Neural Control of Balance During Walking
Neural control of standing balance has been extensively studied. However, most falls occur during walking rather than standing, and findings from standing balance research do not necessarily carry over to walking. This is primarily due to the constraints of the gait cycle: Body configuration changes...
Saved in:
Published in | Frontiers in physiology Vol. 9; p. 1271 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
13.09.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Neural control of standing balance has been extensively studied. However, most falls occur during walking rather than standing, and findings from standing balance research do not necessarily carry over to walking. This is primarily due to the constraints of the gait cycle: Body configuration changes dramatically over the gait cycle, necessitating different responses as this configuration changes. Notably, certain responses can only be initiated at specific points in the gait cycle, leading to onset times ranging from 350 to 600 ms, much longer than what is observed during standing (50-200 ms). Here, we investigated the neural control of upright balance during walking. Specifically, how the brain transforms sensory information related to upright balance into corrective motor responses. We used visual disturbances of 20 healthy young subjects walking in a virtual reality cave to induce the perception of a fall to the side and analyzed the muscular responses, changes in ground reaction forces and body kinematics. Our results showed changes in swing leg foot placement and stance leg ankle roll that accelerate the body in the direction opposite of the visually induced fall stimulus, consistent with previous results. Surprisingly, ankle musculature activity changed rapidly in response to the stimulus, suggesting the presence of a direct reflexive pathway from the visual system to the spinal cord, similar to the vestibulospinal pathway. We also observed systematic modulation of the ankle push-off, indicating the discovery of a previously unobserved balance mechanism. Such modulation has implications not only for balance but plays a role in modulation of step width and length as well as cadence. These results indicated a temporally-coordinated series of balance responses over the gait cycle that insures flexible control of upright balance during walking. |
---|---|
AbstractList | Neural control of standing balance has been extensively studied. However, most falls occur during walking rather than standing, and findings from standing balance research do not necessarily carry over to walking. This is primarily due to the constraints of the gait cycle: Body configuration changes dramatically over the gait cycle, necessitating different responses as this configuration changes. Notably, certain responses can only be initiated at specific points in the gait cycle, leading to onset times ranging from 350 to 600 ms, much longer than what is observed during standing (50–200 ms). Here, we investigated the neural control of upright balance during walking. Specifically, how the brain transforms sensory information related to upright balance into corrective motor responses. We used visual disturbances of 20 healthy young subjects walking in a virtual reality cave to induce the perception of a fall to the side and analyzed the muscular responses, changes in ground reaction forces and body kinematics. Our results showed changes in swing leg foot placement and stance leg ankle roll that accelerate the body in the direction opposite of the visually induced fall stimulus, consistent with previous results. Surprisingly, ankle musculature activity changed rapidly in response to the stimulus, suggesting the presence of a direct reflexive pathway from the visual system to the spinal cord, similar to the vestibulospinal pathway. We also observed systematic modulation of the ankle