Metagenomics-Based Discovery of Malachite Green-Degradation Gene Families and Enzymes From Mangrove Sediment

Malachite green (MG) is an organic contaminant and the effluents with MG negatively influence the health and balance of the coastal and marine ecosystem. The diverse and abundant microbial communities inhabiting in mangroves participate actively in various ecological processes. Metagenomic sequencin...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in microbiology Vol. 9; p. 2187
Main Authors Qu, Wu, Liu, Tan, Wang, Dexiang, Hong, Guolin, Zhao, Jing
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 11.09.2018
Subjects
Online AccessGet full text
ISSN1664-302X
1664-302X
DOI10.3389/fmicb.2018.02187

Cover

Loading…
Abstract Malachite green (MG) is an organic contaminant and the effluents with MG negatively influence the health and balance of the coastal and marine ecosystem. The diverse and abundant microbial communities inhabiting in mangroves participate actively in various ecological processes. Metagenomic sequencing from mangrove sediments was applied to excavate the resources MG-degradation genes (MDGs) and to assess the potential of their corresponding enzymes. A data set of 10 GB was assembled into 33,756 contigs and 44,743 ORFs were predicted. In the data set, 666 bacterial genera and 13 pollutant degradation pathways were found. and were the most dominate phyla in taxonomic assignment. A total of 44 putative MDGs were revealed and possibly derived from 30 bacterial genera, most of which belonged to the phyla of and . The MDGs belonged to three gene families, including genes (up to 93.54% of total MDGs), (3.40%), and (3.06%). Of the three gene families, three representatives (Mgv-rLACC, Mgv-rPOD, and Mgv-rCYP) which had lower similarities to the closest sequences in GenBank were prokaryotic expressed and their enzymes were characterized. Three recombinant proteins showed different MG-degrading activities. Mgv-rPOD had the strongest activity which decolorized 97.3% of MG (300 mg/L) within 40 min. In addition, Mgv-rPOD showed a more complete process of MG degradation compared with other two recombinant proteins according to the intermediates detected by LC-MS. Furthermore, the high MG-degrading activity was maintained at low temperature (20°C), wider pH range, and the existence of metal ions and chelating agent. Mgv-rLACC and Mgv-rCYP also removed 63.7% and 54.1% of MG (20 mg/L) within 24 h, respectively. The results could provide a broad insight into discovering abundant genetic resources and an effective strategy to access the eco-friendly way for preventing coastal pollution.
AbstractList Malachite green (MG) is an organic contaminant and the effluents with MG negatively influence the health and balance of the coastal and marine ecosystem. The diverse and abundant microbial communities inhabiting in mangroves participate actively in various ecological processes. Metagenomic sequencing from mangrove sediments was applied to excavate the resources MG-degradation genes (MDGs) and to assess the potential of their corresponding enzymes. A data set of 10 GB was assembled into 33,756 contigs and 44,743 ORFs were predicted. In the data set, 666 bacterial genera and 13 pollutant degradation pathways were found. and were the most dominate phyla in taxonomic assignment. A total of 44 putative MDGs were revealed and possibly derived from 30 bacterial genera, most of which belonged to the phyla of and . The MDGs belonged to three gene families, including genes (up to 93.54% of total MDGs), (3.40%), and (3.06%). Of the three gene families, three representatives (Mgv-rLACC, Mgv-rPOD, and Mgv-rCYP) which had lower similarities to the closest sequences in GenBank were prokaryotic expressed and their enzymes were characterized. Three recombinant proteins showed different MG-degrading activities. Mgv-rPOD had the strongest activity which decolorized 97.3% of MG (300 mg/L) within 40 min. In addition, Mgv-rPOD showed a more complete process of MG degradation compared with other two recombinant proteins according to the intermediates detected by LC-MS. Furthermore, the high MG-degrading activity was maintained at low temperature (20°C), wider pH range, and the existence of metal ions and chelating agent. Mgv-rLACC and Mgv-rCYP also removed 63.7% and 54.1% of MG (20 mg/L) within 24 h, respectively. The results could provide a broad insight into discovering abundant genetic resources and an effective strategy to access the eco-friendly way for preventing coastal pollution.
Malachite green (MG) is an organic contaminant and the effluents with MG negatively influence the health and balance of the coastal and marine ecosystem. The diverse and abundant microbial communities inhabiting in mangroves participate actively in various ecological processes. Metagenomic sequencing from mangrove sediments was applied to excavate the resources MG-degradation genes (MDGs) and to assess the potential of their corresponding enzymes. A data set of 10 GB was assembled into 33,756 contigs and 44,743 ORFs were predicted. In the data set, 666 bacterial genera and 13 pollutant degradation pathways were found. Proteobacteria and Actinobacteria were the most dominate phyla in taxonomic assignment. A total of 44 putative MDGs were revealed and possibly derived from 30 bacterial genera, most of which belonged to the phyla of Proteobacteria and Bacteroidetes. The MDGs belonged to three gene families, including peroxidase genes (up to 93.54% of total MDGs), laccase (3.40%), and p450 (3.06%). Of the three gene families, three representatives (Mgv-rLACC, Mgv-rPOD, and Mgv-rCYP) which had lower similarities to the closest sequences in GenBank were prokaryotic expressed and their enzymes were characterized. Three recombinant proteins showed different MG-degrading activities. Mgv-rPOD had the strongest activity which decolorized 97.3% of MG (300 mg/L) within 40 min. In addition, Mgv-rPOD showed a more complete process of MG degradation compared with other two recombinant proteins according to the intermediates detected by LC-MS. Furthermore, the high MG-degrading activity was maintained at low temperature (20°C), wider pH range, and the existence of metal ions and chelating agent. Mgv-rLACC and Mgv-rCYP also removed 63.7% and 54.1% of MG (20 mg/L) within 24 h, respectively. The results could provide a broad insight into discovering abundant genetic resources and an effective strategy to access the eco-friendly way for preventing coastal pollution.
