Synthetic strategies, diverse structures and tuneable properties of polyoxo-titanium clusters
As one of the most prosperous classes of cluster-based materials reported to date, polyoxo-titanium clusters (PTCs) have been closely related to many photo-activities that broadly impact not only chemical but also energy and environmental sciences. In contrast to the well-developed polyoxometalates...
Saved in:
Published in | Chemical Society reviews Vol. 47; no. 2; pp. 44 - 421 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
22.01.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | As one of the most prosperous classes of cluster-based materials reported to date, polyoxo-titanium clusters (PTCs) have been closely related to many photo-activities that broadly impact not only chemical but also energy and environmental sciences. In contrast to the well-developed polyoxometalates like polyoxotungstates and polyoxomolybdates, there is still large room for the development of PTCs. The exploration of crystalline PTC materials originates from the molecular model of technically important TiO
2
materials but has been greatly hindered by their daunting and challenging synthesis. This review firstly summarizes the conventional and latest successful synthetic strategies applied to improve the poor degree of control of crystallization of PTCs. And attributed to the synthetic progress achieved in this area, there is a growing number of PTCs with diverse structures known to us, also enabling us to study their bandgap engineering and light absorption behaviours at the molecular level. In addition, exploitation of their applications in many fields is also under way.
A review of polyoxo-titanium clusters (PTCs), with an emphasis on synthetic methodologies, diverse structures, tuneable optical properties and potential applications. |
---|---|
AbstractList | As one of the most prosperous classes of cluster-based materials reported to date, polyoxo-titanium clusters (PTCs) have been closely related to many photo-activities that broadly impact not only chemical but also energy and environmental sciences. In contrast to the well-developed polyoxometalates like polyoxotungstates and polyoxomolybdates, there is still large room for the development of PTCs. The exploration of crystalline PTC materials originates from the molecular model of technically important TiO
materials but has been greatly hindered by their daunting and challenging synthesis. This review firstly summarizes the conventional and latest successful synthetic strategies applied to improve the poor degree of control of crystallization of PTCs. And attributed to the synthetic progress achieved in this area, there is a growing number of PTCs with diverse structures known to us, also enabling us to study their bandgap engineering and light absorption behaviours at the molecular level. In addition, exploitation of their applications in many fields is also under way. As one of the most prosperous classes of cluster-based materials reported to date, polyoxo-titanium clusters (PTCs) have been closely related to many photo-activities that broadly impact not only chemical but also energy and environmental sciences. In contrast to the well-developed polyoxometalates like polyoxotungstates and polyoxomolybdates, there is still large room for the development of PTCs. The exploration of crystalline PTC materials originates from the molecular model of technically important TiO₂ materials but has been greatly hindered by their daunting and challenging synthesis. This review firstly summarizes the conventional and latest successful synthetic strategies applied to improve the poor degree of control of crystallization of PTCs. And attributed to the synthetic progress achieved in this area, there is a growing number of PTCs with diverse structures known to us, also enabling us to study their bandgap engineering and light absorption behaviours at the molecular level. In addition, exploitation of their applications in many fields is also under way. As one of the most prosperous classes of cluster-based materials reported to date, polyoxo-titanium clusters (PTCs) have been closely related to many photo-activities that broadly impact not only chemical but also energy and environmental sciences. In contrast to the well-developed polyoxometalates like polyoxotungstates and polyoxomolybdates, there is still large room for the development of PTCs. The exploration of crystalline PTC materials originates from the molecular model of technically important TiO2 materials but has been greatly hindered by their daunting and challenging synthesis. This review firstly summarizes the conventional and latest successful synthetic strategies applied to improve the poor degree of control of crystallization of PTCs. And attributed to the synthetic progress achieved in this area, there is a growing number of PTCs with diverse structures known to us, also enabling us to study their bandgap engineering and light absorption behaviours at the molecular level. In addition, exploitation of their applications in many fields is also under way. As one of the most prosperous classes of cluster-based materials reported to date, polyoxo-titanium clusters (PTCs) have been closely related to many photo-activities that broadly impact not only chemical but also energy and environmental sciences. In contrast to the well-developed polyoxometalates like polyoxotungstates and polyoxomolybdates, there is still large room for the development of PTCs. The exploration of crystalline PTC materials originates from the molecular model of technically important TiO2 materials but has been greatly hindered by their daunting and challenging synthesis. This review firstly summarizes the conventional and latest successful synthetic strategies applied to improve the poor degree of control of crystallization of PTCs. And attributed to the synthetic progress achieved in this area, there is a growing number of PTCs with diverse structures known to us, also enabling us to study their bandgap engineering and light absorption behaviours at the molecular level. In addition, exploitation of their applications in many fields is also under way.As one of the most prosperous classes of cluster-based materials reported to date, polyoxo-titanium clusters (PTCs) have been closely related to many photo-activities that broadly impact not only chemical but also energy and environmental sciences. In contrast to the well-developed polyoxometalates like polyoxotungstates and polyoxomolybdates, there is still large room for the development of PTCs. The exploration of crystalline PTC materials originates from the molecular model of technically important TiO2 materials but has been greatly hindered by their daunting and challenging synthesis. This review firstly summarizes the conventional and latest successful synthetic strategies applied to improve the poor degree of control of crystallization of PTCs. And attributed to the synthetic progress achieved in this area, there is a growing number of PTCs with diverse structures known to us, also enabling us to study their bandgap engineering and light absorption behaviours at the molecular level. In addition, exploitation of their applications in many fields is also under way. As one of the most prosperous classes of cluster-based materials reported to date, polyoxo-titanium clusters (PTCs) have been closely related to many photo-activities that broadly impact not only chemical but also energy and environmental sciences. In contrast to the well-developed polyoxometalates like polyoxotungstates and polyoxomolybdates, there is still large room for the development of PTCs. The exploration of crystalline PTC materials originates from the molecular model of technically important TiO 2 materials but has been greatly hindered by their daunting and challenging synthesis. This review firstly summarizes the conventional and latest successful synthetic strategies applied to improve the poor degree of control of crystallization of PTCs. And attributed to the synthetic progress achieved in this area, there is a growing number of PTCs with diverse structures known to us, also enabling us to study their bandgap engineering and light absorption behaviours at the molecular level. In addition, exploitation of their applications in many fields is also under way. A review of polyoxo-titanium clusters (PTCs), with an emphasis on synthetic methodologies, diverse structures, tuneable optical properties and potential applications. As one of the most prosperous classes of cluster-based materials reported to date, polyoxo-titanium clusters (PTCs) have been closely related to many photo-activities that broadly impact not only chemical but also energy and environmental sciences. In contrast to the well-developed polyoxometalates like polyoxotungstates and polyoxomolybdates, there is still large room for the development of PTCs. The exploration of crystalline PTC materials originates from the molecular model of technically important TiO 2 materials but has been greatly hindered by their daunting and challenging synthesis. This review firstly summarizes the conventional and latest successful synthetic strategies applied to improve the poor degree of control of crystallization of PTCs. And attributed to the synthetic progress achieved in this area, there is a growing number of PTCs with diverse structures known to us, also enabling us to study their bandgap engineering and light absorption behaviours at the molecular level. In addition, exploitation of their applications in many fields is also under way. |