push-off, indicating the discovery of a previously unobserved balance mechanism. Such modulation has implications not only for balance but plays a role in modulation of step width and length as well as cadence. These results indicated a temporally-coordinated series of balance responses over the gait cycle that insures flexible control of upright balance during walking. Neural control of standing balance has been extensively studied. However, most falls occur during walking rather than standing, and findings from standing balance research do not necessarily carry over to walking. This is primarily due to the constraints of the gait cycle: Body configuration changes dramatically over the gait cycle, necessitating different responses as this configuration changes. Notably, certain responses can only be initiated at specific points in the gait cycle, leading to onset times ranging from 350 to 600 ms, much longer than what is observed during standing (50-200 ms). Here, we investigated the neural control of upright balance during walking. Specifically, how the brain transforms sensory information related to upright balance into corrective motor responses. We used visual disturbances of 20 healthy young subjects walking in a virtual reality cave to induce the perception of a fall to the side and analyzed the muscular responses, changes in ground reaction forces and body kinematics. Our results showed changes in swing leg foot placement and stance leg ankle roll that accelerate the body in the direction opposite of the visually induced fall stimulus, consistent with previous results. Surprisingly, ankle musculature activity changed rapidly in response to the stimulus, suggesting the presence of a direct reflexive pathway from the visual system to the spinal cord, similar to the vestibulospinal pathway. We also observed systematic modulation of the ankle push-off, indicating the discovery of a previously unobserved balance mechanism. Such modulation has implications not only for balance but plays a role in modulation of step width and length as well as cadence. These results indicated a temporally-coordinated series of balance responses over the gait cycle that insures flexible control of upright balance during walking.Neural control of standing balance has been extensively studied. However, most falls occur during walking rather than standing, and findings from standing balance research do not necessarily carry over to walking. This is primarily due to the constraints of the gait cycle: Body configuration changes dramatically over the gait cycle, necessitating different responses as this configuration changes. Notably, certain responses can only be initiated at specific points in the gait cycle, leading to onset times ranging from 350 to 600 ms, much longer than what is observed during standing (50-200 ms). Here, we investigated the neural control of upright balance during walking. Specifically, how the brain transforms sensory information related to upright balance into corrective motor responses. We used visual disturbances of 20 healthy young subjects walking in a virtual reality cave to induce the perception of a fall to the side and analyzed the muscular responses, changes in ground reaction forces and body kinematics. Our results showed changes in swing leg foot placement and stance leg ankle roll that accelerate the body in the direction opposite of the visually induced fall stimulus, consistent with previous results. Surprisingly, ankle musculature activity changed rapidly in response to the stimulus, suggesting the presence of a direct reflexive pathway from the visual system to the spinal cord, similar to the vestibulospinal pathway. We also observed systematic modulation of the ankle push-off, indicating the discovery of a previously unobserved balance mechanism. Such modulation has implications not only for balance but plays a role in modulation of step width and length as well as cadence. These results indicated a temporally-coordinated series of balance responses over the gait cycle that insures flexible control of upright balance during walking. |
