao (C9TB02643F-(cit35)/*[position()=1]) 2013; 10
Zimmermann (C9TB02643F-(cit44)/*[position()=1]) 2019; 34
Liu (C9TB02643F-(cit22)/*[position()=1]) 2011; 23
Deymier (C9TB02643F-(cit26)/*[position()=1]) 2015; 127
Meyers (C9TB02643F-(cit33)/*[position()=1]) 2013; 339
Fritton (C9TB02643F-(cit38)/*[position()=1]) 2009; 41
Wingender (C9TB02643F-(cit6)/*[position()=1]) 2016; 52
Du (C9TB02643F-(cit53)/*[position()=1]) 2019; 107
Liu (C9TB02643F-(cit18)/*[position()=1]) 2011; 7
Tertuliano (C9TB02643F-(cit34)/*[position()=1]) 2016; 15
Du (C9TB02643F-(cit19)/*[position()=1]) 2018; 113
Cantaert (C9TB02643F-(cit24)/*[position()=1]) 2013; 1
Lin (C9TB02643F-(cit52)/*[position()=1]) 2020
Wegst (C9TB02643F-(cit2)/*[position()=1]) 2015; 14
Liu (C9TB02643F-(cit23)/*[position()=1]) 2011; 32
Liu (C9TB02643F-(cit9)/*[position()=1]) 2018; 15
He (C9TB02643F-(cit46)/*[position()=1]) 2010; 20
Hu (C9TB02643F-(cit25)/*[position()=1]) 2015; 1
Zhang (C9TB02643F-(cit40)/*[position()=1]) 2015; 76
Ovejero (C9TB02643F-(cit4)/*[position()=1]) 2019; 34
Qi (C9TB02643F-(cit32)/*[position()=1]) 2018; 4
Niu (C9TB02643F-(cit41)/*[position()=1]) 2017; 5
Wang (C9TB02643F-(cit10)/*[position()=1]) 2012; 11
Weiner (C9TB02643F-(cit17)/*[position()=1]) 1999; 126
Green (C9TB02643F-(cit43)/*[position()=1]) 2019; 34
Wang (C9TB02643F-(cit48)/*[position()=1]) 2013; 12
Liu (C9TB02643F-(cit39)/*[position()=1]) 2014; 55
Dan (C9TB02643F-(cit15)/*[position()=1]) 2016; 11
Du (C9TB02643F-(cit11)/*[position()=1]) 2016; 82
Niu (C9TB02643F-(cit45)/*[position()=1]) 2017; 70
Aizenberg (C9TB02643F-(cit28)/*[position()=1]) 1997; 119
Suzuki (C9TB02643F-(cit30)/*[position()=1]) 2009; 28
Panwar (C9TB02643F-(cit12)/*[position()=1]) 2018; 65
Rys (C9TB02643F-(cit37)/*[position()=1]) 2016; 52
Wang (C9TB02643F-(cit31)/*[position()=1]) 2013; 15
References_xml – volume: 339
  start-page: 773
  year: 2013
  ident: C9TB02643F-(cit33)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1220854
– volume: 70
  start-page: 1120
  year: 2017
  ident: C9TB02643F-(cit45)/*[position()=1]
  publication-title: Mater. Sci. Eng., C
  doi: 10.1016/j.msec.2016.04.095
– volume: 34
  start-page: 661
  year: 2019
  ident: C9TB02643F-(cit4)/*[position()=1]
  publication-title: J. Bone Miner. Res.
  doi: 10.1002/jbmr.3638
– volume: 29
  start-page: 3888
  year: 2008
  ident: C9TB02643F-(cit51)/*[position()=1]
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2008.06.016
– volume: 9
  start-page: 1004
  year: 2010
  ident: C9TB02643F-(cit8)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2875
– volume: 15
  start-page: 980
  year: 2018
  ident: C9TB02643F-(cit9)/*[position()=1]
  publication-title: Int. J. Appl. Ceram. Technol.