Author | Fang, Wei-Hui Zhang, Jian Zhang, Lei |
AuthorAffiliation | State Key Laboratory of Structural Chemistry Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter |
AuthorAffiliation_xml | – name: State Key Laboratory of Structural Chemistry – name: Chinese Academy of Sciences – name: Fujian Institute of Research on the Structure of Matter |
Author_xml | – sequence: 1 givenname: Wei-Hui surname: Fang fullname: Fang, Wei-Hui – sequence: 2 givenname: Lei surname: Zhang fullname: Zhang, Lei – sequence: 3 givenname: Jian surname: Zhang fullname: Zhang, Jian |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29177361$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk1v1DAQhi3Uim4LF-6gVFwqRGD8sU58RBGUSpU4FI7IcpwxpMrGwR-o--_xsi2VKgQnjzzPvJp5Z47JwexnJOQZhTcUuHprGxsB1pTaR2RFhYRaNEIckBVwkDUAZUfkOMbrEtFGssfkiCnaNFzSFfl6tZ3Td0yjrWIKJuG3EePrahh_Yoi4-8s25YCxMvNQpTyj6SesluAXDKmwlXfV4qetv_F1GpOZx7yp7JRjKgJPyKEzU8Snt-8J-fLh_efuY3356fyie3dZWyFZqinjLQz92oHrh77EltneMLvmyqB0AI7aXvTt0DAOjbFolOgls1yglYNr-Qk52-uWvn5kjElvxmhxmsyMPkfNGKMArVL8vyhVUimq2vUOffkAvfY5zGUQzYBCKyRVUKgXt1TuNzjoJYwbE7b6zuMCwB6wwccY0GlbfEqjn4vh46Qp6N0addd0V7_X2JWSVw9K7lT_Cj_fwyHaP9z9TZT86b_yehkc_wWqmLMS |
CitedBy_id | crossref_primary_10_1002_chem_202302352 crossref_primary_10_1039_D3SC05824G crossref_primary_10_1002_anie_202010690 crossref_primary_10_1039_C9DT04886C crossref_primary_10_1039_D0DT03214J crossref_primary_10_1021_acs_inorgchem_0c00682 crossref_primary_10_1002_cjoc_202000664 crossref_primary_10_1002_ange_202215540 crossref_primary_10_1021_jacs_3c04480 crossref_primary_10_1021_acsami_4c02961 crossref_primary_10_1039_C9SC06500H crossref_primary_10_1002_cplu_202000639 crossref_primary_10_1021_acs_inorgchem_1c00890 crossref_primary_10_1039_D0NR03970E crossref_primary_10_1002_chem_202003378 crossref_primary_10_1002_ange_202414360 crossref_primary_10_1039_D1CE00369K crossref_primary_10_1039_D1DT04170C crossref_primary_10_1039_D2DT02823A crossref_primary_10_1007_s11426_020_9924_7 crossref_primary_10_1016_j_jcat_2022_12_007 crossref_primary_10_1039_D1SC06847D crossref_primary_10_1039_D0CC05336H crossref_primary_10_1039_C8DT02675K crossref_primary_10_1039_D0CC07513B crossref_primary_10_1039_D3SC05617A crossref_primary_10_1016_j_cclet_2022_108097 crossref_primary_10_1021_acs_inorgchem_9b02290 crossref_primary_10_1021_acs_inorgchem_1c02842 crossref_primary_10_1021_acs_cgd_3c00675 crossref_primary_10_1021_acs_inorgchem_1c01874 crossref_primary_10_1039_D3SC06046B crossref_primary_10_1002_ange_202114071 crossref_primary_10_1002_anie_201904680 crossref_primary_10_1039_D3QI01334K crossref_primary_10_1021_acs_inorgchem_1c03263 crossref_primary_10_1016_j_matt_2019_11_002 crossref_primary_10_1021_acs_inorgchem_2c01254 crossref_primary_10_1016_j_ccr_2020_213664 crossref_primary_10_1039_D0DT00165A crossref_primary_10_1039_D2CC01740G crossref_primary_10_1002_anie_202203114 crossref_primary_10_1039_D2SE00755J crossref_primary_10_1016_j_ica_2024_122297 crossref_primary_10_1016_j_poly_2018_10_011 crossref_primary_10_1016_j_inoche_2021_108681 crossref_primary_10_1021_acs_inorgchem_0c00223 crossref_primary_10_1039_C8NJ02247J crossref_primary_10_1002_anie_202007270 crossref_primary_10_1021_acs_inorgchem_1c01643 crossref_primary_10_1039_C9FD00108E crossref_primary_10_1016_j_ccr_2018_11_011 crossref_primary_10_1002_anie_202417548 crossref_primary_10_1039_D3NJ01172K crossref_primary_10_1021_acs_inorgchem_2c00038 crossref_primary_10_1039_D1NJ05532A crossref_primary_10_1039_C8NJ02992J crossref_primary_10_1039_D1CP04716G crossref_primary_10_1016_j_jssc_2025_125249 crossref_primary_10_1021_acs_inorgchem_1c02749 crossref_primary_10_1021_acs_inorgchem_0c00330 crossref_primary_10_1002_anie_201809762 crossref_primary_10_1134_S1070363222100127 crossref_primary_10_1002_ange_202101664 crossref_primary_10_1002_chem_201902601 crossref_primary_10_1021_acs_inorgchem_8b00586 crossref_primary_10_1039_C9DT03057C crossref_primary_10_1039_D1QI00779C crossref_primary_10_1039_D2QI01007K crossref_primary_10_1021_acs_inorgchem_3c01842 crossref_primary_10_1002_ange_202007270 crossref_primary_10_1039_C9DT00812H crossref_primary_10_1039_D4CC04161E crossref_primary_10_1016_j_jssc_2021_122763 crossref_primary_10_1021_acs_inorgchem_2c02605 crossref_primary_10_1039_D2NR02232J crossref_primary_10_1002_anie_202101664 crossref_primary_10_1002_anie_202114071 crossref_primary_10_1038_s41467_022_32449_z crossref_primary_10_1007_s10876_019_01595_8 crossref_primary_10_1021_acsami_9b22768 crossref_primary_10_1039_C8DT03250E crossref_primary_10_1515_ncrs_2022_0326 crossref_primary_10_1039_D3DT03865C crossref_primary_10_1107_S2053229618012524 crossref_primary_10_1002_ejic_202400189 crossref_primary_10_1016_j_chemphys_2022_111782 crossref_primary_10_1016_j_jssc_2024_124556 crossref_primary_10_1016_j_ccr_2023_215077 crossref_primary_10_1002_ange_202319700 crossref_primary_10_1002_adfm_201800345 crossref_primary_10_1016_j_cclet_2019_01_032 crossref_primary_10_1016_j_mssp_2021_105986 crossref_primary_10_1002_ange_202417548 crossref_primary_10_1021_acs_inorgchem_0c00516 crossref_primary_10_1021_acs_inorgchem_1c00063 crossref_primary_10_1002_ange_202012919 crossref_primary_10_1016_j_apsusc_2024_159968 crossref_primary_10_1039_D0DT00197J crossref_primary_10_1002_chem_201901671 crossref_primary_10_1007_s10876_020_01875_8 crossref_primary_10_1039_C9CC06235A crossref_primary_10_1039_D1CC00019E crossref_primary_10_1002_anie_202319700 crossref_primary_10_1039_D0DT02396E crossref_primary_10_1021_acs_cgd_8b01474 crossref_primary_10_1007_s10904_022_02327_8 crossref_primary_10_1021_acs_inorgchem_0c03257 crossref_primary_10_1002_ange_201809961 crossref_primary_10_1002_anie_201910491 crossref_primary_10_1002_ijch_202100102 crossref_primary_10_1002_smll_202302372 crossref_primary_10_1515_ncrs_2020_0590 crossref_primary_10_1039_C8CE00150B crossref_primary_10_1016_S1872_2067_20_63648_8 crossref_primary_10_1039_D0DT01959C crossref_primary_10_1016_j_jssc_2020_121900 crossref_primary_10_1021_acs_accounts_4c00143 crossref_primary_10_1021_acs_inorgchem_1c03915 crossref_primary_10_1039_C9DT01337G crossref_primary_10_1002_anie_201809961 crossref_primary_10_1002_cjoc_202300433 crossref_primary_10_1080_00958972_2022_2089029 crossref_primary_10_1016_j_cej_2022_140002 crossref_primary_10_1021_acsmaterialslett_0c00456 crossref_primary_10_1002_anie_202414360 crossref_primary_10_1021_acs_inorgchem_0c02959 crossref_primary_10_1039_D0QI00701C crossref_primary_10_1039_C8DT01844H crossref_primary_10_3390_molecules29112566 crossref_primary_10_1002_ange_201910491 crossref_primary_10_1002_ange_202007193 crossref_primary_10_1002_zaac_202000304 crossref_primary_10_1016_j_ensm_2023_02_037 crossref_primary_10_1016_j_ccr_2021_213886 crossref_primary_10_1021_acs_inorgchem_2c01315 crossref_primary_10_1039_D2CS00582D crossref_primary_10_1039_D0RA09691A crossref_primary_10_1016_j_scib_2023_11_047 crossref_primary_10_1002_ece2_6 crossref_primary_10_1021_acs_inorgchem_9b02444 crossref_primary_10_1016_j_molliq_2020_113946 crossref_primary_10_1002_ange_202003143 crossref_primary_10_1002_anie_202012919 crossref_primary_10_1002_cjoc_201800541 crossref_primary_10_1002_anie_201804569 crossref_primary_10_1016_j_ccr_2022_214561 crossref_primary_10_1039_D0TA03749D crossref_primary_10_1039_D1QI01410B crossref_primary_10_1002_agt2_506 crossref_primary_10_1002_ange_201809762 crossref_primary_10_1002_aoc_7765 crossref_primary_10_1021_jacs_4c04068 crossref_primary_10_1039_C9DT02032B crossref_primary_10_1021_acs_inorgchem_1c00816 crossref_primary_10_1039_D2SC05671B crossref_primary_10_3390_ma12193195 crossref_primary_10_1016_j_cclet_2021_01_010 crossref_primary_10_1039_D4GC05728G crossref_primary_10_1021_acs_inorgchem_0c01245 crossref_primary_10_1021_acs_inorgchem_1c03779 crossref_primary_10_1016_j_ccr_2022_214439 crossref_primary_10_1021_acs_nanolett_3c01731 crossref_primary_10_1021_acs_chemrev_9b00757 crossref_primary_10_1002_cnma_201900216 crossref_primary_10_1002_app_52326 crossref_primary_10_1021_jacs_2c00765 crossref_primary_10_1016_j_inoche_2018_09_013 crossref_primary_10_1021_acs_inorgchem_8b03310 crossref_primary_10_1007_s10971_021_05652_5 crossref_primary_10_1016_j_ccr_2024_215687 crossref_primary_10_1021_acs_inorgchem_2c01411 crossref_primary_10_26599_POM_2022_9140013 crossref_primary_10_3390_ma11091661 crossref_primary_10_1002_ejic_202300020 crossref_primary_10_1016_j_ica_2021_120621 crossref_primary_10_1039_C9DT01103J crossref_primary_10_1126_sciadv_ads0728 crossref_primary_10_1016_j_inoche_2021_108608 crossref_primary_10_1021_acs_inorgchem_2c00327 