Author | Jeka, John J. Thompson, Elizabeth D. Reimann, Hendrik Fettrow, Tyler |
AuthorAffiliation | 2 Department of Kinesiology, Temple University , Philadelphia, PA , United States 1 Department of Kinesiology and Applied Physiology, University of Delaware , Newark, DE , United States 3 Department of Physical Therapy, Temple University , Philadelphia, PA , United States |
AuthorAffiliation_xml | – name: 1 Department of Kinesiology and Applied Physiology, University of Delaware , Newark, DE , United States – name: 2 Department of Kinesiology, Temple University , Philadelphia, PA , United States – name: 3 Department of Physical Therapy, Temple University , Philadelphia, PA , United States |
Author_xml | – sequence: 1 givenname: Hendrik surname: Reimann fullname: Reimann, Hendrik – sequence: 2 givenname: Tyler surname: Fettrow fullname: Fettrow, Tyler – sequence: 3 givenname: Elizabeth D. surname: Thompson fullname: Thompson, Elizabeth D. – sequence: 4 givenname: John J. surname: Jeka fullname: Jeka, John J. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30271354$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kU1P3DAQhi1ExceWO6cqRy679diJ41yQ6NJSJNReQOVmTZLJYuqNt3ZSiX9fZxcqqFRfZmTPPON33mO23_ueGDsFvpBSVx-7zcNTXAgOesFBlLDHjkCpfM5zcb__Kj9kJzE-8nRyLjiHA3YoeaqXRX7Ezr7RGNBlS98PwbvMd9kndNg3lF2Owfar7Ae6nym-Z-86dJFOnuOM3X35fLv8Or_5fnW9vLiZN7kSwxwKKYtOtKoBlBUnLUAR56SEaAsByDVOw0silXckKqWLUlNdUcqlrIWcsesdt_X4aDbBrjE8GY_WbC98WBkMg20cmapqayprlECQcy11oTUpKTHBuwrrxDrfsTZjvaa2oaQR3Rvo25fePpiV_20UJDEwfebsGRD8r5HiYNY2NuTSgsiP0QiAQpS8SKJn7MPrWX-HvKw6FahdQRN8jIE609gBBzstHq0zwM1kq9naaiZbzdbW1Mj_aXxh_7flD7vvpAE |
CitedBy_id | crossref_primary_10_1038_s41598_021_00463_8 crossref_primary_10_1186_s12984_021_00818_2 crossref_primary_10_1371_journal_pone_0217460 crossref_primary_10_3389_fbioe_2022_1041060 crossref_primary_10_7717_peerj_7939 crossref_primary_10_3389_fbioe_2019_00167 crossref_primary_10_1371_journal_pone_0292449 crossref_primary_10_1088_1757_899X_568_1_012110 crossref_primary_10_1371_journal_pcbi_1011861 crossref_primary_10_1016_j_gaitpost_2019_01_010 crossref_primary_10_1080_00140139_2022_2113152 crossref_primary_10_3390_brainsci12081055 crossref_primary_10_1113_JP278986 crossref_primary_10_1371_journal_pone_0242215 crossref_primary_10_1038_s41598_023_41815_w crossref_primary_10_1016_j_jbiomech_2020_110213 crossref_primary_10_1016_j_jbiomech_2021_110738 crossref_primary_10_1016_j_humov_2023_103070 crossref_primary_10_3390_prosthesis6030049 crossref_primary_10_1371_journal_pone_0235686 crossref_primary_10_3389_fspor_2019_00040 crossref_primary_10_3233_JPD_223252 crossref_primary_10_56984_8ZG1436RB crossref_primary_10_1007_s10439_021_02831_x crossref_primary_10_1016_j_gaitpost_2020_01_006 crossref_primary_10_1016_j_clinbiomech_2025_106445 crossref_primary_10_1097_HTR_0000000000000761 crossref_primary_10_1098_rsif_2024_0191 crossref_primary_10_1038_s41598_020_69052_5 crossref_primary_10_3389_fneur_2023_1145283 crossref_primary_10_3389_fnhum_2023_1239071 crossref_primary_10_3389_fnagi_2021_742035 crossref_primary_10_1371_journal_pone_0225902 crossref_primary_10_1016_j_gaitpost_2019_06_014 crossref_primary_10_1371_journal_pone_0244582 crossref_primary_10_3390_app142311456 crossref_primary_10_1109_TNSRE_2021_3114991 crossref_primary_10_3389_fspor_2020_00094 crossref_primary_10_1016_j_jbiomech_2020_109837 crossref_primary_10_1098_rsos_202088 crossref_primary_10_1123_mc_2022_0045 crossref_primary_10_36803_indojpmr_v12i01_348 crossref_primary_10_1016_j_jelekin_2024_102915 crossref_primary_10_1186_s11556_023_00321_8 crossref_primary_10_4018_IJeC_316871 crossref_primary_10_1371_journal_pcbi_1009575 crossref_primary_10_1098_rsos_231210 crossref_primary_10_1016_j_jbiomech_2022_111201 crossref_primary_10_1016_j_gaitpost_2024_01_014 