Malachite green (MG) is an organic contaminant and the effluents with MG negatively influence the health and balance of the coastal and marine ecosystem. The diverse and abundant microbial communities inhabiting in mangroves participate actively in various ecological processes. Metagenomic sequencing from mangrove sediments was applied to excavate the resources MG-degradation genes (MDGs) and to assess the potential of their corresponding enzymes. A data set of 10 GB was assembled into 33,756 contigs and 44,743 ORFs were predicted. In the data set, 666 bacterial genera and 13 pollutant degradation pathways were found. Proteobacteria and Actinobacteria were the most dominate phyla in taxonomic assignment. A total of 44 putative MDGs were revealed and possibly derived from 30 bacterial genera, most of which belonged to the phyla of Proteobacteria and Bacteroidetes . The MDGs belonged to three gene families, including peroxidase genes (up to 93.54% of total MDGs), laccase (3.40%), and p450 (3.06%). Of the three gene families, three representatives (Mgv-rLACC, Mgv-rPOD, and Mgv-rCYP) which had lower similarities to the closest sequences in GenBank were prokaryotic expressed and their enzymes were characterized. Three recombinant proteins showed different MG-degrading activities. Mgv-rPOD had the strongest activity which decolorized 97.3% of MG (300 mg/L) within 40 min. In addition, Mgv-rPOD showed a more complete process of MG degradation compared with other two recombinant proteins according to the intermediates detected by LC-MS. Furthermore, the high MG-degrading activity was maintained at low temperature (20°C), wider pH range, and the existence of metal ions and chelating agent. Mgv-rLACC and Mgv-rCYP also removed 63.7% and 54.1% of MG (20 mg/L) within 24 h, respectively. The results could provide a broad insight into discovering abundant genetic resources and an effective strategy to access the eco-friendly way for preventing coastal pollution.
Malachite green (MG) is an organic contaminant and the effluents with MG negatively influence the health and balance of the coastal and marine ecosystem. The diverse and abundant microbial communities inhabiting in mangroves participate actively in various ecological processes. Metagenomic sequencing from mangrove sediments was applied to excavate the resources MG-degradation genes (MDGs) and to assess the potential of their corresponding enzymes. A data set of 10 GB was assembled into 33,756 contigs and 44,743 ORFs were predicted. In the data set, 666 bacterial genera and 13 pollutant degradation pathways were found. Proteobacteria and Actinobacteria were the most dominate phyla in taxonomic assignment. A total of 44 putative MDGs were revealed and possibly derived from 30 bacterial genera, most of which belonged to the phyla of Proteobacteria and Bacteroidetes. The MDGs belonged to three gene families, including peroxidase genes (up to 93.54% of total MDGs), laccase (3.40%), and p450 (3.06%). Of the three gene families, three representatives (Mgv-rLACC, Mgv-rPOD, and Mgv-rCYP) which had lower similarities to the closest sequences in GenBank were prokaryotic expressed and their enzymes were characterized. Three recombinant proteins showed different MG-degrading activities. Mgv-rPOD had the strongest activity which decolorized 97.3% of MG (300 mg/L) within 40 min. In addition, Mgv-rPOD showed a more complete process of MG degradation compared with other two recombinant proteins according to the intermediates detected by LC-MS. Furthermore, the high MG-degrading activity was maintained at low temperature (20°C), wider pH range, and the existence of metal ions and chelating agent. Mgv-rLACC and Mgv-rCYP also removed 63.7% and 54.1% of MG (20 mg/L) within 24 h, respectively. The results could provide a broad insight into discovering abundant genetic resources and an effective strategy to access the eco-friendly way for preventing coastal pollution.Malachite green (MG) is an organic contaminant and the effluents with MG negatively influence the health and balance of the coastal and marine ecosystem. The diverse and abundant microbial communities inhabiting in mangroves participate actively in various ecological processes. Metagenomic sequencing from mangrove sediments was applied to excavate the resources MG-degradation genes (MDGs) and to assess the potential of their corresponding enzymes. A data set of 10 GB was assembled into 33,756 contigs and 44,743 ORFs were predicted. In the data set, 666 bacterial genera and 13 pollutant degradation pathways were found. Proteobacteria and Actinobacteria were the most dominate phyla in taxonomic assignment. A total of 44 putative MDGs were revealed and possibly derived from 30 bacterial genera, most of which belonged to the phyla of Proteobacteria and Bacteroidetes. The MDGs belonged to three gene families, including peroxidase genes (up to 93.54% of total MDGs), laccase (3.40%), and p450 (3.06%). Of the three gene families, three representatives (Mgv-rLACC, Mgv-rPOD, and Mgv-rCYP) which had lower similarities to the closest sequences in GenBank were prokaryotic expressed and their enzymes were characterized. Three recombinant proteins showed different MG-degrading activities. Mgv-rPOD had the strongest activity which decolorized 97.3% of MG (300 mg/L) within 40 min. In addition, Mgv-rPOD showed a more complete process of MG degradation compared with other two recombinant proteins according to the intermediates detected by LC-MS. Furthermore, the high MG-degrading activity was maintained at low temperature (20°C), wider pH range, and the existence of metal ions and chelating agent. Mgv-rLACC and Mgv-rCYP also removed 63.7% and 54.1% of MG (20 mg/L) within 24 h, respectively. The results could provide a broad insight into discovering abundant genetic resources and an effective strategy to access the eco-friendly way for preventing coastal pollution.
