Bioprocess for Production, Characteristics, and Biotechnological Applications of Fungal Phytases
Phytases are a group of enzymes that hydrolyze the phospho-monoester bonds of phytates. Phytates are one of the major forms of phosphorus found in plant tissues. Fungi are mainly used for phytase production. The production of fungal phytases has been achieved under three different fermentation metho...
Saved in:
Published in | Frontiers in microbiology Vol. 11; p. 188 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
14.02.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 1664-302X 1664-302X |
DOI | 10.3389/fmicb.2020.00188 |
Cover
Loading…
Abstract | Phytases are a group of enzymes that hydrolyze the phospho-monoester bonds of phytates. Phytates are one of the major forms of phosphorus found in plant tissues. Fungi are mainly used for phytase production. The production of fungal phytases has been achieved under three different fermentation methods including solid-state, semi-solid-state, and submerged fermentation. Agricultural residues and other waste materials have been used as substrates for the evaluation of enzyme production in the fermentation process. Nutrients, physical conditions such as pH and temperature, and protease resistance are important factors for increasing phytase production. Fungal phytases are considered monomeric proteins and generally possess a molecular weight of between 14 and 353 kDa. Fungal phytases display a broad substrate specificity with optimal pH and temperature ranges between 1.3 and 8.0 and 37-67°C, respectively. The crystal structure of phytase has been studied in
. Notably, thermostability engineering has been used to improve relevant enzyme properties. Furthermore, fungal phytases are widely used in food and animal feed additives to improve the efficiency of phosphorus intake and reduce the amount of phosphorus in the environment. |
---|---|
AbstractList | Phytases are a group of enzymes that hydrolyze the phospho-monoester bonds of phytates. Phytates are one of the major forms of phosphorus found in plant tissues. Fungi are mainly used for phytase production. The production of fungal phytases has been achieved under three different fermentation methods including solid-state, semi-solid-state, and submerged fermentation. Agricultural residues and other waste materials have been used as substrates for the evaluation of enzyme production in the fermentation process. Nutrients, physical conditions such as pH and temperature, and protease resistance are important factors for increasing phytase production. Fungal phytases are considered monomeric proteins and generally possess a molecular weight of between 14 and 353 kDa. Fungal phytases display a broad substrate specificity with optimal pH and temperature ranges between 1.3 and 8.0 and 37–67°C, respectively. The crystal structure of phytase has been studied in
Aspergillus
. Notably, thermostability engineering has been used to improve relevant enzyme properties. Furthermore, fungal phytases are widely used in food and animal feed additives to improve the efficiency of phosphorus intake and reduce the amount of phosphorus in the environment. Phytases are a group of enzymes that hydrolyze the phospho-monoester bonds of phytates. Phytates are one of the major forms of phosphorus found in plant tissues. Fungi are mainly used for phytase production. The production of fungal phytases has been achieved under three different fermentation methods including solid-state, semi-solid-state, and submerged fermentation. Agricultural residues and other waste materials have been used as substrates for the evaluation of enzyme production in the fermentation process. Nutrients, physical conditions such as pH and temperature, and protease resistance are important factors for increasing phytase production. Fungal phytases are considered monomeric proteins and generally possess a molecular weight of between 14 and 353 kDa. Fungal phytases display a broad substrate specificity with optimal pH and temperature ranges between 1.3 and 8.0 and 37-67°C, respectively. The crystal structure of phytase has been studied in . Notably, thermostability engineering has been used to improve relevant enzyme properties. Furthermore, fungal phytases are widely used in food and animal feed additives to improve the efficiency of phosphorus intake and reduce the amount of phosphorus in the environment. Phytases are a group of enzymes that hydrolyze the phospho-monoester bonds of phytates. Phytates are one of the major forms of phosphorus found in plant tissues. Fungi are mainly used for phytase production. The production of fungal phytases has been achieved under three different fermentation methods including solid-state, semi-solid-state, and submerged fermentation. Agricultural residues and other waste materials have been used as substrates for the evaluation of enzyme production in the fermentation process. Nutrients, physical conditions such as pH and temperature, and protease resistance are important factors for increasing phytase production. Fungal phytases are considered monomeric proteins and generally possess a molecular weight of between 14 and 353 kDa. Fungal phytases display a broad substrate specificity with optimal pH and temperature ranges between 1.3 and 8.0 and 37-67°C, respectively. The crystal structure of phytase has been studied in Aspergillus. Notably, thermostability engineering has been used to improve relevant enzyme properties. Furthermore, fungal phytases are widely used in food and animal feed additives to improve the efficiency of phosphorus intake and reduce the amount of phosphorus in the environment.Phytases are a group of enzymes that hydrolyze the phospho-monoester bonds of phytates. Phytates are one of the major forms of phosphorus found in plant tissues. Fungi are mainly used for phytase production. The production of fungal phytases has been achieved under three different fermentation methods including solid-state, semi-solid-state, and submerged fermentation. Agricultural residues and other waste materials have been used as substrates for the evaluation of enzyme production in the fermentation process. Nutrients, physical conditions such as pH and temperature, and protease resistance are important factors for increasing phytase production. Fungal phytases are considered monomeric proteins and generally possess a molecular weight of between 14 and 353 kDa. Fungal phytases display a broad substrate specificity with optimal pH and temperature ranges between 1.3 and 8.0 and 37-67°C, respectively. The crystal structure of phytase has been studied in Aspergillus. Notably, thermostability engineering has been used to improve relevant enzyme properties. Furthermore, fungal phytases are widely used in food and animal feed additives to improve the efficiency of phosphorus intake and reduce the amount of phosphorus in the environment. Phytases are a group of enzymes that hydrolyze the phospho-monoester bonds of phytates. Phytates are one of the major forms of phosphorus found in plant tissues. Fungi are mainly used for phytase production. The production of fungal phytases has been achieved under three different fermentation methods including solid-state, semi-solid-state, and submerged fermentation. Agricultural residues and other waste materials have been used as substrates for the evaluation of enzyme production in the fermentation process. Nutrients, physical conditions such as pH and temperature, and protease resistance are important factors for increasing phytase production. Fungal phytases are considered monomeric proteins and generally possess a molecular weight of between 14 and 353 kDa. Fungal phytases display a broad substrate specificity with optimal pH and temperature ranges between 1.3 and 8.0 and 37–67°C, respectively. The crystal structure of phytase has been studied in Aspergillus. Notably, thermostability engineering has been used to improve relevant enzyme properties. Furthermore, fungal phytases are widely used in food and animal feed additives to improve the efficiency of phosphorus intake and reduce the amount of phosphorus in the environment. |
Author | Suwannarach, Nakarin Jatuwong, Kritsana Kumla, Jaturong Kakumyan, Pattana Penkhrue, Watsana Lumyong, Saisamorn |
AuthorAffiliation | 2 Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University , Chiang Mai , Thailand 3 Ph.D. Degree Program in Applied Microbiology, Department of Biology, Faculty of Science, Chiang Mai University , Chiang Mai , Thailand 6 Academy of Science, The Royal Society of Thailand , Bangkok , Thailand 5 School of Science, Mae Fah Luang University , Chiang Rai , Thailand 1 Department of Biology, Faculty of Science, Chiang Mai University , Chiang Mai , Thailand 4 School of Preclinic, Institute of Science, Suranaree University of Technology , Nakhon Ratchasima , Thailand |
AuthorAffiliation_xml | – name: 4 School of Preclinic, Institute of Science, Suranaree University of Technology , Nakhon Ratchasima , Thailand – name: 5 School of Science, Mae Fah Luang University , Chiang Rai , Thailand – name: 1 Department of Biology, Faculty of Science, Chiang Mai University , Chiang Mai , Thailand – name: 2 Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University , Chiang Mai , Thailand – name: 3 Ph.D. Degree Program in Applied Microbiology, Department of Biology, Faculty of Science, Chiang Mai University , Chiang Mai , Thailand – name: 6 Academy of Science, The Royal Society of Thailand , Bangkok , Thailand |
