Loss of CX3CR1 increases accumulation of inflammatory monocytes and promotes gliomagenesis
The most abundant populations of non-neoplastic cells in the glioblastoma (GBM) microenvironment are resident microglia, macrophages and infiltrating monocytes from the blood circulation. The mechanisms by which monocytes infiltrate into GBM, their fate following infiltration, and their role in GBM...
Saved in:
Published in | Oncotarget Vol. 6; no. 17; pp. 15077 - 15094 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Impact Journals LLC
20.06.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The most abundant populations of non-neoplastic cells in the glioblastoma (GBM) microenvironment are resident microglia, macrophages and infiltrating monocytes from the blood circulation. The mechanisms by which monocytes infiltrate into GBM, their fate following infiltration, and their role in GBM growth are not known. Here we tested the hypothesis that loss of the fractalkine receptor CX3CR1 in microglia and monocytes would affect gliomagenesis. Deletion of Cx3cr1 from the microenvironment resulted in increased tumor incidence and shorter survival times in glioma-bearing mice. Loss of Cx3cr1 did not affect accumulation of microglia/macrophages in peri-tumoral areas, but instead indirectly promoted the trafficking of CD11b+CD45hiCX3CR1lowLy-6ChiLy-6G-F4/80-/low circulating inflammatory monocytes into the CNS, resulting in their increased accumulation in the perivascular area. Cx3cr1-deficient microglia/macrophages and monocytes demonstrated upregulation of IL1β expression that was inversely proportional to Cx3cr1 gene dosage. The Proneural subgroup of the TCGA GBM patient dataset with high IL1β expression showed shorter survival compared to patients with low IL1β. IL1β promoted tumor growth and increased the cancer stem cell phenotype in murine and human Proneural glioma stem cells (GSCs). IL1β activated the p38 MAPK signaling pathway and expression of monocyte chemoattractant protein (MCP-1/CCL2) by tumor cells. Loss of Cx3cr1 in microglia in a monocyte-free environment had no impact on tumor growth and did not alter microglial migration. These data suggest that enhancing signaling to CX3CR1 or inhibiting IL1β signaling in intra-tumoral macrophages can be considered as potential strategies to decrease the tumor-promoting effects of monocytes in Proneural GBM. |
---|---|
AbstractList | The most abundant populations of non-neoplastic cells in the glioblastoma (GBM) microenvironment are resident microglia, macrophages and infiltrating monocytes from the blood circulation. The mechanisms by which monocytes infiltrate into GBM, their fate following infiltration, and their role in GBM growth are not known. Here we tested the hypothesis that loss of the fractalkine receptor CX3CR1 in microglia and monocytes would affect gliomagenesis. Deletion of
Cx3cr1
from the microenvironment resulted in increased tumor incidence and shorter survival times in glioma-bearing mice. Loss of Cx3cr1 did not affect accumulation of microglia/macrophages in peri-tumoral areas, but instead indirectly promoted the trafficking of CD11b
+
CD45
hi
CX3CR1
low
Ly-6C
hi
Ly-6G
−
F4/80
−/low
circulating inflammatory monocytes into the CNS, resulting in their increased accumulation in the perivascular area. Cx3cr1-deficient microglia/macrophages and monocytes demonstrated upregulation of IL1β expression that was inversely proportional to Cx3cr1 gene dosage. The Proneural subgroup of the TCGA GBM patient dataset with high IL1β expression showed shorter survival compared to patients with low IL1β. IL1β promoted tumor growth and increased the cancer stem cell phenotype in murine and human Proneural glioma stem cells (GSCs). IL1β activated the p38 MAPK signaling pathway and expression of monocyte chemoattractant protein (MCP-1/CCL2) by tumor cells. Loss of Cx3cr1 in microglia in a monocyte-free environment had no impact on tumor growth and did not alter microglial migration. These data suggest that enhancing signaling to CX3CR1 or inhibiting IL1β signaling in intra-tumoral macrophages can be considered as potential strategies to decrease the tumor-promoting effects of monocytes in Proneural GBM. The most abundant populations of non-neoplastic cells in the glioblastoma (GBM) microenvironment are resident microglia, macrophages and infiltrating monocytes from the blood circulation. The mechanisms by which monocytes infiltrate into GBM, their fate following infiltration, and their role in GBM growth are not known. Here we tested the hypothesis that loss of the fractalkine receptor CX3CR1 in microglia and monocytes would affect gliomagenesis. Deletion of Cx3cr1 from the microenvironment resulted in increased tumor