Neural Control of Balance During Walking

Neural control of standing balance has been extensively studied. However, most falls occur during walking rather than standing, and findings from standing balance research do not necessarily carry over to walking. This is primarily due to the constraints of the gait cycle: Body configuration changes...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in physiology Vol. 9; p. 1271
Main Authors Reimann, Hendrik, Fettrow, Tyler, Thompson, Elizabeth D., Jeka, John J.
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 13.09.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Neural control of standing balance has been extensively studied. However, most falls occur during walking rather than standing, and findings from standing balance research do not necessarily carry over to walking. This is primarily due to the constraints of the gait cycle: Body configuration changes dramatically over the gait cycle, necessitating different responses as this configuration changes. Notably, certain responses can only be initiated at specific points in the gait cycle, leading to onset times ranging from 350 to 600 ms, much longer than what is observed during standing (50-200 ms). Here, we investigated the neural control of upright balance during walking. Specifically, how the brain transforms sensory information related to upright balance into corrective motor responses. We used visual disturbances of 20 healthy young subjects walking in a virtual reality cave to induce the perception of a fall to the side and analyzed the muscular responses, changes in ground reaction forces and body kinematics. Our results showed changes in swing leg foot placement and stance leg ankle roll that accelerate the body in the direction opposite of the visually induced fall stimulus, consistent with previous results. Surprisingly, ankle musculature activity changed rapidly in response to the stimulus, suggesting the presence of a direct reflexive pathway from the visual system to the spinal cord, similar to the vestibulospinal pathway. We also observed systematic modulation of the ankle push-off, indicating the discovery of a previously unobserved balance mechanism. Such modulation has implications not only for balance but plays a role in modulation of step width and length as well as cadence. These results indicated a temporally-coordinated series of balance responses over the gait cycle that insures flexible control of upright balance during walking.
AbstractList Neural control of standing balance has been extensively studied. However, most falls occur during walking rather than standing, and findings from standing balance research do not necessarily carry over to walking. This is primarily due to the constraints of the gait cycle: Body configuration changes dramatically over the gait cycle, necessitating different responses as this configuration changes. Notably, certain responses can only be initiated at specific points in the gait cycle, leading to onset times ranging from 350 to 600 ms, much longer than what is observed during standing (50–200 ms). Here, we investigated the neural control of upright balance during walking. Specifically, how the brain transforms sensory information related to upright balance into corrective motor responses. We used visual disturbances of 20 healthy young subjects walking in a virtual reality cave to induce the perception of a fall to the side and analyzed the muscular responses, changes in ground reaction forces and body kinematics. Our results showed changes in swing leg foot placement and stance leg ankle roll that accelerate the body in the direction opposite of the visually induced fall stimulus, consistent with previous results. Surprisingly, ankle musculature activity changed rapidly in response to the stimulus, suggesting the presence of a direct reflexive pathway from the visual system to the spinal cord, similar to the vestibulospinal pathway. We also observed systematic modulation of the ankle push-off, indicating the discovery of a previously unobserved balance mechanism. Such modulation has implications not only for balance but plays a role in modulation of step width and length as well as cadence. These results indicated a temporally-coordinated series of balance responses over the gait cycle that insures flexible control of upright balance during walking.