crossref_primary_10_1080_00958972_2021_1919886 crossref_primary_10_26599_POM_2024_9140066 crossref_primary_10_1039_D2CE01653B crossref_primary_10_1016_j_inoche_2020_108324 crossref_primary_10_1021_acs_inorgchem_3c02828 crossref_primary_10_1002_cplu_202200462 crossref_primary_10_1021_acs_cgd_8b00904 crossref_primary_10_1021_acs_inorgchem_8b00751 crossref_primary_10_1002_smll_202202002 crossref_primary_10_1039_D2DT01882A crossref_primary_10_1016_j_ccr_2022_214664 crossref_primary_10_1002_tcr_202400043 crossref_primary_10_1126_sciadv_adq1150 crossref_primary_10_1021_acs_inorgchem_9b00293 crossref_primary_10_1016_j_cclet_2021_05_008 crossref_primary_10_1039_D2CE00195K crossref_primary_10_1039_D3SC02793G crossref_primary_10_1021_acs_chemmater_3c00546 crossref_primary_10_1021_acs_langmuir_1c00893 crossref_primary_10_1002_smtd_202000486 crossref_primary_10_1021_acs_inorgchem_0c00615 crossref_primary_10_1039_D0GC01497D crossref_primary_10_1039_D4DT02417F crossref_primary_10_1039_D2DT03158B crossref_primary_10_1016_j_inoche_2018_09_034 crossref_primary_10_1039_C8DT01363B crossref_primary_10_1039_C9DT01628G crossref_primary_10_1021_acs_inorgchem_1c03161 crossref_primary_10_1021_acs_inorgchem_9b02238 crossref_primary_10_1002_chem_201802930 crossref_primary_10_1002_anie_201907136 crossref_primary_10_1039_C9DT00658C crossref_primary_10_1002_smtd_202201258 crossref_primary_10_1002_chem_202101287 crossref_primary_10_1002_chem_202000911 crossref_primary_10_1515_ncrs_2023_0464 crossref_primary_10_1016_j_jssc_2022_123052 crossref_primary_10_1039_D2CE01198K crossref_primary_10_1002_ange_202203114 crossref_primary_10_1021_acs_inorgchem_9b00508 crossref_primary_10_1016_j_jssc_2022_123069 crossref_primary_10_1021_acs_accounts_2c00421 crossref_primary_10_1002_ange_201904680 crossref_primary_10_1002_ejic_202000715 crossref_primary_10_1002_ejic_202101115 crossref_primary_10_1002_ange_202010690 crossref_primary_10_1039_C9SC01241A crossref_primary_10_1039_D4QI02645D crossref_primary_10_1039_C9NJ01918A crossref_primary_10_1002_anie_201902008 crossref_primary_10_1002_chem_201806178 crossref_primary_10_1002_anie_202217864 crossref_primary_10_1002_cjoc_202401117 crossref_primary_10_1039_D1SC04491E crossref_primary_10_1002_ange_202100755 crossref_primary_10_1039_D2CE01161A crossref_primary_10_1016_j_inoche_2018_05_012 crossref_primary_10_1021_acs_analchem_0c00047 crossref_primary_10_1039_D4QI00930D crossref_primary_10_1016_j_jssc_2021_122586 crossref_primary_10_1016_j_apcatb_2023_122959 crossref_primary_10_1016_j_ccr_2024_216298 crossref_primary_10_1016_j_ica_2018_05_027 crossref_primary_10_1016_j_cclet_2022_03_113 crossref_primary_10_1002_ange_201902008 crossref_primary_10_1002_ange_202217864 crossref_primary_10_1007_s12274_020_3227_5 crossref_primary_10_1021_acs_inorgchem_1c03626 crossref_primary_10_1039_C9DT02508A crossref_primary_10_3390_ma15134408 crossref_primary_10_1002_anie_202007193 crossref_primary_10_1002_anie_202100755 crossref_primary_10_1039_D1NJ01540K crossref_primary_10_1021_acs_inorgchem_1c02891 crossref_primary_10_1021_jacs_2c01502 crossref_primary_10_3390_cryst13070998 crossref_primary_10_1039_D3CE01275A crossref_primary_10_1016_j_cej_2020_126433 crossref_primary_10_1039_C8CC05441J crossref_primary_10_1016_j_ica_2020_119429 crossref_primary_10_1002_ange_201907136 crossref_primary_10_1039_D2DT00119E crossref_primary_10_1039_C8DT00825F crossref_primary_10_1039_D0EE03005H crossref_primary_10_1002_ejic_202200376 crossref_primary_10_1002_asia_201900921 crossref_primary_10_1016_j_ccr_2019_213099 crossref_primary_10_26599_NR_2025_94907196 crossref_primary_10_1021_acs_inorgchem_1c02788 crossref_primary_10_1021_acs_inorgchem_9b02951 crossref_primary_10_1039_D4SC07186G crossref_primary_10_1016_j_cclet_2023_108805 crossref_primary_10_1002_anie_202215540 crossref_primary_10_1088_2515_7655_abe3c9 crossref_primary_10_1039_C8NJ05410J crossref_primary_10_1021_acs_inorgchem_1c01456 crossref_primary_10_1039_D0RA08886B crossref_primary_10_1021_acs_inorgchem_1c03078 crossref_primary_10_1002_anie_202003143 crossref_primary_10_1021_acs_cgd_3c00695 crossref_primary_10_1002_chem_201904302 crossref_primary_10_1002_ange_201804569 |
Cites_doi | 10.1039/C7DT01756A 10.1039/c0dt01327g 10.1016/j.inoche.2004.06.006 10.1039/C4RA15531A 10.1515/znb-2007-0325 10.1039/b502434j 10.1039/C4CP02509A 10.1039/C6DT04261A 10.1002/anie.199309091 10.1038/s41598-017-00736-1 10.1063/1.1609661 10.1021/acs.inorgchem.6b00621 10.1021/ja903726m 10.1021/acs.inorgchem.6b00489 10.1039/c4dt00555d 10.1039/dt9910001999 10.1021/ic200350j 10.1021/cr400724e 10.1107/S0108270197010664 10.1021/ic302692d 10.1002/anie.201108357 10.1007/s00706-006-0464-6 10.1002/anie.200900134 10.1021/ic500390j 10.1021/ic5002545 10.1021/acscatal.6b02642 10.1021/ic401122u 10.1021/ja901214d 10.1021/ja303692r 10.1016/j.ica.2015.04.013 10.1039/C7TA00437K 10.1039/C4TC02009J 10.1039/c2dt12338j 10.1016/j.poly.2013.04.021 10.1002/ejic.201300859 10.1039/a902407g 10.1016/j.solidstatesciences.2009.11.010 10.1039/c0jm04047a 10.1021/acsnano.5b06230 10.1126/science.1061051 10.1021/acs.inorgchem.6b03072 10.1007/s10973-010-0999-y 10.1002/anie.200901348 10.1016/0020-1693(94)04270-6 10.1039/C6DT00333H 10.1039/C3DT53424C 10.1021/ic980714z 10.1002/anie.201402603 10.1002/chem.201201827 10.1073/pnas.0601780103 10.1002/1099-0682(200105)2001:5<1295::AID-EJIC1295>3.0.CO;2-Z 10.1002/anie.201307721 10.1021/ie900773m 10.1002/chem.201302012 10.1039/C6CS00051G 10.1021/ic9907361 10.1021/jp307724v 10.1016/S0277-5387(99)00281-8 10.1002/chem.201500961 10.1021/jacs.6b03489 10.1002/ejic.201301275 10.1021/om0205905 10.1039/C7CC03606J 10.1016/j.jiec.2017.04.022 10.1021/ja106436y 10.1021/ic301092b 10.1021/cr200324t 10.1038/nature02860 10.1021/cr00104a003 10.1021/ic0490829 10.1039/b111517k 10.1039/a906198c 10.1021/acs.cgd.7b00413 10.1021/ja00021a068 10.1021/acs.inorgchem.6b01551 10.1039/C6CS00015K 10.1021/ja301238t 10.1021/acs.chemmater.7b00324 10.1039/b814494j 10.1021/ic000002k 10.1002/chem.201302892 10.1002/ejic.201402670 10.1039/C7CC04388K 10.1021/jp0467090 10.1002/adma.201603369 10.1021/jacs.6b06290 10.1007/s00706-015-1558-9 10.1002/jccs.201300163 10.1021/ja405350u 10.1039/C0CS00130A 10.1021/cr500170p 10.1021/ar900089k 10.1021/acs.jpcc.7b04064 10.1002/1521-3773(20020402)41:7<1162::AID-ANIE1162>3.0.CO;2-8 10.1021/jacs.6b00613 10.1039/C4RA03291H 10.1002/chem.200305182 10.1021/ar0401754 10.1021/ic00134a004 10.1039/C7CC01443K 10.1039/C7TA01188A 10.1002/chem.201603335 10.1016/j.catcom.2004.08.011 10.1021/acsami.5b05706 10.1021/cm052149l 10.1021/cr00035a013 10.1021/jacs.6b01233 10.1002/zaac.201300215 10.1021/ic00144a004 10.1002/ejic.201400051 10.1002/ejic.201402499 10.1002/ejic.201000712 10.1039/B502666K 10.1021/acs.inorgchem.6b00982 10.1039/C7CC05362B 10.1039/C6DT00031B 10.1039/c2sc20193c 10.1007/s00706-015-1444-5 10.1006/jssc.1997.7616 10.1007/s00706-003-0031-3 10.1016/j.ijhydene.2010.02.129 10.1002/ejic.201000807 10.1021/ic9613218 10.1021/acs.inorgchem.6b01071 10.1039/C4DT02968B 10.1039/C4CC04421E 10.1021/acs.inorgchem.7b00522 10.1039/B513142C 10.1021/cr0500535 10.1039/C6DT00632A 10.1126/science.253.5017.301 10.1039/c0cc00016g 10.1039/b208255a 10.1007/s00706-013-1050-3 10.1021/am5002053 10.1002/anie.200703442 10.1039/c3dt52218k 10.1021/acs.inorgchem.5b01901 10.1021/la9607621 10.1557/PROC-271-57 10.1006/jssc.2001.9422 10.1002/anie.201505512 10.1002/ejic.200900381 10.1021/ja043330i 10.1021/ja509270f 10.1039/C1RA00408E 10.1016/j.ijhydene.2009.05.119 10.1039/c3ta11571b 10.1016/j.tsf.2004.06.189 10.1039/C6DT04474C 10.1039/C7DT00627F 10.1021/ic00017a003 10.1039/c2sc00824f 10.1039/C5RA22857C 10.7567/JJAP.50.025501 10.1039/c2sc20155k 10.1107/S1600536807041694 10.1126/science.283.5405.1148 10.1039/C3DT53416B 10.1002/1521-3773(20001201)39:23<4249::AID-ANIE4249>3.0.CO;2-X 10.1039/C6CC03788G 10.1021/jacs.7b02186 10.1002/(SICI)1099-0682(199911)1999:11<1847::AID-EJIC1847>3.0.CO;2-I 10.1021/ic801114n 10.1021/cr010425j 10.1021/acs.inorgchem.6b00129 10.1016/S0020-1693(98)00109-1 10.1002/anie.201510455 10.1039/b815430a 10.1021/ic500629y 10.1016/j.molstruc.2007.03.021 10.1021/ja00071a075 10.1039/C6CS00860G 10.1016/j.molcata.2006.08.023 10.1107/S0108270187090577 10.1007/s00706-015-1443-6 10.1021/acs.inorgchem.6b02913 10.1038/365141a0 10.1021/cr960395y 10.1039/C7CS00001D 10.1039/B203566A 10.1039/C0CS00009D 10.1021/acs.inorgchem.5b02046 10.1021/ic101687m 10.1016/j.susc.2005.02.044 10.1016/j.solmat.2016.12.015 10.1126/science.1116275 10.1016/S1387-7003(02)00545-2 10.1039/c2cs35133a 10.1039/C5SC00916B 10.1021/jp908875t 10.1021/ic00059a040 10.1021/ic0255454 10.1002/chem.200204677 10.1021/jz5008356 10.1039/C3CC49440C 10.1039/a904760c 10.1039/C7DT00049A 10.1039/C5DT03153B 10.1021/ic402987n 10.1039/C5DT03617H 10.1016/j.ccr.2009.05.007 10.1016/j.inoche.2013.11.023 10.1021/ic0615630 10.1021/cr1001645 10.1021/ja909291h 10.1039/c0cs00137f 10.1039/C6QI00114A 10.1039/b801351a 10.1039/C6DT03034C 10.1039/c1dt10115c |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2018 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2018 |
DBID | AAYXX CITATION NPM 7SP 7SR 8BQ 8FD JG9 L7M 7X8 7S9 L.6 |
