Alcohol induces mitochondrial redox imbalance in alveolar macrophages
Alcohol abuse suppresses the immune responses of alveolar macrophages (AMs) and increases the risk of a respiratory infection via chronic oxidative stress and depletion of critical antioxidants within alveolar cells and the alveolar lining fluid. Although alcohol-induced mitochondrial oxidative stre...
Saved in:
Published in | Free radical biology & medicine Vol. 65; pp. 1427 - 1434 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.12.2013
|
Subjects | |
Online Access | Get full text |
ISSN | 0891-5849 1873-4596 1873-4596 |
DOI | 10.1016/j.freeradbiomed.2013.10.010 |
Cover
Abstract | Alcohol abuse suppresses the immune responses of alveolar macrophages (AMs) and increases the risk of a respiratory infection via chronic oxidative stress and depletion of critical antioxidants within alveolar cells and the alveolar lining fluid. Although alcohol-induced mitochondrial oxidative stress has been demonstrated, the oxidation of the mitochondrial thioredoxin redox circuit in response to alcohol has not been examined. In vitro ethanol exposure of a mouse AM cell line and AMs from ethanol-fed mice demonstrated NADPH depletion concomitant with oxidation of mitochondrial glutathione and oxidation of the thioredoxin redox circuit system including thioredoxin 2 (Trx2) and thioredoxin 2 reductase (Trx2R). Mitochondrial peroxiredoxins (Prdx's), which are critical for the reduction of the thioredoxin circuit, were irreversibly hyperoxidized to an inactive form. Ethanol also decreased the mRNAs for Trx2, Trx2R, Prdx3, and Prdx5 plus the mitochondrial thiol-disulfide proteins glutaredoxin 2, glutathione reductase, and glutathione peroxidase 2. Thus, the mitochondrial thioredoxin circuit was highly oxidized by ethanol, thereby compromising the mitochondrial antioxidant capacity and ability to detoxify mitochondrial reactive oxygen species. Oxidation of the mitochondrial thioredoxin redox circuit would further compromise the transient oxidation of thiol groups within specific proteins, the basis of redox signaling, and the processes by which cells respond to oxidants. Impaired mitochondria can then jeopardize cellular function of AMs, such as phagocytosis, which may explain the increased risk of respiratory infection in subjects with an alcohol use disorder. |
---|---|
AbstractList | Alcohol abuse suppresses the immune responses of alveolar macrophages (AMs) and increases the risk of a respiratory infection via chronic oxidative stress and depletion of critical antioxidants within alveolar cells and the alveolar lining fluid. Although alcohol-induced mitochondrial oxidative stress has been demonstrated, the oxidation of the mitochondrial thioredoxin redox circuit in response to alcohol has not been examined. In vitro ethanol exposure of a mouse AM cell line and AMs from ethanol-fed mice demonstrated NADPH depletion concomitant with oxidation of mitochondrial glutathione and oxidation of the thioredoxin redox circuit system including thioredoxin 2 (Trx2) and thioredoxin 2 reductase (Trx2R). Mitochondrial peroxiredoxins (Prdx’s), which are critical for the reduction of the thioredoxin circuit, were irreversibly hyperoxidized to an inactive form. Ethanol also decreased the mRNAs for Trx2, Trx2R, Prdx3, and Prdx5 plus the mitochondrial thiol–disulfide proteins glutaredoxin 2, glutathione reductase, and glutathione peroxidase 2. Thus, the mitochondrial thioredoxin circuit was highly oxidized by ethanol, thereby compromising the mitochondrial antioxidant capacity and ability to detoxify mitochondrial reactive oxygen species. Oxidation of the mitochondrial thioredoxin redox circuit would further compromise the transient oxidation of thiol groups within specific proteins, the basis of redox signaling, and the processes by which cells respond to oxidants. Impaired mitochondria can then jeopardize cellular function of AMs, such as phagocytosis, which may explain the increased risk of respiratory infection in subjects with an alcohol use disorder. Alcohol abuse suppresses the immune responses of alveolar macrophages (AMs) and increases the risk of a respiratory infection via chronic oxidative stress and depletion of critical antioxidants within alveolar cells and the alveolar lining fluid. Although alcohol-induced mitochondrial oxidative stress has been demonstrated, the oxidation of the mitochondrial thioredoxin redox circuit in