Neural control of standing balance has been extensively studied. However, most falls occur during walking rather than standing, and findings from standing balance research do not necessarily carry over to walking. This is primarily due to the constraints of the gait cycle: Body configuration changes dramatically over the gait cycle, necessitating different responses as this configuration changes. Notably, certain responses can only be initiated at specific points in the gait cycle, leading to onset times ranging from 350 to 600 ms, much longer than what is observed during standing (50-200 ms). Here, we investigated the neural control of upright balance during walking. Specifically, how the brain transforms sensory information related to upright balance into corrective motor responses. We used visual disturbances of 20 healthy young subjects walking in a virtual reality cave to induce the perception of a fall to the side and analyzed the muscular responses, changes in ground reaction forces and body kinematics. Our results showed changes in swing leg foot placement and stance leg ankle roll that accelerate the body in the direction opposite of the visually induced fall stimulus, consistent with previous results. Surprisingly, ankle musculature activity changed rapidly in response to the stimulus, suggesting the presence of a direct reflexive pathway from the visual system to the spinal cord, similar to the vestibulospinal pathway. We also observed systematic modulation of the ankle push-off, indicating the discovery of a previously unobserved balance mechanism. Such modulation has implications not only for balance but plays a role in modulation of step width and length as well as cadence. These results indicated a temporally-coordinated series of balance responses over the gait cycle that insures flexible control of upright balance during walking.Neural control of standing balance has been extensively studied. However, most falls occur during walking rather than standing, and findings from standing balance research do not necessarily carry over to walking. This is primarily due to the constraints of the gait cycle: Body configuration changes dramatically over the gait cycle, necessitating different responses as this configuration changes. Notably, certain responses can only be initiated at specific points in the gait cycle, leading to onset times ranging from 350 to 600 ms, much longer than what is observed during standing (50-200 ms). Here, we investigated the neural control of upright balance during walking. Specifically, how the brain transforms sensory information related to upright balance into corrective motor responses. We used visual disturbances of 20 healthy young subjects walking in a virtual reality cave to induce the perception of a fall to the side and analyzed the muscular responses, changes in ground reaction forces and body kinematics. Our results showed changes in swing leg foot placement and stance leg ankle roll that accelerate the body in the direction opposite of the visually induced fall stimulus, consistent with previous results. Surprisingly, ankle musculature activity changed rapidly in response to the stimulus, suggesting the presence of a direct reflexive pathway from the visual system to the spinal cord, similar to the vestibulospinal pathway. We also observed systematic modulation of the ankle push-off, indicating the discovery of a previously unobserved balance mechanism. Such modulation has implications not only for balance but plays a role in modulation of step width and length as well as cadence. These results indicated a temporally-coordinated series of balance responses over the gait cycle that insures flexible control of upright balance during walking.
Author Jeka, John J.
Thompson, Elizabeth D.
Reimann, Hendrik
Fettrow, Tyler
AuthorAffiliation 2 Department of Kinesiology, Temple University , Philadelphia, PA , United States
