Highly aligned hierarchical intrafibrillar mineralization of collagen induced by periodic fluid shear stress
Periodic fluid shear stress (FSS) is one of the main mechanical microenvironments in mineralization of bone matrix. To elucidate the mechanism of periodic FSS in collagen mineralization, a mechanical loading induced mineralization system is developed and compared with traditional polyacrylic acid (P...
Saved in:
Published in | Journal of materials chemistry. B, Materials for biology and medicine Vol. 8; no. 13; pp. 2562 - 2572 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
01.04.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Periodic fluid shear stress (FSS) is one of the main mechanical microenvironments in mineralization of bone matrix. To elucidate the mechanism of periodic FSS in collagen mineralization, a mechanical loading induced mineralization system is developed and compared with traditional polyacrylic acid (PAA) induced mineralization. Fourier transform infrared (FTIR) spectroscopy, calcium-to-phosphorus molar ratio and transmission electron microscopy (TEM) demonstrate that both periodic FSS and PAA can control the size of amorphous calcium phosphate (ACP) to avoid aggregation and help the formation of intrafibrillar mineralization. Differently, periodic FSS under a proper cycle and range can accelerate the conversion of ACP to apatite crystals and alleviate the reduced transformation caused by PAA. Under the action of template analogues, periodic FSS can also promote the formation of highly oriented hierarchical intrafibrillar mineralized (HIM) collagen. These findings are helpful for understanding the mechanism of collagen mineralization in natural bone matrix and contribute to the design of novel bone substitute materials with hierarchical structures.
Periodic fluid shear stress plays a dominant role in promoting the preparation of highly oriented HIM of collagen fibers. |
---|---|
AbstractList | Periodic fluid shear stress (FSS) is one of the main mechanical microenvironments in mineralization of bone matrix. To elucidate the mechanism of periodic FSS in collagen mineralization, a mechanical loading induced mineralization system is developed and compared with traditional polyacrylic acid (PAA) induced mineralization. Fourier transform infrared (FTIR) spectroscopy, calcium-to-phosphorus molar ratio and transmission electron microscopy (TEM) demonstrate that both periodic FSS and PAA can control the size of amorphous calcium phosphate (ACP) to avoid aggregation and help the formation of intrafibrillar mineralization. Differently, periodic FSS under a proper cycle and range can accelerate the conversion of ACP to apatite crystals and alleviate the reduced transformation caused by PAA. Under the action of template analogues, periodic FSS can also promote the formation of highly oriented hierarchical intrafibrillar mineralized (HIM) collagen. These findings are helpful for understanding the mechanism of collagen mineralization in natural bone matrix and contribute to the design of novel bone substitute materials with hierarchical structures. Periodic fluid shear stress (FSS) is one of the main mechanical microenvironments in mineralization of bone matrix. To elucidate the mechanism of periodic FSS in collagen mineralization, a mechanical loading induced mineralization system is developed and compared with traditional polyacrylic acid (PAA) induced