response to alcohol has not been examined. In vitro ethanol exposure of a mouse AM cell line and AMs from ethanol-fed mice demonstrated NADPH depletion concomitant with oxidation of mitochondrial glutathione and oxidation of the thioredoxin redox circuit system including thioredoxin 2 (Trx2) and thioredoxin 2 reductase (Trx2R). Mitochondrial peroxiredoxins (Prdx's), which are critical for the reduction of the thioredoxin circuit, were irreversibly hyperoxidized to an inactive form. Ethanol also decreased the mRNAs for Trx2, Trx2R, Prdx3, and Prdx5 plus the mitochondrial thiol-disulfide proteins glutaredoxin 2, glutathione reductase, and glutathione peroxidase 2. Thus, the mitochondrial thioredoxin circuit was highly oxidized by ethanol, thereby compromising the mitochondrial antioxidant capacity and ability to detoxify mitochondrial reactive oxygen species. Oxidation of the mitochondrial thioredoxin redox circuit would further compromise the transient oxidation of thiol groups within specific proteins, the basis of redox signaling, and the processes by which cells respond to oxidants. Impaired mitochondria can then jeopardize cellular function of AMs, such as phagocytosis, which may explain the increased risk of respiratory infection in subjects with an alcohol use disorder.Alcohol abuse suppresses the immune responses of alveolar macrophages (AMs) and increases the risk of a respiratory infection via chronic oxidative stress and depletion of critical antioxidants within alveolar cells and the alveolar lining fluid. Although alcohol-induced mitochondrial oxidative stress has been demonstrated, the oxidation of the mitochondrial thioredoxin redox circuit in response to alcohol has not been examined. In vitro ethanol exposure of a mouse AM cell line and AMs from ethanol-fed mice demonstrated NADPH depletion concomitant with oxidation of mitochondrial glutathione and oxidation of the thioredoxin redox circuit system including thioredoxin 2 (Trx2) and thioredoxin 2 reductase (Trx2R). Mitochondrial peroxiredoxins (Prdx's), which are critical for the reduction of the thioredoxin circuit, were irreversibly hyperoxidized to an inactive form. Ethanol also decreased the mRNAs for Trx2, Trx2R, Prdx3, and Prdx5 plus the mitochondrial thiol-disulfide proteins glutaredoxin 2, glutathione reductase, and glutathione peroxidase 2. Thus, the mitochondrial thioredoxin circuit was highly oxidized by ethanol, thereby compromising the mitochondrial antioxidant capacity and ability to detoxify mitochondrial reactive oxygen species. Oxidation of the mitochondrial thioredoxin redox circuit would further compromise the transient oxidation of thiol groups within specific proteins, the basis of redox signaling, and the processes by which cells respond to oxidants. Impaired mitochondria can then jeopardize cellular function of AMs, such as phagocytosis, which may explain the increased risk of respiratory infection in subjects with an alcohol use disorder. Alcohol abuse suppresses the immune responses of alveolar macrophages ( AMs ) and increases the risk of a respiratory infection via chronic oxidative stress and depletion of critical antioxidants within alveolar cells and the alveolar lining fluid. Although alcohol-induced mitochondrial oxidative stress has been demonstrated, the oxidation of the mitochondrial thioredoxin redox circuit in response to alcohol has not been examined. In vitro ethanol exposure of a mouse AM cell line and AMs from an ethanol-fed mice demonstrated NADPH depletion concomitant with oxidation of mitochondrial glutathione and oxidation of the thioredoxin redox circuit system including thioredoxin 2 (Trx2) and thioredoxin 2 reductase (Trx2R). Mitochondrial peroxiredoxins (Prdxs), which are critical for the reduction of the thioredoxin circuit, were irreversibly hyperoxidized to an inactive form. Ethanol also decreased the mRNAs for Trx2, Trx2R, Prdx3, and Prdx5 plus the mitochondrial thiol-disulfide proteins glutaredoxin 2, glutathione reductase, and glutathione peroxidase 2. Thus, the mitochondrial thioredoxin circuit was highly oxidized by ethanol, thereby compromising the mitochondrial antioxidant capacity and ability to detoxify mitochondrial reactive oxygen species. Oxidation of the mitochondrial thioredoxin redox circuit would further compromise the transient oxidation of thiol groups within specific proteins, the basis of redox signaling, and the processes by which cells respond to oxidants. Impaired mitochondria can then jeopardize cellular function of AMs such as phagocytosis which may explain the increased risk of respiratory infection in subjects with an alcohol use disorder. |