  doi: 10.1111/ijac.12820
– volume: 1
  start-page: 16041
  year: 2016
  ident: C9TB02643F-(cit20)/*[position()=1]
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.41
– volume: 12
  start-page: 1144
  year: 2013
  ident: C9TB02643F-(cit48)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3787
– volume: 5
  start-page: 9141
  year: 2017
  ident: C9TB02643F-(cit41)/*[position()=1]
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C7TB02223A
– volume: 10
  start-page: 1560
  year: 2013
  ident: C9TB02643F-(cit35)/*[position()=1]
  publication-title: Int. J. Med. Sci.
  doi: 10.7150/ijms.6611
– volume: 35
  start-page: E119
  year: 2011
  ident: C9TB02643F-(cit13)/*[position()=1]
  publication-title: Artif. Organs
  doi: 10.1111/j.1525-1594.2011.01274.x
– volume: 183
  start-page: 258
  year: 2013
  ident: C9TB02643F-(cit16)/*[position()=1]
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2013.04.003
– volume: 1
  start-page: 669
  year: 2015
  ident: C9TB02643F-(cit25)/*[position()=1]
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.5b00088
– volume: 54
  start-page: 131
  year: 2016
  ident: C9TB02643F-(cit42)/*[position()=1]
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2015.09.024
– volume: 20
  start-page: 3568
  year: 2010
  ident: C9TB02643F-(cit46)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201000993
– volume: 52
  start-page: 384
  year: 2016
  ident: C9TB02643F-(cit6)/*[position()=1]
  publication-title: Matrix Biol.
  doi: 10.1016/j.matbio.2016.02.004
– volume: 127
  start-page: 75
  year: 2015
  ident: C9TB02643F-(cit26)/*[position()=1]
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2017.02.029
– volume: 23
  start-page: 975
  year: 2011
  ident: C9TB02643F-(cit22)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201003882
– volume: 4
  start-page: 2758
  year: 2018
  ident: C9TB02643F-(cit32)/*[position()=1]
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.8b00512
– volume: 32
  start-page: 1291
  year: 2011
  ident: C9TB02643F-(cit23)/*[position()=1]
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.10.018
– volume: 113
  start-page: 450
  year: 2018
  ident: C9TB02643F-(cit19)/*[position()=1]
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2018.02.136
– start-page: 1
  year: 2020
  ident: C9TB02643F-(cit52)/*[position()=1]
  publication-title: Tissue Eng., Part B
– volume: 34
  start-page: 1461
  year: 2019
  ident: C9TB02643F-(cit44)/*[position()=1]
  publication-title: J. Bone Miner. Res.
  doi: 10.1002/jbmr.3730
– volume: 107
  start-page: 2403
  year: 2019
  ident: C9TB02643F-(cit53)/*[position()=1]
  publication-title: J. Biomed. Mater. Res., Part A
  doi: 10.1002/jbm.a.36747
– volume: 360
  start-page: 2183
  year: 2018
  ident: C9TB02643F-(cit1)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aao2189
– volume: 34
  start-page: 1461
  year: 2019
  ident: C9TB02643F-(cit43)/*[position()=1]
  publication-title: J. Bone Miner. Res.
  doi: 10.1002/jbmr.3859
– volume: 11
  start-page: 487
  year: 2016
  ident: C9TB02643F-(cit15)/*[position()=1]
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/s11671-016-1669-1
– volume: 10
  start-page: 18980
  year: 2018
  ident: C9TB02643F-(cit27)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C8NR02078G
– volume: 1
  start-page: 6586
  year: 2013
  ident: C9TB02643F-(cit24)/*[position()=1]
  publication-title: J. Mater. Chem. B
  doi: 10.1039/c3tb21296c
– volume: 10
  start-page: 8689
  year: 2018
  ident: C9TB02643F-(cit50)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C8NR00677F
– volume: 126
  start-page: 241
  year: 1999
  ident: C9TB02643F-(cit17)/*[position()=1]
  publication-title: J. Struct. Biol.