DOI | 10.1039/c7cs00511c |
DatabaseName | CrossRef PubMed Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX Electronics & Communications Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed AGRICOLA Materials Research Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Engineering |
EISSN | 1460-4744 |
EndPage | 421 |
ExternalDocumentID | 29177361 10_1039_C7CS00511C c7cs00511c |
Genre | Journal Article Review |
GroupedDBID | -JG 0-7 705 70J 70~ 7~J AAEMU ABGFH ACLDK ADSRN AEFDR AFVBQ AGSTE AUDPV BSQNT C6K EE0 EF- GNO H~N IDZ J3I R7B R7D RCNCU RPMJG RRA RRC RSCEA SKA SKH SLH VH6 --- -DZ -~X 0R~ 0UZ 186 1TJ 29B 2WC 3EH 4.4 53G 5GY 6J9 6TJ 71~ 85S 8WZ 9M8 A6W AAHBH AAIWI AAJAE AAMEH AANOJ AAUTI AAWGC AAXHV AAXPP AAYXX ABASK ABDPE ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACHDF ACIWK ACKIV ACNCT ACPVT ACRPL ADMRA ADNMO ADXHL AENEX AENGV AESAV AETEA AETIL AFFDN AFFNX AFLYV AFOGI AFRDS AFRZK AGEGJ AGKEF AGQPQ AGRSR AHGCF AHGXI AI. AIDUJ AKMSF ALMA_UNASSIGNED_HOLDINGS ALSGL ALUYA ANBJS ANLMG ANUXI APEMP AQHUZ ASKNT ASPBG AVWKF AZFZN BBWZM BLAPV CAG CITATION COF CS3 DU5 EBS ECGLT EEHRC EJD F5P FA8 FEDTE GGIMP H13 HF~ HVGLF HZ~ H~9 IDY J3G J3H L-8 M4U MVM N9A NDZJH O9- P2P R56 RAOCF RCLXC RIG RNS ROL RRXOS SC5 TN5 TWZ UPT UQL VH1 WH7 WHG XJT XOL ZCG ZKB ~02 NPM 7SP 7SR 8BQ 8FD JG9 L7M 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c462t-12380db5f0fbdb380c2cba2c539ae6f00f1cb4b8d72307acea94b62c34ec6df83 |
ISSN | 0306-0012 1460-4744 |
IngestDate | Fri Jul 11 04:26:54 EDT 2025 Fri Jul 11 13:59:13 EDT 2025 Mon Jun 30 06:11:13 EDT 2025 Thu Apr 03 07:10:06 EDT 2025 Tue Jul 01 04:18:40 EDT 2025 Thu Apr 24 23:11:22 EDT 2025 Mon Jan 28 17:14:09 EST 2019 Sat Jun 01 02:20:37 EDT 2019 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c462t-12380db5f0fbdb380c2cba2c539ae6f00f1cb4b8d72307acea94b62c34ec6df83 |
Notes | Wei-Hui Fang received her PhD degree in chemistry in 2013 from the Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (FJIRSM-CAS), under the supervision of Prof. Guo-Yu Yang. Now she is an Associate Research Professor in FJIRSM-CAS. Her current research interest is the synthesis and application of titanium-oxo clusters. Jian Zhang graduated from Xiamen University in 2001 and obtained his PhD in 2006 from the Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (FJIRSM-CAS). After three years of postdoctoral work with Prof. Xianhui Bu in California State University, Long Beach, he came back to FJIRSM-CAS and served as a Full Research Professor in September 2009. His current research interest is in the synthesis and application of metal-organic frameworks. Lei Zhang obtained his bachelors degree from Nanjing University in 2004 and his PhD degree from the Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (FJIRSM-CAS) in 2009. He then worked as a Postdoctoral Researcher with Prof. Wolfgang Schmitt at Trinity College Dublin from November 2009 to December 2012, and as an Alexander von Humboldt Research Fellow with Prof. Thomas F. Fässler at Technische Universität München from January 2013 to August 2014. Since September 2014, he has been working as a Full Research Professor at FJIRSM-CAS. His research interest is mainly focused on metal-oxo clusters. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-3373-9621 0000-0001-7720-4667 |
PMID | 29177361 |
PQID | 2010846190 |
PQPubID | 2047503 |
PageCount | 18 |
ParticipantIDs | crossref_citationtrail_10_1039_C7CS00511C proquest_journals_2010846190 rsc_primary_c7cs00511c proquest_miscellaneous_2221008993 pubmed_primary_29177361 proquest_miscellaneous_1969919853 crossref_primary_10_1039_C7CS00511C |
ProviderPackageCode | RRA J3I ACLDK RRC 7~J AEFDR 70~ VH6 GNO RCNCU SLH 70J EE0 RSCEA AFVBQ C6K H~N 0-7 IDZ RPMJG SKA -JG AGSTE AUDPV EF- BSQNT SKH ADSRN ABGFH 705 R7B R7D AAEMU CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20180122 |
PublicationDateYYYYMMDD | 2018-01-22 |
PublicationDate_xml | – month: 1 year: 2018 text: 20180122 day: 22 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Chemical Society reviews |
PublicationTitleAlternate | Chem Soc Rev |
PublicationYear | 2018 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Day (C7CS00511C-(cit66)/*[position()=1]) 1995; 229 Fang (C7CS00511C-(cit151)/*[position()=1]) 2017; 53 Nguyen (C7CS00511C-(cit48)/*[position()=1]) 2017; 7 Steunou (C7CS00511C-(cit77)/*[position()=1]) 1999 Benedict (C7CS00511C-(cit28)/*[position()=1]) 2010; 132 Hendon (C7CS00511C-(cit184)/*[position()=1]) 2013; 135 Hou (C7CS00511C-(cit94)/*[position()=1]) 2015; 44 Kortz (C7CS00511C-(cit111)/*[position()=1]) 2003; 9 Asahi (C7CS00511C-(cit118)/*[position()=1]) 2001; 293 Zhang (C7CS00511C-(cit31)/*[position()=1]) 2016; 55 Cargnello (C7CS00511C-(cit128)/*[position()=1]) 2014; 114 Cini (C7CS00511C-(cit208)/*[position()=1]) 2017; 46 Hong (C7CS00511C-(cit80)/*[position()=1]) 2013; 52 Guerrero (C7CS00511C-(cit114)/*[position()=1]) 1999 Eslava (C7CS00511C-(cit37)/*[position()=1]) 2010; 46 Dan-Hardi (C7CS00511C-(cit44)/*[position()=1]) 2009; 131 Serre (C7CS00511C-(cit49)/*[position()=1]) 2006; 18 Jimenez-Lozano (C7CS00511C-(cit132)/*[position()=1]) 2016; 55 Son (C7CS00511C-(cit174)/*[position()=1]) 2016; 22 Chen (C7CS00511C-(cit10)/*[position()=1]) 2007; 107 An (C7CS00511C-(cit202)/*[position()=1]) 2017; 53 Artner (C7CS00511C-(cit141)/*[position()=1]) 2014; 20 Cooper (C7CS00511C-(cit71)/*[position()=1]) 2004; 430 Zhang (C7CS00511C-(cit74)/*[position()=1]) 2009; 48 Fang (C7CS00511C-(cit101)/*[position()=1]) 2017; 46 Sidheswaran (C7CS00511C-(cit186)/*[position()=1]) 2009; 48 Gao (C7CS00511C-(cit42)/*[position()=1]) 2016; 138 Kholdeeva (C7CS00511C-(cit130)/*[position()=1]) 2007; 262 Seisenbaeva (C7CS00511C-(cit97)/*[position()=1]) 2015; 5 Brethon (C7CS00511C-(cit175)/*[position()=1]) 2006 Braun (C7CS00511C-(cit119)/*[position()=1]) 2010; 114 Liu (C7CS00511C-(cit62)/*[position()=1]) 2016; 55 Moraru (C7CS00511C-(cit162)/*[position()=1]) 2001 Liu (C7CS00511C-(cit147)/*[position()=1]) 2014; 53 Yuan (C7CS00511C-(cit47)/*[position()=1]) 2015; 6 Liu (C7CS00511C-(cit173)/*[position()=1]) 2017; 46 Xu (C7CS00511C-(cit194)/*[position()=1]) 2010; 35 Rozes (C7CS00511C-(cit7)/*[position()=1]) 2011; 40 Lin (C7CS00511C-(cit85)/*[position()=1]) 2014; 40 Jarzembska (C7CS00511C-(cit156)/*[position()=1]) 2014; 16 Artner (C7CS00511C-(cit89)/*[position()=1]) 2014 Kemmitt (C7CS00511C-(cit103)/*[position()=1]) 1999 Jiang (C7CS00511C-(cit123)/*[position()=1]) 2008 Fornasieri (C7CS00511C-(cit34)/*[position()=1]) 2005; 127 Gross (C7CS00511C-(cit159)/*[position()=1]) 2003; 134 Xu (C7CS00511C-(cit195)/*[position()=1]) 2009; 34 Hou (C7CS00511C-(cit95)/*[position()=1]) 2016; 55 Mrowetz (C7CS00511C-(cit124)/*[position()=1]) 2004; 108 Chen (C7CS00511C-(cit145)/*[position()=1]) 2013; 52 Lv (C7CS00511C-(cit27)/*[position()=1]) 2012; 3 Wang (C7CS00511C-(cit99)/*[position()=1]) 2017; 56 Chaumont (C7CS00511C-(cit107)/*[position()=1]) 2016; 45 Artner (C7CS00511C-(cit54)/*[position()=1]) 2014 Zhao (C7CS00511C-(cit127)/*[position()=1]) 2012; 2 Ni (C7CS00511C-(cit104)/*[position()=1]) 2016; 45 Zhang (C7CS00511C-(cit120)/*[position()=1]) 2014; 6 Fu (C7CS00511C-(cit69)/*[position()=1]) 2008; 873 Schmid (C7CS00511C-(cit181)/*[position()=1]) 1991 Marom (C7CS00511C-(cit180)/*[position()=1]) 2014; 5 Zlotea (C7CS00511C-(cit183)/*[position()=1]) 2011; 40 Kreno (C7CS00511C-(cit58)/*[position()=1]) 2012; 112 Fu (C7CS00511C-(cit61)/*[position()=1]) 2002; 163 He (C7CS00511C-(cit108)/*[position()=1]) 2002; 5 Chen (C7CS00511C-(cit152)/*[position()=1]) 2013; 42 Baumann (C7CS00511C-(cit102)/*[position()=1]) 2009 Zhang (C7CS00511C-(cit18)/*[position()=1]) 2016; 55 Nolte (C7CS00511C-(cit105)/*[position()=1]) 2003; 22 Gu (C7CS00511C-(cit210)/*[position()=1]) 2016; 10 Tang (C7CS00511C-(cit176)/*[position()=1]) 2011; 104 Kong (C7CS00511C-(cit3)/*[position()=1]) 2010; 43 Du (C7CS00511C-(cit207)/*[position()=1]) 2017; 5 Steunou (C7CS00511C-(cit17)/*[position()=1]) 1998; 279 Vila-Nadal (C7CS00511C-(cit19)/*[position()=1]) 2009; 48 Li (C7CS00511C-(cit169)/*[position()=1]) 2017; 46 Huang (C7CS00511C-(cit5)/*[position()=1]) 2009; 253 Zhang (C7CS00511C-(cit203)/*[position()=1]) 2017; 121 Jiang (C7CS00511C-(cit212)/*[position()=1]) 2017; 29 Al-Kadamany (C7CS00511C-(cit110)/*[position()=1]) 2008; 47 Steunou (C7CS00511C-(cit15)/*[position()=1]) 2002; 12 Matthews (C7CS00511C-(cit13)/*[position()=1]) 2014; 50 McGlone (C7CS00511C-(cit109)/*[position()=1]) 2010; 39 Matsushita (C7CS00511C-(cit125)/*[position()=1]) 2011; 50 Sakai (C7CS00511C-(cit112)/*[position()=1]) 2003; 9 Wang (C7CS00511C-(cit63)/*[position()=1]) 2015; 44 Feng (C7CS00511C-(cit191)/*[position()=1]) 2005; 38 Sessoli (C7CS00511C-(cit2)/*[position()=1]) 1993; 365 Lucky (C7CS00511C-(cit163)/*[position()=1]) 2007; 63 Narayanam (C7CS00511C-(cit98)/*[position()=1]) 2016; 55 Negre (C7CS00511C-(cit21)/*[position()=1]) 2014; 136 Hubert-Pfalzgraf (C7CS00511C-(cit167)/*[position()=1]) 1999; 18 Li (C7CS00511C-(cit133)/*[position()=1]) 2016; 2016 Wu (C7CS00511C-(cit88)/*[position()=1]) 2014; 53 Chaumont (C7CS00511C-(cit78)/*[position()=1]) 2014; 43 Zhang (C7CS00511C-(cit30)/*[position()=1]) 2016; 