Author_xml | – sequence: 1 givenname: Kritsana surname: Jatuwong fullname: Jatuwong, Kritsana – sequence: 2 givenname: Nakarin surname: Suwannarach fullname: Suwannarach, Nakarin – sequence: 3 givenname: Jaturong surname: Kumla fullname: Kumla, Jaturong – sequence: 4 givenname: Watsana surname: Penkhrue fullname: Penkhrue, Watsana – sequence: 5 givenname: Pattana surname: Kakumyan fullname: Kakumyan, Pattana – sequence: 6 givenname: Saisamorn surname: Lumyong fullname: Lumyong, Saisamorn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32117182$$D View this record in MEDLINE/PubMed |
BookMark | eNp1ks1rFDEYxoNUbK29e5I5euiubz4myVyEdrFaKNiDgreYz92U2cmYzAj9783uttIKhkBekuf5vSR5XqOjIQ0eobcYlpTK7kPYRmuWBAgsAbCUL9AJ5pwtKJAfR0_qY3RWyh3UwaoW4BU6pgRjgSU5QT8vYxpzsr6UJqTc3ObkZjvFNJw3q43O2k4-xzJFW84bPbim6idvN0Pq0zpa3TcX49jXYmcpTQrN1Tys6_bt5n7SxZc36GXQffFnD-sp-n716dvqy-Lm6-fr1cXNwjJOpgX2oEUwLBhOOWNdkM6R1nBMZRBGY-Mc9RRM13KrHVgKILVsAzAureGEnqLrA9clfafGHLc636uko9pvpLxWOtdr9F4JI7ggUnjWArOGaiEq3PouMKc7aSvr44E1zmbrnfXDlHX_DPr8ZIgbtU6_lQDK6qyA9w-AnH7NvkxqG4v1fa8Hn-aiCOWdlLKTbZW-e9rrb5PHL6oCfhDYnErJPigbp_1z19axVxjULg5qHwe1i4Pax6Ea4R_jI_u_lj8y5rq7 |
CitedBy_id | crossref_primary_10_1007_s00253_023_12660_8 crossref_primary_10_1186_s43014_024_00259_z crossref_primary_10_1007_s13399_021_01672_x crossref_primary_10_3389_fsufs_2021_611259 crossref_primary_10_1007_s10562_021_03886_0 crossref_primary_10_1007_s00284_023_03471_1 crossref_primary_10_1007_s11756_023_01403_9 crossref_primary_10_1080_10242422_2020_1785434 crossref_primary_10_3389_fmicb_2023_1127249 crossref_primary_10_1080_15476286_2021_1872170 crossref_primary_10_1080_87559129_2023_2195188 crossref_primary_10_1134_S0003683823602883 crossref_primary_10_1016_j_envpol_2022_119703 crossref_primary_10_1002_tcr_202300333 crossref_primary_10_1186_s43014_024_00278_w crossref_primary_10_3390_microorganisms10112182 crossref_primary_10_1007_s11756_023_01391_w crossref_primary_10_1016_j_lwt_2021_113065 crossref_primary_10_1590_1519_6984_244205 crossref_primary_10_1016_j_biteb_2021_100660 crossref_primary_10_3390_jof7040286 crossref_primary_10_1080_01490451_2021_1977432 crossref_primary_10_1007_s00248_024_02476_y crossref_primary_10_1073_pnas_2118122119 crossref_primary_10_1155_2024_9400374 crossref_primary_10_1134_S0026261722601452 crossref_primary_10_3390_ani14243599 crossref_primary_10_1007_s12602_021_09775_7 crossref_primary_10_1111_raq_12790 crossref_primary_10_1007_s11104_020_04764_1 crossref_primary_10_1007_s13205_021_02847_z crossref_primary_10_1007_s11356_022_18578_4 crossref_primary_10_1016_j_yrtph_2021_105091 crossref_primary_10_18359_rfcb_5610 crossref_primary_10_1016_j_lwt_2024_116558 crossref_primary_10_1007_s10123_023_00350_4 crossref_primary_10_1016_j_jafr_2023_100559 crossref_primary_10_1007_s10068_024_01690_1 crossref_primary_10_2174_18742858_v16_e2202160 crossref_primary_10_1016_j_biortech_2023_129030 crossref_primary_10_21603_2074_9414_2022_4_2399 crossref_primary_10_3390_agronomy14123029 crossref_primary_10_1007_s10529_020_03069_8 crossref_primary_10_3390_catal12040385 crossref_primary_10_1080_00275514_2024_2350337 crossref_primary_10_1016_j_sajb_2023_11_021 crossref_primary_10_3390_ijms22042164 crossref_primary_10_3390_microorganisms12020346 crossref_primary_10_1007_s00203_020_02104_6 crossref_primary_10_1080_02648725_2023_2182537 crossref_primary_10_1007_s10562_021_03752_z |
Cites_doi | 10.1016/j.ibiod.2014.12.013 10.1016/0141-0229(83)90012-1 10.1385/ABAB:102-103:1-6:251 10.1016/j.ijbiomac.2018.04.086 10.1046/j.1365-2621.2002.00621.x 10.1590/S1517-838220120004000035 10.1007/978-94-007-2214-9_1 10.1111/ppl.12718 10.1023/A:1009690730620 10.1016/S0969-2126(01)00637-2 10.4236/fns.2017.87052 10.1016/S0733-5210(09)80126-4 10.1071/AN17389 10.1007/BF01569540 10.1186/s12896-016-0258-9 10.5713/ajas.2010.90592 10.1263/jbb.102.564 10.1016/S0377-8401(00)00227-3 10.1016/j.jbiotec.2004.03.001 10.1007/s00253-018-9115-1 10.1007/BF02817409 10.1134/S0026261712030095 10.1007/s11103-004-5293-6 10.5943/mycosphere/si/3b/9 10.5897/AJB2017.16267 10.1111/raq.12138 10.1016/j.anifeedsci.2019.04.005 10.1016/j.procbio.2019.03.015 10.1016/j.tifs.2004.03.008 10.1021/jf0600152 10.1155/2013/540239 10.4236/aim.2016.61003 10.5897/AJMR2013.6136 10.17113/ftb.56.01.18.5491 10.1007/s12010-009-8593-0 10.1016/j.ijbiomac.2019.03.140 10.1016/j.biortech.2019.01.065 10.1016/j.sjbs.2019.07.006 10.1007/s00253-010-2542-2 10.1007/s00449-013-1028-x 10.1590/S1516-89132010000600026 10.1007/s10529-009-9992-6 10.1016/j.bej.2016.07.015 10.1079/BJN19900052 10.1016/b0-12-227055-x/00923-8 10.1016/j.procbio.2012.12.021 10.1046/j.1439-0396.2000.00246.x 10.1007/s10930-013-9489-y 10.1128/aem.65.2.367-373.1999 10.1007/s00449-014-1349-4 10.1385/1-59259-846-3:209 10.1007/s12033-015-9909-7 10.1016/S0044-8486(99)00156-8 10.1007/s13205-018-1308-x 10.1016/0377-8401(96)00959-5 10.1590/rbz4720170297 10.3923/ijp.2017.808.817 10.1007/s00253-011-3279-2 10.1016/j.micres.2014.06.005 10.1016/0960-8524(95)00041-C 10.1016/S0065-2164(00)47004-8 10.1556/066.2015.44.0027 10.1016/0168-1605(88)90086-4 10.1155/2014/392615 10.1080/10826068.2013.868357 10.1002/jsfa.6998 10.1016/j.jmb.2004.03.057 10.1021/jf040220m 10.1016/j.livsci.2007.05.014 10.1002/bit.21713 10.1371/journal.pone.0060801 10.1007/s001220051 10.1080/10242422.2017.1393417 10.1016/S1360-1385(01)02222-1 10.1007/s12033-017-0020-0 10.1007/BF00166085 10.1590/S1516-89132011000600001 10.1016/j.biori.2017.01.002 10.1016/S0032-9592(02)00079-1 10.1088/1755-1315/166/1/012010 10.4161/bbug.2.2.13757 10.18178/ijfe.4.4.263-267 10.1016/j.str.2004.06.015 10.1016/S0960-8524(02)00145-1 10.3382/japr/pfv011 10.1038/sj.jim.2900811 10.1016/j.jbiotec.2008.08.011 10.1038/nbt0793-811 10.1016/0929-1393(95)00084-4 10.3389/fpls.2016.01405 10.1080/10409239891204161 10.1128/AEM.02970-06 10.1016/j.procbio.2004.06.040 10.1186/s13568-018-0725-x 10.6026/97320630009963 10.1111/j.1749-7345.2002.tb00473.x 10.2527/jas.53892 10.1038/nsb0397-185 10.1016/j.bbrc.2010.06.024 10.1006/abbi.1999.1115 10.1021/jf010642l 10.1385/ABAB:118:1-3:205 10.1023/B:WIBI.0000 10.1016/S0032-9592(99)00088-6 10.1016/j.procbio.2003.12.005 10.1016/S0006-291X(03)01002-7 10.1146/annurev-animal-031412-103717 10.5713/ajas.17.0149 10.1080/13102818.2005.10817235 10.5897/AJB10.2625 10.1016/j.jbiotec.2007.08.028 10.1007/s12257-014-0175-5 10.1590/S1516-635X2012000300004 10.1007/s00253-005-0005-y 10.9755/ejfa.v25i1.9138 10.1007/978-3-030-14846-1_2 10.1007/s11248-016-9983-z 10.1021/acs.jafc.5b01996 10.1007/s11248-007-9138-3 10.1017/S0960258500000039 10.1007/s00299-005-0036-y 10.1016/j.biortech.2010.01.001 10.1002/jobm.201200218 10.1007/s10295-008-0402-1 10.1007/s10295-005-0214-5 10.1016/j.apsoil.2005.08.005 10.1007/s13205-017-0797-3 10.1016/j.ijbiomac.2016.09.102 10.1007/s12010-015-1851-4 10.1016/j.sjbs.2013.06.004 10.1111/jpn.12258 10.1186/s40064-016-3082-8 10.1111/j.1439-0396.2011.01169.x 10.1016/j.jcs.2009.06.007 10.1556/AMicr.54.2007.2.3 10.1079/9781845931520.0078 10.1111/j.1749-6632.1982.tb40302.x 10.1104/pp.114.3.1103 10.1111/jpn.12236 10.1016/j.foodchem.2009.11.052 10.1186/s13568-017-0370-9 10.1016/S0960-8524(00)00139-5 10.1016/j.biortech.2012.05.032 10.1007/s40093-018-0220-z 10.1111/j.1365-2672.2011.05181.x 10.1016/S0065-2164(08)70375-7 10.1046/j.1365-2621.2002.00618.x 10.1016/B0-12-348530-4/00161-2 10.1016/j.bcab.2018.11.017 10.17221/8596-CJAS 10.1007/s13205-016-0485-8 10.1007/s00449-015-1384-9 10.3382/ps.0471842 10.1128/AEM.67.10.4701-4707.2001 10.5402/2012/479167 10.1016/j.biortech.2007.01.007 10.1016/S1389-1723(04)70201-7 10.1016/j.biortech.2017.05.060 10.1016/j.biortech.2005.02.046 10.1016/j.aaspro.2016.12.005 10.1080/713609297 10.1007/s00449-012-0692-6 10.1021/jf00080a006 10.1080/01904167.2015.1014561 10.1046/j.1365-313x.2001.00998.x 10.1016/j.procbio.2016.07.027 10.1007/978-981-10-6593-4 10.1016/j.jbiosc.2010.08.003 10.1016/j.aninu.2016.11.004 10.1002/bit.23313 10.1021/jf900261n 10.1016/0005-2744(78)90043-8 |
ContentType | Journal Article |
Copyright | Copyright © 2020 Jatuwong, Suwannarach, Kumla, Penkhrue, Kakumyan and Lumyong. Copyright © 2020 Jatuwong, Suwannarach, Kumla, Penkhrue, Kakumyan and Lumyong. 2020 Jatuwong, Suwannarach, Kumla, Penkhrue, Kakumyan and Lumyong |
Copyright_xml | – notice: Copyright © 2020 Jatuwong, Suwannarach, Kumla, Penkhrue, Kakumyan and Lumyong. – notice: Copyright © 2020 Jatuwong, Suwannarach, Kumla, Penkhrue, Kakumyan and Lumyong. 2020 Jatuwong, Suwannarach, Kumla, Penkhrue, Kakumyan and Lumyong |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3389/fmicb.2020.00188 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1664-302X |
ExternalDocumentID | oai_doaj_org_article_7b767287e4504cb3a77d3ece9f4da98c PMC7034034 32117182 10_3389_fmicb_2020_00188 |
Genre | Journal Article Review |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK ECGQY GROUPED_DOAJ GX1 HYE KQ8 M48 M~E O5R O5S OK1 PGMZT RNS RPM IPNFZ NPM RIG 7X8 5PM |
ID | FETCH-LOGICAL-c462t-1e0a7fb4fb636449f8dd25b6138f7ba1bdd3e30b956cad0c3008a85f0468cb623 |