incidence and shorter survival times in glioma-bearing mice. Loss of Cx3cr1 did not affect accumulation of microglia/macrophages in peri-tumoral areas, but instead indirectly promoted the trafficking of CD11b+CD45hiCX3CR1lowLy-6ChiLy-6G-F4/80-/low circulating inflammatory monocytes into the CNS, resulting in their increased accumulation in the perivascular area. Cx3cr1-deficient microglia/macrophages and monocytes demonstrated upregulation of IL1β expression that was inversely proportional to Cx3cr1 gene dosage. The Proneural subgroup of the TCGA GBM patient dataset with high IL1β expression showed shorter survival compared to patients with low IL1β. IL1β promoted tumor growth and increased the cancer stem cell phenotype in murine and human Proneural glioma stem cells (GSCs). IL1β activated the p38 MAPK signaling pathway and expression of monocyte chemoattractant protein (MCP-1/CCL2) by tumor cells. Loss of Cx3cr1 in microglia in a monocyte-free environment had no impact on tumor growth and did not alter microglial migration. These data suggest that enhancing signaling to CX3CR1 or inhibiting IL1β signaling in intra-tumoral macrophages can be considered as potential strategies to decrease the tumor-promoting effects of monocytes in Proneural GBM. |
Author | Feng, Xi Szulzewsky, Frank Rasmussen, Rikke Darling Kettenmann, Helmut Li, Xiaoxia Kim, Yeonghwan Tamagno, Ilaria Heinzmann, David Chen, Zhihong Alvarez-Garcia, Virginia Wang, Bingcheng Zhou, Hao Ransohoff, Richard M Yerevanian, Alexan Hambardzumyan, Dolores |
AuthorAffiliation | 2 Cellular Neurosciences, Max Delbrück Center for Molecular Medicine, Berlin, Germany 6 Rammelkamp Center for Research, MetroHealth Center, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA 7 Department of Immunology at Cleveland Clinic, Cleveland, Ohio, USA 1 Department of Neurosciences at Cleveland Clinic, Cleveland, Ohio, USA 3 Case Western Reserve University School of Medicine, Cleveland, Ohio, USA 5 Department of Stem Cell Biology and Regenerative Medicine, Cleveland, Ohio, USA 8 Neuroinflammation Research Center, Cleveland Clinic, Cleveland, Ohio, USA 4 Department of Cardiology at Tübingen University School of Medicine, Tübingen, Germany |
AuthorAffiliation_xml | – name: 7 Department of Immunology at Cleveland Clinic, Cleveland, Ohio, USA – name: 4 Department of Cardiology at Tübingen University School of Medicine, Tübingen, Germany – name: 5 Department of Stem Cell Biology and Regenerative Medicine, Cleveland, Ohio, USA – name: 6 Rammelkamp Center for Research, MetroHealth Center, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA – name: 1 Department of Neurosciences at Cleveland Clinic, Cleveland, Ohio, USA – name: 8 Neuroinflammation Research Center, Cleveland Clinic, Cleveland, Ohio, USA – name: 2 Cellular Neurosciences, Max Delbrück Center for Molecular Medicine, Berlin, Germany – name: 3 Case Western Reserve University School of Medicine, Cleveland, Ohio, USA |
Author_xml | – sequence: 1 givenname: Xi surname: Feng fullname: Feng, Xi organization: Department of Neurosciences at Cleveland Clinic, Cleveland, Ohio, USA – sequence: 2 givenname: Frank surname: Szulzewsky fullname: Szulzewsky, Frank organization: Cellular Neurosciences, Max Delbrück Center for Molecular Medicine, Berlin, Germany – sequence: 3 givenname: Alexan surname: Yerevanian fullname: Yerevanian, Alexan organization: Case Western Reserve University School of Medicine, Cleveland, Ohio, USA – sequence: 4 givenname: Zhihong surname: Chen fullname: Chen, Zhihong organization: Department of Neurosciences at Cleveland Clinic, Cleveland, Ohio, USA – sequence: 5 givenname: David surname: Heinzmann fullname: Heinzmann, David organization: Department of Cardiology at Tübingen University School of Medicine, Tübingen, Germany – sequence: 6 givenname: Rikke Darling surname: Rasmussen fullname: Rasmussen, Rikke Darling organization: Department of Neurosciences at Cleveland Clinic, Cleveland, Ohio, USA – sequence: 7 givenname: Virginia surname: Alvarez-Garcia fullname: Alvarez-Garcia, Virginia organization: Department of Neurosciences at Cleveland Clinic, Cleveland, Ohio, USA – sequence: 8 givenname: Yeonghwan surname: Kim fullname: Kim, Yeonghwan organization: Department of Stem Cell Biology and Regenerative Medicine, Cleveland, Ohio, USA – sequence: 9 givenname: Bingcheng surname: Wang fullname: Wang, Bingcheng organization: Rammelkamp Center for Research, MetroHealth Center, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA – sequence: 10 givenname: Ilaria surname: Tamagno fullname: Tamagno, Ilaria organization: Department of Neurosciences at Cleveland Clinic, Cleveland, Ohio, USA – sequence: 11 givenname: Hao surname: Zhou fullname: Zhou, Hao organization: Department of Immunology at Cleveland Clinic, Cleveland, Ohio, USA – sequence: 12 givenname: Xiaoxia surname: Li fullname: Li, Xiaoxia organization: Department of Immunology at Cleveland Clinic, Cleveland, Ohio, USA – sequence: 13 givenname: Helmut surname: Kettenmann fullname: Kettenmann, Helmut organization: Cellular Neurosciences, Max Delbrück Center for Molecular Medicine, Berlin, Germany – sequence: 14 givenname: Richard M surname: Ransohoff fullname: Ransohoff, Richard M organization: Neuroinflammation Research Center, Cleveland Clinic, Cleveland, Ohio, USA – sequence: 15 givenname: Dolores surname: Hambardzumyan fullname: Hambardzumyan, Dolores organization: Department of Neurosciences at Cleveland Clinic, Cleveland, Ohio, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25987130$$D View this record in MEDLINE/PubMed |
BookMark | eNpVUU1LAzEQDVKxtfbuSfbopTUfm93sRZDiFxQEURAvIWZna2ST1GRX6L9319Za5zIzzJs3w3vHaOC8A4ROCZ4RkTF64Z32jQpLaGYsZ_gAjUiRFlPKORvs1UM0ifEDd8HTXNDiCA0pL0ROGB6h14WPMfFVMn9h80eSGKcDqAgxUVq3tq1VY7zrAcZVtbJWNT6sE-ud1-umh7kyWQVvfd8sa-OtWoKDaOIJOqxUHWGyzWP0fHP9NL-bLh5u7-dXi6lOM9pMieBaYSCke49gwYnSGLNSsCzLS8ExzipIC5yLQlS0wDrXpRYlh5QKoJASNkaXG95V-2ah1OCaoGq5CsaqsJZeGfl_4sy7XPovmXIuSKfcGJ1vCYL_bCE20pqooa6VA99GSbIizTGnWHRQvIHq0OkWoNqdIVj-uCL_XJG9K93K2f57u4VfD9g3jFOOEQ |
CitedBy_id | crossref_primary_10_3389_fonc_2021_788365 crossref_primary_10_1021_acsami_1c12406 crossref_primary_10_1007_s10555_018_9766_5 crossref_primary_10_3389_fphar_2019_00506 crossref_primary_10_3390_cancers13184548 crossref_primary_10_1093_neuonc_noaa075 crossref_primary_10_1016_j_drup_2018_03_003 crossref_primary_10_1186_s13046_022_02535_7 crossref_primary_10_3390_ijms21103723 crossref_primary_10_3390_biom12060850 crossref_primary_10_1111_imm_13135 crossref_primary_10_1371_journal_pone_0167440 crossref_primary_10_3389_fonc_2023_1236268 crossref_primary_10_1016_j_neuint_2021_105168 crossref_primary_10_3390_cells10030621 crossref_primary_10_1093_neuonc_noz080 crossref_primary_10_1038_s41598_018_34242_9 crossref_primary_10_18632_oncotarget_7992 crossref_primary_10_3390_ijms19010147 crossref_primary_10_3389_fphar_2020_00368 crossref_primary_10_1101_gad_310797_117 crossref_primary_10_2478_acb_2024_0001 crossref_primary_10_1016_j_trecan_2015_10_009 crossref_primary_10_1016_j_cca_2021_02_005 crossref_primary_10_1073_pnas_1902366116 crossref_primary_10_3389_fonc_2022_822085 crossref_primary_10_3390_ijms20174307 crossref_primary_10_1016_j_ultrasmedbio_2022_12_006 crossref_primary_10_5005_jp_journals_10085_5111 crossref_primary_10_1038_s41598_020_76657_3 crossref_primary_10_1007_s12672_021_00423_8 crossref_primary_10_3390_ijms22010194 crossref_primary_10_1016_j_ccell_2016_05_017 crossref_primary_10_1016_j_ebiom_2018_02_024 crossref_primary_10_1002_glia_23014 crossref_primary_10_1186_s12974_020_01797_2 crossref_primary_10_1038_s41467_023_37361_8 crossref_primary_10_3389_fimmu_2018_01004 crossref_primary_10_3390_ijms23084166 crossref_primary_10_1186_s40478_023_01605_x crossref_primary_10_1093_brain_aww046 crossref_primary_10_3389_fonc_2022_1022716 crossref_primary_10_3390_cancers15143722 crossref_primary_10_3390_cancers16030603 crossref_primary_10_1007_s10555_022_10051_5 crossref_primary_10_1016_j_xcrm_2023_101373 crossref_primary_10_1038_nn_4185 crossref_primary_10_3390_cancers13174357 crossref_primary_10_1016_j_bbcan_2017_05_007 crossref_primary_10_3892_ijmm_2018_3668 crossref_primary_10_1038_onc_2017_129 crossref_primary_10_1016_j_neo_2021_09_001 crossref_primary_10_1093_noajnl_vdaa127 crossref_primary_10_3390_brainsci12040505 crossref_primary_10_2174_1573395515666190611122818 crossref_primary_10_5306_wjco_v14_i3_117 crossref_primary_10_1093_neuonc_noaa185 crossref_primary_10_3390_ijms23052509 crossref_primary_10_1155_2017_9634172 crossref_primary_10_1002_EXP_20210166 crossref_primary_10_1038_s41419_023_05753_9 crossref_primary_10_3390_cancers12071960 crossref_primary_10_1038_nrclinonc_2016_217 crossref_primary_10_3389_fimmu_2023_994698 crossref_primary_10_1002_glia_22945 crossref_primary_10_3389_fimmu_2016_00156 crossref_primary_10_3389_fimmu_2019_02294 crossref_primary_10_1038_s41467_020_16789_2 crossref_primary_10_3390_cancers14143331 crossref_primary_10_3389_fonc_2021_766656 crossref_primary_10_1021_acsami_2c16586 crossref_primary_10_1016_j_canlet_2018_07_034 crossref_primary_10_3390_ijms21165838 crossref_primary_10_3389_fonc_2017_00120 crossref_primary_10_3390_ijms22073301 crossref_primary_10_1038_s41571_021_00518_9 crossref_primary_10_3390_cancers11010005 crossref_primary_10_1002_glia_23984 crossref_primary_10_3390_brainsci12060718 crossref_primary_10_1111_bpa_12788 crossref_primary_10_1111_neup_12354 crossref_primary_10_3389_fimmu_2022_932938 crossref_primary_10_1371_journal_pone_0182643 