Author | Liang, Yan Jones, Dean P. Harris, Frank L. Brown, Lou Ann S. |
AuthorAffiliation | 2 Children’s Healthcare of Atlanta Center for Developmental Lung Biology, Atlanta, Georgia 1 Department of Pediatrics, Emory University, Atlanta, Georgia 3 Division of Pulmonary, Allergy & Critical Care Medicine, Emory University School of Medicine, Atlanta, Georgia |
AuthorAffiliation_xml | – name: 2 Children’s Healthcare of Atlanta Center for Developmental Lung Biology, Atlanta, Georgia – name: 3 Division of Pulmonary, Allergy & Critical Care Medicine, Emory University School of Medicine, Atlanta, Georgia – name: 1 Department of Pediatrics, Emory University, Atlanta, Georgia |
Author_xml | – sequence: 1 givenname: Yan surname: Liang fullname: Liang, Yan – sequence: 2 givenname: Frank L. surname: Harris fullname: Harris, Frank L. – sequence: 3 givenname: Dean P. surname: Jones fullname: Jones, Dean P. – sequence: 4 givenname: Lou Ann S. surname: Brown fullname: Brown, Lou Ann S. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24140864$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUFv1DAQhS1URLeFv4AiceGSZezYjiMkpFXVFqRKXOBsTZxJ1ysnXuxsBf8eLy0V5QKnObw3n-bNO2Mnc5yJsTcc1hy4frdbj4ko4dD7ONGwFsCboqyBwzO24qZtaqk6fcJWYDpeKyO7U3aW8w4ApGrMC3YqJJdgtFyxy01wcRtD5efh4ChXk1-i28Z5SB5DlWiI3ys_9RhwdlRcFYY7igFTNaFLcb_FW8ov2fMRQ6ZXD_Ocfb26_HLxsb75fP3pYnNTO6nFUvPWoOJSO65AoG6HfpQAgg9ugJ53SvVcjApVT-RaakgIobXTaExH1EnRnLMP99z9oS_RHc1LwmD3yU-YftiI3j5VZr-1t_HONqYFqdsCePsASPHbgfJiJ58dhZKO4iFbrlujtFYA_7YWHmhhflFf_3nW4z2_31wM7-8N5WM5JxofLRzssVS7s09KtcdSj2IptWxv_tp2fsHFx2NGH_6L8RO1hbEc |
CitedBy_id | crossref_primary_10_1016_j_intimp_2015_09_020 crossref_primary_10_1016_j_lfs_2025_123434 crossref_primary_10_3389_fimmu_2022_865522 crossref_primary_10_1016_j_redox_2015_06_021 crossref_primary_10_1165_rcmb_2014_0127OC crossref_primary_10_1016_j_etap_2014_02_011 crossref_primary_10_1371_journal_pone_0170350 crossref_primary_10_15252_msb_20156423 crossref_primary_10_1111_acer_14979 crossref_primary_10_1111_acer_15300 crossref_primary_10_1111_fcp_12433 crossref_primary_10_1007_s12192_018_0934_x crossref_primary_10_3748_wjg_v20_i40_14660 crossref_primary_10_1016_j_alcohol_2018_07_006 crossref_primary_10_1111_acer_14131 crossref_primary_10_1016_j_freeradbiomed_2022_06_232 crossref_primary_10_1016_j_freeradbiomed_2013_12_020 crossref_primary_10_3390_antiox13020137 crossref_primary_10_1016_j_alcohol_2018_08_006 crossref_primary_10_1016_j_prrv_2016_08_006 crossref_primary_10_1111_acer_12647 crossref_primary_10_1111_acer_14328 crossref_primary_10_1152_ajplung_00456_2018 crossref_primary_10_1152_ajplung_00242_2015 crossref_primary_10_3390_biom5042840 crossref_primary_10_3390_ijms25042448 crossref_primary_10_3390_ijms252312814 crossref_primary_10_1016_j_freeradbiomed_2017_04_344 crossref_primary_10_4049_immunohorizons_1700033 crossref_primary_10_1371_journal_pone_0129570 crossref_primary_10_1210_clinem_dgae195 |
Cites_doi | 10.1042/BST20120231 10.3390/ijerph7124281 10.1042/BST0391305 10.1097/MAJ.0b013e31823ede77 10.1258/ebm.2011.010360 10.1146/annurev.pathol.4.110807.092314 10.4049/jimmunol.1101278 10.1042/BJ20041829 10.1074/jbc.M203036200 10.1111/j.1530-0277.2002.tb02491.x 10.1007/978-1-60327-461-6_17 10.1096/fj.11-199935 10.1074/jbc.M700339200 10.1016/S0076-6879(10)74004-0 10.1089/ars.2008.2063 10.1073/pnas.100114897 10.4049/jimmunol.175.10.6837 10.1016/j.tibs.2012.02.004 10.1111/j.1530-0277.2009.01017.x 10.1016/j.cbi.2006.07.008 10.1111/j.1530-0277.2007.00478.x 10.1042/BJ20081386 10.1089/ars.2012.4553 10.1074/jbc.M806578200 10.1152/ajplung.00346.2006 10.1189/jlb.72.6.1109 10.1042/bj3530357 10.1016/j.alcohol.2007.07.001 10.1016/j.alcohol.2004.06.007 10.1111/j.1530-0277.2009.00943.x 10.1111/j.1530-0277.2012.01825.x 10.1016/j.freeradbiomed.2005.09.023 10.1089/ars.2011.3897 10.1164/rccm.200611-1722OC 10.1007/s10541-005-0102-7 10.1152/ajpcell.00139.2004 10.1111/j.1530-0277.2006.00195.x 10.1074/jbc.M402496200 10.3109/07435809509030439 10.1111/j.1742-4658.2011.08357.x 10.1016/j.abb.2007.05.001 10.1111/j.1530-0277.2011.01599.x 10.1074/jbc.M112.401844 10.1016/j.ceb.2005.02.004 10.1152/ajplung.2001.281.2.L377 |
ContentType | Journal Article |