1 Department of Kinesiology and Applied Physiology, University of Delaware , Newark, DE , United States
3 Department of Physical Therapy, Temple University , Philadelphia, PA , United States
AuthorAffiliation_xml – name: 1 Department of Kinesiology and Applied Physiology, University of Delaware , Newark, DE , United States
– name: 2 Department of Kinesiology, Temple University , Philadelphia, PA , United States
– name: 3 Department of Physical Therapy, Temple University , Philadelphia, PA , United States
Author_xml – sequence: 1
  givenname: Hendrik
  surname: Reimann
  fullname: Reimann, Hendrik
– sequence: 2
  givenname: Tyler
  surname: Fettrow
  fullname: Fettrow, Tyler
– sequence: 3
  givenname: Elizabeth D.
  surname: Thompson
  fullname: Thompson, Elizabeth D.
– sequence: 4
  givenname: John J.
  surname: Jeka
  fullname: Jeka, John J.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30271354$$D View this record in MEDLINE/PubMed
BookMark eNp1kU1P3DAQhi1ExceWO6cqRy679diJ41yQ6NJSJNReQOVmTZLJYuqNt3ZSiX9fZxcqqFRfZmTPPON33mO23_ueGDsFvpBSVx-7zcNTXAgOesFBlLDHjkCpfM5zcb__Kj9kJzE-8nRyLjiHA3YoeaqXRX7Ezr7RGNBlS98PwbvMd9kndNg3lF2Owfar7Ae6nym-Z-86dJFOnuOM3X35fLv8Or_5fnW9vLiZN7kSwxwKKYtOtKoBlBUnLUAR56SEaAsByDVOw0silXckKqWLUlNdUcqlrIWcsesdt_X4aDbBrjE8GY_WbC98WBkMg20cmapqayprlECQcy11oTUpKTHBuwrrxDrfsTZjvaa2oaQR3Rvo25fePpiV_20UJDEwfebsGRD8r5HiYNY2NuTSgsiP0QiAQpS8SKJn7MPrWX-HvKw6FahdQRN8jIE609gBBzstHq0zwM1kq9naaiZbzdbW1Mj_aXxh_7flD7vvpAE
CitedBy_id crossref_primary_10_1038_s41598_021_00463_8
crossref_primary_10_1186_s12984_021_00818_2
crossref_primary_10_1371_journal_pone_0217460
crossref_primary_10_3389_fbioe_2022_1041060
crossref_primary_10_7717_peerj_7939
crossref_primary_10_3389_fbioe_2019_00167
crossref_primary_10_1371_journal_pone_0292449
crossref_primary_10_1088_1757_899X_568_1_012110
crossref_primary_10_1371_journal_pcbi_1011861
crossref_primary_10_1016_j_gaitpost_2019_01_010
crossref_primary_10_1080_00140139_2022_2113152
crossref_primary_10_3390_brainsci12081055
crossref_primary_10_1113_JP278986
crossref_primary_10_1371_journal_pone_0242215
crossref_primary_10_1038_s41598_023_41815_w
crossref_primary_10_1016_j_jbiomech_2020_110213
crossref_primary_10_1016_j_jbiomech_2021_110738
crossref_primary_10_1016_j_humov_2023_103070
crossref_primary_10_3390_prosthesis6030049
crossref_primary_10_1371_journal_pone_0235686
crossref_primary_10_3389_fspor_2019_00040
crossref_primary_10_3233_JPD_223252
crossref_primary_10_56984_8ZG1436RB
crossref_primary_10_1007_s10439_021_02831_x
crossref_primary_10_1016_j_gaitpost_2020_01_006
crossref_primary_10_1016_j_clinbiomech_2025_106445
crossref_primary_10_1097_HTR_0000000000000761
crossref_primary_10_1098_rsif_2024_0191
crossref_primary_10_1038_s41598_020_69052_5
crossref_primary_10_3389_fneur_2023_1145283
crossref_primary_10_3389_fnhum_2023_1239071
crossref_primary_10_3389_fnagi_2021_742035
crossref_primary_10_1371_journal_pone_0225902
crossref_primary_10_1016_j_gaitpost_2019_06_014
crossref_primary_10_1371_journal_pone_0244582
crossref_primary_10_3390_app142311456
crossref_primary_10_1109_TNSRE_2021_3114991
crossref_primary_10_3389_fspor_2020_00094
crossref_primary_10_1016_j_jbiomech_2020_109837
crossref_primary_10_1098_rsos_202088
crossref_primary_10_1123_mc_2022_0045
crossref_primary_10_36803_indojpmr_v12i01_348
crossref_primary_10_1016_j_jelekin_2024_102915
crossref_primary_10_1186_s11556_023_00321_8
crossref_primary_10_4018_IJeC_316871
crossref_primary_10_1371_journal_pcbi_1009575
crossref_primary_10_1098_rsos_231210
crossref_primary_10_1016_j_jbiomech_2022_111201
crossref_primary_10_1016_j_gaitpost_2024_01_014
crossref_primary_10_1016_j_compbiomed_2024_108492
crossref_primary_10_3389_fneur_2021_638904
crossref_primary_10_3389_fspor_2019_00025
crossref_primary_10_1016_j_gaitpost_2023_12_018
crossref_primary_10_1038_s41598_022_11102_1
crossref_primary_10_3389_fbioe_2020_00884
crossref_primary_10_3389_frvir_2020_00005
crossref_primary_10_3389_fnhum_2022_977032