crossref_primary_10_1016_j_compbiomed_2024_108492 crossref_primary_10_3389_fneur_2021_638904 crossref_primary_10_3389_fspor_2019_00025 crossref_primary_10_1016_j_gaitpost_2023_12_018 crossref_primary_10_1038_s41598_022_11102_1 crossref_primary_10_3389_fbioe_2020_00884 crossref_primary_10_3389_frvir_2020_00005 crossref_primary_10_3389_fnhum_2022_977032 crossref_primary_10_1371_journal_pcbi_1006850 crossref_primary_10_1016_j_jbiomech_2023_111898 crossref_primary_10_1038_s41598_024_56579_0 crossref_primary_10_1186_s13195_020_00697_0 crossref_primary_10_1016_j_gaitpost_2020_12_031 crossref_primary_10_1093_gerona_glaa284 |
Cites_doi | 10.1152/jn.2002.88.3.1097 10.1016/j.humov.2007.08.003 10.1167/15.3.10 10.1038/84054 10.1152/jn.01062.2012 10.1016/j.jbiomech.2006.02.013 10.3758/s13428-013-0349-7 10.1016/0021-9290(90)90054-7 10.1186/s12984-015-0027-3 10.1016/j.jsr.2016.05.001 10.1016/j.humov.2017.11.009 10.1080/00949659608811740 10.1152/japplphysiol.00621.2011 10.1242/jeb.042572 10.1016/j.neuroscience.2011.02.009 10.18637/jss.v067.i01 10.1523/JNEUROSCI.2647-14.2015 10.1007/s00167-016-4243-6 10.18637/jss.v069.i01 10.1111/2041-210X.12504 10.1152/jn.1986.55.6.1369 10.1016/S0021-9290(98)00158-4 10.1177/02783649922066655 10.1097/00001756-199712010-00002 10.1177/0301006616637434 10.1016/j.humov.2017.03.004 10.1016/S0021-9290(00)00101-9 10.1080/00222895.1994.9941678 10.1152/jn.00131.2009 10.6061/clinics/2013(04)13 10.18637/jss.v059.i09 10.1098/rsbl.2014.0405 10.1186/1743-0003-4-22 10.1016/j.gaitpost.2017.05.002 10.1098/rsos.160627 10.1016/j.humov.2015.01.012 10.3758/BF03210980 10.1371/journal.pone.0073597 10.1016/j.jbiomech.2003.06.002 10.1016/0021-9290(85)90042-9 10.1007/s00221-010-2414-0 10.1016/j.jbiomech.2006.10.026 10.18637/jss.v082.i13 10.1371/journal.pone.0172215 10.1016/j.gaitpost.2018.02.020 10.1007/s00221-014-3885-1 10.1016/0167-9457(91)90046-Z 10.1093/ageing/afl077 10.1093/ageing/afl084 10.1242/jeb.129338 10.1152/jn.00866.2011 |
ContentType | Journal Article |
Copyright | Copyright © 2018 Reimann, Fettrow, Thompson and Jeka. 2018 Reimann, Fettrow, Thompson and Jeka |
Copyright_xml | – notice: Copyright © 2018 Reimann, Fettrow, Thompson and Jeka. 2018 Reimann, Fettrow, Thompson and Jeka |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3389/fphys.2018.01271 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1664-042X |
ExternalDocumentID | oai_doaj_org_article_99dbe7ba31e140838588e633aee6f9ab PMC6146212 30271354 10_3389_fphys_2018_01271 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Deutsche Forschungsgemeinschaft grantid: RE 3780/1-1 |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV CITATION DIK EMOBN F5P GROUPED_DOAJ GX1 HYE KQ8 M48 M~E O5R O5S OK1 PGMZT RNS RPM IAO IEA IHR IHW IPNFZ ISR NPM RIG 7X8 5PM |
ID | FETCH-LOGICAL-c462t-15335f2d6c1a390e8216e00e622d521a08a30277ee64fe2968578eb9ee2933b23 |
IEDL.DBID | M48 |
ISSN | 1664-042X |
IngestDate | Wed Aug 27 01:31:25 EDT 2025 Thu Aug 21 14:03:38 EDT 2025 Fri Jul 11 16:25:27 EDT 2025 Wed Feb 19 02:42:59 EST 2025 Tue Jul 01 04:18:31 EDT 2025 Thu Apr 24 22:56:53 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | vision virtual reality neural feedback balance sensorimotor control walking |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c462t-15335f2d6c1a390e8216e00e622d521a08a30277ee64fe2968578eb9ee2933b23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Reviewed by: Francesco Lacquaniti, Università degli Studi di Roma Tor Vergata, Italy; Silvia Colnaghi, University of Pavia, Italy Edited by: Francis Degache, University of Applied Sciences and Arts of Western Switzerland, Switzerland This article was submitted to Exercise Physiology, a section of the journal Frontiers in Physiology |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fphys.2018.01271 |
PMID | 30271354 |