Copyright | 2013 Elsevier Inc. All rights reserved. 2013 The Authors. Published by Elsevier Inc. All rights reserved. 2013 |
Copyright_xml | – notice: 2013 Elsevier Inc. All rights reserved. – notice: 2013 The Authors. Published by Elsevier Inc. All rights reserved. 2013 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1016/j.freeradbiomed.2013.10.010 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Biology |
EISSN | 1873-4596 |
EndPage | 1434 |
ExternalDocumentID | PMC3870467 24140864 10_1016_j_freeradbiomed_2013_10_010 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIAAA NIH HHS grantid: P50 AA013757 – fundername: NHLBI NIH HHS grantid: T32 HL116271 – fundername: NIAAA NIH HHS grantid: R01AA12197 – fundername: NIAAA NIH HHS grantid: T32 AA013528 – fundername: NIAAA NIH HHS grantid: T32AA013528 – fundername: NHLBI NIH HHS grantid: R01 HL096924 – fundername: NIAAA NIH HHS grantid: 1P50AA135757 – fundername: NIAAA NIH HHS grantid: R01 AA012197 – fundername: NHLBI NIH HHS grantid: P20 HL113451 – fundername: National Institute on Alcohol Abuse and Alcoholism : NIAAA grantid: R01 AA012197 || AA – fundername: National Institute on Alcohol Abuse and Alcoholism : NIAAA grantid: P50 AA013757 || AA – fundername: National Heart, Lung, and Blood Institute : NHLBI grantid: T32 HL116271 || HL – fundername: National Heart, Lung, and Blood Institute : NHLBI grantid: R01 HL096924 || HL |
GroupedDBID | --- --K --M -~X .GJ .HR .~1 0R~ 1B1 1RT 1~. 1~5 29H 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO AAYXX ABBQC ABFNM ABFRF ABGSF ABJNI ABLJU ABMAC ABMZM ABUDA ABWVN ABXDB ACDAQ ACGFO ACGFS ACIEU ACIUM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADUVX AEBSH AEFWE AEHWI AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRDE AGRNS AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV C45 CITATION CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEA HLW HMK HMO HVGLF HX~ HZ~ IHE J1W KOM LX3 LZ2 M29 M41 MO0 N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAE SBG SCC SDF SDG SDP SES SEW SPCBC SSH SSU SSZ T5K TEORI WUQ XPP ZGI ~G- AACTN CGR CUY CVF ECM EIF NPM 7X8 EFKBS EFLBG 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c462t-178a5146c1502a67dbf40021dcd0b1955b12f5a5beec7e3e22266c6a889ee9423 |
ISSN | 0891-5849 1873-4596 |
IngestDate | Thu Aug 21 14:06:35 EDT 2025 Fri Sep 05 09:23:53 EDT 2025 Fri Sep 05 13:08:24 EDT 2025 Thu Apr 03 07:27:05 EDT 2025 Tue Jul 01 03:37:59 EDT 2025 Thu Apr 24 22:58:38 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | peroxiredoxin Grx Thioredoxin glutaredoxin Gpx nicotinamide nucleotide transhydrogenase relative fluorescence units Prdx nicotinamide adenine dinucleotide Mitochondria NNT Alveolar macrophage reactive oxygen species glutathione (reduced) NADP glutathione reductase thioredoxin reductase 2 GSH RFU GSSG Peroxiredoxin hyperoxidation Free radicals nicotinamide adenine dinucleotide phosphate GR AM TrxR2 NAD thioredoxin 2 glutathione (oxidized) ROS Chronic alcohol ingestion Trx2 glutathione peroxidase |
Language | English |
License | 2013 Elsevier Inc. All rights reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c462t-178a5146c1502a67dbf40021dcd0b1955b12f5a5beec7e3e22266c6a889ee9423 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/3870467 |
PMID | 24140864 |
PQID | 1467062867 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3870467 proquest_miscellaneous_1678566500 proquest_miscellaneous_1467062867 pubmed_primary_24140864 crossref_primary_10_1016_j_freeradbiomed_2013_10_010 crossref_citationtrail_10_1016_j_freeradbiomed_2013_10_010 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-12-01 |
PublicationDateYYYYMMDD | 2013-12-01 |
PublicationDate_xml | – month: 12 year: 2013 text: 2013-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Free radical biology & medicine |
PublicationTitleAlternate | Free Radic Biol Med |
PublicationYear | 2013 |