crossref_primary_10_1371_journal_pcbi_1006850
crossref_primary_10_1016_j_jbiomech_2023_111898
crossref_primary_10_1038_s41598_024_56579_0
crossref_primary_10_1186_s13195_020_00697_0
crossref_primary_10_1016_j_gaitpost_2020_12_031
crossref_primary_10_1093_gerona_glaa284
Cites_doi 10.1152/jn.2002.88.3.1097
10.1016/j.humov.2007.08.003
10.1167/15.3.10
10.1038/84054
10.1152/jn.01062.2012
10.1016/j.jbiomech.2006.02.013
10.3758/s13428-013-0349-7
10.1016/0021-9290(90)90054-7
10.1186/s12984-015-0027-3
10.1016/j.jsr.2016.05.001
10.1016/j.humov.2017.11.009
10.1080/00949659608811740
10.1152/japplphysiol.00621.2011
10.1242/jeb.042572
10.1016/j.neuroscience.2011.02.009
10.18637/jss.v067.i01
10.1523/JNEUROSCI.2647-14.2015
10.1007/s00167-016-4243-6
10.18637/jss.v069.i01
10.1111/2041-210X.12504
10.1152/jn.1986.55.6.1369
10.1016/S0021-9290(98)00158-4
10.1177/02783649922066655
10.1097/00001756-199712010-00002
10.1177/0301006616637434
10.1016/j.humov.2017.03.004
10.1016/S0021-9290(00)00101-9
10.1080/00222895.1994.9941678
10.1152/jn.00131.2009
10.6061/clinics/2013(04)13
10.18637/jss.v059.i09
10.1098/rsbl.2014.0405
10.1186/1743-0003-4-22
10.1016/j.gaitpost.2017.05.002
10.1098/rsos.160627
10.1016/j.humov.2015.01.012
10.3758/BF03210980
10.1371/journal.pone.0073597
10.1016/j.jbiomech.2003.06.002
10.1016/0021-9290(85)90042-9
10.1007/s00221-010-2414-0
10.1016/j.jbiomech.2006.10.026
10.18637/jss.v082.i13
10.1371/journal.pone.0172215
10.1016/j.gaitpost.2018.02.020
10.1007/s00221-014-3885-1
10.1016/0167-9457(91)90046-Z
10.1093/ageing/afl077
10.1093/ageing/afl084
10.1242/jeb.129338
10.1152/jn.00866.2011
ContentType Journal Article
Copyright Copyright © 2018 Reimann, Fettrow, Thompson and Jeka. 2018 Reimann, Fettrow, Thompson and Jeka
Copyright_xml – notice: Copyright © 2018 Reimann, Fettrow, Thompson and Jeka. 2018 Reimann, Fettrow, Thompson and Jeka
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fphys.2018.01271
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1664-042X
ExternalDocumentID oai_doaj_org_article_99dbe7ba31e140838588e633aee6f9ab
PMC6146212
30271354
10_3389_fphys_2018_01271
Genre Journal Article
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft
  grantid: RE 3780/1-1
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
CITATION
DIK
EMOBN
F5P
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
O5R
O5S
OK1
PGMZT
RNS
RPM
IAO
IEA
IHR
IHW
IPNFZ
ISR
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c462t-15335f2d6c1a390e8216e00e622d521a08a30277ee64fe2968578eb9ee2933b23
IEDL.DBID M48
ISSN 1664-042X
IngestDate Wed Aug 27 01:31:25 EDT 2025
Thu Aug 21 14:03:38 EDT 2025
Fri Jul 11 16:25:27 EDT 2025
Wed Feb 19 02:42:59 EST 2025
Tue Jul 01 04:18:31 EDT 2025
Thu Apr 24 22:56:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords vision
virtual reality
neural feedback
balance
sensorimotor control
walking
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c462t-15335f2d6c1a390e8216e00e622d521a08a30277ee64fe2968578eb9ee2933b23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Reviewed by: Francesco Lacquaniti, Università degli Studi di Roma Tor Vergata, Italy; Silvia Colnaghi, University of Pavia, Italy
Edited by: Francis Degache, University of Applied Sciences and Arts of Western Switzerland, Switzerland
This article was submitted to Exercise Physiology, a section of the journal Frontiers in Physiology
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fphys.2018.01271
PMID 30271354
PQID 2115270553
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_99dbe7ba31e140838588e633aee6f9ab
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6146212
proquest_miscellaneous_2115270553
pubmed_primary_30271354
crossref_citationtrail_10_3389_fphys_2018_01271
crossref_primary_10_3389_fphys_2018_01271
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-09-13
PublicationDateYYYYMMDD 2018-09-13
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-09-13
  day: 13