Author Qu, Wu
Hong, Guolin
Zhao, Jing
Liu, Tan
Wang, Dexiang
AuthorAffiliation 3 The Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University , Xiamen , China
1 School of Life Sciences, Xiamen University , Xiamen , China
2 College of Ocean and Earth Sciences, Xiamen University , Xiamen , China
AuthorAffiliation_xml – name: 2 College of Ocean and Earth Sciences, Xiamen University , Xiamen , China
– name: 1 School of Life Sciences, Xiamen University , Xiamen , China
– name: 3 The Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University , Xiamen , China
Author_xml – sequence: 1
  givenname: Wu
  surname: Qu
  fullname: Qu, Wu
– sequence: 2
  givenname: Tan
  surname: Liu
  fullname: Liu, Tan
– sequence: 3
  givenname: Dexiang
  surname: Wang
  fullname: Wang, Dexiang
– sequence: 4
  givenname: Guolin
  surname: Hong
  fullname: Hong, Guolin
– sequence: 5
  givenname: Jing
  surname: Zhao
  fullname: Zhao, Jing
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30258430$$D View this record in MEDLINE/PubMed
BookMark eNp1kk1v1DAQhi1UREvpnRPKkUu2_kpsX5Cg7S6VWnEAJG6WY09SV4ld7Gyl5dfj3W2rFgkf7NH4fZ_xx7xFByEGQOg9wQvGpDrtJ2-7BcVELjAlUrxCR6Rtec0w_XXwLD5EJznf4jI4pmV-gw5LupGc4SM0XsNsBgixwHL9xWRw1bnPNt5D2lSxr67NaOyNn6FaJYBQn8OQjDOzj6FaQYBqaSY_esiVCa66CH82U4mXKU7FGoZUQNV3cH6CML9Dr3szZjh5WI_Rz-XFj7Ov9dW31eXZ56va8pbONelcowwhwjHimq4jtnOtIkIaKSiWGPctLUKiqGolY13PGGXWCUolEcw17Bhd7rkumlt9l_xk0kZH4_UuEdOgTZq9HUE3mHOqgEvbt1w2qhOkl1wZTK2V1G5Zn_asu3U3gbPlGsmML6Avd4K_0UO81y3hTChaAB8fACn-XkOe9VTeF8bRBIjrrCkhjArB8bbWh-e1noo8flcR4L3Apphzgv5JQrDeNoXeNYXeNoXeNUWxtP9YrJ9331dO68f_G_8CYUm72A
CitedBy_id crossref_primary_10_1007_s13762_019_02582_2
crossref_primary_10_1002_jctb_6891
crossref_primary_10_1016_j_marpolbul_2020_111363
crossref_primary_10_1186_s13568_022_01375_0
crossref_primary_10_1016_j_ecoenv_2020_110557
crossref_primary_10_1016_j_ibiod_2024_105765
crossref_primary_10_1111_1755_0998_13950
crossref_primary_10_1016_j_clce_2022_100017
crossref_primary_10_1016_j_mcat_2023_113705
crossref_primary_10_3390_su11154179
crossref_primary_10_1007_s00253_019_10147_z
crossref_primary_10_1007_s10529_024_03480_5
crossref_primary_10_1016_j_envpol_2019_113456
crossref_primary_10_1016_j_envpol_2023_121718
crossref_primary_10_1007_s11356_022_21610_2
crossref_primary_10_1016_j_ijbiomac_2019_07_029
Cites_doi 10.1007/s11356-016-6164-9
10.1016/j.jhazmat.2009.12.030
10.1007/s00253-009-2233-z
10.1371/journal.pone.0171911
10.4238/2015.October.2.17
10.1023/A:1010306114286
10.1021/jf9043925
10.1038/455481a
10.1007/s10646-011-0595-3
10.1016/j.aquatox.2003.09.008
10.1016/j.jhazmat.2016.06.055
10.1111/j.1466-8238.2010.00584.x
10.1007/s11356-016-8259-8
10.1016/j.scitotenv.2016.03.206
10.1007/s00253-006-0418-2
10.1590/S1516-89132010000600028
10.1007/s10532-009-9265-z
10.1128/AEM.71.12.7980-7986.2005
10.1128/AAC.47.7.2323-2326.2003
10.1038/ngeo1123
10.1016/j.jhazmat.2014.11.041
10.1128/AEM.67.9.4358-4360.2001
10.1073/pnas.1005297107
10.1371/journal.pone.0127714
10.1007/s00253-007-0838-7
10.1074/jbc.M804092200
10.1016/j.ijbiomac.2016.02.073
10.1371/journal.pone.0038600
10.1016/j.biortech.2012.01.172
10.5897/AJMR12.843
10.1007/s00253-010-2934-3
10.1016/j.biortech.2012.11.054
10.1016/j.jbiosc.2009.05.016
10.1023/A:1022811430030
10.1186/gb-2005-6-8-229
10.1016/j.biortech.2012.01.099
10.1128/AEM.56.6.1919-1925.1990
10.1016/j.ibiod.2012.12.011
10.1371/journal.pone.0051808
10.1016/j.matdes.2017.01.039
10.1111/j.1574-6941.2008.00519.x
10.1128/AEM.57.12.3462-3469.1991
10.1007/s12010-013-0220-4
10.1038/nature02286
10.1016/j.earscirev.2017.01.004
10.3390/bioengineering4030062
10.1007/s00253-008-1819-1
10.1016/S0021-9258(20)82038-9
10.1128/AEM.03036-09
10.1016/j.marpolbul.2016.08.080
10.1126/science.1200387
10.1016/j.jhazmat.2007.06.003
10.1264/jsme2.21.201
10.1021/jf4010498
10.1016/j.chemosphere.2014.09.043
ContentType Journal Article
Copyright Copyright © 2018 Qu, Liu, Wang, Hong and Zhao. 2018 Qu, Liu, Wang, Hong and Zhao
Copyright_xml – notice: Copyright © 2018 Qu, Liu, Wang, Hong and Zhao. 2018 Qu, Liu, Wang, Hong and Zhao
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fmicb.2018.02187
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1664-302X
ExternalDocumentID oai_doaj_org_article_504429e48cf64859b71f849a02cc82c5
PMC6143792
30258430
10_3389_fmicb_2018_02187
Genre Journal Article
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
ECGQY
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
O5R
O5S
OK1
PGMZT
RNS
RPM
IAO
IEA
IHR
IPNFZ
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c462t-1bd59a117d31d5bb1cbd69178a8720800f6246219296833bf3323cd7228173d53
IEDL.DBID M48
ISSN 1664-302X
IngestDate Wed Aug 27 01:30:34 EDT 2025
Thu Aug 21 18:09:26 EDT 2025
Fri Jul 11 16:17:40 EDT 2025
Wed Feb 19 02:43:04 EST 2025
Thu Apr 24 22:56:52 EDT 2025
Tue Jul 01 00:44:14 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords degradation pathway
metagenome
MG biodegradation
mangrove sediment
biochemical analysis
gene expression
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c462t-1bd59a117d31d5bb1cbd69178a8720800f6246219296833bf3323cd7228173d53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Edited by: Shaohua Chen, South China Agricultural University, China