PQID | 2115270553 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_99dbe7ba31e140838588e633aee6f9ab pubmedcentral_primary_oai_pubmedcentral_nih_gov_6146212 proquest_miscellaneous_2115270553 pubmed_primary_30271354 crossref_citationtrail_10_3389_fphys_2018_01271 crossref_primary_10_3389_fphys_2018_01271 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-09-13 |
PublicationDateYYYYMMDD | 2018-09-13 |
PublicationDate_xml | – month: 09 year: 2018 text: 2018-09-13 day: 13 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in physiology |
PublicationTitleAlternate | Front Physiol |
PublicationYear | 2018 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Collins (B8) 2013; 8 Donelan (B10) 2004; 37 Hof (B20) 2010; 213 Kuo (B27) 1999; 18 Blouin (B5) 2011; 111 Hof (B18) 2008; 27 Konczak (B26) 1994; 26 Franz (B15) 2015; 40 Horak (B22) 1986; 55 Reimann (B45) 2017; 12 Thompson (B48) 2017; 54 Lenth (B30) 2016; 69 Lu (B34) 1999; 32 Fai (B13) 1996; 54 Proffitt (B42) 1995; 2 Warren (B54) 2001; 4 Halekoh (B17) 2014; 59 Oostwoud Wijdenes (B38) 2014; 46 Peterka (B41) 2002; 88 Qiao (B43) 2018; 62 Townsend (B50) 1985; 18 Horak (B21) 2006; 35 Tomomitsu (B49) 2013; 68 Matthis (B35) 2015; 15 Burns (B7) 2016; 58 Rubenstein (B46) 2006; 35 Tylkowski (B51) 1982 Vlutters (B52) 2016; 219 Kim (B25) 2015; 12 Kuznetsova (B28) 2017; 82 Flevas (B14) 2017; 25 Lopez (B33) 2011; 181 Anson (B1) 2014; 232 Bauby (B3) 2000; 33 Bates (B2) 2014 Ehrig (B12) 2007; 40 Bell (B4) 1990; 23 O'Connor (B36) 2012; 107 Perry (B40) 2017; 4 Logan (B31) 2014; 112 Winter (B55) 1990 Hof (B19) 2018; 57 (B44) 2013 O'Connor (B37) 2009; 102 Brenner (B6) 2015; 45 Logan (B32) 2010; 206 Green (B16) 2016; 7 Dumas (B11) 2007; 40 Wang (B53) 2014; 10 Patla (B39) 1997; 8 Lamontagne (B29) 2007; 4 Davis (B9) 1991; 10 Kim (B24) 2013 Salinas (B47) 2017; 57 Huang (B23) 2015; 35 |
References_xml | – volume: 88 start-page: 1097 year: 2002 ident: B41 article-title: Sensorimotor integration in human postural control publication-title: J. Neurophysiol. doi: 10.1152/jn.2002.88.3.1097 – volume-title: IEEE International Conference on Rehabilitation Robotics year: 2013 ident: B24 article-title: Stabilization of a three-dimensional limit cycle walking model through step-to-step ankle control – volume: 27 start-page: 112 year: 2008 ident: B18 article-title: The “extrapolated center of mass” concept suggests a simple control of balance in walking publication-title: Hum. Mov. Sci. doi: 10.1016/j.humov.2007.08.003 – volume: 15 start-page: 10 year: 2015 ident: B35 article-title: The biomechanics of walking shape the use of visual information during locomotion over complex terrain publication-title: J. Vision doi: 10.1167/15.3.10 – volume: 4 start-page: 213 year: 2001 ident: B54 article-title: Optic flow is used to control human walking publication-title: Nat. Neurosci. doi: 10.1038/84054 – volume: 112 start-page: 165 year: 2014 ident: B31 article-title: Function dictates the phase dependence of vision during human locomotion publication-title: J. Neurophysiol. doi: 10.1152/jn.01062.2012 – volume: 40 start-page: 543 year: 2007 ident: B11 article-title: Adjustments to McConville et al. and Young et al. body segment inertial parameters publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2006.02.013 – volume: 46 start-page: 131 year: 2014 ident: B38 article-title: Analysis of methods to determine the latency of online movement adjustments publication-title: Behav. Res. Methods doi: 10.3758/s13428-013-0349-7 – volume: 23 start-page: 617 year: 1990 ident: B4 article-title: A comparison of the accuracy of several hip center location prediction methods publication-title: J. Biomech. doi: 10.1016/0021-9290(90)90054-7 – volume: 12 start-page: 43 year: 2015 ident: B25 article-title: Once-per-step control of ankle-foot prosthesis push-off work reduces effort associated with balance during walking publication-title: J. Neuroeng. Rehabil. doi: 10.1186/s12984-015-0027-3 – volume: 58 start-page: 99 year: 2016 ident: B7 article-title: The direct costs of fatal and