IEDL.DBID | M48 |
ISSN | 1664-302X |
IngestDate | Wed Aug 27 01:31:50 EDT 2025 Thu Aug 21 18:16:15 EDT 2025 Thu Jul 10 18:13:42 EDT 2025 Mon Jul 21 05:56:30 EDT 2025 Tue Jul 01 01:52:58 EDT 2025 Thu Apr 24 22:52:32 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | phytase production biotechnological applications phytase purification genetic engineering |
Language | English |
License | Copyright © 2020 Jatuwong, Suwannarach, Kumla, Penkhrue, Kakumyan and Lumyong. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c462t-1e0a7fb4fb636449f8dd25b6138f7ba1bdd3e30b956cad0c3008a85f0468cb623 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 Reviewed by: Satyanarayana Tulasi, University of Delhi, India; Giuseppe Dionisio, Aarhus University, Denmark; Hasan Bugra Coban, Dokuz Eylül University, Turkey Edited by: Alberto Jiménez, University of Salamanca, Spain This article was submitted to Microbiotechnology, Ecotoxicology and Bioremediation, a section of the journal Frontiers in Microbiology |
OpenAccessLink | https://doaj.org/article/7b767287e4504cb3a77d3ece9f4da98c |
PMID | 32117182 |
PQID | 2369888985 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7b767287e4504cb3a77d3ece9f4da98c pubmedcentral_primary_oai_pubmedcentral_nih_gov_7034034 proquest_miscellaneous_2369888985 pubmed_primary_32117182 crossref_citationtrail_10_3389_fmicb_2020_00188 crossref_primary_10_3389_fmicb_2020_00188 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-02-14 |
PublicationDateYYYYMMDD | 2020-02-14 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-14 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in microbiology |
PublicationTitleAlternate | Front Microbiol |
PublicationYear | 2020 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Shin (B144) 2001; 9 Papagianni (B115) 2001; 39 Sandhya (B137) 2015; 7 Singh (B153) 2014; 99 Zyla (B196) 2001; 89 Rosell (B131) 2009; 50 Selle (B140) 2008; 113 Papagianni (B114) 1999; 35 Mullaney (B102) 2000; 47 Vats (B171) 2005; 32 Qasim (B119) 2017; 8 Kumar (B74) 2013; 9 Nelson (B109) 1968; 47 Parashar (B116) 2016; 51 Han (B54) 1999; 364 Singh (B155) 2016; 6 Englmaierova (B37) 2015; 60 Kluge (B70) 2018; 102 Mullen (B104) 2005 Abid (B1) 2017; 26 Tarafdar (B160) 2006; 32 Zhang (B186); 53 Casey (B16) 2004; 110 Boyce (B9) 2007; 132 Han (B56) 1988; 36 Driouch (B34) 2012; 109 McTigue (B95) 1978; 523 Bujna (B14) 2016; 7 Mohsin (B100) 2017; 59 Chen (B19) 2008; 17 Yoon (B185) 2011; 91 Greiner (B47) 2012 Lata (B78) 2013; 4 Shahryari (B143) 2018; 7 Zhang (B191) 2007; 73 Gupta (B52) 2014; 19 Karthik (B66) 2018; 36 Singh (B154) 2018; 115 Thakur (B162) 2017; 4 Katina (B67) 2005; 16 Gulati (B49) 2007; 54 Oakley (B111) 2010; 397 Haritha (B57) 2009; 4 Salmon (B136) 2012; 35 Ajith (B2) 2019; 9 Vats (B170) 2002; 38 Neira-Vielma (B108) 2018; 17 Gull (B50) 2013; 7 Raveendran (B124) 2018; 56 Lucca (B90) 2001; 102 Coban (B24); 38 Singh (B148) 2018; 8 Rodriguez-Fernandez (B127) 2010; 53 Woyengo (B177) 2019; 252 Shah (B142) 2017; 7 Zhao (B193) 2010; 110 Suzuki (B159) 1907; 7 Bhavsar (B8) 2008; 7 Lott (B89) 2000; 10 Ranjan (B122) 2016; 58 Berikten (B6) 2013; 44 Coban (B23); 38 Shivanna (B145) 2014; 2014 Singh (B152) 2011 Singh (B151) 2010; 160 Collopy (B25) 2004; 52 Yao (B183) 2011; 112 Seynaeve (B141) 2000; 83 Mullaney (B103) 2010; 87 Salmon (B135) 2016; 114 Yan (B182) 2002; 33 Delezie (B32) 2015; 24 Kostrewa (B72) 1997; 4 Nampoothiri (B106) 2004; 118 Sariyska (B139) 2005; 19 McCormick (B94) 2017; 3 Singh (B150) 2008; 99 Chiera (B20) 2004; 56 Rodriguez-Fernandez (B129) 2012; 118 Noorbatcha (B110) 2013; 32 Erpel (B38) 2016; 16 Li (B85) 2017; 57 Peng (B118) 2006; 25 Bhargav (B7) 2008; 22 Turk (B164) 1992; 15 Ranjan (B123) 2015; 177 Rodriguez-Fernandez (B128) 2013; 48 Quan (B120) 2004; 97 Reddy (B125) 2017; 7 Zhang (B189) 2003; 40 Giles (B44) 2018; 163 Gunashree (B51) 2008; 35 Zhou (B194) 2019; 131 Soccol (B156) 2017; 1 Simons (B147) 1990; 64 Yi (B184) 1996; 61 Wang (B173) 2013; 8 Pandey (B112) 1999; 77 Gaind (B43) 2015; 99 Brinch-Pedersen (B12) 2002; 7 Jafari-Tapeh (B64) 2012; 2012 Correa (B26) 2015; 170 Guggenbuhl (B48) 2012; 4 Maller (B91) 2016; 5 Munir (B105) 2013; 25 Salmon (B134) 2011; 54 de Souza Nardelli (B31) 2018; 47 Greiner (B45) 2007 Bei (B5) 2009; 139 Saithi (B133) 2016; 11 Richardson (B126) 2001; 25 Driouch (B35) 2011; 2 Howson (B60) 1983; 5 Kumar (B76) 2012; 96 Weaver (B174) 2009; 57 (B40) 2004 Sabu (B132) 2002; 102 Loewus (B87) 2002 Pandey (B113) 2001; 77 Ullah (B166) 2003; 306 Konietzny (B71) 2003 Alves (B3) 2016; 6 Coban (B21) 2014; 37 Irshad (B63) 2017; 13 Lee (B79) 2010; 23 Vasudevan (B168) 2019; 278 Haros (B58) 2001; 49 Vasudevan (B169) 2017; 245 (B39) 2004 Kumar (B75) 2010; 120 Dailin (B28) 2019 Pen (B117) 1993; 11 Kaup (B68) 2008; 99 Mohan (B99) 2004; 6 Coban (B22); 44 Maurya (B93) 2017; 94 Ramachandran (B121) 2005; 40 Ebune (B36) 1995; 53 Menezes-Blackburn (B97) 2015; 63 Mehmood (B96) 2019; 26 Xiang (B180) 2004; 339 Zhang (B187); 2013 Vohra (B172) 2003; 23 de Oliveira Ornela (B30) 2019; 81 Wyss (B179) 1999; 65 Humer (B62) 2015; 99 Kumar (B73) 2012; 6 Huang (B61) 2018; 4 Brinch-Pedersen (B11) 2000; 6 Mukhametzyanova (B101) 2012; 81 Tseng (B163) 2000; 45 Sanni (B138) 2019; 17 Lei (B81) 2013; 1 Chadha (B17) 2004; 20 Lassen (B77) 2001; 67 Zhu (B195) 2011; 10 Hossain (B59) 2017 Casey (B15) 2003; 86 Misset (B98) 2003; 122 Tarafdar (B161) 1996; 3 Gaind (B42) 2015; 38 Zhang (B192) 1998; 33 Wyss (B178) 1998; 65 Dersjant-Li (B33) 2015; 95 Xu (B181) 2012; 49 Lemos (B82) 2017; 9 Uchida (B165) 2006; 102 Forster (B41) 1999; 179 Lei (B80) 2005 Van Etten (B167) 1982; 390 Brinch-Pedersen (B10) 2006; 54 Buckle (B13) 1988; 6 Liu (B86) 2004; 12 Roopesh (B130) 2006; 97 Spier (B157) 2008; 46 Das (B29) 2014; 73 Li (B83) 2009; 31 Singh (B149) 2011; 6 Awad (B4) 2014; 21 Han (B55) 1987; 2 Zhang (B188) 2010; 101 Simon (B146) 2002; 37 Zhang (B190) 2016; 7 Lopez (B88) 2002; 37 da Luz (B27) 2012; 43 Wodzinski (B176) 1996 Whipps (B175) 1990 Chelius (B18) 1994; 41 Greiner (B46) 2006; 44 Naves (B107) 2012; 14 Spier (B158) 2012; 6 Haefner (B53) 2005; 68 Kim (B69) 2017; 30 Mandviwala (B92) 2000; 24 Li (B84) 1997; 114 Kanti (B65) 2018 |
References_xml | – start-page: 53 year: 2002 ident: B87 article-title: Biosynthesis of phytate in food grains and seeds publication-title: Food Phytates – volume: 99 start-page: 15 year: 2015 ident: B43 article-title: Production, purification and characterization of neutral phytase from thermotolerant Aspergillus flavus ITCC 6720. publication-title: Int. Biodeter. Biodegr. doi: 10.1016/j.ibiod.2014.12.013 – volume: 5 start-page: 377 year: 1983 ident: B60 article-title: Production of phytate-hydrolysing enzyme by some fungi. publication-title: Enzyme Microb. Technol. doi: 10.1016/0141-0229(83)90012-1 – volume: 102 start-page: 251 year: 2002 ident: B132 article-title: Solid-state fermentation for production of phytase by Rhizopus oligosporus. publication-title: Appl. Biochem. Biotech. doi: 10.1385/ABAB:102-103:1-6:251 – volume: 115 start-page: 501 year: 2018 ident: B154 article-title: Molecular modeling and docking of recombinant HAP-phytase of a thermophilic mould Sporotrichum thermophile reveals insights into molecular catalysis and biochemical properties. publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2018.04.086 – volume: 37 start-page: 813 year: 2002 ident: B146 article-title: In vitro properties of phytases from various microbial origins. publication-title: J. Food Sci. Technol doi: 10.1046/j.1365-2621.2002.00621.x – start-page: 96 year: 2012 ident: B47 article-title: Update on characteristics of commercial phytases publication-title: Proceedings of the International Phytase Summit – volume: 7 start-page: 148 year: 2015 ident: B137 article-title: Production and optimization of phytase by Aspergillus niger. publication-title: Pharm. Lett. – volume: 43 start-page: 1508 year: 2012 ident: B27 article-title: Lignocellulolytic enzyme production of Pleurotus ostreatus growth in agroindustrial wastes. publication-title: Braz. J. Microbiol. doi: 10.1590/S1517-838220120004000035 – start-page: 3 year: 2011 ident: B152 article-title: Plant growth promotion by phytases and phytase-producing microbes due to amelioration in phosphorus availability publication-title: Microorganisms in Sustainable Agriculture and Biotechnology doi: 10.1007/978-94-007-2214-9_1 – volume: 163 start-page: 356 year: 2018 ident: B44 article-title: Phosphorus acquisition by citrate-and phytase-exuding Nicotiana tabacum plant mixtures depends on soil phosphorus availability and root intermingling. publication-title: Physiol. Plant doi: 10.1111/ppl.12718 – volume: 6 start-page: 195 year: 2000 ident: B11 article-title: Generation of transgenic wheat (Triticum aestivum L.) for constitutive accumulation of an Aspergillus phytase. publication-title: Mol. Breed. doi: 10.1023/A:1009690730620 – volume: 9 start-page: 851 year: 2001 ident: B144 article-title: Enzyme mechanism and catalytic property of β propeller phytase. publication-title: Structure doi: 10.1016/S0969-2126(01)00637-2 – volume: 8 start-page: 733 year: 2017 ident: B119 article-title: Optimization of culture conditions to produce phytase from Aspergillus tubingensis SKA. publication-title: Food Sci. Nutr. doi: 