This article was submitted to Microbiotechnology, Ecotoxicology and Bioremediation, a section of the journal Frontiers in Microbiology
Reviewed by: Dong Li, University of California, Santa Barbara, United States; Qing Hong, Nanjing Agricultural University, China; Hongzhi Tang, Shanghai Jiao Tong University, China
OpenAccessLink https://doaj.org/article/504429e48cf64859b71f849a02cc82c5
PMID 30258430
PQID 2113277405
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_504429e48cf64859b71f849a02cc82c5
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6143792
proquest_miscellaneous_2113277405
pubmed_primary_30258430
crossref_primary_10_3389_fmicb_2018_02187
crossref_citationtrail_10_3389_fmicb_2018_02187
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-09-11
PublicationDateYYYYMMDD 2018-09-11
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-09-11
  day: 11
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in microbiology
PublicationTitleAlternate Front Microbiol
PublicationYear 2018
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Pope (B39) 2010; 107
Gomathi (B17) 2013; 7
Amann (B2) 1990; 56
Pathania (B38) 2016; 87
Srinivasan (B45) 2014; 2
Du (B11) 2011; 20
Zhao (B59) 2016; 318
Algubury (B1) 2016; 9
Chang (B5) 2016; 113
Soares (B44) 2017; 4
Wang (B52) 2012; 7
Jefferson (B25) 2003; 47
Ulson de Souza (B49) 2007; 147
Hong (B23) 2007; 75
Xiao (B53) 2012; 110
Ren (B40) 2006; 72
Yang (B54) 2017; 24
Cha (B4) 2001; 67
Schloss (B42) 2005; 6
Mumby (B35) 2004; 427
Simon (B43) 2009; 85
Yang (B55) 2015; 10
Zhang (B58) 2013; 61
Jones (B27) 2011; 88
Srivastava (B46) 2004; 66
Gomes Gomes (B18) 2008; 66
Chen (B8) 2010; 177
Kim (B29) 2008; 283
Ouyang (B37) 2017; 166
Kedderis (B28) 1983; 258
Gopinathan (B20) 2015; 120
Grosser (B21) 1991; 57
Gonçalves (B19) 2015; 14
Chen (B9) 2010; 58
Klankeo (B31) 2009; 108
Saravanakumar (B41) 2013; 171
Wahman (B51) 2005; 71
Fang (B15) 2012; 111
Tayabali (B48) 2017; 12
Andreote (B3) 2012; 7
Chang (B6) 2001; 23
Yong (B57) 2015; 285
Murugesan (B36) 2009; 82
Venil (B50) 2010; 53
Yang (B56) 2016; 23
Du (B12) 2013; 78
Hess (B22) 2011; 331
Kimura (B30) 2006; 21
Liang (B33) 2017; 119
Donato (B10) 2011; 4
Marchand (B34) 2016; 562
Jiang (B26) 2011
Giri (B16) 2011; 20
Suttinun (B47) 2010; 76
Li (B32) 2009; 20
Fang (B13) 2013; 129
Hugenholtz (B24) 2008; 455
Chang (B7) 2002; 13
Fang (B14) 2011; 89
26020270 - PLoS One. 2015 May 28;10(5):e0127714
26436508 - Genet Mol Res. 2015 Oct 02;14(4):11841-7
16332776 - Appl Environ Microbiol. 2005 Dec;71(12):7980-6
23251629 - PLoS One. 2012;7(12):e51808
25462308 - Chemosphere. 2015 Feb;120:637-44
2200342 - Appl Environ Microbiol. 1990 Jun;56(6):1919-25
22377476 - Bioresour Technol. 2012 May;111:36-41
28952541 - Bioengineering (Basel). 2017 Jul 09;4(3):null
20481609 - J Agric Food Chem. 2010 Jun 23;58(12):7109-14
18782772 - J Biol Chem. 2008 Nov 14;283(46):31981-90
20963410 - Appl Microbiol Biotechnol. 2011 Feb;89(4):1103-10
19130052 - Appl Microbiol Biotechnol. 2009 Feb;82(2):341-50
1785924 - Appl Environ Microbiol. 1991 Dec;57(12):3462-9
26944664 - Int J Biol Macromol. 2016 Jun;87:366-74
17628340 - J Hazard Mater. 2007 Aug 25;147(3):1073-8
22349191 - Bioresour Technol. 2012 Apr;110:86-90
16086859 - Genome Biol. 2005;6(8):229
17260140 - Appl Microbiol Biotechnol. 2007 Jun;75(3):647-54
25497025 - J Hazard Mater. 2015 Mar 21;285:127-36
15129773 - Aquat Toxicol. 2004 Feb 25;66(3):319-29
22737213 - PLoS One. 2012;7(6):e38600
16622679 - Appl Microbiol Biotechnol. 2006 Oct;72(6):1316-21
21273488 - Science. 2011 Jan 28;331(6016):463-7
19468843 - Biodegradation. 2009 Nov;20(6):769-76
26846235 - Environ Sci Pollut Res Int. 2016 May;23(10):9585-97
12713129 - Biodegradation. 2002;13(6):373-81
12821489 - Antimicrob Agents Chemother. 2003 Jul;47(7):2323-6
23604969 - Appl Biochem Biotechnol. 2013 Nov;171(5):1178-93
11526047 - Appl Environ Microbiol. 2001 Sep;67(9):4358-60
20472723 - Appl Environ Microbiol. 2010 Jul;76(14):4684-90
28013469 - Environ Sci Pollut Res Int. 2017 Feb;24(6):5391-5403
20060225 - J Hazard Mater. 2010 May 15;177(1-3):281-9
19760178 - Appl Microbiol Biotechnol. 2009 Nov;85(2):265-76
28178315 - PLoS One. 2017 Feb 8;12(2):e0171911
18818648 - Nature. 2008 Sep 25;455(7212):481-3
20668243 - Proc Natl Acad Sci U S A. 2010 Aug 17;107(33):14793-8
19914581 - J Biosci Bioeng. 2009 Dec;108(6):488-95
23706133 - J Agric Food Chem. 2013 Jun 12;61(23):5468-73
27612928 - Mar Pollut Bull. 2016 Dec 15;113(1-2):579-584
23247148 - Bioresour Technol. 2013 Feb;129:209-18
27100002 - Sci Total Environ. 2016 Aug 15;562:216-227
27415596 - J Hazard Mater. 2016 Nov 15;318:90-98
14765193 - Nature. 2004 Feb 5;427(6974):533-6
18537833 - FEMS Microbiol Ecol. 2008 Oct;66(1):96-109
6863282 - J Biol Chem. 1983 Jul 10;258(13):8129-38
21253837 - Ecotoxicology. 2011 Mar;20(2):438-46
References_xml – volume: 23
  start-page: 9585
  year: 2016
  ident: B56
  article-title: Degradation and detoxification of the triphenylmethane dye malachite green catalyzed by crude manganese peroxidase from Irpex lacteus F17.