mineralization. Fourier transform infrared (FTIR) spectroscopy, calcium-to-phosphorus molar ratio and transmission electron microscopy (TEM) demonstrate that both periodic FSS and PAA can control the size of amorphous calcium phosphate (ACP) to avoid aggregation and help the formation of intrafibrillar mineralization. Differently, periodic FSS under a proper cycle and range can accelerate the conversion of ACP to apatite crystals and alleviate the reduced transformation caused by PAA. Under the action of template analogues, periodic FSS can also promote the formation of highly oriented hierarchical intrafibrillar mineralized (HIM) collagen. These findings are helpful for understanding the mechanism of collagen mineralization in natural bone matrix and contribute to the design of novel bone substitute materials with hierarchical structures. Periodic fluid shear stress plays a dominant role in promoting the preparation of highly oriented HIM of collagen fibers. Periodic fluid shear stress (FSS) is one of the main mechanical microenvironments in mineralization of bone matrix. To elucidate the mechanism of periodic FSS in collagen mineralization, a mechanical loading induced mineralization system is developed and compared with traditional polyacrylic acid (PAA) induced mineralization. Fourier transform infrared (FTIR) spectroscopy, calcium-to-phosphorus molar ratio and transmission electron microscopy (TEM) demonstrate that both periodic FSS and PAA can control the size of amorphous calcium phosphate (ACP) to avoid aggregation and help the formation of intrafibrillar mineralization. Differently, periodic FSS under a proper cycle and range can accelerate the conversion of ACP to apatite crystals and alleviate the reduced transformation caused by PAA. Under the action of template analogues, periodic FSS can also promote the formation of highly oriented hierarchical intrafibrillar mineralized (HIM) collagen. These findings are helpful for understanding the mechanism of collagen mineralization in natural bone matrix and contribute to the design of novel bone substitute materials with hierarchical structures.Periodic fluid shear stress (FSS) is one of the main mechanical microenvironments in mineralization of bone matrix. To elucidate the mechanism of periodic FSS in collagen mineralization, a mechanical loading induced mineralization system is developed and compared with traditional polyacrylic acid (PAA) induced mineralization. Fourier transform infrared (FTIR) spectroscopy, calcium-to-phosphorus molar ratio and transmission electron microscopy (TEM) demonstrate that both periodic FSS and PAA can control the size of amorphous calcium phosphate (ACP) to avoid aggregation and help the formation of intrafibrillar mineralization. Differently, periodic FSS under a proper cycle and range can accelerate the conversion of ACP to apatite crystals and alleviate the reduced transformation caused by PAA. Under the action of template analogues, periodic FSS can also promote the formation of highly oriented hierarchical intrafibrillar mineralized (HIM) collagen. These findings are helpful for understanding the mechanism of collagen mineralization in natural bone matrix and contribute to the design of novel bone substitute materials with hierarchical structures. |
Author | Hou, Sen Li, Ping Du, Tianming Fan, Yubo Niu, Xufeng Xu, Menghan Li, Zhengwei |