References | Tang (10.1016/j.freeradbiomed.2013.10.010_bib7) 2009; 33 Cook (10.1016/j.freeradbiomed.2013.10.010_bib26) 2007; 31 Kim (10.1016/j.freeradbiomed.2013.10.010_bib44) 2008; 283 Petit (10.1016/j.freeradbiomed.2013.10.010_bib22) 2001; 353 Brown (10.1016/j.freeradbiomed.2013.10.010_bib4) 2009; 33 Yeligar (10.1016/j.freeradbiomed.2013.10.010_bib9) 2012; 188 Feldstein (10.1016/j.freeradbiomed.2013.10.010_bib46) 2011; 15 Brown (10.1016/j.freeradbiomed.2013.10.010_bib30) 2001; 281 Cook (10.1016/j.freeradbiomed.2013.10.010_bib27) 2004; 33 Go (10.1016/j.freeradbiomed.2013.10.010_bib34) 2009; 464 Joshi (10.1016/j.freeradbiomed.2013.10.010_bib6) 2005; 175 Ding (10.1016/j.freeradbiomed.2013.10.010_bib13) 2011; 236 Wallace (10.1016/j.freeradbiomed.2013.10.010_bib18) 2010; 5 Hanukoglu (10.1016/j.freeradbiomed.2013.10.010_bib38) 1995; 21 Damdimopoulos (10.1016/j.freeradbiomed.2013.10.010_bib32) 2002; 277 Murphy (10.1016/j.freeradbiomed.2013.10.010_bib16) 2009; 417 Bindoli (10.1016/j.freeradbiomed.2013.10.010_bib41) 2008; 10 Yeh (10.1016/j.freeradbiomed.2013.10.010_bib37) 2007; 176 Brown (10.1016/j.freeradbiomed.2013.10.010_bib5) 2012; 36 Edenberg (10.1016/j.freeradbiomed.2013.10.010_bib24) 2007; 30 Ripoll (10.1016/j.freeradbiomed.2013.10.010_bib39) 2012; 26 Knockaert (10.1016/j.freeradbiomed.2013.10.010_bib12) 2011; 278 Zhang (10.1016/j.freeradbiomed.2013.10.010_bib45) 2007; 465 Brookes (10.1016/j.freeradbiomed.2013.10.010_bib19) 2004; 2004 Peskin (10.1016/j.freeradbiomed.2013.10.010_bib42) 2007; 282 Zhong (10.1016/j.freeradbiomed.2013.10.010_bib40) 2000; 97 Mitchell (10.1016/j.freeradbiomed.2013.10.010_bib11) 2013; 41 Fischer (10.1016/j.freeradbiomed.2013.10.010_bib14) 2012; 37 Manzo-Avalos (10.1016/j.freeradbiomed.2013.10.010_bib25) 2010; 7 Brown (10.1016/j.freeradbiomed.2013.10.010_bib3) 2007; 292 Jerrells (10.1016/j.freeradbiomed.2013.10.010_bib28) 2007; 41 Song (10.1016/j.freeradbiomed.2013.10.010_bib29) 2002; 72 Andreyev (10.1016/j.freeradbiomed.2013.10.010_bib17) 2005; 70 Jones (10.1016/j.freeradbiomed.2013.10.010_bib21) 2006; 163 Patenaude (10.1016/j.freeradbiomed.2013.10.010_bib20) 2004; 279 Hansen (10.1016/j.freeradbiomed.2013.10.010_bib31) 2006; 40 Foreman (10.1016/j.freeradbiomed.2013.10.010_bib36) 2002; 26 Wagner (10.1016/j.freeradbiomed.2013.10.010_bib8) 2012; 36 Mehta (10.1016/j.freeradbiomed.2013.10.010_bib2) 2012; 343 Cox (10.1016/j.freeradbiomed.2013.10.010_bib35) 2010; 474 Chen (10.1016/j.freeradbiomed.2013.10.010_bib10) 2013; 288 Halvey (10.1016/j.freeradbiomed.2013.10.010_bib33) 2005; 386 Brown (10.1016/j.freeradbiomed.2013.10.010_bib1) 2006; 30 Franco (10.1016/j.freeradbiomed.2013.10.010_bib23) 2012; 17 Rhee (10.1016/j.freeradbiomed.2013.10.010_bib43) 2005; 17 Shabalina (10.1016/j.freeradbiomed.2013.10.010_bib15) 2011; 39 |
References_xml | – volume: 41 start-page: 127 year: 2013 ident: 10.1016/j.freeradbiomed.2013.10.010_bib11 article-title: Convergent mechanisms for dysregulation of mitochondrial quality control in metabolic disease: implications for mitochondrial therapeutics publication-title: Biochem. Soc. Trans. doi: 10.1042/BST20120231 – volume: 7 start-page: 4281 year: 2010 ident: 10.1016/j.freeradbiomed.2013.10.010_bib25 article-title: Cellular and mitochondrial effects of alcohol consumption publication-title: Int. J. Environ. Res. Public Health doi: 10.3390/ijerph7124281 – volume: 39 start-page: 1305 year: 2011 ident: 10.1016/j.freeradbiomed.2013.10.010_bib15 article-title: Mitochondrial ('mild') uncoupling and ROS production: physiologically relevant or not? publication-title: Biochem. Soc. Trans. doi: 10.1042/BST0391305 – volume: 343 start-page: 244 year: 2012 ident: 10.1016/j.freeradbiomed.2013.10.010_bib2 article-title: Alcohol abuse, the alveolar macrophage and pneumonia publication-title: Am. J. Med. Sci. doi: 10.1097/MAJ.0b013e31823ede77 – volume: 236 start-page: 546 year: 2011 ident: 10.1016/j.freeradbiomed.2013.10.010_bib13 article-title: The emerging role of autophagy in alcoholic liver disease publication-title: Exp. Biol. Med. (Maywood) doi: 10.1258/ebm.2011.010360 – volume: 5 start-page: 297 year: 2010 ident: 10.1016/j.freeradbiomed.2013.10.010_bib18 article-title: Mitochondrial energetics and therapeutics publication-title: Annu. Rev. Pathol. Mech. Dis. doi: 10.1146/annurev.pathol.4.110807.092314 – volume: 188 start-page: 3648 year: 2012 ident: 10.1016/j.freeradbiomed.2013.10.010_bib9 article-title: Ethanol induces oxidative stress in alveolar macrophages via upregulation of NADPH oxidases publication-title: J. Immunol. doi: 10.4049/jimmunol.1101278 – volume: 386 start-page: 215 year: 2005 ident: 10.1016/j.freeradbiomed.2013.10.010_bib33 article-title: Compartmental oxidation of thiol–disulphide redox couples during epidermal growth factor signalling publication-title: Biochem. J. doi: 10.1042/BJ20041829 – volume: 277 start-page: 33249 year: 2002 ident: 10.1016/j.freeradbiomed.2013.10.010_bib32 article-title: Human mitochondrial thioredoxin: involvement in mitochondrial membrane potential and cell death publication-title: J. Biol. Chem. doi: 