  doi: 10.1006/jsbi.1999.4107
– volume: 52
  start-page: 397
  year: 2016
  ident: C9TB02643F-(cit7)/*[position()=1]
  publication-title: Matrix Biol.
  doi: 10.1016/j.matbio.2016.02.011
– volume: 15
  start-page: 6151
  year: 2013
  ident: C9TB02643F-(cit31)/*[position()=1]
  publication-title: CrystEngComm
  doi: 10.1039/c3ce40449h
– volume: 27
  start-page: 465
  year: 2011
  ident: C9TB02643F-(cit29)/*[position()=1]
  publication-title: Dent. Mater.
  doi: 10.1016/j.dental.2011.01.008
– volume: 41
  start-page: 347
  year: 2009
  ident: C9TB02643F-(cit38)/*[position()=1]
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fluid.010908.165136
– volume: 11
  start-page: 724
  year: 2012
  ident: C9TB02643F-(cit10)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3362
– volume: 10
  start-page: 12228
  year: 2018
  ident: C9TB02643F-(cit36)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C8NR02002G
– volume: 119
  start-page: 881
  year: 1997
  ident: C9TB02643F-(cit28)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9628821
– volume: 14
  start-page: 23
  year: 2015
  ident: C9TB02643F-(cit2)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4089
– volume: 16
  start-page: 370
  year: 2017
  ident: C9TB02643F-(cit21)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4789
– volume: 65
  start-page: 30
  year: 2018
  ident: C9TB02643F-(cit12)/*[position()=1]
  publication-title: Matrix Biol.
  doi: 10.1016/j.matbio.2017.06.004
– volume: 55
  start-page: 2739
  year: 2014
  ident: C9TB02643F-(cit39)/*[position()=1]
  publication-title: Invest. Ophthalmol. Visual Sci.
  doi: 10.1167/iovs.13-12633
– volume: 7
  start-page: 1742
  year: 2011
  ident: C9TB02643F-(cit18)/*[position()=1]
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2010.11.028
– volume: 207
  start-page: 61
  year: 2019
  ident: C9TB02643F-(cit3)/*[position()=1]
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2019.03.041
– volume: 82
  start-page: 580
  year: 2016
  ident: C9TB02643F-(cit11)/*[position()=1]
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2015.10.039
– volume: 59
  start-page: 93
  year: 2014
  ident: C9TB02643F-(cit49)/*[position()=1]
  publication-title: Bone
  doi: 10.1016/j.bone.2013.10.023
– volume: 76
  start-page: 76
  year: 2015
  ident: C9TB02643F-(cit40)/*[position()=1]
  publication-title: Bone
  doi: 10.1016/j.bone.2015.03.022
– volume: 73
  start-page: 137
  year: 2017
  ident: C9TB02643F-(cit47)/*[position()=1]
  publication-title: Mater. Sci. Eng., C
  doi: 10.1016/j.msec.2016.12.079
– volume: 15
  start-page: 1195
  year: 2016
  ident: C9TB02643F-(cit34)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4719
– volume: 52
  start-page: 413
  year: 2016
  ident: C9TB02643F-(cit37)/*[position()=1]
  publication-title: Matrix Biol.
  doi: 10.1016/j.matbio.2016.02.002
– volume: 28
  start-page: 221
  year: 2009
  ident: C9TB02643F-(cit30)/*[position()=1]
  publication-title: Matrix Biol.