crossref_primary_10_3390_biom13071084 crossref_primary_10_1016_j_ymthe_2018_06_014 crossref_primary_10_3389_fgene_2020_604655 crossref_primary_10_3389_fonc_2022_969787 crossref_primary_10_3390_neurolint15020037 crossref_primary_10_3389_fncel_2022_1002487 crossref_primary_10_1186_s12974_017_0830_9 crossref_primary_10_1016_j_prp_2022_153813 crossref_primary_10_3390_ph13110389 crossref_primary_10_1016_j_jneuroim_2021_577633 crossref_primary_10_1155_2022_8903482 crossref_primary_10_1038_s41467_019_10458_9 crossref_primary_10_3389_fimmu_2023_1191838 crossref_primary_10_1186_s13059_017_1362_4 crossref_primary_10_1080_14737175_2018_1510321 crossref_primary_10_1073_pnas_1910856117 crossref_primary_10_1172_JCI163802 crossref_primary_10_1016_j_neucom_2020_10_117 crossref_primary_10_3390_cancers13164004 crossref_primary_10_1099_jgv_0_000667 crossref_primary_10_1158_0008_5472_CAN_16_2310 crossref_primary_10_1002_glia_23696 crossref_primary_10_1155_2020_8844313 crossref_primary_10_1084_jem_20191131 crossref_primary_10_1080_2162402X_2019_1655360 crossref_primary_10_3389_fonc_2018_00049 crossref_primary_10_1016_j_canlet_2021_12_008 crossref_primary_10_1007_s00401_021_02401_4 crossref_primary_10_3390_ijms19020436 crossref_primary_10_1097_MOG_0000000000000317 crossref_primary_10_1002_glia_22994 crossref_primary_10_1016_j_pharmthera_2020_107790 crossref_primary_10_1111_jvim_13983 crossref_primary_10_3389_fimmu_2021_730289 crossref_primary_10_3390_brainsci13040542 crossref_primary_10_3389_fimmu_2020_571951 crossref_primary_10_3390_ijms19010127 crossref_primary_10_1111_bpa_12927 crossref_primary_10_1186_s40478_021_01156_z crossref_primary_10_3389_fonc_2020_00092 crossref_primary_10_1186_s13058_021_01412_z crossref_primary_10_1002_ijc_33276 crossref_primary_10_1007_s12035_022_02996_z crossref_primary_10_3390_nu11061343 |
Cites_doi | 10.1038/nn.2887 10.1038/nature09615 10.1038/nn1715 10.1056/NEJMoa043330 10.1038/jcbfm.2008.64 10.1073/pnas.0804273106 10.4049/jimmunol.169.5.2264 10.1016/j.jneuroim.2008.04.016 10.1007/978-1-62703-128-8_11 10.1126/scisignal.2004088 10.1016/j.stem.2009.01.007 10.1186/scrt96 10.1038/nature07385 10.1007/s12015-008-9021-5 10.1007/s00011-012-0501-3 10.1016/j.ccr.2013.08.001 10.1073/pnas.95.18.10896 10.1016/j.cell.2013.09.034 10.1158/2159-8290.CD-12-0095 10.1158/0008-5472.CAN-07-6350 10.1158/1535-7163.MCT-06-0711 10.1016/j.neo.2014.03.006 10.1200/JCO.2008.17.2833 10.1128/MCB.20.11.4106-4114.2000 10.1016/j.ccr.2009.12.020 10.1182/blood-2013-01-480749 10.1016/j.stem.2014.01.005 10.1016/j.immuni.2012.12.001 10.1126/science.1194637 10.1371/journal.pone.0057230 10.2353/ajpath.2010.100265 10.1593/tlo.09100 10.1002/glia.21264 10.1016/j.celrep.2012.12.013 10.1002/ana.23813 10.1016/j.ccr.2006.11.020 10.1016/j.stem.2010.01.001 10.1523/JNEUROSCI.0539-12.2012 10.1016/j.ccr.2006.02.019 10.1038/nature03128 10.1371/journal.pone.0023902 10.1038/nri3070 |
ContentType | Journal Article |
Copyright | Copyright: © 2015 Feng et al. 2015 |
Copyright_xml | – notice: Copyright: © 2015 Feng et al. 2015 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 5PM |
DOI | 10.18632/oncotarget.3730 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 1949-2553 |
EndPage | 15094 |
ExternalDocumentID | 10_18632_oncotarget_3730 25987130 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: U01 CA160882 – fundername: NCI NIH HHS grantid: U01CA160882 – fundername: NHLBI NIH HHS grantid: P01 HL029582 |
GroupedDBID | --- 53G ADBBV ADRAZ AENEX ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL CGR CUY CVF DIK ECM EIF FRJ GX1 HYE KQ8 M48 M~E NPM OK1 PGMZT RPM AAYXX CITATION 7X8 5PM |
ID | FETCH-LOGICAL-c462t-185ca0e1105410851ac003d83667d85006fe4907898f290c7cdc8d5e428e2e413 |
IEDL.DBID | RPM |
ISSN | 1949-2553 |
IngestDate | Tue Sep 17 21:01:57 EDT 2024 Fri Aug 16 11:32:44 EDT 2024 Fri Aug 23 00:23:59 EDT 2024 Sat Sep 28 08:08:35 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 17 |
Keywords | monocyte CX3CR1/CX3CL1 signaling glioblastoma microglia |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c462t-185ca0e1105410851ac003d83667d85006fe4907898f290c7cdc8d5e428e2e413 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4558137/ |
PMID | 25987130 |
PQID | 1694705208 |
PQPubID | 23479 |
PageCount | 18 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4558137 proquest_miscellaneous_1694705208 crossref_primary_10_18632_oncotarget_3730 pubmed_primary_25987130 |
PublicationCentury | 2000 |
PublicationDate | 2015-06-20 |
PublicationDateYYYYMMDD | 2015-06-20 |
PublicationDate_xml | – month: 06 year: 2015 text: 2015-06-20 day: 20 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Oncotarget |
PublicationTitleAlternate | Oncotarget |
PublicationYear | 2015 |