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in physiology
PublicationTitleAlternate Front Physiol
PublicationYear 2018
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Collins (B8) 2013; 8
Donelan (B10) 2004; 37
Hof (B20) 2010; 213
Kuo (B27) 1999; 18
Blouin (B5) 2011; 111
Hof (B18) 2008; 27
Konczak (B26) 1994; 26
Franz (B15) 2015; 40
Horak (B22) 1986; 55
Reimann (B45) 2017; 12
Thompson (B48) 2017; 54
Lenth (B30) 2016; 69
Lu (B34) 1999; 32
Fai (B13) 1996; 54
Proffitt (B42) 1995; 2
Warren (B54) 2001; 4
Halekoh (B17) 2014; 59
Oostwoud Wijdenes (B38) 2014; 46
Peterka (B41) 2002; 88
Qiao (B43) 2018; 62
Townsend (B50) 1985; 18
Horak (B21) 2006; 35
Tomomitsu (B49) 2013; 68
Matthis (B35) 2015; 15
Burns (B7) 2016; 58
Rubenstein (B46) 2006; 35
Tylkowski (B51) 1982
Vlutters (B52) 2016; 219
Kim (B25) 2015; 12
Kuznetsova (B28) 2017; 82
Flevas (B14) 2017; 25
Lopez (B33) 2011; 181
Anson (B1) 2014; 232
Bauby (B3) 2000; 33
Bates (B2) 2014
Ehrig (B12) 2007; 40
Bell (B4) 1990; 23
O'Connor (B36) 2012; 107
Perry (B40) 2017; 4
Logan (B31) 2014; 112
Winter (B55) 1990
Hof (B19) 2018; 57
(B44) 2013
O'Connor (B37) 2009; 102
Brenner (B6) 2015; 45
Logan (B32) 2010; 206
Green (B16) 2016; 7
Dumas (B11) 2007; 40
Wang (B53) 2014; 10
Patla (B39) 1997; 8
Lamontagne (B29) 2007; 4
Davis (B9) 1991; 10
Kim (B24) 2013
Salinas (B47) 2017; 57
Huang (B23) 2015; 35
References_xml – volume: 88
  start-page: 1097
  year: 2002
  ident: B41
  article-title: Sensorimotor integration in human postural control
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.2002.88.3.1097
– volume-title: IEEE International Conference on Rehabilitation Robotics
  year: 2013
  ident: B24
  article-title: Stabilization of a three-dimensional limit cycle walking model through step-to-step ankle control
– volume: 27
  start-page: 112
  year: 2008
  ident: B18
  article-title: The “extrapolated center of mass” concept suggests a simple control of balance in walking
  publication-title: Hum. Mov. Sci.
  doi: 10.1016/j.humov.2007.08.003
– volume: 15
  start-page: 10
  year: 2015
  ident: B35
  article-title: The biomechanics of walking shape the use of visual information during locomotion over complex terrain
  publication-title: J. Vision
  doi: 10.1167/15.3.10
– volume: 4
  start-page: 213
  year: 2001
  ident: B54
  article-title: Optic flow is used to control human walking
  publication-title: Nat. Neurosci.
  doi: 10.1038/84054
– volume: 112
  start-page: 165
  year: 2014
  ident: B31
  article-title: Function dictates the phase dependence of vision during human locomotion
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.01062.2012
– volume: 40
  start-page: 543
  year: 2007
  ident: B11
  article-title: Adjustments to McConville et al. and Young et al. body segment inertial parameters
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2006.02.013
– volume: 46
  start-page: 131
  year: 2014
  ident: B38
  article-title: Analysis of methods to determine the latency of online movement adjustments
  publication-title: Behav. Res. Methods
  doi: 10.3758/s13428-013-0349-7
– volume: 23
  start-page: 617
  year: 1990
  ident: B4
  article-title: A comparison of the accuracy of several hip center location prediction methods
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(90)90054-7
– volume: 12
  start-page: 43
  year: 2015
  ident: B25
  article-title: Once-per-step control of ankle-foot prosthesis push-off work reduces effort associated with balance during walking
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/s12984-015-0027-3
– volume: 58
  start-page: 99
  year: 2016
  ident: B7
  article-title: The direct costs of fatal and non-fatal falls among older adults United States
  publication-title: J. Saf. Res.
  doi: 10.1016/j.jsr.2016.05.001
– volume: 57
  start-page: 69
  year: 2018
  ident: B19
  article-title: Responses of human ankle muscles to mediolateral balance perturbations during walking
  publication-title: Hum. Mov. Sci.