AuthorAffiliation | Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering Research Institute of Beihang University in Shenzhen National Research Center for Rehabilitation Technical Aids Beihang University Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education |
AuthorAffiliation_xml | – name: Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education – name: Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability – name: Beijing Advanced Innovation Center for Biomedical Engineering – name: School of Biological Science and Medical Engineering – name: Beihang University – name: Research Institute of Beihang University in Shenzhen – name: National Research Center for Rehabilitation Technical Aids |
Author_xml | – sequence: 1 givenname: Tianming surname: Du fullname: Du, Tianming – sequence: 2 givenname: Xufeng surname: Niu fullname: Niu, Xufeng – sequence: 3 givenname: Sen surname: Hou fullname: Hou, Sen – sequence: 4 givenname: Menghan surname: Xu fullname: Xu, Menghan – sequence: 5 givenname: Zhengwei surname: Li fullname: Li, Zhengwei – sequence: 6 givenname: Ping surname: Li fullname: Li, Ping – sequence: 7 givenname: Yubo surname: Fan fullname: Fan, Yubo |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32101230$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks1rXCEUxaWkNGmaTfcJlm5KYVI_34zLdGiaQiCbFLITn15nDI5O9L3F9K-vk8kHhJKKoHh_56Dn-h7tpZwAoY-UnFLC1Terhp6wTnD_Bh0wIslkKuls72lPbvbRUa23pI0Z7WZcvEP7nFFCGScHKF6ExTJusIlhkcDhZYBiil0GayIOaSjGh76EGE3Bq5BaMYY_Zgg54eyxza2wgNRIN9om7zd4DSVkFyz2cQwO1yU0aR0K1PoBvfUmVjh6WA_R7_Mf1_OLyeXVz1_zs8uJFR0bJgyATRkTBJQHa5UThkhPnaVAem46Ja2xhLqunYgp90IyL7l0VBnFPef8EH3Z-a5LvhuhDnoVqoV21wR5rJoJTmdiKqX6P8o7yRjlcuv6-QV6m8eS2kMatbVrkzTq5IEa-xU4vS5hZcpGP0beALIDbMm1FvDahuE-0RZ2iJoSvW2snqvr7_eNPW-Sry8kj67_hD_t4FLtE_f8S_Ta-cYcv8bwv8jXuCQ |
CitedBy_id | crossref_primary_10_1002_adem_202201258 crossref_primary_10_1016_j_ceramint_2023_06_305 crossref_primary_10_1016_j_bioadv_2022_212937 crossref_primary_10_1016_j_dental_2024_06_013 crossref_primary_10_1016_j_ijbiomac_2021_05_019 crossref_primary_10_1016_j_mbm_2024_100042 crossref_primary_10_1021_acsbiomaterials_1c01070 crossref_primary_10_3390_jfb15120356 crossref_primary_10_1515_mr_2024_0023 crossref_primary_10_1016_j_mtcomm_2021_103064 crossref_primary_10_1021_acsabm_3c00549 crossref_primary_10_1016_j_ijbiomac_2025_140225 crossref_primary_10_1016_j_matlet_2022_132784 crossref_primary_10_1088_1748_605X_ac49f7 crossref_primary_10_1007_s10924_021_02348_3 crossref_primary_10_1039_D1BM00884F crossref_primary_10_1016_j_apmt_2020_100902 crossref_primary_10_1038_s41413_022_00223_y crossref_primary_10_1088_1758_5090_ac8dc7 crossref_primary_10_1021_acs_biomac_1c00375 crossref_primary_10_1016_j_apmt_2023_101810 crossref_primary_10_1155_2020_8887323 crossref_primary_10_1002_elsc_202100040 crossref_primary_10_1093_rb_rbac059 crossref_primary_10_2147_IJN_S354127 crossref_primary_10_3390_jfb13020057 crossref_primary_10_3390_jfb14040212 crossref_primary_10_1039_D4BM00842A crossref_primary_10_1016_j_compositesb_2024_111603 crossref_primary_10_1016_j_ijbiomac_2024_138323 crossref_primary_10_1038_s41368_021_00147_z crossref_primary_10_3390_ijms22020944 crossref_primary_10_1002_adma_202004418 crossref_primary_10_1177_20417314231172573 crossref_primary_10_1016_j_mtcomm_2022_104682 crossref_primary_10_1016_j_ijbiomac_2024_130380 crossref_primary_10_1016_j_trechm_2022_02_002 crossref_primary_10_1039_D2CS00513A crossref_primary_10_1016_j_bioactmat_2020_11_004 crossref_primary_10_1002_marc_202200827 crossref_primary_10_1016_j_matdes_2024_112830 crossref_primary_10_1039_D1NR06016C crossref_primary_10_1016_j_mtchem_2021_100579 crossref_primary_10_1016_j_medntd_2022_100198 crossref_primary_10_1016_j_medntd_2023_100211 |