Publisher | Impact Journals LLC |
Publisher_xml | – name: Impact Journals LLC |
References | 23550210 - Sci Signal. 2013 Apr 2;6(269):pl1 21068834 - Nature. 2010 Nov 11;468(7321):253-62 23077045 - J Neurosci. 2012 Oct 17;32(42):14592-601 23273845 - Immunity. 2013 Jan 24;38(1):79-91 23424002 - Ann Neurol. 2013 Feb;73(2):303-8 23775714 - Blood. 2013 Aug 1;122(5):674-83 16530701 - Cancer Cell. 2006 Mar;9(3):157-73 22330721 - Stem Cell Res Ther. 2012;3(1):5 22706317 - Inflamm Res. 2012 Oct;61(10):1085-92 21901144 - PLoS One. 2011;6(8):e23902 18595010 - Stem Cell Rev. 2008 Sep;4(3):203-10 20086236 - Sci Signal. 2010;3(105):cm2 24120142 - Cell. 2013 Oct 10;155(2):462-77 16732273 - Nat Neurosci. 2006 Jul;9(7):917-24 22588877 - Cancer Discov. 2012 May;2(5):401-4 20129251 - Cancer Cell. 2010 Jan 19;17(1):98-110 24607407 - Cell Stem Cell. 2014 Mar 6;14(3):357-69 10805752 - Mol Cell Biol. 2000 Jun;20(11):4106-14 20144787 - Cell Stem Cell. 2010 Feb 5;6(2):141-52 19412424 - Transl Oncol. 2009 May;2(2):89-95 17406030 - Mol Cancer Ther. 2007 Apr;6(4):1212-22 18772890 - Nature. 2008 Oct 23;455(7216):1061-8 15758009 - N Engl J Med. 2005 Mar 10;352(10):987-96 22379614 - Glia. 2012 Mar;60(3):502-14 18381430 - Cancer Res. 2008 Apr 1;68(7):2241-9 20864679 - Am J Pathol. 2010 Nov;177(5):2549-62 23993863 - Cancer Cell. 2013 Sep 9;24(3):331-46 12193691 - J Immunol. 2002 Sep 1;169(5):2264-73 15549107 - Nature. 2004 Nov 18;432(7015):396-401 21984070 - Nat Rev Immunol. 2011 Nov;11(11):762-74 17222791 - Cancer Cell. 2007 Jan;11(1):69-82 24726753 - Neoplasia. 2014 Mar;16(3):193-206, 206.e19-25 20966214 - Science. 2010 Nov 5;330(6005):841-5 18575457 - J Cereb Blood Flow Metab. 2008 Oct;28(10):1707-21 23437346 - PLoS One. 2013;8(2):e57230 10764271 - Neurosurgery. 2000 Apr;46(4):957-61; discussion 961-2 19617536 - Proc Natl Acad Sci U S A. 2009 Jul 28;106(30):12530-5 18508133 - J Neuroimmunol. 2008 Jul 31;198(1-2):98-105 9724801 - Proc Natl Acad Sci U S A. 1998 Sep 1;95(18):10896-901 19265662 - Cell Stem Cell. 2009 Mar 6;4(3):226-35 21804537 - Nat Neurosci. 2011 Sep;14(9):1142-9 23179832 - Methods Mol Biol. 2013;946:163-79 23333277 - Cell Rep. 2013 Jan 31;3(1):260-73 19001328 - J Clin Oncol. 2008 Dec 20;26(36):5957-64 Pietras (12) 2014; 14 Charles (16) 2010; 6 Ginhoux (35) 2010; 330 Becher (6) 2008; 68 Lee (20) 2010; 177 Kumar (39) 2013; 8 Stupp (1) 2005; 352 Gutmann (33) 2013; 73 Markovic (8) 2009; 106 Brennan (5) 2013; 155 Re (42) 2002; 169 Verhaak (3) 2010; 17 Cardona (10) 2010; 468 Joo (31) 2013; 3 Cerami (44) 2012; 2 Morganti (21) 2012; 32 Calabrese (15) 2007; 11 Wang (41) 2012; 3 Rodero (36) 2008; 26 Bleau (13) 2009; 4 Schartner (25) 2000; 46 Berezovsky (30) 2014; 16 Wang (40) 2012; 61 Phillips (4) 2006; 9 Rossi (9) 2011; 14 Cardona (18) 2006; 9 Demuth (28) 2007; 6 Yona (29) 2013; 38 Jacquelin (38) 2013; 122 Harrison (17) 1998; 95 Holland (23) 2008; 4 Pamer (34) 2011; 11 Gao (45) 2013; 6 Telford (14) 2013; 946 Bhat (32) 2013; 24 Harrison (37) 2008; 198 Kettenmann (7) 2012; 60 Cancer Genome Atlas Research (2) 2008; 455 Kovacs (19) 2008; 28 Gabrusiewicz (26) 2011; 6 Kracht (27) 2010; 3 Singh (11) 2004; 432 Jung (24) 2000; 20 Holland (22) 2009; 2 43 |
References_xml | – volume: 14 start-page: 1142 year: 2011 ident: 9 article-title: Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool publication-title: Nat Neurosci doi: 10.1038/nn.2887 contributor: fullname: Rossi – volume: 468 start-page: 253 year: 2010 ident: 10 article-title: The myeloid cells of the central nervous system parenchyma publication-title: Nature doi: 10.1038/nature09615 contributor: fullname: Cardona – volume: 9 start-page: 917 year: 2006 ident: 18 article-title: Control of microglial neurotoxicity by the fractalkine receptor publication-title: Nat Neurosci doi: 10.1038/nn1715 contributor: fullname: Cardona – volume: 352 start-page: 987 year: 2005 ident: 1 article-title: Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma publication-title: N Engl J Med doi: 10.1056/NEJMoa043330 contributor: fullname: Stupp – volume: 28 start-page: 1707 year: 2008 ident: 19 article-title: Role of CX3CR1 (fractalkine receptor) in brain damage and inflammation induced by focal cerebral ischemia in mouse publication-title: J Cereb Blood Flow Metab doi: 10.1038/jcbfm.2008.64 contributor: fullname: Kovacs – ident: 43 – volume: 106 start-page: 12530 year: 2009 ident: 8 article-title: Gliomas induce and exploit microglial MT1-MMP expression for tumor expansion publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0804273106 contributor: fullname: Markovic – volume: 169 start-page: 2264 year: 2002 ident: 42 article-title: Granulocyte-macrophage colony-stimulating factor induces an expression program in neonatal microglia that primes them