  doi: 10.1016/j.humov.2017.11.009
– volume: 54
  start-page: 363
  year: 1996
  ident: B13
  article-title: Approximate F-tests of multiple degree of freedom hypotheses in generalized least squares analyses of unbalanced split-plot experiments
  publication-title: J. Stat. Comput. Simul.
  doi: 10.1080/00949659608811740
– volume: 111
  start-page: 1484
  year: 2011
  ident: B5
  article-title: Extracting phase-dependent human vestibular reflexes during locomotion using both time and frequency correlation approaches
  publication-title: J. Appl. Physiol.
  doi: 10.1152/japplphysiol.00621.2011
– volume: 213
  start-page: 2655
  year: 2010
  ident: B20
  article-title: Balance responses to lateral perturbations in human treadmill walking
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.042572
– volume: 181
  start-page: 134
  year: 2011
  ident: B33
  article-title: Spatiotemporal dynamics of visual vertical judgments: early and late brain mechanisms as revealed by high-density electrical neuroimaging
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2011.02.009
– year: 2014
  ident: B2
  article-title: Fitting Linear Mixed-Effects Models using lme4
  publication-title: arXiv
  doi: 10.18637/jss.v067.i01
– volume: 35
  start-page: 4258
  year: 2015
  ident: B23
  article-title: Neural substrates underlying the passive observation and active control of translational egomotion
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2647-14.2015
– volume: 25
  start-page: 1903
  year: 2017
  ident: B14
  article-title: Peroneal electromechanical delay and fatigue in patients with chronic ankle instability
  publication-title: Knee Surg. Sports Traumatol. Arthrosc.
  doi: 10.1007/s00167-016-4243-6
– volume: 69
  start-page: 1
  year: 2016
  ident: B30
  article-title: Least-squares means: the R package lsmeans
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v069.i01
– volume: 7
  start-page: 493
  year: 2016
  ident: B16
  article-title: SIMR: an R package for power analysis of generalized linear mixed models by simulation
  publication-title: Methods Ecol. Evol.
  doi: 10.1111/2041-210X.12504
– volume: 55
  start-page: 1369
  year: 1986
  ident: B22
  article-title: Central programming of postural movements: adaptation to altered support-surface configurations
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1986.55.6.1369
– volume: 32
  start-page: 129
  year: 1999
  ident: B34
  article-title: Bone position estimation from skin marker co-ordinates using global optimisation with joint constraints
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(98)00158-4
– volume: 18
  start-page: 917
  year: 1999
  ident: B27
  article-title: Stabilization of lateral motion in passive dynamic walking
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/02783649922066655
– volume-title: Biomechanics and Motor Control of Human Movement
  year: 1990
  ident: B55
– volume: 8
  start-page: 3661
  year: 1997
  ident: B39
  article-title: Where and when do we look as we approach and step over an obstacle in the travel path?
  publication-title: Neuroreport
  doi: 10.1097/00001756-199712010-00002
– volume: 45
  start-page: 489
  year: 2015
  ident: B6
  article-title: Why we need to do fewer statistical tests
  publication-title: Perception
  doi: 10.1177/0301006616637434
– volume: 54
  start-page: 34
  year: 2017
  ident: B48
  article-title: Do kinematic metrics of walking balance adapt to perturbed optical flow?
  publication-title: Hum. Mov. Sci.
  doi: 10.1016/j.humov.2017.03.004
– volume: 33
  start-page: 1433
  year: 2000
  ident: B3
  article-title: Active control of lateral balance in human walking
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(00)00101-9
– volume-title: R: A Language and Environment for Statistical Computing
  year: 2013
  ident: B44
– volume: 26
  start-page: 225
  year: 1994
  ident: B26
  article-title: Effects of optic flow on the kinematics of human gait: a comparison of young and older adults
  publication-title: J Motor Behav.
  doi: 10.1080/00222895.1994.9941678
– volume: 102
  start-page: 1411
  year: 2009
  ident: B37
  article-title: Direction-dependent control of balance during walking and standing
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00131.2009
– volume: 68
  start-page: 517
  year: 2013
  ident: B49
  article-title: Static and dynamic postural control in low-vision and normal-vision adults
  publication-title: Clinics
  doi: 10.6061/clinics/2013(04)13
– volume: 59
  start-page: 1
  year: 2014
  ident: B17
  article-title: A Kenward-Roger approximation and parametric bootstrap methods for tests in linear mixed models - The R package pbkrtest
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v059.i09
– volume: 10
  start-page: 20140405
  year: 2014
  ident: B53
  article-title: Stepping in the direction of the fall: the next foot placement can be predicted from current upper body state in steady-state walking
  publication-title: Biol. Lett.