Cites_doi | 10.1126/science.1220854 10.1016/j.msec.2016.04.095 10.1002/jbmr.3638 10.1016/j.biomaterials.2008.06.016 10.1038/nmat2875 10.1111/ijac.12820 10.1038/natrevmats.2016.41 10.1038/nmat3787 10.1039/C7TB02223A 10.7150/ijms.6611 10.1111/j.1525-1594.2011.01274.x 10.1016/j.jsb.2013.04.003 10.1021/acsbiomaterials.5b00088 10.1016/j.jmbbm.2015.09.024 10.1002/adfm.201000993 10.1016/j.matbio.2016.02.004 10.1016/j.biomaterials.2017.02.029 10.1002/adma.201003882 10.1021/acsbiomaterials.8b00512 10.1016/j.biomaterials.2010.10.018 10.1016/j.ijbiomac.2018.02.136 10.1002/jbmr.3730 10.1002/jbm.a.36747 10.1126/science.aao2189 10.1002/jbmr.3859 10.1186/s11671-016-1669-1 10.1039/C8NR02078G 10.1039/c3tb21296c 10.1039/C8NR00677F 10.1006/jsbi.1999.4107 10.1016/j.matbio.2016.02.011 10.1039/c3ce40449h 10.1016/j.dental.2011.01.008 10.1146/annurev.fluid.010908.165136 10.1038/nmat3362 10.1039/C8NR02002G 10.1021/ja9628821 10.1038/nmat4089 10.1038/nmat4789 10.1016/j.matbio.2017.06.004 10.1167/iovs.13-12633 10.1016/j.actbio.2010.11.028 10.1016/j.biomaterials.2019.03.041 10.1016/j.ijbiomac.2015.10.039 10.1016/j.bone.2013.10.023 10.1016/j.bone.2015.03.022 10.1016/j.msec.2016.12.079 10.1038/nmat4719 10.1016/j.matbio.2016.02.002 10.1016/j.matbio.2009.03.006 10.1039/C7NR05013E 10.1039/C8NR09417A |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2020 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2020 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D H8G JG9 JQ2 K9. KR7 L7M L~C L~D P64 7X8 7S9 L.6 |
DOI | 10.1039/c9tb02643f |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE Materials Research Database CrossRef MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2050-7518 |
EndPage | 2572 |
ExternalDocumentID | 32101230 10_1039_C9TB02643F c9tb02643f |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | 0-7 0R 4.4 53G 705 AAEMU AAGNR AAIWI AANOJ ABDVN ABGFH ABRYZ ACGFS ACIWK ACLDK ACPRK ADMRA ADSRN AENEX AFRAH AFVBQ AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ASKNT AUDPV BLAPV BSQNT C6K CKLOX D0L EBS ECGLT EE0 EF- GNO HZ H~N J3I JG O-G O9- R7C RCNCU RIG RNS RPMJG RRC RSCEA SKA SKF SLH UCJ 0R~ AAJAE AAWGC AAXHV AAYXX ABASK ABEMK ABJNI ABPDG ABXOH AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AGEGJ AGRSR AHGCF AKMSF ALUYA ANUXI APEMP CITATION GGIMP H13 HZ~ RAOCF CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D H8G JG9 JQ2 K9. KR7 L7M L~C L~D P64 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c462t-2ee272240e9fecc9d4a05f1dc1e0b3a695cac01d6dc1473f452f535d19a93f333 |
ISSN | 2050-750X 2050-7518 |
IngestDate | Fri Jul 11 07:41:20 EDT 2025 Fri Jul 11 02:20:41 EDT 2025 Mon Jun 30 08:12:37 EDT 2025 Mon Jul 21 05:57:49 EDT 2025 Tue Jul 01 01:00:24 EDT 2025 Thu Apr 24 22:51:49 EDT 2025 Sat Jan 08 03:37:34 EST 2022 Wed Nov 11 00:36:15 EST 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c462t-2ee272240e9fecc9d4a05f1dc1e0b3a695cac01d6dc1473f452f535d19a93f333 |
Notes | 10.1039/c9tb02643f Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2669-2028 0000-0001-8868-8054 |
PMID | 32101230 |
PQID | 2384754750 |