non-fatal falls among older adults United States publication-title: J. Saf. Res. doi: 10.1016/j.jsr.2016.05.001 – volume: 57 start-page: 69 year: 2018 ident: B19 article-title: Responses of human ankle muscles to mediolateral balance perturbations during walking publication-title: Hum. Mov. Sci. doi: 10.1016/j.humov.2017.11.009 – volume: 54 start-page: 363 year: 1996 ident: B13 article-title: Approximate F-tests of multiple degree of freedom hypotheses in generalized least squares analyses of unbalanced split-plot experiments publication-title: J. Stat. Comput. Simul. doi: 10.1080/00949659608811740 – volume: 111 start-page: 1484 year: 2011 ident: B5 article-title: Extracting phase-dependent human vestibular reflexes during locomotion using both time and frequency correlation approaches publication-title: J. Appl. Physiol. doi: 10.1152/japplphysiol.00621.2011 – volume: 213 start-page: 2655 year: 2010 ident: B20 article-title: Balance responses to lateral perturbations in human treadmill walking publication-title: J. Exp. Biol. doi: 10.1242/jeb.042572 – volume: 181 start-page: 134 year: 2011 ident: B33 article-title: Spatiotemporal dynamics of visual vertical judgments: early and late brain mechanisms as revealed by high-density electrical neuroimaging publication-title: Neuroscience doi: 10.1016/j.neuroscience.2011.02.009 – year: 2014 ident: B2 article-title: Fitting Linear Mixed-Effects Models using lme4 publication-title: arXiv doi: 10.18637/jss.v067.i01 – volume: 35 start-page: 4258 year: 2015 ident: B23 article-title: Neural substrates underlying the passive observation and active control of translational egomotion publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2647-14.2015 – volume: 25 start-page: 1903 year: 2017 ident: B14 article-title: Peroneal electromechanical delay and fatigue in patients with chronic ankle instability publication-title: Knee Surg. Sports Traumatol. Arthrosc. doi: 10.1007/s00167-016-4243-6 – volume: 69 start-page: 1 year: 2016 ident: B30 article-title: Least-squares means: the R package lsmeans publication-title: J. Stat. Softw. doi: 10.18637/jss.v069.i01 – volume: 7 start-page: 493 year: 2016 ident: B16 article-title: SIMR: an R package for power analysis of generalized linear mixed models by simulation publication-title: Methods Ecol. Evol. doi: 10.1111/2041-210X.12504 – volume: 55 start-page: 1369 year: 1986 ident: B22 article-title: Central programming of postural movements: adaptation to altered support-surface configurations publication-title: J. Neurophysiol. doi: 10.1152/jn.1986.55.6.1369 – volume: 32 start-page: 129 year: 1999 ident: B34 article-title: Bone position estimation from skin marker co-ordinates using global optimisation with joint constraints publication-title: J. Biomech. doi: 10.1016/S0021-9290(98)00158-4 – volume: 18 start-page: 917 year: 1999 ident: B27 article-title: Stabilization of lateral motion in passive dynamic walking publication-title: Int. J. Robot. Res. doi: 10.1177/02783649922066655 – volume-title: Biomechanics and Motor Control of Human Movement year: 1990 ident: B55 – volume: 8 start-page: 3661 year: 1997 ident: B39 article-title: Where and when do we look as we approach and step over an obstacle in the travel path? publication-title: Neuroreport doi: 10.1097/00001756-199712010-00002 – volume: 45 start-page: 489 year: 2015 ident: B6 article-title: Why we need to do fewer statistical tests publication-title: Perception doi: 10.1177/0301006616637434 – volume: 54 start-page: 34 year: 2017 ident: B48 article-title: Do kinematic metrics of walking balance adapt to perturbed optical flow? publication-title: Hum. Mov. Sci. doi: 10.1016/j.humov.2017.03.004 – volume: 33 start-page: 1433 year: 2000 ident: B3 article-title: Active control of lateral balance in human walking publication-title: J. Biomech. doi: 10.1016/S0021-9290(00)00101-9 – volume-title: R: A Language and Environment for Statistical Computing