  doi: 10.1098/rsbl.2014.0405
– volume: 4
  start-page: 22
  year: 2007
  ident: B29
  article-title: Modulation of walking speed by changing optic flow in persons with stroke
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/1743-0003-4-22
– volume: 57
  start-page: 15
  year: 2017
  ident: B47
  article-title: How humans use visual optic flow to regulate stepping during walking
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2017.05.002
– volume: 4
  start-page: 160627
  year: 2017
  ident: B40
  article-title: Walking with wider steps changes foot placement control, increases kinematic variability and does not improve linear stability
  publication-title: R. Soc. Open Sci.
  doi: 10.1098/rsos.160627
– volume: 40
  start-page: 381
  year: 2015
  ident: B15
  article-title: Advanced age brings a greater reliance on visual feedback to maintain balance during walking
  publication-title: Hum. Mov. Sci.
  doi: 10.1016/j.humov.2015.01.012
– volume: 2
  start-page: 409
  year: 1995
  ident: B42
  article-title: Perceiving geographical slant
  publication-title: Psychon. Bull. Rev.
  doi: 10.3758/BF03210980
– volume: 8
  start-page: e73597
  year: 2013
  ident: B8
  article-title: Two independent contributions to step variability during over-ground human walking
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0073597
– volume: 37
  start-page: 827
  year: 2004
  ident: B10
  article-title: Mechanical and metabolic requirements for active lateral stabilization in human walking
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2003.06.002
– volume: 18
  start-page: 21
  year: 1985
  ident: B50
  article-title: Biped gait stabilization via foot placement
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(85)90042-9
– volume: 206
  start-page: 337
  year: 2010
  ident: B32
  article-title: The many roles of vision during walking
  publication-title: Exp. Brain Res.
  doi: 10.1007/s00221-010-2414-0
– volume: 40
  start-page: 2150
  year: 2007
  ident: B12
  article-title: A survey of formal methods for determining functional joint axes
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2006.10.026
– volume: 82
  start-page: 1
  year: 2017
  ident: B28
  article-title: lmerTest Package: tests in linear mixed effects models
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v082.i13
– volume: 12
  start-page: e0172215
  year: 2017
  ident: B45
  article-title: Complementary mechanisms for upright balance during walking
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0172215
– volume: 62
  start-page: 27
  year: 2018
  ident: B43
  article-title: Aging effects on leg joint variability during walking with balance perturbations
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2018.02.020
– volume: 232
  start-page: 1941
  year: 2014
  ident: B1
  article-title: Visual control of trunk translation and orientation during locomotion
  publication-title: Exp. Brain Res.
  doi: 10.1007/s00221-014-3885-1
– volume: 10
  start-page: 575
  year: 1991
  ident: B9
  article-title: A gait analysis data collection and reduction technique
  publication-title: Hum. Mov. Sci.
  doi: 10.1016/0167-9457(91)90046-Z
– volume: 35
  start-page: 7
  year: 2006
  ident: B21
  article-title: Postural orientation and equilibrium: what do we need to know about neural control of balance to prevent falls?