  publication-title: Environ. Sci. Pollut. Res. Int.
  doi: 10.1007/s11356-016-6164-9
– volume: 177
  start-page: 281
  year: 2010
  ident: B8
  article-title: Partial degradation mechanisms of malachite green and methyl violet B by Shewanella decolorationis NTOU1 under anaerobic conditions.
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2009.12.030
– volume: 85
  start-page: 265
  year: 2009
  ident: B43
  article-title: Achievements and new knowledge unraveled by metagenomic approaches.
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-009-2233-z
– volume: 12
  year: 2017
  ident: B48
  article-title: Composition and pathogenic potential of a microbial bioremediation product used for crude oil degradation.
  publication-title: PLOS One
  doi: 10.1371/journal.pone.0171911
– volume: 14
  start-page: 11841
  year: 2015
  ident: B19
  article-title: High yield of functional metagenomic library from mangroves constructed in fosmid vector.
  publication-title: Genet. Mol. Res.
  doi: 10.4238/2015.October.2.17
– volume: 23
  start-page: 631
  year: 2001
  ident: B6
  article-title: Decolorization kinetics of a recombinant Escherichia coli strain harboring azo-dye-decolorizing determinants from Rhodococcus sp.
  publication-title: Biotechnol. Lett.
  doi: 10.1023/A:1010306114286
– volume: 58
  start-page: 7109
  year: 2010
  ident: B9
  article-title: HPLC determination and ms confirmation of malachite green, gentian violet, and their leuco metabolite residues in channel catfish muscle.
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf9043925
– volume: 455
  start-page: 481
  year: 2008
  ident: B24
  article-title: Microbiology: metagenomics.
  publication-title: Nature
  doi: 10.1038/455481a
– volume: 20
  start-page: 438
  year: 2011
  ident: B11
  article-title: Biodegradation of malachite green by Pseudomonas sp. strain DY1 under aerobic condition: characteristics, degradation products, enzyme analysis and phytotoxicity.
  publication-title: Ecotoxicology
  doi: 10.1007/s10646-011-0595-3
– volume: 66
  start-page: 319
  year: 2004
  ident: B46
  article-title: Toxicological effects of malachite green.
  publication-title: Aquat. Toxicol.
  doi: 10.1016/j.aquatox.2003.09.008
– volume: 318
  start-page: 90
  year: 2016
  ident: B59
  article-title: Reconstruction of metabolic networks in a fluoranthene-degrading enrichments from polycyclic aromatic hydrocarbon polluted soil.
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2016.06.055
– volume: 20
  start-page: 154
  year: 2011
  ident: B16
  article-title: Status and distribution of mangrove forests of the world using earth observation satellite data.
  publication-title: Glob. Ecol. Biogeogr.
  doi: 10.1111/j.1466-8238.2010.00584.x
– volume: 24
  start-page: 5391
  year: 2017
  ident: B54
  article-title: Bacterial communities associated with anaerobic debromination of decabromodiphenyl ether from mangrove sediment.
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-016-8259-8
– volume: 562
  start-page: 216
  year: 2016
  ident: B34
  article-title: Trace metal geochemistry in mangrove sediments and their transfer to mangrove plants (New Caledonia).
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2016.03.206
– volume: 72
  start-page: 1316
  year: 2006
  ident: B40
  article-title: Decolorization of triphenylmethane, azo, and anthraquinone dyes by a newly isolated Aeromonas hydrophila strain.
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-006-0418-2
– volume: 53
  start-page: 1503
  year: 2010
  ident: B50
  article-title: Dye decolorizing potential of a novel fungus Coriolus versicolor ML04 in the medium optimized by response surface methodology.
  publication-title: Braz. Arch. Biol. Technol.
  doi: 10.1590/S1516-89132010000600028
– volume: 20
  start-page: 769
  year: 2009
  ident: B32
  article-title: Isolation of a malachite green-degrading Pseudomonas sp. MDB-1 strain and cloning of the tmr2 gene.
  publication-title: Biodegradation
  doi: 10.1007/s10532-009-9265-z
– volume: 71
  start-page: 7980
  year: 2005
  ident: B51
  article-title: Cometabolism of trihalomethanes by Nitrosomonas europaea.
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.71.12.7980-7986.2005
– volume: 47
  start-page: 2323
  year: 2003
  ident: B25
  article-title: Decolorization of malachite green and crystal violet by waterborne pathogenic mycobacteria.