for antigen presentation publication-title: J Immunol doi: 10.4049/jimmunol.169.5.2264 contributor: fullname: Re – volume: 198 start-page: 98 year: 2008 ident: 37 article-title: CX3CL1 and CX3CR1 in the GL261 murine model of glioma: CX3CR1 deficiency does not impact tumor growth or infiltration of microglia and lymphocytes publication-title: J Neuroimmunol doi: 10.1016/j.jneuroim.2008.04.016 contributor: fullname: Harrison – volume: 946 start-page: 163 year: 2013 ident: 14 article-title: Stem cell identification by DyeCycle Violet side population analysis publication-title: Methods Mol Biol doi: 10.1007/978-1-62703-128-8_11 contributor: fullname: Telford – volume: 6 start-page: pl1 year: 2013 ident: 45 article-title: Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal publication-title: Sci Signal doi: 10.1126/scisignal.2004088 contributor: fullname: Gao – volume: 4 start-page: 226 year: 2009 ident: 13 article-title: PTEN/PI3K/Akt pathway regulates the side population phenotype and ABCG2 activity in glioma tumor stem-like cells publication-title: Cell Stem Cell doi: 10.1016/j.stem.2009.01.007 contributor: fullname: Bleau – volume: 3 start-page: 5 year: 2012 ident: 41 article-title: Interleukin-1beta and transforming growth factor-beta cooperate to induce neurosphere formation and increase tumorigenicity of adherent LN-229 glioma cells publication-title: Stem Cell Res Ther doi: 10.1186/scrt96 contributor: fullname: Wang – volume: 455 start-page: 1061 year: 2008 ident: 2 article-title: N. Comprehensive genomic characterization defines human glioblastoma genes and core pathways publication-title: Nature doi: 10.1038/nature07385 contributor: fullname: Cancer Genome Atlas Research – volume: 4 start-page: 203 year: 2008 ident: 23 article-title: Glioma formation, cancer stem cells, and akt signaling publication-title: Stem Cell Rev doi: 10.1007/s12015-008-9021-5 contributor: fullname: Holland – volume: 61 start-page: 1085 year: 2012 ident: 40 article-title: Pro-inflammatory cytokine interleukin-1beta promotes the development of intestinal stem cells publication-title: Inflamm Res doi: 10.1007/s00011-012-0501-3 contributor: fullname: Wang – volume: 24 start-page: 331 year: 2013 ident: 32 article-title: Mesenchymal differentiation mediated by NF-kappaB promotes radiation resistance in glioblastoma publication-title: Cancer Cell doi: 10.1016/j.ccr.2013.08.001 contributor: fullname: Bhat – volume: 95 start-page: 10896 year: 1998 ident: 17 article-title: Role for neuronally derived fractalkine in mediating interactions between neurons and CX3CR1-expressing microglia publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.95.18.10896 contributor: fullname: Harrison – volume: 155 start-page: 462 year: 2013 ident: 5 article-title: The somatic genomic landscape of glioblastoma publication-title: Cell doi: 10.1016/j.cell.2013.09.034 contributor: fullname: Brennan – volume: 2 start-page: 401 year: 2012 ident: 44 article-title: The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data publication-title: Cancer Discov doi: 10.1158/2159-8290.CD-12-0095 contributor: fullname: Cerami – volume: 68 start-page: 2241 year: 2008 ident: 6 article-title: Gli activity correlates with tumor grade in platelet-derived growth factor-induced gliomas publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-07-6350 contributor: fullname: Becher – volume: 6 start-page: 1212 year: 2007 ident: 28 article-title: MAP-ing glioma invasion: mitogen-activated protein kinase kinase 3 and p38 drive glioma invasion and progression and predict patient survival publication-title: Mol Cancer Ther doi: 10.1158/1535-7163.MCT-06-0711 contributor: fullname: Demuth – volume: 16 start-page: e25 year: 2014 ident: 30 article-title: Sox2 promotes malignancy in glioblastoma by regulating plasticity and astrocytic differentiation publication-title: Neoplasia doi: 10.1016/j.neo.2014.03.006 contributor: fullname: Berezovsky – volume: 26 start-page: 5957 year: 2008 ident: 36 article-title: Polymorphism in the microglial cell-mobilizing CX3CR1 gene is associated with survival in patients with glioblastoma publication-title: J Clin Oncol doi: 10.1200/JCO.2008.17.2833 contributor: fullname: Rodero – volume: 20 start-page: 4106 year: 2000 ident: 24 article-title: Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion publication-title: Mol Cell Biol doi: 10.1128/MCB.20.11.4106-4114.2000 contributor: fullname: Jung – volume: 17 start-page: 98 year: 2010 ident: 3 article-title: Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1 publication-title: Cancer Cell doi: 10.1016/j.ccr.2009.12.020 contributor: fullname: Verhaak – volume: 122 start-page: 674 year: 2013 ident: 38 article-title: CX3CR1 reduces Ly6Chigh-monocyte