138 Deng (C7CS00511C-(cit137)/*[position()=1]) 2010; 12 Castleman (C7CS00511C-(cit187)/*[position()=1]) 2006; 103 Chen (C7CS00511C-(cit153)/*[position()=1]) 2013; 60 Kment (C7CS00511C-(cit178)/*[position()=1]) 2017; 46 Lu (C7CS00511C-(cit170)/*[position()=1]) 2017; 56 Perineau (C7CS00511C-(cit39)/*[position()=1]) 2011; 21 Knoth (C7CS00511C-(cit129)/*[position()=1]) 1983; 22 Lv (C7CS00511C-(cit154)/*[position()=1]) 2014; 43 Kong (C7CS00511C-(cit192)/*[position()=1]) 2009; 131 Fang (C7CS00511C-(cit43)/*[position()=1]) 2016; 138 Su (C7CS00511C-(cit100)/*[position()=1]) 2017; 53 Lv (C7CS00511C-(cit165)/*[position()=1]) 2016; 6 Xiong (C7CS00511C-(cit73)/*[position()=1]) 2012; 3 Nguyen (C7CS00511C-(cit14)/*[position()=1]) 2016; 138 Nilsing (C7CS00511C-(cit117)/*[position()=1]) 2005; 582 Kholdeeva (C7CS00511C-(cit131)/*[position()=1]) 2005; 44 Reichmann (C7CS00511C-(cit65)/*[position()=1]) 1987; 43 Bocchini (C7CS00511C-(cit199)/*[position()=1]) 2005 Ferey (C7CS00511C-(cit211)/*[position()=1]) 2005; 309 Zhang (C7CS00511C-(cit190)/*[position()=1]) 2008; 47 Wenger (C7CS00511C-(cit201)/*[position()=1]) 2010; 132 Moustiakimov (C7CS00511C-(cit164)/*[position()=1]) 1998; 54 Hill (C7CS00511C-(cit189)/*[position()=1]) 1998; 98 Kim (C7CS00511C-(cit206)/*[position()=1]) 2017; 53 Gao (C7CS00511C-(cit91)/*[position()=1]) 2017; 46 Chen (C7CS00511C-(cit182)/*[position()=1]) 1992; 271 Yin (C7CS00511C-(cit90)/*[position()=1]) 2015; 3 Chen (C7CS00511C-(cit150)/*[position()=1]) 2015; 21 Ehsan (C7CS00511C-(cit143)/*[position()=1]) 2017; 161 Fang (C7CS00511C-(cit149)/*[position()=1]) 2017; 29 Long (C7CS00511C-(cit8)/*[position()=1]) 2007; 36 Thurston (C7CS00511C-(cit172)/*[position()=1]) 2002; 41 Rocha (C7CS00511C-(cit59)/*[position()=1]) 2011; 40 Lombardi (C7CS00511C-(cit4)/*[position()=1]) 2002; 102 Chen (C7CS00511C-(cit122)/*[position()=1]) 2004; 5 Veith (C7CS00511C-(cit196)/*[position()=1]) 1997; 36 Day (C7CS00511C-(cit68)/*[position()=1]) 1991; 113 Sokolow (C7CS00511C-(cit25)/*[position()=1]) 2012; 134 Allemand (C7CS00511C-(cit193)/*[position()=1]) 1991; 253 Liu (C7CS00511C-(cit36)/*[position()=1]) 2016; 45 Tang (C7CS00511C-(cit75)/*[position()=1]) 2013; 144 Gao (C7CS00511C-(cit115)/*[position()=1]) 1996; 12 Chen (C7CS00511C-(cit23)/*[position()=1]) 2013; 19 Caulton (C7CS00511C-(cit198)/*[position()=1]) 1990; 90 Li (C7CS00511C-(cit12)/*[position()=1]) 2016; 52 Kuznetsov (C7CS00511C-(cit197)/*[position()=1]) 2009; 11 Wu (C7CS00511C-(cit64)/*[position()=1]) 2012; 51 Rozes (C7CS00511C-(cit116)/*[position()=1]) 2006; 137 Campion (C7CS00511C-(cit144)/*[position()=1]) 1991; 30 Gu (C7CS00511C-(cit60)/*[position()=1]) 2016; 45 Nomiya (C7CS00511C-(cit134)/*[position()=1]) 2011 Li (C7CS00511C-(cit157)/*[position()=1]) 2015; 44 Chen (C7CS00511C-(cit11)/*[position()=1]) 2010; 110 Chakraborty (C7CS00511C-(cit113)/*[position()=1]) 2000; 39 Hong (C7CS00511C-(cit87)/*[position()=1]) 2014; 53 Frot (C7CS00511C-(cit93)/*[position()=1]) 2013; 639 Mason (C7CS00511C-(cit52)/*[position()=1]) 2015; 54 Czakler (C7CS00511C-(cit33)/*[position()=1]) 2014 Sobota (C7CS00511C-(cit140)/*[position()=1]) 2016; 55 Artner (C7CS00511C-(cit32)/*[position()=1]) 2015; 146 Fu (C7CS00511C-(cit45)/*[position()=1]) 2012; 51 Kuhlman (C7CS00511C-(cit135)/*[position()=1]) 1993; 32 Narayanam (C7CS00511C-(cit38)/*[position()=1]) 2017; 53 Wei (C7CS00511C-(cit204)/*[position()=1]) 2015; 7 Radtke (C7CS00511C-(cit82)/*[position()=1]) 2014; 53 Chui (C7CS00511C-(cit209)/*[position()=1]) 1999; 283 Day (C7CS00511C-(cit67)/*[position()=1]) 1993; 115 Soler-Illia (C7CS00511C-(cit200)/*[position()=1]) 2000; 39 Gao (C7CS00511C-(cit50)/*[position()=1]) 2014; 50 Fric (C7CS00511C-(cit139)/*[position()=1]) 2007; 62 Nunes (C7CS00511C-(cit146)/*[position()=1]) 2002; 26 Snoeberger (C7CS00511C-(cit26)/*[position()=1]) 2012; 134 Lv (C7CS00511C-(cit166)/*[position()=1]) 2012; 18 Bueken (C7CS00511C-(cit51)/*[position()=1]) 2015; 54 Mehring (C7CS00511C-(cit96)/*[position()=1]) 2000; 39 Assi (C7CS00511C-(cit53)/*[position()=1]) 2017; 46 Fan (C7CS00511C-(cit86)/*[position()=1]) 2017; 46 Wu (C7CS00511C-(cit155)/*[position()=1]) 2013; 1 Gomathi Devi (C7CS00511C-(cit179)/*[position()=1]) 2014; 4 Zheng (C7CS00511C-(cit9)/*[position()=1]) 2012; 41 Piszczek (C7CS00511C-(cit84)/*[position()=1]) 2012; 41 Czakler (C7CS00511C-(cit92)/*[position()=1]) 2015; 146 Frot (C7CS00511C-(cit40)/*[position()=1]) 2010 Eslava (C7CS00511C-(cit56)/*[position()=1]) 2010; 49 Logan (C7CS00511C-(cit185)/*[position()=1]) 2017; 5 Lv (C7CS00511C-(cit35)/*[position()=1]) 2016; 3 Hu (C7CS00511C-(cit70)/*[position()=1]) 2016; 55 Kosinska-Klahn (C7CS00511C-(cit136)/*[position()=1]) 2014; 53 Linsebigler (C7CS00511C-(cit177)/*[position()=1]) 1995; 95 Chambers (C7CS00511C-(cit46)/*[position()=1]) 2017; 139 Gao (C7CS00511C-(cit106)/*[position()=1]) 2017; 17 Spijksma (C7CS00511C-(cit161)/*[position()=1]) 2004; 7 Albinati (C7CS00511C-(cit142)/*[position()=1]) 2007; 46 Eslava (C7CS00511C-(cit57)/*[position()=1]) 2011; 50 Müller (C7CS00511C-(cit41)/*[position()=1]) 2002; 41 Zhang (C7CS00511C-(cit171)/*[position()=1]) 2016; 45 Seisenbaeva (C7CS00511C-(cit138)/*[position()=1]) 2008 Fenton (C7CS00511C-(cit83)/*[position()=1]) 2014 Zechmann (C7CS00511C-(cit158)/*[position()=1]) 1998; 3 |
References_xml | – volume: 46 start-page: 8057 year: 2017 ident: C7CS00511C-(cit86)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/C7DT01756A – volume: 39 start-page: 11599 year: 2010 ident: C7CS00511C-(cit109)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/c0dt01327g – volume: 7 start-page: 953 year: 2004 ident: C7CS00511C-(cit161)/*[position()=1] publication-title: Inorg. Chem. Commun. doi: 10.1016/j.inoche.2004.06.006 – volume: 5 start-page: 24575 year: 2015 ident: C7CS00511C-(cit97)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C4RA15531A – volume: 62 start-page: 487 year: 2007 ident: C7CS00511C-(cit139)/*[position()=1] publication-title: Z. Naturforsch., B: J. Chem. Sci. doi: 10.1515/znb-2007-0325 – start-page: 2600 year: 2005 ident: C7CS00511C-(cit199)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/b502434j – volume: 16 start-page: 15792 year: 2014 ident: C7CS00511C-(cit156)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP02509A – volume: 46 start-page: 678 year: 2017 ident: C7CS00511C-(cit173)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/C6DT04261A – volume: 32 start-page: 909 year: 1993 ident: C7CS00511C-(cit20)/*[position()=1] publication-title: Angew. Chem., Int. Ed. Engl. doi: 10.1002/anie.199309091 – volume: 7 start-page: 655 year: 2017 ident: C7CS00511C-(cit205)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/s41598-017-00736-1 – volume: 83 start-page: 2677 year: 2003 ident: C7CS00511C-(cit188)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.1609661 – volume: 55 start-page: 6080 year: 2016 ident: C7CS00511C-(cit132)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.6b00621 – volume: 131 start-page: 10857 year: 2009 ident: C7CS00511C-(cit44)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja903726m – volume: 55 start-page: 4636 year: 2016 ident: C7CS00511C-(cit140)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.6b00489 – volume: 43 start-page: 8679 year: 2014 ident: C7CS00511C-(cit154)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/c4dt00555d – start-page: 1999 year: 1991 ident: C7CS00511C-(cit181)/*[position()=1] publication-title: J. Chem. Soc., Dalton Trans. doi: 10.1039/dt9910001999 – volume: 50 start-page: 5655 year: 2011 ident: C7CS00511C-(cit57)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/ic200350j – volume: 114 start-page: 9645 year: 2014 ident: C7CS00511C-(cit6)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr400724e – volume: 54 start-page: 29 year: 1998 ident: C7CS00511C-(cit164)/*[position()=1] publication-title: Acta Crystallogr., Sect. C: Cryst. Struct. Commun. doi: 10.1107/S0108270197010664 – volume: 52 start-page: 4750 year: 2013 ident: C7CS00511C-(cit145)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/ic302692d – volume: 51 start-page: 3364 year: 2012 ident: C7CS00511C-(cit45)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201108357 – volume: 137 start-page: 501 year: 2006 ident: C7CS00511C-(cit116)/*[position()=1] publication-title: Monatsh. Chem. doi: 10.1007/s00706-006-0464-6 – volume: 48 start-page: 3486 year: 2009 ident: C7CS00511C-(cit74)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200900134 – volume: 53 start-page: 7233 year: 2014 ident: C7CS00511C-(cit88)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/ic500390j – volume: 53 start-page: 10803 year: 2014 ident: C7CS00511C-(cit82)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/ic5002545 – volume: 7 start-page: 338 year: 2017 ident: C7CS00511C-(cit48)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.6b02642 – volume: 52 start-page: 9705 year: 2013 ident: C7CS00511C-(cit80)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/ic401122u – volume: 131 start-page: 6918 year: 2009 ident: C7CS00511C-(cit192)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja901214d – volume: 134 start-page: 11695 