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.47.7.2323-2326.2003
– volume: 4
  start-page: 293
  year: 2011
  ident: B10
  article-title: Mangroves among the most carbon-rich forests in the tropics.
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo1123
– volume: 285
  start-page: 127
  year: 2015
  ident: B57
  article-title: Photodegradation of malachite green under simulated and natural irradiation: kinetics, products, and pathways.
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2014.11.041
– volume: 67
  start-page: 4358
  year: 2001
  ident: B4
  article-title: Biotransformation of malachite green by the fungus Cunninghamella elegans.
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.67.9.4358-4360.2001
– volume: 107
  start-page: 14793
  year: 2010
  ident: B39
  article-title: Adaptation to herbivory by the Tammar wallaby includes bacterial and glycoside hydrolase profiles different from other herbivores.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1005297107
– volume: 10
  year: 2015
  ident: B55
  article-title: Laccase-catalyzed decolorization of malachite green: performance optimization and degradation mechanism.
  publication-title: PLOS One
  doi: 10.1371/journal.pone.0127714
– volume: 75
  start-page: 647
  year: 2007
  ident: B23
  article-title: Reduction and partial degradation mechanisms of naphthylaminesulfonic azo dye amaranth by Shewanella decolorationis S12.
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-007-0838-7
– volume: 283
  start-page: 31981
  year: 2008
  ident: B29
  article-title: Structural insight into bioremediation of triphenylmethane dyes by Citrobacter sp. triphenylmethane reductase.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M804092200
– volume: 87
  start-page: 366
  year: 2016
  ident: B38
  article-title: Novel guar gum/Al 2 O 3 nanocomposite as an effective photocatalyst for the degradation of malachite green dye.
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2016.02.073
– volume: 7
  year: 2012
  ident: B3
  article-title: The microbiome of Brazilian mangrove sediments as revealed by metagenomics.
  publication-title: PLOS One
  doi: 10.1371/journal.pone.0038600
– volume: 111
  start-page: 36
  year: 2012
  ident: B15
  article-title: A new marine bacterial laccase with chloride-enhancing, alkaline-dependent activity and dye decolorization ability.
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.01.172
– volume: 7
  start-page: 3056
  year: 2013
  ident: B17
  article-title: Bio removal of malachite green by mangrove-derived Aplanochytrium sp. KGA2512.
  publication-title: Afr. J. Microbiol. Res.
  doi: 10.5897/AJMR12.843
– volume: 89
  start-page: 1103
  year: 2011
  ident: B14
  article-title: A bacterial laccase from marine microbial metagenome exhibiting chloride tolerance and dye decolorization ability.
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-010-2934-3
– volume: 129
  start-page: 209
  year: 2013
  ident: B13
  article-title: Metagenomic analysis reveals the prevalence of biodegradation genes for organic pollutants in activated sludge.
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.11.054
– volume: 108
  start-page: 488
  year: 2009
  ident: B31
  article-title: Two novel pyrene-degrading Diaphorobacter sp. and Pseudoxanthomonas sp. isolated from soil.
  publication-title: J. Biosci. Bioeng.
  doi: 10.1016/j.jbiosc.2009.05.016
– volume: 13
  start-page: 373
  year: 2002
  ident: B7
  article-title: Cooxidation of naphthalene and other polycyclic aromatic hydrocarbons by the nitrifying bacterium. Nitrosomonas europaea.
  publication-title: Biodegradation
  doi: 10.1023/A:1022811430030
– volume: 88
  start-page: 27
  year: 2011
  ident: B27
  article-title: Geology of the hebridean margin of the Rockall Trough.
  publication-title: Proc. R. Soc. Edinb.
– volume: 6
  year: 2005
  ident: B42
  article-title: Metagenomics for studying unculturable microorganisms: cutting the Gordian knot.
  publication-title: Genome Biol.
  doi: 10.1186/gb-2005-6-8-229
– volume: 110
  start-page: 86
  year: 2012
  ident: B53
  article-title: Biodecolorization of naphthol green B dye by Shewanella oneidensis MR-1 under anaerobic conditions.
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.01.099
– volume: 56
  start-page: 1919
  year: 1990
  ident: B2
  article-title: Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations.
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.56.6.1919-1925.1990
– volume: 78
  start-page: 108
  year: 2013
  ident: B12
  article-title: Biodegradation of malachite green by Micrococcus sp. strain BD15: biodegradation pathway and enzyme analysis.
  publication-title: Int. Biodeterior. Biodegradation
  doi: 10.1016/j.ibiod.2012.12.011
– volume: 7
  year: 2012
  ident: B52
  article-title: Pathway and molecular mechanisms for malachite green biodegradation in Exiguobacterium sp. MG2.
  publication-title: PLOS One
  doi: 10.1371/journal.pone.0051808
– volume: 119
  start-page: 244
  year: 2017
  ident: B33
  article-title: Rapid malachite green degradation using Fe 73.5 Si 13.5 B 9 Cu 1 Nb 3 metallic glass for activation of persulfate under UV–Vis light.
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2017.01.039
– volume: 66
  start-page: 96
  year: 2008
  ident: B18
  article-title: Exploring the diversity of bacterial communities in sediments of urban mangrove forests.
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1111/j.1574-6941.2008.00519.x
– volume: 57
  start-page: 3462
  year: 1991
  ident: B21
  article-title: Indigenous and enhanced mineralization of pyrene, benzo[a]pyrene, and carbazole in soils.
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.57.12.3462-3469.1991
– volume: 171
  start-page: 1178
  year: 2013
  ident: B41
  article-title: Manganese peroxidase H4 isozyme mediated degradation and detoxification of triarylmethane dye malachite green: optimization of decolorization by response surface methodology.
  publication-title: Appl. Biochem. Biotechnol.
  doi: 10.1007/s12010-013-0220-4
– volume: 427
  start-page: 533
  year: 2004
  ident: B35
  article-title: Mangroves enhance the biomass of coral reef fish communities in the Caribbean.
  publication-title: Nature
  doi: 10.1038/nature02286
– year: 2011
  ident: B26
  publication-title: Microbiodegradation of Two Aquacultural Drugs in the Sediment.