year: 2013 ident: B44 – volume: 26 start-page: 225 year: 1994 ident: B26 article-title: Effects of optic flow on the kinematics of human gait: a comparison of young and older adults publication-title: J Motor Behav. doi: 10.1080/00222895.1994.9941678 – volume: 102 start-page: 1411 year: 2009 ident: B37 article-title: Direction-dependent control of balance during walking and standing publication-title: J. Neurophysiol. doi: 10.1152/jn.00131.2009 – volume: 68 start-page: 517 year: 2013 ident: B49 article-title: Static and dynamic postural control in low-vision and normal-vision adults publication-title: Clinics doi: 10.6061/clinics/2013(04)13 – volume: 59 start-page: 1 year: 2014 ident: B17 article-title: A Kenward-Roger approximation and parametric bootstrap methods for tests in linear mixed models - The R package pbkrtest publication-title: J. Stat. Softw. doi: 10.18637/jss.v059.i09 – volume: 10 start-page: 20140405 year: 2014 ident: B53 article-title: Stepping in the direction of the fall: the next foot placement can be predicted from current upper body state in steady-state walking publication-title: Biol. Lett. doi: 10.1098/rsbl.2014.0405 – volume: 4 start-page: 22 year: 2007 ident: B29 article-title: Modulation of walking speed by changing optic flow in persons with stroke publication-title: J. Neuroeng. Rehabil. doi: 10.1186/1743-0003-4-22 – volume: 57 start-page: 15 year: 2017 ident: B47 article-title: How humans use visual optic flow to regulate stepping during walking publication-title: Gait Posture doi: 10.1016/j.gaitpost.2017.05.002 – volume: 4 start-page: 160627 year: 2017 ident: B40 article-title: Walking with wider steps changes foot placement control, increases kinematic variability and does not improve linear stability publication-title: R. Soc. Open Sci. doi: 10.1098/rsos.160627 – volume: 40 start-page: 381 year: 2015 ident: B15 article-title: Advanced age brings a greater reliance on visual feedback to maintain balance during walking publication-title: Hum. Mov. Sci. doi: 10.1016/j.humov.2015.01.012 – volume: 2 start-page: 409 year: 1995 ident: B42 article-title: Perceiving geographical slant publication-title: Psychon. Bull. Rev. doi: 10.3758/BF03210980 – volume: 8 start-page: e73597 year: 2013 ident: B8 article-title: Two independent contributions to step variability during over-ground human walking publication-title: PLoS ONE doi: 10.1371/journal.pone.0073597 – volume: 37 start-page: 827 year: 2004 ident: B10 article-title: Mechanical and metabolic requirements for active lateral stabilization in human walking publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2003.06.002 – volume: 18 start-page: 21 year: 1985 ident: B50 article-title: Biped gait stabilization via foot placement publication-title: J. Biomech. doi: 10.1016/0021-9290(85)90042-9 – volume: 206 start-page: 337 year: 2010 ident: B32 article-title: The many roles of vision during walking publication-title: Exp. Brain Res. doi: 10.1007/s00221-010-2414-0 – volume: 40 start-page: 2150 year: 2007 ident: B12 article-title: A survey of formal methods for determining functional joint axes publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2006.10.026 – volume: 82 start-page: 1 year: 2017 ident: B28 article-title: lmerTest Package: tests in linear mixed effects models publication-title: J. Stat. Softw. doi: 10.18637/jss.v082.i13 – volume: 12 start-page: e0172215 year: 2017 ident: B45 article-title: Complementary mechanisms for upright balance during walking publication-title: PLoS ONE doi: 10.1371/journal.pone.0172215 – volume: 62 start-page: 27 year: 2018 ident: B43 article-title: Aging effects on leg joint variability during walking with balance perturbations publication-title: Gait Posture doi: 10.1016/j.gaitpost.2018.02.020 – volume: 232 start-page: 1941 year: 2014 ident: B1 article-title: Visual control of trunk translation and orientation during locomotion publication-title: Exp. Brain Res. doi: 10.1007/s00221-014-3885-1 – volume: 10 start-page: 575 year: 1991 ident: B9 article-title: A gait analysis data collection and reduction technique publication-title: Hum. Mov. Sci. doi: 10.1016/0167-9457(91)90046-Z – volume: 35 start-page: 7 year: 2006 ident: B21 article-title: Postural orientation and equilibrium: what do we need to know about neural control of balance to prevent falls? publication-title: Age Ageing doi: 10.1093/ageing/afl077 – volume: 35 start-page: 37 year: 2006 ident: B46 article-title: Falls in older people: epidemiology, risk factors and strategies for prevention publication-title: Age Ageing doi: 10.1093/ageing/afl084 – volume: 219 start-page: 1514 year: 2016 ident: B52 article-title: Center of mass velocity-based predictions in balance recovery following pelvis perturbations during human walking publication-title: J. Exp. Biol. doi: 10.1242/jeb.129338 – start-page: 89 volume-title: Proceedings of the 10th Open Scientific Meeting of the Hip Sociery year: 1982 ident: B51 article-title: Internal rotation gait in spastic cercbral palsy in the hip – volume: 107 start-page: 2549 year: 2012 ident: B36 article-title: Fast visual prediction and slow optimization of preferred walking speed publication-title: J. Neurophysiol. doi: 10.1152/jn.00866.2011 |
SSID | ssj0000402001 |
Score | 2.4430735 |
Snippet | Neural control of standing balance has been extensively studied. However, most falls occur during walking rather than standing, and findings from standing... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1271 |
SubjectTerms | balance neural feedback Physiology sensorimotor control virtual reality vision walking |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA-ykxdR50f9IoKIHuqapk2b4zYdQ9CTw91K2r2gMDuR7eB_73tpN1YRvXhrm6QJv9fkffY9xi6sjQQVxfFtGMV-FJnAN1aCr400ICU5wsje8fCohqPofhyP10p9UUxYlR64Aq6j9SSHJDdSAOoCKfmxUlAS3wTKapPT6Ys8b02ZcmcwqUWBqPySqIXpjiVLAYVypTfkbRUNPuTS9f8kY34PlVzjPYNttlULjbxbLXaHbUC5y9rdEhXmt09-yV0Yp7OPt9kVpdvAzv0qBp3PLO9R-GIB_Nb9ksifzZTs43tsNLh76g_9uhyCX0QqnPskmcU2nKhCGKkDSEOhIAhAheEEmbAJUkNOyASBiSyEWqW4GyHXgNdS5qHcZ61yVsIh48jWg0SrpKAyRcYoIyyOSIzE-xzHeayzBCcr6lzhVLJimqHOQHBmDs6M4MwcnB67Xo14r_Jk_NK3R3iv-lGGa_cA6Z7VdM_-orvHzpfUynBHkJvDlDBb4ESCSvUGcSw9dlBRbzUVASRkHHksadC1sZZmS_n64rJuoxyjkM8f_cfij9kmwUFxJ0KesNb8YwGnKNzM8zP3HX8Bl6H2ZQ priority: 102 providerName: Directory of Open Access Journals |
Title | Neural Control of Balance During Walking |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30271354 https://www.proquest.com/docview/2115270553 https://pubmed.ncbi.nlm.nih.gov/PMC6146212 https://doaj.org/article/99dbe7ba31e140838588e633aee6f9ab |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5EQbyIWh_xRQQRPUSz2WSTHES0KiLoyaK3sElnVaip1hb03zuzSauV4sFbHjsk-WY389wZgF1jQsFNcTwThJEXhtr3tJHopVpqlJIDYezvuLlVV63w-iF6-N4eXQP4PtG0435SrV7n8OPt84QW_DFbnCRvjww7AThLKznkQCrZQjMkl2LuZ3BTK_v2v8ymki-qWOVEwjmY5TCekFE4JqZsNf9JKujvTMofoulyAeZrndI9rSbBIkxhuQSN05Ls6ZdPd8-1WZ7Wfd6Afa7GQYObVYq62zXuGWc3Fuie2x2L7r3usPt8GVqXF3fNK6_uluAVoQr6HitukQnaqhBapj4mgVDo-6iCoE0yWvuJ5o-LEVVoMEhVQosV8xTpWMo8kCswXXZLXAOXpL4fpyouuIuR1koLQxSxlnSeE50DR0NwsqIuJc4dLToZmRSMbGaRzRjZzCLrwMGI4rUqo_HH2DPGezSOC2DbC93eY1avpyxN2znGuZYCyURMOLyZoJI0wVCZVOcO7Ay5ldGC4SiILrE7oAcJ7uTrR5F0YLXi3uhRQ-47EI_xdexdxu-Uz0-2KDepOYrUgPV_U27AHGPAuShCbsJ0vzfALVJ4-vm2dRRs29n8BUy1_zo |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+Control+of+Balance+During+Walking&rft.jtitle=Frontiers+in+physiology&rft.au=Reimann%2C+Hendrik&rft.au=Fettrow%2C+Tyler&rft.au=Thompson%2C+Elizabeth+D.&rft.au=Jeka%2C+John+J.&rft.date=2018-09-13&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-042X&rft.volume=9&rft_id=info:doi/10.3389%2Ffphys.2018.01271&rft_id=info%3Apmid%2F30271354&rft.externalDocID=PMC6146212 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-042X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-042X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-042X&client=summon |