10.4236/fns.2017.87052 – volume: 15 start-page: 281 year: 1992 ident: B164 article-title: Phytate degradation during breadmaking: effect of phytase addition. publication-title: J. Cereal Sci. doi: 10.1016/S0733-5210(09)80126-4 – volume: 57 start-page: 2304 year: 2017 ident: B85 article-title: Calcium and phosphorus metabolism and nutrition of poultry: are current diets formulated in excess? publication-title: Anim. Prod. Sci. doi: 10.1071/AN17389 – volume: 2 start-page: 195 year: 1987 ident: B55 article-title: Phytase production by Aspergillus ficuum on semisolid substrate. publication-title: J. Ind. Microbiol. doi: 10.1007/BF01569540 – volume: 16 year: 2016 ident: B38 article-title: Development of phytase-expressing chlamydomonas reinhardtii for monogastric animal nutrition. publication-title: BMC Biotechnol. doi: 10.1186/s12896-016-0258-9 – volume: 23 start-page: 1198 year: 2010 ident: B79 article-title: Effects of multiple enzyme (Rovabio® Max) containing carbohydrolases and phytase on growth performance and intestinal viscosity in broiler chicks fed corn-wheat-soybean meal based diets. publication-title: Asian Australas. J. Anim. Sci. doi: 10.5713/ajas.2010.90592 – volume: 102 start-page: 564 year: 2006 ident: B165 article-title: Expression of Aspergillus oryzae phytase gene in Aspergillus oryzae RIB40 niaD-. publication-title: J. Biosci. Bioeng. doi: 10.1263/jbb.102.564 – volume: 89 start-page: 113 year: 2001 ident: B196 article-title: Influence of supplemental enzymes on the performance and phosphorus excretion of broilers fed wheat-based diets to 6 weeks of age. publication-title: Anim. Feed Sci. Technol. doi: 10.1016/S0377-8401(00)00227-3 – volume: 110 start-page: 313 year: 2004 ident: B16 article-title: Identification and characterization of a phytase of potential commercial interest. publication-title: J. Biotechnol. doi: 10.1016/j.jbiotec.2004.03.001 – volume: 102 start-page: 6357 year: 2018 ident: B70 article-title: Inducible promoters and functional genomic approaches for the genetic engineering of filamentous fungi. publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-018-9115-1 – volume: 45 start-page: 121 year: 2000 ident: B163 article-title: Isolation and characterization of a novel phytase from Penicillium simplicissimum. publication-title: Folia Microbiol. doi: 10.1007/BF02817409 – volume: 81 start-page: 267 year: 2012 ident: B101 article-title: Microorganisms as phytase producers. publication-title: Microbiology doi: 10.1134/S0026261712030095 – volume: 56 start-page: 895 year: 2004 ident: B20 article-title: Ectopic expression of a soybean phytase in developing seeds of Glycine max to improve phosphorus availability. publication-title: Plant Mol. Biol. doi: 10.1007/s11103-004-5293-6 – volume: 7 start-page: 1576 year: 2016 ident: B14 article-title: Production and some properties of extracellular phytase from Thermomyces lanuginosus IMI 096218 on rice flour as substrate. publication-title: Mycosphere doi: 10.5943/mycosphere/si/3b/9 – volume: 17 start-page: 81 year: 2018 ident: B108 article-title: Optimized production of phytase by solid-state fermentation using triticale as substrate and source of inducer. publication-title: Afr. J. Biotechnol. doi: 10.5897/AJB2017.16267 – volume: 9 start-page: 266 year: 2017 ident: B82 article-title: Use of phytases in fish and shrimp feeds: a review. publication-title: Rev. Aquacult. doi: 10.1111/raq.12138 – volume: 46 start-page: 178 year: 2008 ident: B157 article-title: Phytase production using citric pulp and other residues of the agroindustry in SSF by fungal isolates. publication-title: Food Technol. Biotechnol. – volume: 252 start-page: 34 year: 2019 ident: B177 article-title: Enhancing nutrient utilization in maize for broiler chickens by superdosing phytase. publication-title: Anim. Feed Sci. Technol. doi: 10.1016/j.anifeedsci.2019.04.005 – volume: 81 start-page: 70 year: 2019 ident: B30 article-title: Purification and characterization of an alkalistable phytase produced by Rhizopus microsporus var. microsporus in submerged fermentation. publication-title: Process Biochem. doi: 10.1016/j.procbio.2019.03.015 – volume: 16 start-page: 104 year: 2005 ident: B67 article-title: Potential of sourdough for healthier cereal products. publication-title: Trends Food Sci. Technol. doi: 10.1016/j.tifs.2004.03.008 – volume: 54 start-page: 4624 year: 2006 ident: B10 article-title: Heat-stable phytases in transgenic wheat (Triticum aestivum L.): deposition pattern, thermostability, and phytate hydrolysis. publication-title: J. Agric. Food Chem. doi: 10.1021/jf0600152 – volume: 2013 start-page: 1 ident: B187 article-title: A phytase characterized by relatively high pH tolerance and thermostability from the shiitake mushroom Lentinus edodes. publication-title: Biomed. Res. Int doi: 10.1155/2013/540239 – volume: 6 start-page: 23 year: 2016 ident: B3 article-title: Production and partial characterization of an extracellular phytase produced by Muscodor sp. under submerged fermentation. publication-title: Adv. Microbiol. doi: 10.4236/aim.2016.61003 – volume: 7 start-page: 5207 year: 2013 ident: B50 article-title: Optimization of phytase production in solid state fermentation by different fungi. publication-title: Afr. J. Microbiol. Res. doi: 10.5897/AJMR2013.6136 – volume: 56 start-page: 16 year: 2018 ident: B124 article-title: Applications of microbial enzymes in food industry. publication-title: Food Technol. Biotech. doi: 10.17113/ftb.56.01.18.5491 – volume: 160 start-page: 1267 year: 2010 ident: B151 article-title: Plant growth promotion by an extracellular HAP-phytase of a thermophilic mold Sporotrichum thermophile. publication-title: Appl. Biochem. Biotechnol. doi: 10.1007/s12010-009-8593-0 – volume: 131 start-page: 1117 year: 2019 ident: B194 article-title: Improving catalytic efficiency and maximum activity at low pH of Aspergillus neoniger phytase using rational design. publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2019.03.140 – volume: 278 start-page: 400 year: 2019 ident: B168 article-title: Thermostable phytase in feed and fuel industries. publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2019.01.065 – volume: 26 start-page: 1485 year: 2019 ident: B96 article-title: Physical and chemical mutagens improved Sporotrichum thermophile, strain ST20 for enhanced phytase activity. publication-title: Saudi J. Biol. Sci. doi: 10.1016/j.sjbs.2019.07.006 – volume: 87 start-page: 1367 year: 2010 ident: B103 article-title: Site-directed mutagenesis of disulfide bridges in Aspergillus niger NRRL 3135 phytase (PhyA), their expression in Pichia pastoris and catalytic characterization. publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-010-2542-2 – volume: 37 start-page: 609 year: 2014 ident: B21 article-title: Screening of phytase producers and optimization of culture conditions for submerged fermentation. publication-title: Bioprocess Biosyst. Eng. doi: 10.1007/s00449-013-1028-x – volume: 53 start-page: 1487 year: 2010 ident: B127 article-title: Recovery of phytase produced by solid-state fermentation on citrus peel. publication-title: Braz. Arch. Biol. Technol. doi: 10.1590/S1516-89132010000600026 – volume: 31 start-page: 1297 year: 2009 ident: B83 article-title: Functional analysis of an Aspergillus ficuum phytase gene in Saccharomyces cerevisiae and its root-specific secretory expression in transgenic soybean plants. publication-title: Biotechnol. Lett. doi: 10.1007/s10529-009-9992-6 – volume: 6 start-page: 69 year: 2011 ident: B149 article-title: Developments in biochemical aspects and biotechnological applications of microbial phytases. publication-title: Biotechnol. Mol. Biol. Rev. – volume: 114 start-page: 288 year: 2016 ident: B135 article-title: Bioprocess for phytase production by Ganoderma sp. MR-56 in different types of bioreactors through submerged cultivation. publication-title: Biochem. Eng. J doi: 10.1016/j.bej.2016.07.015 – volume: 64 start-page: 525 year: 1990 ident: B147 article-title: Improvement of phosphorus availability by microbial phytase in broilers and pigs. publication-title: Br. J. Nutr. doi: 10.1079/BJN19900052 – start-page: 4555 year: 2003 ident: B71 article-title: Phytic acid: nutritional impact publication-title: Encyclopaedia of Food Science and Nutrition doi: 10.1016/b0-12-227055-x/00923-8 – volume: 48 start-page: 374 year: 2013 ident: B128 article-title: Concentration by ultrafiltration and stabilization of phytase produced by solid-state fermentation. publication-title: Process Biochem. doi: 10.1016/j.procbio.2012.12.021 – volume: 83 start-page: 193 year: 2000 ident: B141 article-title: Effects of dietary Ca/P ratio, P level and microbial phytase supplementation on nutrient digestibilities in growing pigs: breakdown of phytic acid, partition of P and phytase activity along the intestinal tract. publication-title: J. Anim. Physiol. Anim. Nutr. doi: 10.1046/j.1439-0396.2000.00246.x – volume: 32 start-page: 309 year: 2013 ident: B110 article-title: Understanding thermostability factors of Aspergillus niger PhyA phytase: a molecular dynamics study. publication-title: Protein J. doi: 10.1007/s10930-013-9489-y – volume: 65 start-page: 367 year: 1998 ident: B178 article-title: Biochemical characterization of fungal phytases (myo-inositol hexakisphosphate phosphohydrolases): catalytic properties. publication-title: Appl. Environ. Microbiol. doi: 10.1128/aem.65.2.367-373.1999 – volume: 38 start-page: 1075 ident: B24 article-title: Microparticle-enhanced Aspergillus ficuum phytase production and evaluation of fungal morphology in submerged fermentation. publication-title: Bioprocess Biosyst. Eng. doi: 10.1007/s00449-014-1349-4 – start-page: 209 year: 2005 ident: B80 article-title: Expression of microbial phytases in yeast systems and characterization of the recombinant enzymes publication-title: Microbial Enzymes and Biotransformations doi: 10.1385/1-59259-846-3:209 – volume: 58 start-page: 137 year: 2016 ident: B122 article-title: Recombinant HAP phytase of the thermophilic mold Sporotrichum thermophile: expression of the codon-optimized phytase gene in Pichia pastoris and applications. publication-title: Mol. Biotechnol. doi: 10.1007/s12033-015-9909-7 – volume: 179 start-page: 109 year: 1999 ident: B41 article-title: Potential for dietary phytase to improve the nutritive value of canola protein concentrate and decrease phosphorus output in rainbow trout (Oncorhynchus mykiss) held in 11 C fresh water. publication-title: Aquaculture doi: 10.1016/S0044-8486(99)00156-8 – volume: 8 start-page: 1 year: 2018 ident: B148 article-title: Engineering fungal morphology for enhanced production of hydrolytic enzymes by Aspergillus oryzae SBS50 using microparticles. publication-title: 3 Biotech doi: 10.1007/s13205-018-1308-x – volume: 61 start-page: 361 year: 1996 ident: B184 article-title: Sites of phytase activity in the gastrointestinal tract of young pigs. publication-title: Anim. Feed Sci. Technol. doi: 10.1016/0377-8401(96)00959-5 – volume: 47 start-page: 1 year: 2018 ident: B31 article-title: Supplementation of fungal and/or bacterial phytase in broiler diets formulated with reduced phosphorus level and different calcium contents. publication-title: R. Bras. Zootec. doi: 10.1590/rbz4720170297 – volume: 13 start-page: 808 year: 2017 ident: B63 article-title: Anticancer and nutraceutical potentialities of phytase/phytate. publication-title: Int. J. Pharmacol. doi: 10.3923/ijp.2017.808.817 – volume: 91 start-page: 553 year: 2011 ident: B185 article-title: Transgenic microalgae expressing Escherichia coli AppA phytase as feed additive to reduce phytate excretion in the manure of young broiler chicks. publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-011-3279-2 – volume: 170 start-page: 205 year: 2015 ident: B26 article-title: Cloning, recombinant expression and characterization of a new phytase from Penicillium chrysogenum. publication-title: Microbiol. Res. doi: 10.1016/j.micres.2014.06.005 – volume: 53 start-page: 7 year: 1995 ident: B36 article-title: Production of phytase during solid state fermentation using Aspergillus ficuum NRRL 3135 in canola meal. publication-title: Bioresour. Technol. doi: 10.1016/0960-8524(95)00041-C – volume: 47 start-page: 157 year: 2000 ident: B102 article-title: Advances in phytase research. publication-title: Adv. Appl. Microbiol. doi: 10.1016/S0065-2164(00)47004-8 – volume: 44 start-page: 549 ident: B22 article-title: Improved submerged Aspergillus ficuum phytase production in bench-top bioreactors by optimization of fermentation medium. publication-title: Acta Aliment. doi: 10.1556/066.2015.44.0027 – volume: 6 start-page: 67 year: 1988 ident: B13 article-title: Characterization of extra-and intracellular phytases from Rhizopus oligosporus used in tempeh production. publication-title: Int. J. Food microbiol. doi: 10.1016/0168-1605(88)90086-4 – volume: 2014 start-page: 1 year: 2014 ident: B145 article-title: Phytase production by Aspergillus niger CFR 335 and Aspergillus ficuum SGA 01 through submerged and solid-state fermentation. publication-title: Sci. World J. doi: 10.1155/2014/392615 – volume: 44 start-page: 834 year: 2013 ident: B6 article-title: Optimization of solid-state fermentation for phytase production by Thermomyces lanuginosus using response surface methodology. publication-title: Prep. Biochem. Biotechnol. doi: 10.1080/10826068.2013.868357 – volume: 95 start-page: 878 year: 2015 ident: B33 article-title: Phytase in non-ruminant animal nutrition: a critical review on phytase activities in the gastrointestinal tract and influencing factors. publication-title: J. Sci. Food Agric. doi: 10.1002/jsfa.6998 – volume: 6 start-page: 13 year: 2012 ident: B73 article-title: Lipase production in solid-state fermentation (SSF): recent developments and biotechnological applications. publication-title: Dyn. Biochem. Process Biotechnol. Mol. Biol. – volume: 339 start-page: 437 year: 2004 ident: B180 article-title: Crystal structure of a heat-resilient phytase from Aspergillus fumigatus, carrying a phosphorylated histidine. publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2004.03.057 – volume: 52 start-page: 7518 year: 2004 ident: B25 article-title: Characterization of phytase activity from cultivated edible mushrooms and their production substrates. publication-title: J. Agric. Food Chem. doi: 10.1021/jf040220m – volume: 113 start-page: 99 year: 2008 ident: B140 article-title: Phytate-degrading enzymes in pig nutrition. publication-title: Livest. Sci. doi: 10.1016/j.livsci.2007.05.014 – volume: 99 start-page: 491 year: 2008 ident: B68 article-title: Microparticle-enhanced cultivation of filamentous microorganisms: increased chloroperoxidase formation by Caldariomyces fumago as an example. publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.21713 – volume: 22 start-page: 49 year: 2008 ident: B7 article-title: Solid-state fermentation: an overview. publication-title: Chem. Biochem. Eng. Q. – volume: 8 year: 2013 ident: B173 article-title: Overexpression of phyA and appA genes improves soil organic phosphorus utilisation and seed phytase activity in Brassica napus. publication-title: PLoS One doi: 10.1371/journal.pone.0060801 – start-page: 1 year: 2004 ident: B39 article-title: List of the authorised additives in feedingstuffs published in application of Article 9t (b) of Council Directive 70/524/EEC concerning additives in feedingstuffs. publication-title: O. J. C.50 – volume: 102 start-page: 392 year: 2001 ident: B90 article-title: Genetic engineering approaches to improve the bioavailability and the level of iron in rice grains. publication-title: Theor. Appl. Genet. doi: 10.1007/s001220051 – volume: 36 start-page: 296 year: 2018 ident: B66 article-title: SSF production, purification and characterization of chitin deacetylase from Aspergillus flavus. publication-title: Biocatal. Biotransformation doi: 10.1080/10242422.2017.1393417 – volume: 7 start-page: 118 year: 2002 ident: B12 article-title: Engineering crop plants: getting a handle on phosphate. publication-title: Trends Plant Sci. doi: 10.1016/S1360-1385(01)02222-1 – volume: 59 start-page: 334 year: 2017 ident: B100 article-title: Extracellular secretion of phytase from transgenic wheat roots allows utilization of phytate for enhanced phosphorus uptake. publication-title: Mol. Biotechnol. doi: 10.1007/s12033-017-0020-0 – volume: 41 start-page: 79 year: 1994 ident: B18 article-title: Strain improvement of Aspergillus niger for phytase production. publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/BF00166085 – volume: 54 start-page: 1069 year: 2011 ident: B134 article-title: Formulated products containing a new phytase from Schyzophyllum sp. phytase for application in feed and food processing. publication-title: Braz. Arch. Biol. Technol. doi: 10.1590/S1516-89132011000600001 – volume: 1 start-page: 52 year: 2017 ident: B156 article-title: Recent developments and innovations in solid state fermentation. publication-title: Biotechnol. Res. Innov. doi: 10.1016/j.biori.2017.01.002 – volume: 38 start-page: 211 year: 2002 ident: B170 article-title: Studies on the production of phytase by a newly isolated strain of Aspergillus niger var teigham obtained from rotten wood-logs. publication-title: Process Biochem. doi: 10.1016/S0032-9592(02)00079-1 – start-page: 1 year: 2018 ident: B65 article-title: Production of phytase, amylase and cellulase by Aspergillus, Rhizophus and Neurospora on mixed rice rtraw powder and soybean curd residue publication-title: Proceedings of the IOP Conference Series: Earth and Environmental Science doi: 10.1088/1755-1315/166/1/012010 – volume: 2 start-page: 100 year: 2011 ident: B35 article-title: Filamentous fungi in good shape: microparticles for tailor-made fungal morphology and enhanced enzyme production. publication-title: Bioeng. Bugs doi: 10.4161/bbug.2.2.13757 – volume: 4 start-page: 263 year: 2018 ident: B61 article-title: Phytase production by Grifola Frondosa and its application in inositol-enriched solid-state fermentation brown rice. publication-title: Int. J. Food Eng. doi: 10.18178/ijfe.4.4.263-267 – volume: 12 start-page: 1575 year: 2004 ident: B86 article-title: Crystallographic snapshots of Aspergillus fumigatus phytase, revealing its enzymatic dynamics. publication-title: Structure doi: 10.1016/j.str.2004.06.015 – volume: 86 start-page: 183 year: 2003 ident: B15 article-title: Purification and characterization of