PQPubID | 2047522 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2431847559 crossref_primary_10_1039_C9TB02643F pubmed_primary_32101230 crossref_citationtrail_10_1039_C9TB02643F rsc_primary_c9tb02643f proquest_journals_2384754750 proquest_miscellaneous_2365221353 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200401 |
PublicationDateYYYYMMDD | 2020-04-01 |
PublicationDate_xml | – month: 4 year: 2020 text: 20200401 day: 1 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Journal of materials chemistry. B, Materials for biology and medicine |
PublicationTitleAlternate | J Mater Chem B |
PublicationYear | 2020 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Reznikov (C9TB02643F-(cit20)/*[position()=1]) 2016; 1 Yang (C9TB02643F-(cit3)/*[position()=1]) 2019; 207 Reznikov (C9TB02643F-(cit49)/*[position()=1]) 2014; 59 Niu (C9TB02643F-(cit42)/*[position()=1]) 2016; 54 Niu (C9TB02643F-(cit47)/*[position()=1]) 2017; 73 Stocco (C9TB02643F-(cit36)/*[position()=1]) 2018; 10 Reznikov (C9TB02643F-(cit1)/*[position()=1]) 2018; 360 Cristofaro (C9TB02643F-(cit50)/*[position()=1]) 2018; 10 Liu (C9TB02643F-(cit29)/*[position()=1]) 2011; 27 Niu (C9TB02643F-(cit13)/*[position()=1]) 2011; 35 Wang (C9TB02643F-(cit27)/*[position()=1]) 2018; 10 Nudelman (C9TB02643F-(cit8)/*[position()=1]) 2010; 9 Lanfer (C9TB02643F-(cit51)/*[position()=1]) 2008; 29 Curry (C9TB02643F-(cit7)/*[position()=1]) 2016; 52 Zhao (C9TB02643F-(cit14)/*[position()=1]) 2019; 11 Niu (C9TB02643F-(cit21)/*[position()=1]) 2017; 16 Nudelman (C9TB02643F-(cit16)/*[position()=1]) 2013; 183 Campi (C9TB02643F-(cit5)/*[position()=1]) 2017; 9 Gao (C9TB02643F-(cit35)/*[position()=1]) 2013; 10 Zimmermann (C9TB02643F-(cit44)/*[position()=1]) 2019; 34 Liu (C9TB02643F-(cit22)/*[position()=1]) 2011; 23 Deymier (C9TB02643F-(cit26)/*[position()=1]) 2015; 127 Meyers (C9TB02643F-(cit33)/*[position()=1]) 2013; 339 Fritton (C9TB02643F-(cit38)/*[position()=1]) 2009; 41 Wingender (C9TB02643F-(cit6)/*[position()=1]) 2016; 52 Du (C9TB02643F-(cit53)/*[position()=1]) 2019; 107 Liu (C9TB02643F-(cit18)/*[position()=1]) 2011; 7 Tertuliano (C9TB02643F-(cit34)/*[position()=1]) 2016; 15 Du (C9TB02643F-(cit19)/*[position()=1]) 2018; 113 Cantaert (C9TB02643F-(cit24)/*[position()=1]) 2013; 1 Lin (C9TB02643F-(cit52)/*[position()=1]) 2020 Wegst (C9TB02643F-(cit2)/*[position()=1]) 2015; 14 Liu (C9TB02643F-(cit23)/*[position()=1]) 2011; 32 Liu (C9TB02643F-(cit9)/*[position()=1]) 2018; 15 He (C9TB02643F-(cit46)/*[position()=1]) 2010; 20 Hu (C9TB02643F-(cit25)/*[position()=1]) 2015; 1 Zhang (C9TB02643F-(cit40)/*[position()=1]) 2015; 76 Ovejero (C9TB02643F-(cit4)/*[position()=1]) 2019; 34 Qi (C9TB02643F-(cit32)/*[position()=1]) 2018; 4 Niu (C9TB02643F-(cit41)/*[position()=1]) 2017; 5 Wang (C9TB02643F-(cit10)/*[position()=1]) 2012; 11 Weiner (C9TB02643F-(cit17)/*[position()=1]) 1999; 126 Green (C9TB02643F-(cit43)/*[position()=1]) 2019; 34 Wang (C9TB02643F-(cit48)/*[position()=1]) 2013; 12 Liu (C9TB02643F-(cit39)/*[position()=1]) 2014; 55 Dan (C9TB02643F-(cit15)/*[position()=1]) 2016; 11 Du (C9TB02643F-(cit11)/*[position()=1]) 2016; 82 Niu (C9TB02643F-(cit45)/*[position()=1]) 2017; 70 Aizenberg (C9TB02643F-(cit28)/*[position()=1]) 1997; 119 Suzuki (C9TB02643F-(cit30)/*[position()=1]) 2009; 28 Panwar (C9TB02643F-(cit12)/*[position()=1]) 2018; 65 Rys (C9TB02643F-(cit37)/*[position()=1]) 2016; 52 Wang (C9TB02643F-(cit31)/*[position()=1]) 2013; 15 |