– volume: 166
  start-page: 53
  year: 2017
  ident: B37
  article-title: The role of root decomposition in global mangrove and saltmarsh carbon budgets.
  publication-title: Earth Sci. Rev.
  doi: 10.1016/j.earscirev.2017.01.004
– volume: 4
  year: 2017
  ident: B44
  article-title: A novel multifunctional β-N-acetylhexosaminidase revealed through metagenomics of an oil-spilled mangrove.
  publication-title: Bioengineering
  doi: 10.3390/bioengineering4030062
– volume: 82
  start-page: 341
  year: 2009
  ident: B36
  article-title: Enhanced transformation of malachite green by laccase of Ganoderma lucidum in the presence of natural phenolic compounds.
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-008-1819-1
– volume: 258
  start-page: 8129
  year: 1983
  ident: B28
  article-title: Characterization of the N-demethylation reactions catalyzed by horseradish peroxidase.
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(20)82038-9
– volume: 76
  start-page: 4684
  year: 2010
  ident: B47
  article-title: Cometabolic degradation of trichloroethene by Rhodococcus sp. strain L4 immobilized on plant materials rich in essential oils.
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.03036-09
– volume: 113
  start-page: 579
  year: 2016
  ident: B5
  article-title: Analysis of banned veterinary drugs and herbicide residues in shellfish by liquid chromatography-tandem mass spectrometry (LC/MS/MS) and gas chromatography-tandem mass spectrometry (GC/MS/MS).
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2016.08.080
– volume: 331
  start-page: 463
  year: 2011
  ident: B22
  article-title: Metagenomic discovery of biomass-degrading genes and genomes from cow rumen.
  publication-title: Science
  doi: 10.1126/science.1200387
– volume: 147
  start-page: 1073
  year: 2007
  ident: B49
  article-title: Toxicity of textile dyes and their degradation by the enzyme horseradish peroxidase (HRP).
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2007.06.003
– volume: 2
  start-page: 154
  year: 2014
  ident: B45
  article-title: Biodegradation of carcinogenic textile azo dyes using bacterial isolates of mangrove sediment.
  publication-title: J. Coast. Life Med.
– volume: 21
  start-page: 201
  year: 2006
  ident: B30
  article-title: Metagenomics: access to unculturable microbes in the environment.
  publication-title: Microbes Environ.
  doi: 10.1264/jsme2.21.201
– volume: 9
  start-page: 227
  year: 2016
  ident: B1
  article-title: The effect of coupled titanium dioxide and cobalt oxide on photo catalytic degradation of malachite green.
  publication-title: Int. J. Chemtech Res.
– volume: 61
  start-page: 5468
  year: 2013
  ident: B58
  article-title: Purification and characterization of a temperature- and pH-Stable laccase from the spores of Bacillus vallismortis fmb-103 and Its application in the degradation of malachite green.
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf4010498
– volume: 120
  start-page: 637
  year: 2015
  ident: B20
  article-title: Effect of malachite green toxicity on non target soil organisms.
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2014.09.043
– reference: 20668243 - Proc Natl Acad Sci U S A. 2010 Aug 17;107(33):14793-8
– reference: 16622679 - Appl Microbiol Biotechnol. 2006 Oct;72(6):1316-21
– reference: 2200342 - Appl Environ Microbiol. 1990 Jun;56(6):1919-25
– reference: 12821489 - Antimicrob Agents Chemother. 2003 Jul;47(7):2323-6
– reference: 21253837 - Ecotoxicology. 2011 Mar;20(2):438-46
– reference: 27415596 - J Hazard Mater. 2016 Nov 15;318:90-98
– reference: 22377476 - Bioresour Technol. 2012 May;111:36-41
– reference: 17628340 - J Hazard Mater. 2007 Aug 25;147(3):1073-8
– reference: 22737213 - PLoS One. 2012;7(6):e38600
– reference: 18537833 - FEMS Microbiol Ecol. 2008 Oct;66(1):96-109
– reference: 26020270 - PLoS One. 2015 May 28;10(5):e0127714
– reference: 26846235 - Environ Sci Pollut Res Int. 2016 May;23(10):9585-97
– reference: 16332776 - Appl Environ Microbiol. 2005 Dec;71(12):7980-6
– reference: 19130052 - Appl Microbiol Biotechnol. 2009 Feb;82(2):341-50
– reference: 21273488 - Science. 2011 Jan 28;331(6016):463-7
– reference: 18782772 - J Biol Chem. 2008 Nov 14;283(46):31981-90
– reference: 23247148 - Bioresour Technol. 2013 Feb;129:209-18
– reference: 12713129 - Biodegradation. 2002;13(6):373-81
– reference: 25462308 - Chemosphere. 2015 Feb;120:637-44
– reference: 28178315 - PLoS One. 2017 Feb 8;12(2):e0171911
– reference: 26436508 - Genet Mol Res. 2015 Oct 02;14(4):11841-7