extracellular phytase from Aspergillus niger ATCC 9142. publication-title: Bioresour. Technol. doi: 10.1016/S0960-8524(02)00145-1 – volume: 77 start-page: 149 year: 1999 ident: B112 article-title: Solid state fermentation for the production of industrial enzymes. publication-title: Curr. Sci. – volume: 24 start-page: 115 year: 2015 ident: B32 article-title: Impacts of calcium and phosphorus concentration, their ratio, and phytase supplementation level on growth performance, foot pad lesions, and hock burn of broiler chickens. publication-title: J. Appl. Poult. Res. doi: 10.3382/japr/pfv011 – volume: 24 start-page: 237 year: 2000 ident: B92 article-title: Production of high activity thermostable phytase from thermotolerant Aspergillus niger in solid state fermentation. publication-title: J. Ind. Microbiol. Biotechnol. doi: 10.1038/sj.jim.2900811 – volume: 139 start-page: 186 year: 2009 ident: B5 article-title: Structure-based fragment shuffling of two fungal phytases for combination of desirable properties. publication-title: J. Biotechnol. doi: 10.1016/j.jbiotec.2008.08.011 – volume: 11 start-page: 811 year: 1993 ident: B117 article-title: Phytase containing transgenic seeds as a novel feed additive for improved phosphorus utilization. publication-title: Biotechnology doi: 10.1038/nbt0793-811 – volume: 3 start-page: 109 year: 1996 ident: B161 article-title: Contribution of Aspergillus strains to acquisition of phosphorus by wheat (Triticum aestivum L.) and chick pea (Cicer arietinum Linn.) grown in a loamy sand soil. publication-title: Appl. Soil Ecol. doi: 10.1016/0929-1393(95)00084-4 – volume: 7 year: 2016 ident: B190 article-title: Application of plant-growth-promoting fungi Trichoderma longibrachiatum T6 enhances tolerance of wheat to salt stress through improvement of antioxidative defense system and gene expression. publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.01405 – volume: 33 start-page: 1 year: 1998 ident: B192 article-title: Protein-tyrosine phosphatases: biological function, structural characteristics, and mechanism of catalysis. publication-title: Crit. Rev. Biochem. Mol. Biol. doi: 10.1080/10409239891204161 – volume: 73 start-page: 3069 year: 2007 ident: B191 article-title: Adopting selected hydrogen bonding and ionic interactions from Aspergillus fumigatus phytase structure improves the thermostability of Aspergillus niger PhyA phytase. publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.02970-06 – volume: 40 start-page: 1749 year: 2005 ident: B121 article-title: Mixed substrate fermentation for the production of phytase by Rhizopus spp. using oilcakes as substrates. publication-title: Process Biochem. doi: 10.1016/j.procbio.2004.06.040 – volume: 9 year: 2019 ident: B2 article-title: Partial purification and characterization of phytase from Aspergillus foetidus MTCC 11682. publication-title: AMB Express doi: 10.1186/s13568-018-0725-x – volume: 6 start-page: 107 year: 2004 ident: B99 article-title: Submerged fermentation of phytase by Aspergillus niger and Aspergillus fumigatus. publication-title: Asian J. Microbiol. Biotechnol. Environ. Sci. – volume: 9 start-page: 963 year: 2013 ident: B74 article-title: Atomistic details of effect of disulfide bond reduction on active site of phytase B from Aspergillus niger: a MD Study. publication-title: Bioinformation doi: 10.6026/97320630009963 – volume: 33 start-page: 10 year: 2002 ident: B182 article-title: Effects of fungal phytase on utilization of dietary protein and minerals, and dephosphorylation of phytic acid in the alimentary tract of channel catfish Ictalurus punctatus fed an all-plant-protein diet. publication-title: J. World Aquacult. Soc. doi: 10.1111/j.1749-7345.2002.tb00473.x – volume: 4 start-page: 182 year: 2012 ident: B48 article-title: Effects of a 6-phytase on the apparent ileal digestibility of minerals and amino acids in ileorectal anastomosed pigs fed on a corn–soybean meal–barley diet. publication-title: J. Anim. Sci. doi: 10.2527/jas.53892 – volume: 4 start-page: 185 year: 1997 ident: B72 article-title: Crystal structure of phytase from Aspergillus ficuum at 2.5 Å resolution. publication-title: Nat. Struct. Biol. doi: 10.1038/nsb0397-185 – volume: 397 start-page: 745 year: 2010 ident: B111 article-title: The structure of Aspergillus niger phytase PhyA in complex with a phytate mimetic. publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2010.06.024 – volume: 364 start-page: 83 year: 1999 ident: B54 article-title: Role of glycosylation in the functional expression of an Aspergillus niger phytase (phyA) in Pichia pastoris. publication-title: Arch. Biochem. Biophys. doi: 10.1006/abbi.1999.1115 – volume: 49 start-page: 5450 year: 2001 ident: B58 article-title: Use of fungal phytase to improve breadmaking performance of whole wheat bread. publication-title: J. Agric. Food Chem. doi: 10.1021/jf010642l – volume: 118 start-page: 205 year: 2004 ident: B106 article-title: Thermostable phytase production by Thermoascus aurantiacus in submerged fermentation. publication-title: Appl. Biochem. Biotechnol. doi: 10.1385/ABAB:118:1-3:205 – volume: 20 start-page: 105 year: 2004 ident: B17 article-title: Phytase production by the thermophilic fungus Rhizomucor pusillus. publication-title: World J. Microbiol. Biotechnol. doi: 10.1023/B:WIBI.0000 – volume: 35 start-page: 397 year: 1999 ident: B114 article-title: Production of phytase by Aspergillus niger in submerged and solid-state fermentation. publication-title: Process Biochem. doi: 10.1016/S0032-9592(99)00088-6 – volume: 40 start-page: 213 year: 2003 ident: B189 article-title: Properties of A. ficuum AS3. 324 phytase expressed in tobacco. publication-title: Process Biochem doi: 10.1016/j.procbio.2003.12.005 – volume: 306 start-page: 603 year: 2003 ident: B166 article-title: Fungal phyA gene expressed in potato leaves produces active and stable phytase. publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/S0006-291X(03)01002-7 – volume: 1 start-page: 283 year: 2013 ident: B81 article-title: Phytase, a new life for an “old” enzyme. publication-title: Annu. Rev. Anim. Biosci. doi: 10.1146/annurev-animal-031412-103717 – volume: 30 start-page: 994 year: 2017 ident: B69 article-title: Effect of superdosing phytase on productive performance and egg quality in laying hens. publication-title: Asian Australas. J. Anim. Sci. doi: 10.5713/ajas.17.0149 – volume: 19 start-page: 98 year: 2005 ident: B139 article-title: Aspergillus niger phytase: purification and characterization. publication-title: Biotechnol. Biotechnol. Equip. doi: 10.1080/13102818.2005.10817235 – volume: 49 start-page: 49 year: 2012 ident: B181 article-title: Purification and characterization of phytase with a wide pH adaptation from common edible mushroom Volvariella volvacea (Straw mushroom). publication-title: Indian J. Biochem. Biophys. – volume: 10 start-page: 17845 year: 2011 ident: B195 article-title: Purification and identification of a phytase from fruity bodies of the winter mushroom, Flammulina velutipes. publication-title: Afr. J. Biotechnol. doi: 10.5897/AJB10.2625 – volume: 132 start-page: 82 year: 2007 ident: B9 article-title: Purification and characterisation of an acid phosphatase with phytase activity from Mucor hiemalis Wehmer. publication-title: J. Biotechnol. doi: 10.1016/j.jbiotec.2007.08.028 – volume: 19 start-page: 996 year: 2014 ident: B52 article-title: Isolation of thermotolerant phytase producing fungi and optimisation of phytase production by Aspergillus niger NRF9 in solid state fermentation using response surface methodology. publication-title: Biotechnol. Bioproc. Eng. doi: 10.1007/s12257-014-0175-5 – volume: 14 start-page: 159 year: 2012 ident: B107 article-title: Effect of pH and temperature on the activity of phytase products used in broiler nutrition. publication-title: Braz. J. Poult. Sci. doi: 10.1590/S1516-635X2012000300004 – volume: 68 start-page: 588 year: 2005 ident: B53 article-title: Biotechnological production and applications of phytases. publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-005-0005-y – volume: 25 start-page: 66 year: 2013 ident: B105 article-title: A review on role of exogenous enzyme supplementation in poultry production. publication-title: Emir. J. Food Agric. doi: 10.9755/ejfa.v25i1.9138 – volume: 39 start-page: 319 year: 2001 ident: B115 article-title: Submerged and solid-state phytase fermentation by Aspergillus niger: effects of agitation and medium viscosity on phytase production, fungal morphology and inoculum performance. publication-title: Food Technol. Biotechnol. – volume: 4 start-page: 114 year: 2017 ident: B162 article-title: Enhanced production of phytase from thermotolerant Aspergillus fumigatus isolated from rhizospheric zone of maize fields. publication-title: J. Innov. Pharm. Biol. Sci. – start-page: 65 year: 2019 ident: B28 article-title: Fungal phytases: biotechnological applications in food and feed industries publication-title: Recent Advancement in White Biotechnology Through Fungi. Fungal Biology doi: 10.1007/978-3-030-14846-1_2 – volume: 26 start-page: 109 year: 2017 ident: B1 article-title: Transgenic expression of phytase in wheat endosperm increases bioavailability of iron and zinc in