  publication-title: Age Ageing
  doi: 10.1093/ageing/afl077
– volume: 35
  start-page: 37
  year: 2006
  ident: B46
  article-title: Falls in older people: epidemiology, risk factors and strategies for prevention
  publication-title: Age Ageing
  doi: 10.1093/ageing/afl084
– volume: 219
  start-page: 1514
  year: 2016
  ident: B52
  article-title: Center of mass velocity-based predictions in balance recovery following pelvis perturbations during human walking
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.129338
– start-page: 89
  volume-title: Proceedings of the 10th Open Scientific Meeting of the Hip Sociery
  year: 1982
  ident: B51
  article-title: Internal rotation gait in spastic cercbral palsy in the hip
– volume: 107
  start-page: 2549
  year: 2012
  ident: B36
  article-title: Fast visual prediction and slow optimization of preferred walking speed
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00866.2011
SSID ssj0000402001
Score 2.4430735
Snippet Neural control of standing balance has been extensively studied. However, most falls occur during walking rather than standing, and findings from standing...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1271
SubjectTerms balance
neural feedback
Physiology
sensorimotor control
virtual reality
vision
walking
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA-ykxdR50f9IoKIHuqapk2b4zYdQ9CTw91K2r2gMDuR7eB_73tpN1YRvXhrm6QJv9fkffY9xi6sjQQVxfFtGMV-FJnAN1aCr400ICU5wsje8fCohqPofhyP10p9UUxYlR64Aq6j9SSHJDdSAOoCKfmxUlAS3wTKapPT6Ys8b02ZcmcwqUWBqPySqIXpjiVLAYVypTfkbRUNPuTS9f8kY34PlVzjPYNttlULjbxbLXaHbUC5y9rdEhXmt09-yV0Yp7OPt9kVpdvAzv0qBp3PLO9R-GIB_Nb9ksifzZTs43tsNLh76g_9uhyCX0QqnPskmcU2nKhCGKkDSEOhIAhAheEEmbAJUkNOyASBiSyEWqW4GyHXgNdS5qHcZ61yVsIh48jWg0SrpKAyRcYoIyyOSIzE-xzHeayzBCcr6lzhVLJimqHOQHBmDs6M4MwcnB67Xo14r_Jk_NK3R3iv-lGGa_cA6Z7VdM_-orvHzpfUynBHkJvDlDBb4ESCSvUGcSw9dlBRbzUVASRkHHksadC1sZZmS_n64rJuoxyjkM8f_cfij9kmwUFxJ0KesNb8YwGnKNzM8zP3HX8Bl6H2ZQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Neural Control of Balance During Walking
URI https://www.ncbi.nlm.nih.gov/pubmed/30271354
https://www.proquest.com/docview/2115270553
https://pubmed.ncbi.nlm.nih.gov/PMC6146212
https://doaj.org/article/99dbe7ba31e140838588e633aee6f9ab
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5EQbyIWh_xRQQRPUSz2WSTHES0KiLoyaK3sElnVaip1hb03zuzSauV4sFbHjsk-WY389wZgF1jQsFNcTwThJEXhtr3tJHopVpqlJIDYezvuLlVV63w-iF6-N4eXQP4PtG0435SrV7n8OPt84QW_DFbnCRvjww7AThLKznkQCrZQjMkl2LuZ3BTK_v2v8ymki-qWOVEwjmY5TCekFE4JqZsNf9JKujvTMofoulyAeZrndI9rSbBIkxhuQSN05Ls6ZdPd8-1WZ7Wfd6Afa7GQYObVYq62zXuGWc3Fuie2x2L7r3usPt8GVqXF3fNK6_uluAVoQr6HitukQnaqhBapj4mgVDo-6iCoE0yWvuJ5o-LEVVoMEhVQosV8xTpWMo8kCswXXZLXAOXpL4fpyouuIuR1koLQxSxlnSeE50DR0NwsqIuJc4dLToZmRSMbGaRzRjZzCLrwMGI4rUqo_HH2DPGezSOC2DbC93eY1avpyxN2znGuZYCyURMOLyZoJI0wVCZVOcO7Ay5ldGC4SiILrE7oAcJ7uTrR5F0YLXi3uhRQ-47EI_xdexdxu-Uz0-2KDepOYrUgPV_U27AHGPAuShCbsJ0vzfALVJ4-vm2dRRs29n8BUy1_zo
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+Control+of+Balance+During+Walking&rft.jtitle=Frontiers+in+physiology&rft.au=Reimann%2C+Hendrik&rft.au=Fettrow%2C+Tyler&rft.au=Thompson%2C+Elizabeth+D.&rft.au=Jeka%2C+John+J.&rft.date=2018-09-13&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-042X&rft.volume=9&rft_id=info:doi/10.3389%2Ffphys.2018.01271&rft_id=info%3Apmid%2F30271354&rft.externalDocID=PMC6146212
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-042X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-042X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-042X&client=summon