year: 2012 ident: C7CS00511C-(cit25)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja303692r – volume: 432 start-page: 208 year: 2015 ident: C7CS00511C-(cit160)/*[position()=1] publication-title: Inorg. Chim. Acta doi: 10.1016/j.ica.2015.04.013 – volume: 5 start-page: 11854 year: 2017 ident: C7CS00511C-(cit185)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C7TA00437K – volume: 3 start-page: 409 year: 2015 ident: C7CS00511C-(cit90)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C4TC02009J – volume: 41 start-page: 8261 year: 2012 ident: C7CS00511C-(cit84)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/c2dt12338j – volume: 57 start-page: 70 year: 2013 ident: C7CS00511C-(cit79)/*[position()=1] publication-title: Polyhedron doi: 10.1016/j.poly.2013.04.021 – start-page: 5790 year: 2013 ident: C7CS00511C-(cit81)/*[position()=1] publication-title: Eur. J. Inorg. Chem. doi: 10.1002/ejic.201300859 – start-page: 1537 year: 1999 ident: C7CS00511C-(cit114)/*[position()=1] publication-title: J. Chem. Soc., Dalton Trans. doi: 10.1039/a902407g – volume: 12 start-page: 339 year: 2010 ident: C7CS00511C-(cit137)/*[position()=1] publication-title: Solid State Sci. doi: 10.1016/j.solidstatesciences.2009.11.010 – volume: 21 start-page: 4470 year: 2011 ident: C7CS00511C-(cit39)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/c0jm04047a – volume: 10 start-page: 977 year: 2016 ident: C7CS00511C-(cit210)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.5b06230 – volume: 293 start-page: 269 year: 2001 ident: C7CS00511C-(cit118)/*[position()=1] publication-title: Science doi: 10.1126/science.1061051 – volume: 56 start-page: 1057 year: 2017 ident: C7CS00511C-(cit170)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.6b03072 – volume: 104 start-page: 653 year: 2011 ident: C7CS00511C-(cit176)/*[position()=1] publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-010-0999-y – volume: 48 start-page: 5452 year: 2009 ident: C7CS00511C-(cit19)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200901348 – volume: 229 start-page: 391 year: 1995 ident: C7CS00511C-(cit66)/*[position()=1] publication-title: Inorg. Chim. Acta doi: 10.1016/0020-1693(94)04270-6 – volume: 45 start-page: 4501 year: 2016 ident: C7CS00511C-(cit36)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/C6DT00333H – volume: 43 start-page: 3416 year: 2014 ident: C7CS00511C-(cit78)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/C3DT53424C – volume: 37 start-page: 5856 year: 1998 ident: C7CS00511C-(cit158)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/ic980714z – volume: 53 start-page: 9193 year: 2014 ident: C7CS00511C-(cit147)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201402603 – volume: 18 start-page: 11867 year: 2012 ident: C7CS00511C-(cit166)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.201201827 – volume: 103 start-page: 10554 year: 2006 ident: C7CS00511C-(cit187)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0601780103 – start-page: 1295 year: 2001 ident: C7CS00511C-(cit162)/*[position()=1] publication-title: Eur. J. Inorg. Chem. doi: 10.1002/1099-0682(200105)2001:5<1295::AID-EJIC1295>3.0.CO;2-Z – volume: 53 start-page: 1934 year: 2014 ident: C7CS00511C-(cit148)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201307721 – volume: 48 start-page: 10292 year: 2009 ident: C7CS00511C-(cit186)/*[position()=1] publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie900773m – volume: 19 start-page: 16651 year: 2013 ident: C7CS00511C-(cit23)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.201302012 – volume: 45 start-page: 3122 year: 2016 ident: C7CS00511C-(cit60)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00051G – volume: 39 start-page: 23 year: 2000 ident: C7CS00511C-(cit113)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/ic9907361 – volume: 117 start-page: 4422 year: 2013 ident: C7CS00511C-(cit24)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp307724v – volume: 18 start-page: 3497 year: 1999 ident: C7CS00511C-(cit167)/*[position()=1] publication-title: Polyhedron doi: 10.1016/S0277-5387(99)00281-8 – volume: 21 start-page: 11538 year: 2015 ident: C7CS00511C-(cit150)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.201500961 – volume: 138 start-page: 7480 year: 2016 ident: C7CS00511C-(cit43)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b03489 – start-page: 357 year: 2014 ident: C7CS00511C-(cit83)/*[position()=1] publication-title: Eur. J. Inorg. Chem. doi: 10.1002/ejic.201301275 – volume: 22 start-page: 1010 year: 2003 ident: C7CS00511C-(cit105)/*[position()=1] publication-title: Organometallics doi: 10.1021/om0205905 – volume: 53 start-page: 8360 year: 2017 ident: C7CS00511C-(cit202)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C7CC03606J – volume: 53 start-page: 171 year: 2017 ident: C7CS00511C-(cit206)/*[position()=1] publication-title: Ind. Eng. Chem. Res. doi: 10.1016/j.jiec.2017.04.022 – volume: 132 start-page: 13669 year: 2010 ident: C7CS00511C-(cit28)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja106436y – volume: 51 start-page: 8982 year: 2012 ident: C7CS00511C-(cit64)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/ic301092b – volume: 112 start-page: 1105 year: 2012 ident: C7CS00511C-(cit58)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr200324t – volume: 430 start-page: 1012 year: 2004 ident: C7CS00511C-(cit71)/*[position()=1] publication-title: Nature doi: 10.1038/nature02860 – volume: 90 start-page: 969 year: 1990 ident: C7CS00511C-(cit198)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr00104a003 – volume: 44 start-page: 1635 year: 2005 ident: C7CS00511C-(cit131)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/ic0490829 – volume: 26 start-page: 519 year: 2002 ident: C7CS00511C-(cit146)/*[position()=1] publication-title: New J. Chem. doi: 10.1039/b111517k – start-page: 3653 year: 1999 ident: C7CS00511C-(cit77)/*[position()=1] publication-title: J. Chem. Soc., Dalton Trans. doi: 10.1039/a906198c – volume: 17 start-page: 3592 year: 2017 ident: C7CS00511C-(cit106)/*[position()=1] publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.7b00413 – volume: 113 start-page: 8190 year: 1991 ident: C7CS00511C-(cit68)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00021a068 – volume: 55 start-page: 10294 year: 2016 ident: C7CS00511C-(cit98)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.6b01551 – volume: 46 start-page: 3716 year: 2017 ident: C7CS00511C-(cit178)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00015K – volume: 134 start-page: 8911 year: 2012 ident: C7CS00511C-(cit26)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja301238t – volume: 29 start-page: 2681 year: 2017 ident: C7CS00511C-(cit149)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b00324 – volume: 2016 start-page: 3239494 year: 2016 ident: C7CS00511C-(cit133)/*[position()=1] publication-title: Bioinorg. Chem. Appl. – volume: 11 start-page: 1248 year: 2009 ident: C7CS00511C-(cit197)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b814494j – volume: 39 start-page: 3325 year: 2000 ident: C7CS00511C-(cit96)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/ic000002k – volume: 20 start-page: 493 year: 2014 ident: C7CS00511C-(cit141)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.201302892 – start-page: 5596 year: 2014 ident: C7CS00511C-(cit54)/*[position()=1] publication-title: Eur. J. Inorg. Chem. doi: 10.1002/ejic.201402670 – volume: 53 start-page: 8078 year: 2017 ident: C7CS00511C-(cit38)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C7CC04388K – volume: 108 start-page: 17269 year: 2004 ident: C7CS00511C-(cit124)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp0467090 – volume: 29 start-page: 1603369 year: 2017 ident: C7CS00511C-(cit212)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201603369 – volume: 138 start-page: 11097 year: 2016 ident: C7CS00511C-(cit30)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b06290 – volume: 146 start-page: 1777 year: 2015 ident: C7CS00511C-(cit32)/*[position()=1] publication-title: Monatsh. Chem. doi: 10.1007/s00706-015-1558-9 – volume: 60 start-page: 887 year: 2013 ident: C7CS00511C-(cit153)/*[position()=1] publication-title: J. Chin. Chem. Soc. doi: 10.1002/jccs.201300163 – volume: 135 start-page: 10942 year: 2013 ident: C7CS00511C-(cit184)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja405350u – volume: 40 start-page: 926 year: 2011 ident: C7CS00511C-(cit59)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C0CS00130A – volume: 114 start-page: 9319 year: 2014 ident: C7CS00511C-(cit128)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr500170p – volume: 43 start-page: 201 year: 2010 ident: C7CS00511C-(cit3)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar900089k – volume: 121 start-page: 18326 year: 2017 ident: C7CS00511C-(cit203)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.7b04064 – volume: 41 start-page: 1162 year: 2002 ident: C7CS00511C-(cit41)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/1521-3773(20020402)41:7<1162::AID-ANIE1162>3.0.CO;2-8 – volume: 