References_xml | – volume: 339 start-page: 773 year: 2013 ident: C9TB02643F-(cit33)/*[position()=1] publication-title: Science doi: 10.1126/science.1220854 – volume: 70 start-page: 1120 year: 2017 ident: C9TB02643F-(cit45)/*[position()=1] publication-title: Mater. Sci. Eng., C doi: 10.1016/j.msec.2016.04.095 – volume: 34 start-page: 661 year: 2019 ident: C9TB02643F-(cit4)/*[position()=1] publication-title: J. Bone Miner. Res. doi: 10.1002/jbmr.3638 – volume: 29 start-page: 3888 year: 2008 ident: C9TB02643F-(cit51)/*[position()=1] publication-title: Biomaterials doi: 10.1016/j.biomaterials.2008.06.016 – volume: 9 start-page: 1004 year: 2010 ident: C9TB02643F-(cit8)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat2875 – volume: 15 start-page: 980 year: 2018 ident: C9TB02643F-(cit9)/*[position()=1] publication-title: Int. J. Appl. Ceram. Technol. doi: 10.1111/ijac.12820 – volume: 1 start-page: 16041 year: 2016 ident: C9TB02643F-(cit20)/*[position()=1] publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.41 – volume: 12 start-page: 1144 year: 2013 ident: C9TB02643F-(cit48)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat3787 – volume: 5 start-page: 9141 year: 2017 ident: C9TB02643F-(cit41)/*[position()=1] publication-title: J. Mater. Chem. B doi: 10.1039/C7TB02223A – volume: 10 start-page: 1560 year: 2013 ident: C9TB02643F-(cit35)/*[position()=1] publication-title: Int. J. Med. Sci. doi: 10.7150/ijms.6611 – volume: 35 start-page: E119 year: 2011 ident: C9TB02643F-(cit13)/*[position()=1] publication-title: Artif. Organs doi: 10.1111/j.1525-1594.2011.01274.x – volume: 183 start-page: 258 year: 2013 ident: C9TB02643F-(cit16)/*[position()=1] publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2013.04.003 – volume: 1 start-page: 669 year: 2015 ident: C9TB02643F-(cit25)/*[position()=1] publication-title: ACS Biomater. Sci. Eng. doi: 10.1021/acsbiomaterials.5b00088 – volume: 54 start-page: 131 year: 2016 ident: C9TB02643F-(cit42)/*[position()=1] publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2015.09.024 – volume: 20 start-page: 3568 year: 2010 ident: C9TB02643F-(cit46)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201000993 – volume: 52 start-page: 384 year: 2016 ident: C9TB02643F-(cit6)/*[position()=1] publication-title: Matrix Biol. doi: 10.1016/j.matbio.2016.02.004 – volume: 127 start-page: 75 year: 2015 ident: C9TB02643F-(cit26)/*[position()=1] publication-title: Biomaterials doi: 10.1016/j.biomaterials.2017.02.029 – volume: 23 start-page: 975 year: 2011 ident: C9TB02643F-(cit22)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201003882 – volume: 4 start-page: 2758 year: 2018 ident: C9TB02643F-(cit32)/*[position()=1] publication-title: ACS Biomater. Sci. Eng. doi: 10.1021/acsbiomaterials.8b00512 – volume: 32 start-page: 1291 year: 2011 ident: C9TB02643F-(cit23)/*[position()=1] publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.10.018 – volume: 113 start-page: 450 year: 2018 ident: C9TB02643F-(cit19)/*[position()=1] publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2018.02.136 – start-page: 1 year: 2020 ident: C9TB02643F-(cit52)/*[position()=1] publication-title: Tissue Eng., Part B – volume: 34 start-page: 1461 year: 2019 ident: C9TB02643F-(cit44)/*[position()=1] publication-title: J. Bone Miner. Res. doi: 10.1002/jbmr.3730 – volume: 107 start-page: 2403 year: 2019 ident: C9TB02643F-(cit53)/*[position()=1] publication-title: J. Biomed. Mater. Res., Part A doi: 10.1002/jbm.a.36747 – volume: 360 start-page: 2183 year: 2018 ident: C9TB02643F-(cit1)/*[position()=1] publication-title: Science doi: 