grains. publication-title: Transgenic Res. doi: 10.1007/s11248-016-9983-z – volume: 63 start-page: 6142 year: 2015 ident: B97 article-title: Performance of seven commercial phytases in an in vitro simulation of poultry digestive tract. publication-title: J. Agric. Food Chem. doi: 10.1021/acs.jafc.5b01996 – volume: 17 start-page: 633 year: 2008 ident: B19 article-title: Transgenic maize plants expressing a fungal phytase gene. publication-title: Transgenic Res. doi: 10.1007/s11248-007-9138-3 – volume: 10 start-page: 11 year: 2000 ident: B89 article-title: Phytic acid and phosphorus in crop seeds and fruits: a global estimate. publication-title: Seed Sci. Res. doi: 10.1017/S0960258500000039 – volume: 25 start-page: 124 year: 2006 ident: B118 article-title: Codon-modifications and an endoplasmic reticulum-targeting sequence additively enhance expression of an Aspergillus phytase gene in transgenic canola. publication-title: Plant Cell Rep. doi: 10.1007/s00299-005-0036-y – volume: 101 start-page: 4125 year: 2010 ident: B188 article-title: Purification, characterization, and cloning of a novel phytase with low pH optimum and strong proteolysis resistance from Aspergillus ficuum NTG-23. publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2010.01.001 – volume: 73 start-page: 593 year: 2014 ident: B29 article-title: Effect of nutritional supplementation of solid state fermentation medium on biosynthesis of phytase from Aspergillus niger NCIM 612. publication-title: J. Sci. Ind. Res. – volume: 6 start-page: 427 year: 2012 ident: B158 article-title: Stability of new macromycetes phytases under room, cooling and freezing temperatures of storage. publication-title: World Acad. Sci. Eng. Technol. – volume: 53 start-page: 868 ident: B186 article-title: Purification and characterization of a novel acid phosphatase from the split gill mushroom Schizophyllum commune. publication-title: J. Basic Microbiol. doi: 10.1002/jobm.201200218 – volume: 35 start-page: 1587 year: 2008 ident: B51 article-title: Effect of different cultural conditions for phytase production by Aspergillus niger CFR 335 in submerged and solid-state fermentations. publication-title: J. Ind. Microbiol. Biotechnol. doi: 10.1007/s10295-008-0402-1 – volume: 32 start-page: 141 year: 2005 ident: B171 article-title: Biochemical characterisation of extracellular phytase (myo-inositol hexakisphosphate phosphohydrolase) from a hyper-producing strain of Aspergillus niger van Teighem. publication-title: J. Ind. Microbiol. Biotechnol. doi: 10.1007/s10295-005-0214-5 – volume: 32 start-page: 273 year: 2006 ident: B160 article-title: Mobilization of organic and poorly soluble phosphates by Chaetomium globosum. publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2005.08.005 – volume: 7 start-page: 195 year: 2017 ident: B125 article-title: Genetically modified phytase crops role in sustainable plant and animal nutrition and ecological development: a review. publication-title: 3 Biotech. doi: 10.1007/s13205-017-0797-3 – volume: 94 start-page: 36 year: 2017 ident: B93 article-title: Bioprocess for the production of recombinant HAP phytase of the thermophilic mold Sporotrichum thermophile and its structural and biochemical characteristics. publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2016.09.102 – volume: 177 start-page: 1753 year: 2015 ident: B123 article-title: Characteristics of recombinant phytase (rSt-Phy) of the thermophilic mold Sporotrichum thermophile and its applicability in dephytinizing foods. publication-title: Appl. Biochem. Biotechnol. doi: 10.1007/s12010-015-1851-4 – volume: 21 start-page: 81 year: 2014 ident: B4 article-title: Optimization of phytase production by Penicillium purpurogenum GE1 under solid state fermentation by using Box–Behnken design. publication-title: Saudi J. Biol. Sci. doi: 10.1016/j.sjbs.2013.06.004 – volume: 7 start-page: 503 year: 1907 ident: B159 article-title: Ueber ein enzym “phytase” das “anhydro-oxy-methylen diphosphorsaure” spaltet. publication-title: Bull. Coll. Agric. Tokyo Imper. Univ. – volume: 99 start-page: 605 year: 2015 ident: B62 article-title: Phytate in pig and poultry nutrition. publication-title: J. Anim. Physiol. Anim. Nutr. doi: 10.1111/jpn.12258 – volume: 44 start-page: 125 year: 2006 ident: B46 article-title: Phytase for food application. publication-title: Food Technol. Biotechnol. – volume: 5 year: 2016 ident: B91 article-title: Biochemical effect of a histidine phosphatase acid (phytase) of Aspergillus japonicus var. Saito on performance and bony characteristics of broiler. publication-title: Springerplus doi: 10.1186/s40064-016-3082-8 – volume: 96 start-page: 335 year: 2012 ident: B76 article-title: Phytate and phytase in fish nutrition. publication-title: J. Anim. Physiol. Anim. Nutr. doi: 10.1111/j.1439-0396.2011.01169.x – volume: 50 start-page: 272 year: 2009 ident: B131 article-title: Wholemeal wheat bread: a comparison of different breadmaking processes and fungal phytase addition. publication-title: J. Cereal Sci. doi: 10.1016/j.jcs.2009.06.007 – volume: 54 start-page: 121 year: 2007 ident: B49 article-title: Production, purification and characterization of thermostable phytase from thermophilic fungus Thermomyces lanuginosus TL-7. publication-title: Acta Microbiol. Immunol. Hung. doi: 10.1556/AMicr.54.2007.2.3 – start-page: 78 year: 2007 ident: B45 article-title: Phytate-degrading enzymes: regulation of synthesis in microorganisms and plants publication-title: Inositol Phosphates: Linking Agriculture and the Environment doi: 10.1079/9781845931520.0078 – volume: 390 start-page: 27 year: 1982 ident: B167 article-title: Human prostatic acid phosphatase: a histidine phosphatase. publication-title: Ann. N. Y. Acad. Sci. doi: 10.1111/j.1749-6632.1982.tb40302.x – volume: 114 start-page: 1103 year: 1997 ident: B84 article-title: Secretion of active recombinant phytase from soybean cell-suspension cultures. publication-title: Plant Physiol. doi: 10.1104/pp.114.3.1103 – volume: 99 start-page: 646 year: 2014 ident: B153 article-title: Fungal phytases: characteristics and amelioration of nutritional quality and growth of non-ruminants. publication-title: J. Anim. Physiol. Anim. Nutr. doi: 10.1111/jpn.12236 – start-page: 11 year: 2004 ident: B40 article-title: Commission regulation (EC) No 1465/2004 of 17 August 2004 concerning the permanent authorisation of an additive in feedingstuffs. publication-title: Off. J. Eur. Union – volume: 120 start-page: 945 year: 2010 ident: B75 article-title: Dietary roles of phytate and phytase in human nutrition: a review. publication-title: Food Chem. doi: 10.1016/j.foodchem.2009.11.052 – volume: 7 start-page: 1 year: 2017 ident: B142 article-title: Phytase production by Aspergillus niger NCIM 563 for a novel application to degrade organophosphorus pesticides. publication-title: AMB Express doi: 10.1186/s13568-017-0370-9 – volume: 77 start-page: 203 year: 2001 ident: B113 article-title: Production, purification and properties of microbial phytases. publication-title: Bioresour. Technol. doi: 10.1016/S0960-8524(00)00139-5 – volume: 118 start-page: 603 year: 2012 ident: B129 article-title: Influence of airflow intensity on phytase production by solid-state fermentation. publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.05.032 – volume: 7 start-page: 345 year: 2018 ident: B143 article-title: Utilization of wheat straw for fungal phytase production. publication-title: Int. J. Recycl. Org. Waste Agric. doi: 10.1007/s40093-018-0220-z – volume: 112 start-page: 1 year: 2011 ident: B183 article-title: Phytases: crystal structures, protein engineering and potential biotechnological applications. publication-title: J. Appl. Microbiol. doi: 10.1111/j.1365-2672.2011.05181.x – start-page: 263 year: 1996 ident: B176 article-title: Phytase publication-title: Advances in Applied Microbiology doi: 10.1016/S0065-2164(08)70375-7 – volume: 37 start-page: 727 year: 2002 ident: B88 article-title: Minerals and phytic acid interactions: is it a real problem for human nutrition? publication-title: Int. J. Food Sci. Technol. doi: 10.1046/j.1365-2621.2002.00618.x – volume: 65 start-page: 367 year: 1999 ident: B179 article-title: Biochemical characterization of fungal phytases (myo-inositol hexakisphosphate phosphohydrolases): catalytic properties. publication-title: Appl. Environ. Microbiol. doi: 10.1128/aem.65.2.367-373.1999 – start-page: 210 year: 2005 ident: B104 article-title: Phosphorus in soils: biological interactions publication-title: Encyclopedia of Soils in the Environment doi: 10.1016/B0-12-348530-4/00161-2 – volume: 122 start-page: 687 year: 2003 ident: B98 article-title: Phytase. publication-title: J. Food Sci. Technol. – volume: 17 start-page: 225 year: 2019 ident: B138 article-title: Purification and characterization of phytase from Aspergillus fumigatus isolated from African Giant Snail (Achatina fulica). publication-title: Biocatal. Agric. Biotechnol. doi: 10.1016/j.bcab.2018.11.017 – volume: 60 start-page: 542 year: 2015 ident: B37 article-title: Effects of a low-phosphorus diet and exogenous phytase on performance, egg quality, and bacterial colonisation and digestibility of minerals in the digestive tract of laying hens. publication-title: Czech J. Anim. Sci. doi: 10.17221/8596-CJAS – volume: 6 start-page: 1 year: 2016 ident: B155 article-title: Microbial enzymes: industrial progress in 21st century. publication-title: 3 Biotech doi: 10.1007/s13205-016-0485-8 – volume: 38 start-page: 1431 ident: B23 article-title: Enhanced Aspergillus ficuum phytase production in fed-batch and continuous fermentations in the presence of talcum microparticles. publication-title: Bioprocess Biosyst. Eng. doi: 10.1007/s00449-015-1384-9 – volume: 47 start-page: 1842 year: 1968 ident: B109 article-title: The availability of phytate phosphorus in soybean meal before and after treatment with a mold phytase. publication-title: Poult. Sci. doi: 10.3382/ps.0471842 – volume: 67 start-page: 4701 year: 2001 ident: B77 article-title: Expression, gene cloning, and characterization of five novel phytases from four basidiomycete fungi: Peniophora lycii, Agrocybe pediades, a Ceriporia sp., and Trametes pubescens. publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.67.10.4701-4707.2001 – volume: 4 start-page: 270 year: 2009 ident: B57 article-title: Phytase production by Rhizopus oligosporus MTCC556 under submerged fermentation conditions. publication-title: Asian J. Biol. Sci. – volume: 2012 start-page: 1 year: 2012 ident: B64 article-title: Culture condition improvement for phytase production in solid state fermentation by Aspergillus ficuum using statistical method. publication-title: ISRN Chem. Eng. doi: 10.5402/2012/479167 – volume: 4 start-page: 224 year: 2013 ident: B78 article-title: Optimization of culture conditions for the production of phytase from Aspergillus heteromorphus MTCC 10685. publication-title: Int. J. Adv. Biotechnol. Res. – volume: 99 start-page: 824 year: 2008 ident: B150 article-title: Improved phytase production by a thermophilic mould Sporotrichum thermophile in submerged fermentation due to statistical optimization. publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2007.01.007 – volume: 97 start-page: 260 year: 2004 ident: B120 article-title: Purification and properties of a low-molecular-weight phytase from Cladosporium sp. FP-1. publication-title: J. Biosci. Bioeng. doi: 10.1016/S1389-1723(04)70201-7 – volume: 245 start-page: 1790 year: 2017 ident: B169 article-title: Microbial phytase: impact of advances in genetic engineering in revolutionizing its properties and applications. publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.05.060 – volume: 97 start-page: 506 year: 2006 ident: B130 article-title: Comparison of phytase production on wheat bran and oilcakes in solid-state fermentation by Mucor racemosus. publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2005.02.046 – volume: 7 start-page: 1101 year: 2008 ident: B8 article-title: Influence of pretreatment of agriculture residues on phytase production by Aspergillus niger NCIM 563 under submerged fermentation conditions. publication-title: Afr. J. Biotechnol. – volume: 11 start-page: 25 year: 2016 ident: B133 article-title: Phytase production of Aspergillus niger on soybean meal by solid-state fermentation using a rotating drum bioreactor. publication-title: Agric. Agric. Sci. Procedia doi: 10.1016/j.aaspro.2016.12.005 – volume: 23 start-page: 29 year: 2003 ident: B172 article-title: Phytases: microbial surces, production, purification, and potential biotechnological applications. publication-title: Crit. Rev. Biotechnol. doi: 10.1080/713609297 – volume: 35 start-page: 1067 year: 2012 ident: B136 article-title: A bioprocess for the production of phytase from Schizophyllum commune: studies of its optimization, profile of fermentation parameters, characterization and stability. publication-title: Bioproc. Biosyst. Eng. doi: 10.1007/s00449-012-0692-6 – volume: 36 start-page: 259 year: 1988 ident: B56 article-title: Hydrolysis of phytate in soybean and cottonseed meals by Aspergillus ficuum phytase. publication-title: J. Agric. Food Chem. doi: 10.1021/jf00080a006 – volume: 38 start-page: 2159 year: 2015 ident: B42 article-title: Soil–phosphorus mobilization potential of phytate mineralizing fungi. publication-title: J. Plant Nutr. doi: 10.1080/01904167.2015.1014561 – volume: 25 start-page: 641 year: 2001 ident: B126 article-title: Extracellular secretion of Aspergillus phytase from Arabidopsis roots enables plants to obtain phosphorus from phytate. publication-title: Plant J. doi: 10.1046/j.1365-313x.2001.00998.x – volume: 51 start-page: 1315 year: 2016 ident: B116 article-title: Enhancing the production of recombinant acidic α-amylase and phytase in Pichia pastoris under dual promoters [constitutive (GAP) and inducible (AOX)] in mixed fed batch high cell density cultivation. publication-title: Process Biochem. doi: 10.1016/j.procbio.2016.07.027 – start-page: 135 year: 2017 ident: B59 article-title: Plant growth-promoting fungi (PGPF): phytostimulation and induced systemic resistance publication-title: Plant-Microbe Interactions in Agro-Ecological Perspectives doi: 10.1007/978-981-10-6593-4 – volume: 110 start-page: 638 year: 2010 ident: B193 article-title: Engineering of protease-resistant phytase from Penicillium sp.: high thermal stability, low optimal temperature and pH. publication-title: J. Biosci. Bioeng. doi: 10.1016/j.jbiosc.2010.08.003 – volume: 3 start-page: 77 year: 2017 ident: B94 article-title: Phosphorus utilization response of pigs and broiler chickens to diets supplemented with antimicrobials and phytase. publication-title: Anim. Nutr. doi: 10.1016/j.aninu.2016.11.004 – volume: 109 start-page: 462 year: 2012 ident: B34 article-title: Improved enzyme production by bio-pellets of Aspergillus niger: targeted morphology engineering using titanate microparticles. publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.23313 – start-page: 59 year: 1990 ident: B175 article-title: Carbon economy publication-title: The Rhizosphere – volume: 57 start-page: 5315 year: 2009 ident: B174 article-title: Impact of assay conditions on activity estimate and kinetics comparison of Aspergillus niger PhyA and Escherichia coli AppA2 phytases. publication-title: J. Agric. Food Chem. doi: 10.1021/jf900261n – volume: 523 start-page: 422 year: 1978 ident: B95 article-title: An essential arginine residue in human prostatic acid phosphate. publication-title: Biochim. Biophys. Acta doi: 10.1016/0005-2744(78)90043-8 |
SSID | ssj0000402000 |
Score | 2.4736235 |
SecondaryResourceType | review_article |
Snippet | Phytases are a group of enzymes that hydrolyze the phospho-monoester bonds of phytates. Phytates are one of the major forms of phosphorus found in plant... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 188 |
SubjectTerms | biotechnological applications genetic engineering Microbiology phytase phytase production purification |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8iCF7Eb-sXEbwIFtsmbZKjDscQlB0c7BbzyQTphtaD_70vzTY3Eb0IPZQ0peH3Xt9H8_p7CJ0rb3hg8U4rX4oUPFSZcmdDgY0hjhd55Vn4Ufj-oeoN6N2wHC60-go1YZEeOAJ3xTSrGIT1jpYZNZooxixxxglPrRLcBOsLPm8hmWptcEiLsizuS0IWJkBMz0ZDPliEUq68bbTy5Ydauv6fYszvpZILvqe7iTamQSO-jovdQiuu3kZrsY3kxw56grNJLPjHEIPifmRxBcQvcWeZkPkSq9pimN_MPqkHIeHrhW1sPPa4CyYAhvujjwa83NsuGnRvHzu9dNo5ITW0Kpo0d5liXlOvKwIBj_Dc2qLU4Lq5Z1rl2gKGJNOQHBllM0MgElC89JAsc6MhItpDq_W4dgcIK8odSJDkOle0AOelqKG-EoZ7qwqhEnQ1w1GaKa146G7xIiG9CMjLFnkZkJct8gm6mN8xiZQav8y9CaKZzwtk2O0AqIicqoj8S0USdDYTrISXJ-yIqNqN399kQSrBORe8TNB-FPT8UQRSY3DcRYLYkgosrWX5Sv08agm6wYpSOA7_Y_FHaD3AEQrFc3qMVpvXd3cCcVCjT1uV_wRRGAiY priority: 102 providerName: Directory of Open Access Journals |
Title | Bioprocess for Production, Characteristics, and Biotechnological Applications of Fungal Phytases |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32117182 https://www.proquest.com/docview/2369888985 https://pubmed.ncbi.nlm.nih.gov/PMC7034034 https://doaj.org/article/7b767287e4504cb3a77d3ece9f4da98c |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bi9QwFA66Ivgi3q2XJYIvwlanSZqkDyLr4rgIK_vgwLzFXN2FpbPOdMH5956TdsatDIJQSpumt3Ny8p0vlxNCXtvkNUbxLmWqmxIQqi51DDjAxvOoWSWTwonCJ1_l8Ux8mdfzP9OjBwGudlI7XE9qtrx4--vn-gMY_HtknIC3oIFz74DqMRylVWl9k9wCXFJopieDs5_rZaRKeU5KJSV2B7B532-58yEjnMrh_Hf5oH8PpbyGTdN75O7gVNLDvhTcJzdi-4Dc7peZXD8k3-Hosp8QQMFHpad9lFfQyAE9GgdsPqC2DRTyd5smd1QiPbzWzU0XiU6hioDk07N1Byi4ekRm00_fjo7LYWWF0gvJurKKE6uSE8lJDg5Rk3QIrHYA7TopZysXAo984oA8eRsmnoOnYHWdgExr78Bjekz22kUbnxJqhY6gYV65ygoG4GaFF0k2XqdgWWML8m4jR-OHsOO4-sWFAfqBkjdZ8gYlb7LkC_Jme8dlH3LjH3k_omq2-TBYdk5YLH-YwfaMckoqYIZR1BPhHbdKwe_52CQRbKN9QV5tFGvAuLDHxLZxcbUyjMtGa93ouiBPekVvX8WBOgOws4KoUREYfcv4Snt-lgN4Qy0rYHv2Hz_6nNzBExwvXokXZK9bXsWX4A51bj83I8D-87zazyX-NyYhCtc |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bioprocess+for+Production%2C+Characteristics%2C+and+Biotechnological+Applications+of+Fungal+Phytases&rft.jtitle=Frontiers+in+microbiology&rft.au=Jatuwong%2C+Kritsana&rft.au=Suwannarach%2C+Nakarin&rft.au=Kumla%2C+Jaturong&rft.au=Penkhrue%2C+Watsana&rft.date=2020-02-14&rft.issn=1664-302X&rft.eissn=1664-302X&rft.volume=11&rft_id=info:doi/10.3389%2Ffmicb.2020.00188&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fmicb_2020_00188 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-302X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-302X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-302X&client=summon |