motility within and release from the bone marrow after chemotherapy in mice publication-title: Blood doi: 10.1182/blood-2013-01-480749 contributor: fullname: Jacquelin – volume: 14 start-page: 357 year: 2014 ident: 12 article-title: Osteopontin-CD44 signaling in the glioma perivascular niche enhances cancer stem cell phenotypes and promotes aggressive tumor growth publication-title: Cell Stem Cell doi: 10.1016/j.stem.2014.01.005 contributor: fullname: Pietras – volume: 38 start-page: 79 year: 2013 ident: 29 article-title: Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis publication-title: Immunity doi: 10.1016/j.immuni.2012.12.001 contributor: fullname: Yona – volume: 330 start-page: 841 year: 2010 ident: 35 article-title: Fate mapping analysis reveals that adult microglia derive from primitive macrophages publication-title: Science doi: 10.1126/science.1194637 contributor: fullname: Ginhoux – volume: 8 start-page: e57230 year: 2013 ident: 39 article-title: Role of CX3CR1 receptor in monocyte/macrophage driven neovascularization publication-title: PLoS One doi: 10.1371/journal.pone.0057230 contributor: fullname: Kumar – volume: 177 start-page: 2549 year: 2010 ident: 20 article-title: CX3CR1 deficiency alters microglial activation and reduces beta-amyloid deposition in two Alzheimer's disease mouse models publication-title: Am J Pathol doi: 10.2353/ajpath.2010.100265 contributor: fullname: Lee – volume: 2 start-page: 89 year: 2009 ident: 22 article-title: Modeling Adult Gliomas Using RCAS/t-va Technology publication-title: Transl Oncol doi: 10.1593/tlo.09100 contributor: fullname: Holland – volume: 60 start-page: 502 year: 2012 ident: 7 article-title: The brain tumor microenvironment publication-title: Glia doi: 10.1002/glia.21264 contributor: fullname: Kettenmann – volume: 3 start-page: 260 year: 2013 ident: 31 article-title: Patient-specific orthotopic glioblastoma xenograft models recapitulate the histopathology and biology of human glioblastomas in situ publication-title: Cell Rep doi: 10.1016/j.celrep.2012.12.013 contributor: fullname: Joo – volume: 73 start-page: 303 year: 2013 ident: 33 article-title: Reduced microglial CX3CR1 expression delays neurofibromatosis-1 glioma formation publication-title: Ann Neurol doi: 10.1002/ana.23813 contributor: fullname: Gutmann – volume: 11 start-page: 69 year: 2007 ident: 15 article-title: A perivascular niche for brain tumor stem cells publication-title: Cancer Cell doi: 10.1016/j.ccr.2006.11.020 contributor: fullname: Calabrese – volume: 6 start-page: 141 year: 2010 ident: 16 article-title: Perivascular nitric oxide activates notch signaling and promotes stem-like character in PDGF-induced glioma cells publication-title: Cell Stem Cell doi: 10.1016/j.stem.2010.01.001 contributor: fullname: Charles – volume: 32 start-page: 14592 year: 2012 ident: 21 article-title: The soluble isoform of CX3CL1 is necessary for neuroprotection in a mouse model of Parkinson's disease publication-title: J Neurosci doi: 10.1523/JNEUROSCI.0539-12.2012 contributor: fullname: Morganti – volume: 9 start-page: 157 year: 2006 ident: 4 article-title: Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis publication-title: Cancer Cell doi: 10.1016/j.ccr.2006.02.019 contributor: fullname: Phillips – volume: 432 start-page: 396 year: 2004 ident: 11 article-title: Identification of human brain tumour initiating cells publication-title: Nature doi: 10.1038/nature03128 contributor: fullname: Singh – volume: 6 start-page: e23902 year: 2011 ident: 26 article-title: Characteristics of the alternative phenotype of microglia/macrophages and its modulation in experimental gliomas publication-title: PLoS One doi: 10.1371/journal.pone.0023902 contributor: fullname: Gabrusiewicz – volume: 3 start-page: cm2 year: 2010 ident: 27 article-title: Interleukin-1beta (IL-1beta) processing pathway publication-title: Sci Signal contributor: fullname: Kracht – volume: 11 start-page: 762 year: 2011 ident: 34 article-title: Monocyte recruitment during infection and inflammation publication-title: Nat Rev Immunol doi: 10.1038/nri3070 contributor: fullname: Pamer – volume: 46 start-page: 961 year: 2000 ident: 25 article-title: Flow cytometric characterization of tumor-associated macrophages in experimental gliomas publication-title: Neurosurgery contributor: fullname: Schartner |
SSID | ssj0000547829 |
Score | 2.512087 |
Snippet | The most abundant populations of non-neoplastic cells in the glioblastoma (GBM) microenvironment are resident microglia, macrophages and infiltrating monocytes... |
SourceID | pubmedcentral proquest crossref pubmed |
SourceType | Open Access Repository Aggregation Database Index Database |
StartPage | 15077 |