10.1126/science.aao2189 – volume: 34 start-page: 1461 year: 2019 ident: C9TB02643F-(cit43)/*[position()=1] publication-title: J. Bone Miner. Res. doi: 10.1002/jbmr.3859 – volume: 11 start-page: 487 year: 2016 ident: C9TB02643F-(cit15)/*[position()=1] publication-title: Nanoscale Res. Lett. doi: 10.1186/s11671-016-1669-1 – volume: 10 start-page: 18980 year: 2018 ident: C9TB02643F-(cit27)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C8NR02078G – volume: 1 start-page: 6586 year: 2013 ident: C9TB02643F-(cit24)/*[position()=1] publication-title: J. Mater. Chem. B doi: 10.1039/c3tb21296c – volume: 10 start-page: 8689 year: 2018 ident: C9TB02643F-(cit50)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C8NR00677F – volume: 126 start-page: 241 year: 1999 ident: C9TB02643F-(cit17)/*[position()=1] publication-title: J. Struct. Biol. doi: 10.1006/jsbi.1999.4107 – volume: 52 start-page: 397 year: 2016 ident: C9TB02643F-(cit7)/*[position()=1] publication-title: Matrix Biol. doi: 10.1016/j.matbio.2016.02.011 – volume: 15 start-page: 6151 year: 2013 ident: C9TB02643F-(cit31)/*[position()=1] publication-title: CrystEngComm doi: 10.1039/c3ce40449h – volume: 27 start-page: 465 year: 2011 ident: C9TB02643F-(cit29)/*[position()=1] publication-title: Dent. Mater. doi: 10.1016/j.dental.2011.01.008 – volume: 41 start-page: 347 year: 2009 ident: C9TB02643F-(cit38)/*[position()=1] publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fluid.010908.165136 – volume: 11 start-page: 724 year: 2012 ident: C9TB02643F-(cit10)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat3362 – volume: 10 start-page: 12228 year: 2018 ident: C9TB02643F-(cit36)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C8NR02002G – volume: 119 start-page: 881 year: 1997 ident: C9TB02643F-(cit28)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9628821 – volume: 14 start-page: 23 year: 2015 ident: C9TB02643F-(cit2)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat4089 – volume: 16 start-page: 370 year: 2017 ident: C9TB02643F-(cit21)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat4789 – volume: 65 start-page: 30 year: 2018 ident: C9TB02643F-(cit12)/*[position()=1] publication-title: Matrix Biol. doi: 10.1016/j.matbio.2017.06.004 – volume: 55 start-page: 2739 year: 2014 ident: C9TB02643F-(cit39)/*[position()=1] publication-title: Invest. Ophthalmol. Visual Sci. doi: 10.1167/iovs.13-12633 – volume: 7 start-page: 1742 year: 2011 ident: C9TB02643F-(cit18)/*[position()=1] publication-title: Acta Biomater. doi: 10.1016/j.actbio.2010.11.028 – volume: 207 start-page: 61 year: 2019 ident: C9TB02643F-(cit3)/*[position()=1] publication-title: Biomaterials doi: 10.1016/j.biomaterials.2019.03.041 – volume: 82 start-page: 580 year: 2016 ident: C9TB02643F-(cit11)/*[position()=1] publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2015.10.039 – volume: 59 start-page: 93 year: 2014 ident: C9TB02643F-(cit49)/*[position()=1] publication-title: Bone doi: 10.1016/j.bone.2013.10.023 – volume: 76 start-page: 76 year: 2015 ident: C9TB02643F-(cit40)/*[position()=1] publication-title: Bone doi: 10.1016/j.bone.2015.03.022 – volume: 73 start-page: 137 year: 2017 ident: C9TB02643F-(cit47)/*[position()=1] publication-title: Mater. Sci. Eng., C doi: 10.1016/j.msec.2016.12.079 – volume: 15 start-page: 1195 year: 2016 ident: C9TB02643F-(cit34)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat4719 – volume: 52 start-page: 413 year: 2016 ident: C9TB02643F-(cit37)/*[position()=1] publication-title: Matrix Biol. doi: 10.1016/j.matbio.2016.02.002 – volume: 28 start-page: 221 year: 2009 ident: C9TB02643F-(cit30)/*[position()=1] publication-title: Matrix Biol. doi: 10.1016/j.matbio.2009.03.006 – volume: 9 start-page: 17274 year: 2017 ident: C9TB02643F-(cit5)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C7NR05013E – volume: 11 start-page: 2721 year: 2019 ident: C9TB02643F-(cit14)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C8NR09417A |