  doi: 10.1016/j.matbio.2009.03.006
– volume: 9
  start-page: 17274
  year: 2017
  ident: C9TB02643F-(cit5)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C7NR05013E
– volume: 11
  start-page: 2721
  year: 2019
  ident: C9TB02643F-(cit14)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C8NR09417A
SSID ssj0000816834
Score 2.504837
Snippet Periodic fluid shear stress (FSS) is one of the main mechanical microenvironments in mineralization of bone matrix. To elucidate the mechanism of periodic FSS...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2562
SubjectTerms Animals
Apatite
Biocompatible Materials - chemistry
Biocompatible Materials - pharmacology
Biomedical materials
Bone matrix
bone substitutes
Bone Substitutes - chemistry
Bone Substitutes - pharmacology
Calcium phosphates
Calcium Phosphates - chemistry
Cell Proliferation - drug effects
Cell Survival - drug effects
Cells, Cultured
Collagen
Collagen Type I - chemistry
Collagen Type I - pharmacology
Crystals
Fluid flow
Fourier transform infrared spectroscopy
Fourier transforms
Mechanical loading
Mechanical stimuli
Mice
Microenvironments
Mineralization
Particle Size
Phosphorus
Polyacrylic acid
Rats
Shear stress
Stress, Mechanical
Structural hierarchy
Substitute bone
Surface Properties
Surgical implants
Transmission electron microscopy
Title Highly aligned hierarchical intrafibrillar mineralization of collagen induced by periodic fluid shear stress
URI https://www.ncbi.nlm.nih.gov/pubmed/32101230
https://www.proquest.com/docview/2384754750
https://www.proquest.com/docview/2365221353
https://www.proquest.com/docview/2431847559
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbK9gIPiNugYyAjeEFRSuJLUj9uo1VBZTyQSn2LEicelbq26pKH8SP4zRw7zqWsoIFURe2x5aQ5X44_x-eC0DuuBMzbaeCqIZMuC5nnpixNXX8Y5rBqBkKrdLzzl4tgMmOf53ze6_3seC2VRTqQP_bGlfyPVkEGetVRsv-g2WZQEMB30C8cQcNwvJOOtZPG8sYBKn0J1tLRZa3NxoA0mTSKbaK0Q_9SO5peLUx6aRt1WTmTQwMMDT2zUlZEVKc9XmcL6ahlucica13u2oaT_IHFAuGt_qkj69JxA-esigKqW4xHaCfZ0-_7-R_LCjXJ6qqeSM1OiRHPS5W3wsnaCL-1AWxzI9DOud8t0O07DOJ1XF-MqSMe91y9AdS1y8Mu_KizGQA7Iy6YGNI1uNwa89z-rFpvTQwe1XlVpShSWHQyqtrpr97yv_gaj2fTaRyN5tE9dEhg2QF28_B0FH2aNm_tTJkS46rQXHKd85aKD-3wuyzn1tIFiMy2LjBjiEz0CD20usOnFZweo16-eoIedPJSPkXLCljYAgt3gYV3gYV3gYXXCtfAwhZYOL3BNbCwARY2wMIVsJ6h2XgUnU9cW5bDlSwghUvynISaCeZCgQEQGUs8rvxM-rmX0iQQXCbS87MAJCykinGiOOWZLxJBFaX0CB2s1qv8BcJUScUZSVIg4UwNPaFSIPRShSL0KRn6ffS-vo2xtDnrdemUZWx8J6iIz0V0Zm75uI_eNn03VaaWvb1Oam3E9km-joG2spDDx-ujN00zPDN68yxZ5etS9wlgqaKrxPylD7BxPRIXffS80nRzKTpWDlginOEIVN-IW8j00fH-hniTqeM7nPMlut8-WyfooNiW-StgzEX62sL4F57TxXs
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+aligned+hierarchical+intrafibrillar+mineralization+of+collagen+induced+by+periodic+fluid+shear+stress&rft.jtitle=Journal+of+materials+chemistry.+B%2C+Materials+for+biology+and+medicine&rft.au=Du%2C+Tianming&rft.au=Niu%2C+Xufeng&rft.au=Hou%2C+Sen&rft.au=Xu%2C+Menghan&rft.date=2020-04-01&rft.issn=2050-7518&rft.volume=8&rft.issue=13+p.2562-2572&rft.spage=2562&rft.epage=2572&rft_id=info:doi/10.1039%2Fc9tb02643f&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-750X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-750X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-750X&client=summon