– reference: 16086859 - Genome Biol. 2005;6(8):229
– reference: 19468843 - Biodegradation. 2009 Nov;20(6):769-76
– reference: 25497025 - J Hazard Mater. 2015 Mar 21;285:127-36
– reference: 19760178 - Appl Microbiol Biotechnol. 2009 Nov;85(2):265-76
– reference: 23251629 - PLoS One. 2012;7(12):e51808
– reference: 28952541 - Bioengineering (Basel). 2017 Jul 09;4(3):null
– reference: 6863282 - J Biol Chem. 1983 Jul 10;258(13):8129-38
– reference: 18818648 - Nature. 2008 Sep 25;455(7212):481-3
– reference: 1785924 - Appl Environ Microbiol. 1991 Dec;57(12):3462-9
– reference: 17260140 - Appl Microbiol Biotechnol. 2007 Jun;75(3):647-54
– reference: 22349191 - Bioresour Technol. 2012 Apr;110:86-90
– reference: 20481609 - J Agric Food Chem. 2010 Jun 23;58(12):7109-14
– reference: 23604969 - Appl Biochem Biotechnol. 2013 Nov;171(5):1178-93
– reference: 19914581 - J Biosci Bioeng. 2009 Dec;108(6):488-95
– reference: 26944664 - Int J Biol Macromol. 2016 Jun;87:366-74
– reference: 15129773 - Aquat Toxicol. 2004 Feb 25;66(3):319-29
– reference: 20060225 - J Hazard Mater. 2010 May 15;177(1-3):281-9
– reference: 23706133 - J Agric Food Chem. 2013 Jun 12;61(23):5468-73
– reference: 27100002 - Sci Total Environ. 2016 Aug 15;562:216-227
– reference: 20472723 - Appl Environ Microbiol. 2010 Jul;76(14):4684-90
– reference: 11526047 - Appl Environ Microbiol. 2001 Sep;67(9):4358-60
– reference: 14765193 - Nature. 2004 Feb 5;427(6974):533-6
– reference: 28013469 - Environ Sci Pollut Res Int. 2017 Feb;24(6):5391-5403
– reference: 20963410 - Appl Microbiol Biotechnol. 2011 Feb;89(4):1103-10
– reference: 27612928 - Mar Pollut Bull. 2016 Dec 15;113(1-2):579-584
SSID ssj0000402000
Score 2.289658
Snippet Malachite green (MG) is an organic contaminant and the effluents with MG negatively influence the health and balance of the coastal and marine ecosystem. The...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2187
SubjectTerms biochemical analysis
degradation pathway
gene expression
mangrove sediment
metagenome
MG biodegradation
Microbiology
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELZQJSQuCCiPAEVG4sJh6fq1to8tbVRVCheo1Jtle3YhUrqpkvQQfj0z3jRKEIILt9Xu2Gt5xp5v1rPfMPYBAH2OsgIXkvaV7rSuPMSmik57lyJCgvJ79ORLc3GlL6_N9U6pL8oJG-iBh4k7NrXGLbPVLneNdsYnKzrsJ9YyZydzYS9Fn7cTTJU9mMKiuh7OJTEK86imaU6UyuU-kVuze36o0PX_CWP-niq543vGT9jjDWjkJ8Ngn7IHbf-MPRzKSK4P2WzSriKRreLLl9Up-iXgZ9NlpuzMNZ93fBJnsZwX8JJmU50RQ8RQTIkT7zQv5S8wZuaxB37e_1zf4PV4Mb_Bpv33BXbEv6KXoy-Jz9nV-Pzb54tqU0WhyrqRq0okMD4KYUEJMCmJnKDBIM1FZyXhxa6RKIhIzzdOqdQpJVUGK6UTVoFRL9hBP-_bV4x3gOsVW2cwoA1kbxAggoYOA92kYxqx4_s5DXlDMU6VLmYBQw3SQihaCKSFULQwYh-3LW4Heo2_yJ6SmrZyRIxdbqC5hI25hH-Zy4i9v1dywIVEpyOxb-d3y4CRsJIIhmuUeTkoffsqhcjQaVWPmN0zh72x7D_ppz8KWTfCH2W9fP0_Bv-GPaLpoHQVId6yg9Xirj1CTLRK74r5_wLpCAhq
  priority: 102
  providerName: Directory of Open Access Journals
Title Metagenomics-Based Discovery of Malachite Green-Degradation Gene Families and Enzymes From Mangrove Sediment
URI https://www.ncbi.nlm.nih.gov/pubmed/30258430
https://www.proquest.com/docview/2113277405
https://pubmed.ncbi.nlm.nih.gov/PMC6143792
https://doaj.org/article/504429e48cf64859b71f849a02cc82c5
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELZgERIXxJvyWBmJC4cs9ds5IMSyW1ZI5QKVerP8SJZK3QTSrkT59cw42UJRhbhEUWLHSWYm3zfxeIaQlykB5gjDwJBkWchayqJMXhfeytIGD5QgL4-eftJnM_lxrua_l0cPL3C117XDelKzbnn04_vmLRj8G_Q4AW9BAosYMErLHiFimevkBuCSwUIO04Hs5-8yukp5TQrTGqcD-Lyft9x7kR2cyun893HQv0Mp_8CmyR1yeyCV9F2vBXfJtaq5R272ZSY398lyWq09JmOFwVfFMeBWoieLVcTozQ1tazr1S5_nE2gOwylOMINEX2yJYl5qmstjgE9NfZPoafNzcwH7k669gK7NeQcXop8BBfFP4wMym5x-eX9WDFUWiig1XxcsJFV6xkwSLKkQWAxJgxNnvTUc-WStOTQEJlhqK0SoheAiJsO5ZUYkJR6Sg6ZtqseE1gnsGXrHpJJUKZYKCGSSqQZHOEgfRuT11Tt1cUhBjpUwlg5cEZSCy1JwKAWXpTAir7Y9vvXpN_7R9hjFtG2HibPzgbY7d4MdOjWWgMCVtLHW0qoyGFaDWvoxj9HyqEbkxZWQHRgazp74pmovVw48ZcGBLI-hzaNe6NuhQJeAyInxiJgdddi5l90zzeJrTuYN9EiYkj_5j3Gfklv4tBitwtgzcrDuLqvnQInW4TD_SoDthzk7zFr_C0YYCkQ
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metagenomics-Based+Discovery+of+Malachite+Green-Degradation+Gene+Families+and+Enzymes+From+Mangrove+Sediment&rft.jtitle=Frontiers+in+microbiology&rft.au=Qu%2C+Wu&rft.au=Liu%2C+Tan&rft.au=Wang%2C+Dexiang&rft.au=Hong%2C+Guolin&rft.date=2018-09-11&rft.issn=1664-302X&rft.eissn=1664-302X&rft.volume=9&rft.spage=2187&rft_id=info:doi/10.3389%2Ffmicb.2018.02187&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-302X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-302X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-302X&client=summon