SSID | ssj0000816834 |
Score | 2.504837 |
Snippet | Periodic fluid shear stress (FSS) is one of the main mechanical microenvironments in mineralization of bone matrix. To elucidate the mechanism of periodic FSS... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2562 |
SubjectTerms | Animals Apatite Biocompatible Materials - chemistry Biocompatible Materials - pharmacology Biomedical materials Bone matrix bone substitutes Bone Substitutes - chemistry Bone Substitutes - pharmacology Calcium phosphates Calcium Phosphates - chemistry Cell Proliferation - drug effects Cell Survival - drug effects Cells, Cultured Collagen Collagen Type I - chemistry Collagen Type I - pharmacology Crystals Fluid flow Fourier transform infrared spectroscopy Fourier transforms Mechanical loading Mechanical stimuli Mice Microenvironments Mineralization Particle Size Phosphorus Polyacrylic acid Rats Shear stress Stress, Mechanical Structural hierarchy Substitute bone Surface Properties Surgical implants Transmission electron microscopy |
Title | Highly aligned hierarchical intrafibrillar mineralization of collagen induced by periodic fluid shear stress |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32101230 https://www.proquest.com/docview/2384754750 https://www.proquest.com/docview/2365221353 https://www.proquest.com/docview/2431847559 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbK9gIPiNugYyAjeEFRSuJLUj9uo1VBZTyQSn2LEicelbq26pKH8SP4zRw7zqWsoIFURe2x5aQ5X44_x-eC0DuuBMzbaeCqIZMuC5nnpixNXX8Y5rBqBkKrdLzzl4tgMmOf53ze6_3seC2VRTqQP_bGlfyPVkEGetVRsv-g2WZQEMB30C8cQcNwvJOOtZPG8sYBKn0J1tLRZa3NxoA0mTSKbaK0Q_9SO5peLUx6aRt1WTmTQwMMDT2zUlZEVKc9XmcL6ahlucica13u2oaT_IHFAuGt_qkj69JxA-esigKqW4xHaCfZ0-_7-R_LCjXJ6qqeSM1OiRHPS5W3wsnaCL-1AWxzI9DOud8t0O07DOJ1XF-MqSMe91y9AdS1y8Mu_KizGQA7Iy6YGNI1uNwa89z-rFpvTQwe1XlVpShSWHQyqtrpr97yv_gaj2fTaRyN5tE9dEhg2QF28_B0FH2aNm_tTJkS46rQXHKd85aKD-3wuyzn1tIFiMy2LjBjiEz0CD20usOnFZweo16-eoIedPJSPkXLCljYAgt3gYV3gYV3gYXXCtfAwhZYOL3BNbCwARY2wMIVsJ6h2XgUnU9cW5bDlSwghUvynISaCeZCgQEQGUs8rvxM-rmX0iQQXCbS87MAJCykinGiOOWZLxJBFaX0CB2s1qv8BcJUScUZSVIg4UwNPaFSIPRShSL0KRn6ffS-vo2xtDnrdemUZWx8J6iIz0V0Zm75uI_eNn03VaaWvb1Oam3E9km-joG2spDDx-ujN00zPDN68yxZ5etS9wlgqaKrxPylD7BxPRIXffS80nRzKTpWDlginOEIVN-IW8j00fH-hniTqeM7nPMlut8-WyfooNiW-StgzEX62sL4F57TxXs |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+aligned+hierarchical+intrafibrillar+mineralization+of+collagen+induced+by+periodic+fluid+shear+stress&rft.jtitle=Journal+of+materials+chemistry.+B%2C+Materials+for+biology+and+medicine&rft.au=Du%2C+Tianming&rft.au=Niu%2C+Xufeng&rft.au=Hou%2C+Sen&rft.au=Xu%2C+Menghan&rft.date=2020-04-01&rft.issn=2050-7518&rft.volume=8&rft.issue=13+p.2562-2572&rft.spage=2562&rft.epage=2572&rft_id=info:doi/10.1039%2Fc9tb02643f&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-750X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-750X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-750X&client=summon |