10.1074/jbc.M203036200 – volume: 26 start-page: 1840 year: 2002 ident: 10.1016/j.freeradbiomed.2013.10.010_bib36 publication-title: Alcohol Clin. Exp. Res. doi: 10.1111/j.1530-0277.2002.tb02491.x – volume: 464 start-page: 303 year: 2009 ident: 10.1016/j.freeradbiomed.2013.10.010_bib34 article-title: Quantification of redox conditions in the nucleus publication-title: Methods Mol. Biol. doi: 10.1007/978-1-60327-461-6_17 – volume: 26 start-page: 3550 year: 2012 ident: 10.1016/j.freeradbiomed.2013.10.010_bib39 article-title: Nicotinamide nucleotide transhydrogenase (NNT) acts as a novel modulator of macrophage inflammatory responses publication-title: FASEB J. doi: 10.1096/fj.11-199935 – volume: 282 start-page: 11885 year: 2007 ident: 10.1016/j.freeradbiomed.2013.10.010_bib42 article-title: The high reactivity of peroxiredoxin 2 with H2O2 is not reflected in its reaction with other oxidants and thiol reagents publication-title: J. Biol. Chem. doi: 10.1074/jbc.M700339200 – volume: 474 start-page: 51 year: 2010 ident: 10.1016/j.freeradbiomed.2013.10.010_bib35 article-title: Measuring the redox state of cellular peroxiredoxins by immunoblotting publication-title: Methods Enzymol. doi: 10.1016/S0076-6879(10)74004-0 – volume: 10 start-page: 1549 year: 2008 ident: 10.1016/j.freeradbiomed.2013.10.010_bib41 article-title: Thiol chemistry in peroxidase catalysis and redox signaling publication-title: Antioxid. Redox Signaling doi: 10.1089/ars.2008.2063 – volume: 97 start-page: 5854 year: 2000 ident: 10.1016/j.freeradbiomed.2013.10.010_bib40 article-title: Structure and mechanism of mammalian thioredoxin reductase: the active site is a redox-active selenolthiolylselenenylsulfide formed from the conserved cysteine–selenocysteine sequence publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.100114897 – volume: 175 start-page: 6837 year: 2005 ident: 10.1016/j.freeradbiomed.2013.10.010_bib6 article-title: Chronic ethanol ingestion in rats decreases granulocyte–macrophage colony-stimulating factor receptor expression and downstream signaling in the alveolar macrophage publication-title: J. Immunol. doi: 10.4049/jimmunol.175.10.6837 – volume: 37 start-page: 284 year: 2012 ident: 10.1016/j.freeradbiomed.2013.10.010_bib14 article-title: Mitochondrial quality control: an integrated network of pathways publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2012.02.004 – volume: 30 start-page: 5 year: 2007 ident: 10.1016/j.freeradbiomed.2013.10.010_bib24 article-title: The genetics of alcohol metabolism: role of alcohol dehydrogenase and aldehyde dehydrogenase variants publication-title: Alcohol Res. Health – volume: 33 start-page: 1782 year: 2009 ident: 10.1016/j.freeradbiomed.2013.10.010_bib4 article-title: Impaired terminal differentiation of pulmonary macrophages in a guinea pig model of chronic ethanol ingestion publication-title: Alcohol. Clin. Exp. Res. doi: 10.1111/j.1530-0277.2009.01017.x – volume: 163 start-page: 38 year: 2006 ident: 10.1016/j.freeradbiomed.2013.10.010_bib21 article-title: Disruption of mitochondrial redox circuitry in oxidative stress publication-title: Chem. Biol. Interact. doi: 10.1016/j.cbi.2006.07.008 – volume: 31 start-page: 1746 year: 2007 ident: 10.1016/j.freeradbiomed.2013.10.010_bib26 article-title: Thymocytes, pre-B cells, and organ changes in a mouse model of chronic ethanol ingestion—absence of subset-specific glucocorticoid-induced immune cell loss publication-title: Alcohol. Clin. Exp. Res. doi: 10.1111/j.1530-0277.2007.00478.x – volume: 417 start-page: 1 year: 2009 ident: 10.1016/j.freeradbiomed.2013.10.010_bib16 article-title: How mitochondria produce reactive oxygen species publication-title: Biochem. J. doi: 10.1042/BJ20081386 – volume: 17 start-page: 1694 year: 2012 ident: 10.1016/j.freeradbiomed.2013.10.010_bib23 article-title: Glutathione efflux and cell death publication-title: Antioxid. Redox Signaling doi: 10.1089/ars.2012.4553 – volume: 283 start-page: 33563 year: 2008 ident: 10.1016/j.freeradbiomed.2013.10.010_bib44 article-title: H2O2-dependent hyperoxidation of peroxiredoxin 6 (Prdx6) plays a role in cellular toxicity via up-regulation of iPLA2 activity publication-title: J. Biol. Chem. doi: 10.1074/jbc.M806578200 – volume: 292 start-page: L824 year: 2007 ident: 10.1016/j.freeradbiomed.2013.10.010_bib3 article-title: Glutathione availability modulates alveolar macrophage function in the chronic ethanol-fed rat publication-title: Am. J. Physiol. Lung Cell. Mol. Physiol. doi: 10.1152/ajplung.00346.2006 – volume: 72 start-page: 1109 year: 2002 ident: 10.1016/j.freeradbiomed.2013.10.010_bib29 article-title: Chronic ethanol consumption by mice results in activated splenic T cells publication-title: J. Leukocyte Biol. doi: 10.1189/jlb.72.6.1109 – volume: 353 start-page: 357 year: 2001 ident: 10.1016/j.freeradbiomed.2013.10.010_bib22 article-title: Oxidation of pyridine nucleotides during Fas- and ceramide-induced apoptosis in Jurkat cells: correlation with changes in mitochondria, glutathione depletion, intracellular acidification and caspase 3 activation publication-title: Biochem. J. doi: 10.1042/bj3530357 – volume: 41 start-page: 357 year: 2007 ident: 10.1016/j.freeradbiomed.2013.10.010_bib28 article-title: Association of chronic alcohol consumption and increased susceptibility to and pathogenic effects of pulmonary infection with respiratory syncytial virus in mice publication-title: Alcohol doi: 10.1016/j.alcohol.2007.07.001 – volume: 33 start-page: 178 year: 2004 ident: 10.1016/j.freeradbiomed.2013.10.010_bib27 article-title: T-cell activation after chronic ethanol ingestion in mice publication-title: Alcohol doi: 10.1016/j.alcohol.2004.06.007 – volume: 33 start-page: 1197 year: 2009 ident: 10.1016/j.freeradbiomed.2013.10.010_bib7 article-title: N-acetylcysteine improves group B streptococcus clearance in a rat model of chronic ethanol ingestion publication-title: Alcohol. Clin. Exp. Res. doi: 10.1111/j.1530-0277.2009.00943.x – volume: 36 start-page: 1952 year: 2012 ident: 10.1016/j.freeradbiomed.2013.10.010_bib5 article-title: Ethanol (EtOH)-induced TGF-beta(1) and reactive oxygen species production are necessary for EtOH-induced alveolar macrophage dysfunction and induction of alternative activation publication-title: Alcohol. Clin. Exp. Res. doi: 10.1111/j.1530-0277.2012.01825.x – volume: 40 start-page: 138 year: 2006 ident: 10.1016/j.freeradbiomed.2013.10.010_bib31 article-title: Differential oxidation of thioredoxin-1, thioredoxin-2, and glutathione by metal ions publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2005.09.023 – volume: 15 start-page: 421 year: 2011 ident: 10.1016/j.freeradbiomed.2013.10.010_bib46 article-title: Emerging role of redox dysregulation in alcoholic and nonalcoholic fatty liver disease publication-title: Antioxid. Redox Signaling doi: 10.1089/ars.2011.3897 – volume: 176 start-page: 270 year: 2007 ident: 10.1016/j.freeradbiomed.2013.10.010_bib37 article-title: Chronic alcoholism alters systemic and pulmonary glutathione redox status publication-title: Am. J. Respir. Crit. Care Med. doi: 10.1164/rccm.200611-1722OC – volume: 70 start-page: 246 year: 2005 ident: 10.1016/j.freeradbiomed.2013.10.010_bib17 article-title: Mitochondrial metabolism of reactive oxygen species publication-title: Biochemistry (Moscow) doi: 10.1007/s10541-005-0102-7 – volume: 2004 start-page: C817 year: 2004 ident: 10.1016/j.freeradbiomed.2013.10.010_bib19 article-title: Calcium, ATP, and ROS: a mitochondrial love–hate triangle publication-title: Am. J. Physiol. Cell Physiol. doi: 10.1152/ajpcell.00139.2004 – volume: 30 start-page: 1624 year: 2006 ident: 10.1016/j.freeradbiomed.2013.10.010_bib1 article-title: Acute and chronic alcohol abuse modulate immunity publication-title: Alcohol. Clin. Exp. Res. doi: 10.1111/j.1530-0277.2006.00195.x – volume: 279 start-page: 27302 year: 2004 ident: 10.1016/j.freeradbiomed.2013.10.010_bib20 article-title: Mitochondrial thioredoxin system publication-title: J. Biol. Chem. doi: 10.1074/jbc.M402496200 – volume: 21 start-page: 231 year: 1995 ident: 10.1016/j.freeradbiomed.2013.10.010_bib38 article-title: Routes and regulation of NADPH production in steroidogenic mitochondria publication-title: Endocr. Res. doi: 10.3109/07435809509030439 – volume: 278 start-page: 4252 year: 2011 ident: 10.1016/j.freeradbiomed.2013.10.010_bib12 article-title: Mechanisms of mitochondrial targeting of cytochrome P450 2E1: physiopathological role in liver injury and obesity publication-title: FEBS J. doi: 10.1111/j.1742-4658.2011.08357.x – volume: 465 start-page: 119 year: 2007 ident: 10.1016/j.freeradbiomed.2013.10.010_bib45 article-title: Mitochondrial thioredoxin-2/peroxiredoxin-3 system functions in parallel with mitochondrial GSH system in protection against oxidative stress publication-title: Arch. Biochem. Biophys. doi: 10.1016/j.abb.2007.05.001 – volume: 36 