138 start-page: 2556 year: 2016 ident: C7CS00511C-(cit42)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b00613 – volume: 4 start-page: 28265 year: 2014 ident: C7CS00511C-(cit179)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C4RA03291H – volume: 9 start-page: 4077 year: 2003 ident: C7CS00511C-(cit112)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.200305182 – volume: 38 start-page: 293 year: 2005 ident: C7CS00511C-(cit191)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar0401754 – volume: 21 start-page: 1303 year: 1982 ident: C7CS00511C-(cit126)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/ic00134a004 – volume: 53 start-page: 3949 year: 2017 ident: C7CS00511C-(cit151)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C7CC01443K – volume: 5 start-page: 9163 year: 2017 ident: C7CS00511C-(cit207)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C7TA01188A – volume: 22 start-page: 14155 year: 2016 ident: C7CS00511C-(cit174)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.201603335 – volume: 5 start-page: 677 year: 2004 ident: C7CS00511C-(cit122)/*[position()=1] publication-title: Catal. Commun. doi: 10.1016/j.catcom.2004.08.011 – volume: 7 start-page: 20761 year: 2015 ident: C7CS00511C-(cit204)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b05706 – volume: 18 start-page: 1451 year: 2006 ident: C7CS00511C-(cit49)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/cm052149l – volume: 95 start-page: 735 year: 1995 ident: C7CS00511C-(cit177)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr00035a013 – volume: 138 start-page: 4330 year: 2016 ident: C7CS00511C-(cit14)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b01233 – volume: 639 start-page: 2181 year: 2013 ident: C7CS00511C-(cit93)/*[position()=1] publication-title: Z. Anorg. Allg. Chem. doi: 10.1002/zaac.201300215 – volume: 22 start-page: 198 year: 1983 ident: C7CS00511C-(cit129)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/ic00144a004 – start-page: 2038 year: 2014 ident: C7CS00511C-(cit33)/*[position()=1] publication-title: Eur. J. Inorg. Chem. doi: 10.1002/ejic.201400051 – start-page: 5008 year: 2014 ident: C7CS00511C-(cit89)/*[position()=1] publication-title: Eur. J. Inorg. Chem. doi: 10.1002/ejic.201402499 – start-page: 179 year: 2011 ident: C7CS00511C-(cit134)/*[position()=1] publication-title: Eur. J. Inorg. Chem. doi: 10.1002/ejic.201000712 – volume: 36 start-page: 105 year: 2007 ident: C7CS00511C-(cit8)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/B502666K – volume: 55 start-page: 7075 year: 2016 ident: C7CS00511C-(cit95)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.6b00982 – volume: 53 start-page: 9598 year: 2017 ident: C7CS00511C-(cit100)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C7CC05362B – volume: 45 start-page: 7581 year: 2016 ident: C7CS00511C-(cit104)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/C6DT00031B – volume: 3 start-page: 2470 year: 2012 ident: C7CS00511C-(cit27)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/c2sc20193c – volume: 146 start-page: 1249 year: 2015 ident: C7CS00511C-(cit55)/*[position()=1] publication-title: Monatsh. Chem. doi: 10.1007/s00706-015-1444-5 – volume: 135 start-page: 149 year: 1998 ident: C7CS00511C-(cit168)/*[position()=1] publication-title: J. Solid State Chem. doi: 10.1006/jssc.1997.7616 – volume: 134 start-page: 1053 year: 2003 ident: C7CS00511C-(cit159)/*[position()=1] publication-title: Monatsh. Chem. doi: 10.1007/s00706-003-0031-3 – volume: 35 start-page: 5254 year: 2010 ident: C7CS00511C-(cit194)/*[position()=1] publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2010.02.129 – start-page: 5650 year: 2010 ident: C7CS00511C-(cit40)/*[position()=1] publication-title: Eur. J. Inorg. Chem. doi: 10.1002/ejic.201000807 – volume: 36 start-page: 2391 year: 1997 ident: C7CS00511C-(cit196)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/ic9613218 – volume: 55 start-page: 8493 year: 2016 ident: C7CS00511C-(cit70)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.6b01071 – volume: 44 start-page: 1882 year: 2015 ident: C7CS00511C-(cit63)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/C4DT02968B – volume: 50 start-page: 12815 year: 2014 ident: C7CS00511C-(cit13)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C4CC04421E – volume: 56 start-page: 6451 year: 2017 ident: C7CS00511C-(cit29)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.7b00522 – start-page: 250 year: 2006 ident: C7CS00511C-(cit175)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/B513142C – volume: 107 start-page: 2891 year: 2007 ident: C7CS00511C-(cit10)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr0500535 – volume: 45 start-page: 8760 year: 2016 ident: C7CS00511C-(cit107)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/C6DT00632A – volume: 253 start-page: 301 year: 1991 ident: C7CS00511C-(cit193)/*[position()=1] publication-title: Science doi: 10.1126/science.253.5017.301 – volume: 46 start-page: 4701 year: 2010 ident: C7CS00511C-(cit37)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/c0cc00016g – volume: 27 start-page: 3 year: 2003 ident: C7CS00511C-(cit76)/*[position()=1] publication-title: New J. Chem. doi: 10.1039/b208255a – volume: 144 start-page: 1427 year: 2013 ident: C7CS00511C-(cit75)/*[position()=1] publication-title: Monatsh. Chem. doi: 10.1007/s00706-013-1050-3 – volume: 6 start-page: 4458 year: 2014 ident: C7CS00511C-(cit120)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am5002053 – volume: 47 start-page: 113 year: 2008 ident: C7CS00511C-(cit190)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200703442 – volume: 42 start-page: 15285 year: 2013 ident: C7CS00511C-(cit152)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/c3dt52218k – volume: 55 start-page: 4704 year: 2016 ident: C7CS00511C-(cit18)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.5b01901 – volume: 12 start-page: 6429 year: 1996 ident: C7CS00511C-(cit115)/*[position()=1] publication-title: Langmuir doi: 10.1021/la9607621 – volume: 271 start-page: 57 year: 1992 ident: C7CS00511C-(cit182)/*[position()=1] publication-title: Mater. Res. Soc. Symp. Proc. doi: 10.1557/PROC-271-57 – volume: 163 start-page: 427 year: 2002 ident: C7CS00511C-(cit61)/*[position()=1] publication-title: J. Solid State Chem. doi: 10.1006/jssc.2001.9422 – volume: 54 start-page: 13912 year: 2015 ident: C7CS00511C-(cit51)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201505512 – start-page: 3333 year: 2009 ident: C7CS00511C-(cit102)/*[position()=1] publication-title: Eur. J. Inorg. Chem. doi: 10.1002/ejic.200900381 – volume: 127 start-page: 4869 year: 2005 ident: C7CS00511C-(cit34)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja043330i – volume: 136 start-page: 16420 year: 2014 ident: C7CS00511C-(cit21)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja509270f – volume: 2 start-page: 144 year: 2012 ident: C7CS00511C-(cit127)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C1RA00408E – volume: 34 start-page: 6096 year: 2009 ident: C7CS00511C-(cit195)/*[position()=1] publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2009.05.119 – volume: 1 start-page: 9862 year: 2013 ident: C7CS00511C-(cit155)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/c3ta11571b – volume: 469 start-page: 1 year: 2004 ident: C7CS00511C-(cit121)/*[position()=1] publication-title: Thin Solid Films doi: 10.1016/j.tsf.2004.06.189 – volume: 46 start-page: 803 year: 2017 ident: C7CS00511C-(cit101)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/C6DT04474C – volume: 46 start-page: 10630 year: 2017 ident: C7CS00511C-(cit91)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/C7DT00627F – volume: 30 start-page: 3244 year: 1991 ident: C7CS00511C-(cit144)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/ic00017a003 – volume: 3 start-page: 1200 year: 2012 ident: C7CS00511C-(cit73)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/c2sc00824f – volume: 6 start-page: 57 year: 2016 ident: C7CS00511C-(cit165)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C5RA22857C – volume: 50 start-page: 025501 year: 2011 ident: C7CS00511C-(cit125)/*[position()=1] publication-title: Jpn. J. Appl. Phys. doi: 10.7567/JJAP.50.025501 – volume: 3 start-page: 2293 year: 2012 ident: C7CS00511C-(cit72)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/c2sc20155k – volume: 63 start-page: m2429 year: 2007 ident: C7CS00511C-(cit163)/*[position()=1] publication-title: Acta Crystallogr., Sect. E: Struct. Rep. Online doi: 10.1107/S1600536807041694 – volume: 283 start-page: 1148 year: 1999 ident: C7CS00511C-(cit209)/*[position()=1] publication-title: Science doi: 10.1126/science.283.5405.1148 – volume: 43 start-page: 3839 year: 2014 ident: C7CS00511C-(cit22)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/C3DT53416B – volume: 39 start-page: 4250 year: 2000 ident: C7CS00511C-(cit200)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/1521-3773(20001201)39:23<4249::AID-ANIE4249>3.0.CO;2-X – volume: 52 start-page: 11180 year: 2016 ident: C7CS00511C-(cit12)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C6CC03788G – volume: 139 start-page: 8222 year: 2017 ident: C7CS00511C-(cit46)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b02186 – start-page: 1847 year: 1999 ident: C7CS00511C-(cit103)/*[position()=1] publication-title: Eur. J. Inorg. Chem. doi: 10.1002/(SICI)1099-0682(199911)1999:11<1847::AID-EJIC1847>3.0.CO;2-I – volume: 47 start-page: 8574 year: 2008 ident: C7CS00511C-(cit110)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/ic801114n – volume: 102 start-page: 2431 year: 2002 ident: C7CS00511C-(cit4)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr010425j – volume: 55 start-page: 3212 year: 2016 ident: C7CS00511C-(cit31)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.6b00129 – volume: 279 start-page: 144 year: 1998 ident: C7CS00511C-(cit17)/*[position()=1] publication-title: Inorg. Chim. Acta doi: 10.1016/S0020-1693(98)00109-1 – volume: 55 start-page: 5160 year: 2016 ident: C7CS00511C-(cit62)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201510455 – start-page: 6372 year: 2008 ident: C7CS00511C-(cit123)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/b815430a – volume: 53 start-page: 7288 year: 2014 ident: C7CS00511C-(cit87)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/ic500629y – volume: 873 start-page: 168 year: 2008 ident: C7CS00511C-(cit69)/*[position()=1] publication-title: J. Mol. Struct. doi: 10.1016/j.molstruc.2007.03.021 – volume: 115 start-page: 8469 year: 1993 ident: C7CS00511C-(cit67)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00071a075 – volume: 46 start-page: 1040 year: 2017 ident: C7CS00511C-(cit208)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00860G – volume: 262 start-page: 7 year: 2007 ident: C7CS00511C-(cit130)/*[position()=1] publication-title: J. Mol. Catal. A: Chem. doi: 10.1016/j.molcata.2006.08.023 – volume: 43 start-page: 1681 year: 1987 ident: C7CS00511C-(cit65)/*[position()=1] publication-title: Acta Crystallogr., Sect. C: Cryst. Struct. Commun. doi: 10.1107/S0108270187090577 – volume: 146 start-page: 897 year: 2015 ident: C7CS00511C-(cit92)/*[position()=1] publication-title: Monatsh. Chem. doi: 10.1007/s00706-015-1443-6 – volume: 56 start-page: 2367 year: 2017 ident: C7CS00511C-(cit99)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.6b02913 – volume: 365 start-page: 141 year: 1993 ident: C7CS00511C-(cit2)/*[position()=1] publication-title: Nature doi: 10.1038/365141a0 – volume: 98 start-page: 1 year: 1998 ident: C7CS00511C-(cit189)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr960395y – volume: 46 start-page: 3431 year: 2017 ident: C7CS00511C-(cit53)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00001D – volume: 12 start-page: 3426 year: 2002 ident: C7CS00511C-(cit15)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/B203566A – volume: 40 start-page: 575 year: 2011 ident: C7CS00511C-(cit1)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C0CS00009D – volume: 54 start-page: 10096 year: 2015 ident: C7CS00511C-(cit52)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.5b02046 – volume: 49 start-page: 11532 year: 2010 ident: C7CS00511C-(cit56)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/ic101687m – volume: 582 start-page: 49 year: 2005 ident: C7CS00511C-(cit117)/*[position()=1] publication-title: Surf. Sci. doi: 10.1016/j.susc.2005.02.044 – volume: 161 start-page: 328 year: 2017 ident: C7CS00511C-(cit143)/*[position()=1] publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2016.12.015 – volume: 309 start-page: 2040 year: 2005 ident: C7CS00511C-(cit211)/*[position()=1] publication-title: Science doi: 10.1126/science.1116275 – volume: 5 start-page: 796 year: 2002 ident: C7CS00511C-(cit108)/*[position()=1] publication-title: Inorg. Chem. Commun. doi: 10.1016/S1387-7003(02)00545-2 – volume: 41 start-page: 7623 year: 2012 ident: C7CS00511C-(cit9)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/c2cs35133a – volume: 6 start-page: 3926 year: 2015 ident: C7CS00511C-(cit47)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C5SC00916B – volume: 114 start-page: 516 year: 2010 ident: C7CS00511C-(cit119)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp908875t – volume: 32 start-page: 1272 year: 1993 ident: C7CS00511C-(cit135)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/ic00059a040 – volume: 41 start-page: 4194 year: 2002 ident: C7CS00511C-(cit172)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/ic0255454 – volume: 9 start-page: 2945 year: 2003 ident: C7CS00511C-(cit111)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.200204677 – volume: 5 start-page: 2395 year: 2014 ident: C7CS00511C-(cit180)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz5008356 – volume: 50 start-page: 3786 year: 2014 ident: C7CS00511C-(cit50)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C3CC49440C – volume: 23 start-page: 1079 year: 1999 ident: C7CS00511C-(cit16)/*[position()=1] publication-title: New J. Chem. doi: 10.1039/a904760c – volume: 46 start-page: 4287 year: 2017 ident: C7CS00511C-(cit169)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/C7DT00049A – volume: 44 start-page: 19829 year: 2015 ident: C7CS00511C-(cit94)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/C5DT03153B – volume: 53 start-page: 1630 year: 2014 ident: C7CS00511C-(cit136)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/ic402987n – volume: 44 start-page: 19090 year: 2015 ident: C7CS00511C-(cit157)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/C5DT03617H – volume: 253 start-page: 2814 year: 2009 ident: C7CS00511C-(cit5)/*[position()=1] publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2009.05.007 – volume: 40 start-page: 22 year: 2014 ident: C7CS00511C-(cit85)/*[position()=1] publication-title: Inorg. Chem. Commun. doi: 10.1016/j.inoche.2013.11.023 – volume: 46 start-page: 3459 year: 2007 ident: C7CS00511C-(cit142)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/ic0615630 – volume: 110 start-page: 6503 year: 2010 ident: C7CS00511C-(cit11)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr1001645 – volume: 132 start-page: 5164 year: 2010 ident: C7CS00511C-(cit201)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja909291h – volume: 40 start-page: 1006 year: 2011 ident: C7CS00511C-(cit7)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/c0cs00137f – volume: 3 start-page: 1119 year: 2016 ident: C7CS00511C-(cit35)/*[position()=1] publication-title: Inorg. Chem. Front. doi: 10.1039/C6QI00114A – start-page: 3412 year: 2008 ident: C7CS00511C-(cit138)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/b801351a – volume: 45 start-page: 17681 year: 2016 ident: C7CS00511C-(cit171)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/C6DT03034C – volume: 40 start-page: 4879 year: 2011 ident: C7CS00511C-(cit183)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/c1dt10115c |
SSID | ssj0011762 |
Score | 2.6440787 |
SecondaryResourceType | review_article |
Snippet | As one of the most prosperous classes of cluster-based materials reported to date, polyoxo-titanium clusters (PTCs) have been closely related to many... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 44 |
SubjectTerms | absorption Clusters Crystallization Electromagnetic absorption energy engineering environmental science molecular models Polyoxometallates Titanium titanium dioxide Titanium oxides |
Title | Synthetic strategies, diverse structures and tuneable properties of polyoxo-titanium clusters |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29177361 https://www.proquest.com/docview/2010846190 https://www.proquest.com/docview/1969919853 https://www.proquest.com/docview/2221008993 |
Volume | 47 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELVge4AL4quQUpARXBAEktixk2O1KlqqwqVb0QuKYseWVlqSVXcjUX49M7GTFHYrAZcosp0ommc7M-OZN4S8BhPAxFKnIcszEXIwv2BJlZjJZVPJpLamOy74_EXMzvnJRXoxlqzrsks26r3-uTOv5H9QhTbAFbNk_wHZ4aXQAPeAL1wBYbj-FcZnVzXob0i5ut70lA8os6oLtkDuWCSHbcGidoGSbW26TKkVeuAvkUq1C3hullfNjybEdLN60X5_q5ct0ieMmSHep_zVLMJZu9jyNZ-a7baTftp5j0KMwWxhct3JyNDLEPnwZuM2Ri6ikEvH1djvnI4r08-Q5No26Ie5Hyp3KdBbe3XEkOpUS42V1-NYj3-kIU5w7LxN9hIwBJIJ2Ts6nn86HU6KYin8SZH75p6CluUfxqd_Vzq2LAnQKy77ei-dXjG_T-55g4AeOXQfkFumfkjuTPs6fI_ItwFlOqL8jnqM6YgxBYxpjzEdMaaNpX9iTHuMH5Pzj8fz6Sz0RTFCzUWyCUHTyKJKpTayqlJwrxOtykSnLC-NsFFkY624yiqJIf6lNmXOlUg040aLymZsn0zqpjZPCQVlM9NM5ZmxYLcKDqaLEVWSliDLMs7KgLzppVZozxiPhUuWRRe5wPJiKqdnnYSnAXk1jF05npSdow574Rd-Ha0LjMcALRg004C8HLpByHh0VdamadcFkjjlcQ665c1jQNNFpipQuAPyxAE7fEqSx1IyEQdkH5AemscZEpCD3R3FqrIHNz31jNwdF9AhmQDi5jkoqRv1ws_TX2lnk1o |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthetic+strategies%2C+diverse+structures+and+tuneable+properties+of+polyoxo-titanium+clusters&rft.au=Fang%2C+Wei-Hui&rft.au=Zhang%2C+Lei&rft.au=Zhang%2C+Jian&rft.date=2018-01-22&rft.issn=0306-0012&rft.eissn=1460-4744&rft.volume=47&rft.issue=2&rft.spage=44&rft.epage=421&rft_id=info:doi/10.1039%2Fc7cs00511c&rft.externalDocID=c7cs00511c |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-0012&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-0012&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-0012&client=summon |