SubjectTerms | Animals Brain Neoplasms - genetics Brain Neoplasms - metabolism Brain Neoplasms - pathology Cell Line CX3C Chemokine Receptor 1 Female Gene Expression Regulation, Neoplastic Glioblastoma - genetics Glioblastoma - metabolism Glioblastoma - pathology Humans Immunoblotting Interleukin-1beta - genetics Interleukin-1beta - metabolism Interleukin-1beta - pharmacology Macrophages - metabolism Macrophages - pathology Male Mice, Knockout Mice, Transgenic Microglia - metabolism Microglia - pathology Microscopy, Confocal Monocytes - metabolism Monocytes - pathology Neoplastic Stem Cells - drug effects Neoplastic Stem Cells - metabolism p38 Mitogen-Activated Protein Kinases - metabolism Receptors, Chemokine - genetics Receptors, Chemokine - metabolism Receptors, Interleukin-1 Type I - genetics Receptors, Interleukin-1 Type I - metabolism Research Paper Reverse Transcriptase Polymerase Chain Reaction Survival Analysis Tumor Cells, Cultured Tumor Microenvironment - genetics |
SummonAdditionalLinks | – databaseName: Scholars Portal Open Access Journals dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1LS8NAEF60XryI4qu-iODFQ2oem93sQUSKpYh6EAvFS9jsbrTQJrVpwf57Z5L0pfUYslnItzP7zbCz3xBypR0nZkL5tvJialPhSlsC7dq-SCg3rkpk0TPy-YW1O_SxG3QX16MrAPO1qR32k-qM-o3vr-kdOPwtOnzIfO8mQx2DonC64YPFbpItD2W5sJCvCvZLpW8KdCiqs8p1H6IycABJuIs10cs09Sf2_F1CucRJrV2yUwWT1n25-ntkw6T75P0JJrSyxGp2_eara_VSDAxzk1tSqcmgateFA-B3wR4GxTm7BeaYqekYh6XaGhZVevDw0e9lA9hzYEfs5Qek03p4a7btqoOCrSjzxjaQsZKOAYoPKF4zcKUCL9ahzxjXYQAelxgqUHE-TDzhKK60CnVgICcxngF-OyS1NEvNMbF4TIU2LvA915AExiJ2pFY-14ZRFkpdJ9czwKJhKZQRYYKBOEcLnCPEuU4uZ4hGYM14RCFTk03yyGWCcizNCevkqER4PttsaeqEr2A_H4BK2atv0t5noZhNgyB0fX7y75ynZBsioQBrwDznjNTGo4k5h2hjHF8URvQDs2jW8Q priority: 102 providerName: Scholars Portal |
Title | Loss of CX3CR1 increases accumulation of inflammatory monocytes and promotes gliomagenesis |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25987130 https://search.proquest.com/docview/1694705208 https://pubmed.ncbi.nlm.nih.gov/PMC4558137 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9swFH8kOe1SVrq16UfwYJcdnFi2Po8l9IOxjDEWCL0YWZJXQ22HJjn0v--TY6fJetvFYCwJ89OTfu_xfnoC-GqjKOPKJKGJMxpSRXSokXbDROVUOGJy3dwZOfvJ7-f0-4ItesC6szCNaN9kxbh6KsdV8dhoK5elmXQ6scmv2ZQyJkkiJn3oo4Huhejbgt4UWU-1KUnJk3hS-zoHjbB6nGAHXwCYYaxNvPR5n43euZj_KiX3qOf2Ixy1PmNwvf23Y-i56gQefuCAQZ0H00Uy_U2CovL-38qtAm3Mpmxv5fIN0IZw2ssmnR6g1dXmZe2bVTZYNmI8fPn7VNQlbi248RWrTzC_vfkzvQ_bixJCQ3m8DpFzjY4cMjmj_jQB0QYXq5UJ58JKhgsrd1T5wvIyj1VkhLFGWuYw9HCxQxr7DIOqrtwZBCKjyjqCtC4sxnqZyiJtTSKs45RLbYfwrQMsXW7rYaQ-jvA4p284px7nIXzpEE3RaH0mQleu3qxSwhUVXoEjh3C6RXg3Wjc1QxAH2O8a-ILYh1_QTprC2K1dnP93zwv4gA4R81KwOLqEwfp5467Q6VhnI-jfLQg-Z1SOGoN7BUxF3RQ |
link.rule.ids | 230,315,730,783,787,888,2228,24332,27938,27939,53806,53808 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTtwwFL2isGg3pagPBlpIpW66SCYPP-JlNepogBmEEKARm8ixnTaCJKNOZkG_vtd50Bm6KsvITuToXPueKx8fA3zRvp8yoSJXhSlxiQikKzHtupHICDeBymRzZ-TsnE2uyemczreA9mdhGtG-SnOvvC-8Mv_ZaCsXhRr2OrHhxWxEKI2DiA9fwA7OV5-tFemtpTfBvCe6TcmYReGwsk4HjbTaizCmrQUwxWo7sOLn9Xz0D8l8qpVcSz7jXbjph91qTu68VZ166vcTR8f__q838Lqjo863tnkPtkz5Fm6nOFKnypzRPBpdBk5eWmq5NEtHKrUqugu_bAcMT4yootmpdzCgK_VQ226ldhaNzg8fftznVYGrFq6p-fIdXI-_X40mbncHg6sIC2sX07mSvkGSQIk9qBBIheuAjiPGuI4pztnMEGE96-MsFL7iSqtYU4NVjQkNZsj3sF1WpdkHh6dEaBMgY-Aay8hUpL7UKuLaMMJiqQfwtUciWbRWG4ktUSyAyV8AEwvgAD73UCU4H-wmhyxNtVomAROEW3FPPIAPLXSPX-sxHwDfAPWxg_Xa3mxBqBrP7Q6ag2e_eQwvJ1ezaTI9OT87hFfIu6hVnIX-R9iuf63MJ-Q2dXrURPIfnSD9Qg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RKlW9FCraslBKKvXCIW_Hj2O1sAK6i1AF0opL5NhOG0GSVTd7oL--4zxgoTeOUSaRo2_GMyN_-Qbgmw6CjAoVuyrKiEtEKF2JadeNRU6YCVUu25mRswt6ek3O58l8bdRXS9pXWeFVd6VXFb9bbuWiVP7AE_MvZ2OSJDyMmb_Quf8KXmPMBnytUe9kvQnmPtEfTHIaR35t1Q5aerUXo19bGeAEO-7QEqDXc9J_heZzvuRaAppswc2w9I53cuutmsxTf5-pOr7o27bhXV-WOt87k_ewYaoduJniap06d8bzePwzdIrKlphLs3SkUquyH_xlDdBN0bPK9sTeQceu1X1jzSrtLFq-H178uivqEncv3FuL5Qe4npxcjU_dfhaDqwiNGhfTupKBwWIhIfaHhVAq3A80jyllmicYu7khwmrX8zwSgWJKK64Tg92NiQxmyo-wWdWV2QWHZURoE2LlwDS2k5nIAqlVzLShhHKpR3A0oJEuOsmN1LYqFsT0EcTUgjiCrwNcKcaFPeyQlalXyzSkgjBL8uEj-NTB9_C2AfcRsCfAPhhYze2ndxCuVnu7h2fvxU8ewpvL40k6Pbv4sQ9vsfxKLPEsCj7DZvNnZQ6wxGmyL60z_wN9lv_C |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Loss+of+CX3CR1+increases+accumulation+of+inflammatory+monocytes+and+promotes+gliomagenesis&rft.jtitle=Oncotarget&rft.au=Feng%2C+Xi&rft.au=Szulzewsky%2C+Frank&rft.au=Yerevanian%2C+Alexan&rft.au=Chen%2C+Zhihong&rft.date=2015-06-20&rft.eissn=1949-2553&rft.volume=6&rft.issue=17&rft.spage=15077&rft_id=info:doi/10.18632%2Foncotarget.3730&rft_id=info%3Apmid%2F25987130&rft.externalDocID=25987130 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-2553&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-2553&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-2553&client=summon |