start-page: 197 year: 2012 ident: 10.1016/j.freeradbiomed.2013.10.010_bib8 article-title: PPARgamma ligands regulate NADPH oxidase, eNOS, and barrier function in the lung following chronic alcohol ingestion publication-title: Alcohol. Clin. Exp. Res. doi: 10.1111/j.1530-0277.2011.01599.x – volume: 288 start-page: 11689 year: 2013 ident: 10.1016/j.freeradbiomed.2013.10.010_bib10 article-title: Coenzyme Q10 rescues ethanol-induced corneal fibroblast apoptosis through the inhibition of caspase-2 activation publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.401844 – volume: 17 start-page: 183 year: 2005 ident: 10.1016/j.freeradbiomed.2013.10.010_bib43 article-title: Intracellular messenger function of hydrogen peroxide and its regulation by peroxiredoxins publication-title: Curr. Opin. Cell Biol. doi: 10.1016/j.ceb.2005.02.004 – volume: 281 start-page: L377 year: 2001 ident: 10.1016/j.freeradbiomed.2013.10.010_bib30 article-title: Chronic ethanol ingestion potentiates TNF-alpha-mediated oxidative stress and apoptosis in rat type II cells publication-title: Am. J. Physiol. Lung Cell. Mol. Physiol. doi: 10.1152/ajplung.2001.281.2.L377 |
SSID | ssj0004538 |
Score | 2.298541 |
Snippet | Alcohol abuse suppresses the immune responses of alveolar macrophages (AMs) and increases the risk of a respiratory infection via chronic oxidative stress and... Alcohol abuse suppresses the immune responses of alveolar macrophages ( AMs ) and increases the risk of a respiratory infection via chronic oxidative stress... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1427 |
SubjectTerms | alcohol abuse Alcohol Drinking Animals antioxidant activity Cell Line Central Nervous System Depressants - administration & dosage Central Nervous System Depressants - pharmacology ethanol Ethanol - administration & dosage Ethanol - pharmacology Glutaredoxins - biosynthesis glutathione Glutathione - metabolism Glutathione Peroxidase Glutathione Reductase - biosynthesis glutathione-disulfide reductase immune response macrophages Macrophages, Alveolar - immunology messenger RNA Mice Mice, Inbred C57BL mitochondria Mitochondria - pathology NADP (coenzyme) NADP - metabolism oxidants oxidation Oxidation-Reduction - drug effects Oxidative Stress Peroxiredoxins - metabolism phagocytosis Phagocytosis - drug effects Phagocytosis - immunology proteins reactive oxygen species Reactive Oxygen Species - metabolism risk RNA, Messenger - biosynthesis Signal Transduction - immunology thiols Thioredoxin-Disulfide Reductase - genetics Thioredoxin-Disulfide Reductase - metabolism Thioredoxins - metabolism |
Title | Alcohol induces mitochondrial redox imbalance in alveolar macrophages |
URI | https://www.ncbi.nlm.nih.gov/pubmed/24140864 https://www.proquest.com/docview/1467062867 https://www.proquest.com/docview/1678566500 https://pubmed.ncbi.nlm.nih.gov/PMC3870467 |
Volume | 65 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLaqIRAvCDYu5SYjEC9RojrxpeGtgk0VqhAPmzSeIjtxtE5rirIEbTzw2zl2nDQpA5W9RFUuTtJzfPId-_N3EHonc5VnUk98nTLtUwF9DrqU8JXMWSiIZLm0ap9f-PyEfj5lp6PRVY-1VFcqSH_euK7kNlaFfWBXs0r2PyzbNQo74DfYF7ZgYdjuZONZU9_Wg7y6NsyqFXRPCGdFZktxGCnQK2-5Uoa9mFpxEHnxQ5tc1ltJU7rrDILJZR-eHpVae6Vs5m5afSbjHNtT8IulG2f-tvGuuSzLRrHAVoL3FsGGnuMKAnwy4_5fu_3dGMBiXXuzAiJN0B-FIFGP0eGCVUx8ADNxP7Jy1guNhDYiAO4zCziN3hjCm9GE8yCHNzZ0AqtCYDh4UWBoeI4EOxDO3vqgdTTDlsF2ngwaS0xjcCSxa_PuhELYCf7gF-npzNsa6N1b3UNvN8zAvz7ZENv8kbBs8257QOb4IXrgMhA8a9zpERrpYh8dzApZrVfX-D22nGBr-X10tylVen2ADp2vYedreOBr2Poa7nwNzsKtr-Gerz1GJ0eHxx_nvivB4aeUh5VPxFQCpOYp5A2h5CJTOTWwMEuziSIxY4qEOZNMaZ0KHWlAm5ynXE6nsdYxQPUnaK8AH3uGsOJUxmlEiAYMn4dZLKdUZgARVZZHJJNj9KH985LU6dObMikXyQ5mHCPaXfy9kWnZ7bI3rZUSCKtmrkwWel1fmoxYmOXFXPzjHAB6kA2xCbTztLFsd3MAxnQy5XSMxMDm3QlG1n14pFieWXn3CD6hcPfnt3ulF-j-pn--RHtVWetXgJsr9dq6-G9R8scq |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Alcohol+induces+mitochondrial+redox+imbalance+in+alveolar+macrophages&rft.jtitle=Free+radical+biology+%26+medicine&rft.au=Liang%2C+Yan&rft.au=Harris%2C+Frank+L.&rft.au=Jones%2C+Dean+P.&rft.au=Brown%2C+Lou+Ann+S.&rft.date=2013-12-01&rft.issn=0891-5849&rft.volume=65&rft.spage=1427&rft.epage=1434&rft_id=info:doi/10.1016%2Fj.freeradbiomed.2013.10.010&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_freeradbiomed_2013_10_010 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0891-5849&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0891-5849&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0891-5849&client=summon |