The influence of platinum surface oxidation on the performance of a polymer electrolyte membrane fuel cell—probing changes of catalytically active surface sites on a polycrystalline platinum electrode for the oxygen reduction reaction

To obtain fundamental insights into the performance of polymer electrolyte membrane (PEM) fuel cells, we perform a parallel investigation of the influence of platinum surface oxide (PtO) formation on the electrocatalytic activity toward the oxygen reduction reaction (ORR) for a polycrystalline plati...

Full description

Saved in:
Bibliographic Details
Published inElectrochemical science advances Vol. 2; no. 3
Main Authors Eckl, Maximilian Johann, Mattausch, Yannick, Jung, Christoph Karsten, Kirsch, Sebastian, Schmidt, Lasse, Huebner, Gerold, Mueller, Jonathan Edward, Kibler, Ludwig Alfons, Jacob, Timo
Format Journal Article
LanguageEnglish
Published Aachen John Wiley & Sons, Inc 01.06.2022
Wiley-VCH
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To obtain fundamental insights into the performance of polymer electrolyte membrane (PEM) fuel cells, we perform a parallel investigation of the influence of platinum surface oxide (PtO) formation on the electrocatalytic activity toward the oxygen reduction reaction (ORR) for a polycrystalline platinum electrode in comparison with a commercial PEM fuel cell. PtO is formed by holding both systems at a constant potential for a given period of time. Conditioning potentials between 0.5 and 1.0 V versus SHE and conditioning times from 5 s up to 10 h are explored, respectively. We find that the voltage difference of the ORR between the oxidized and oxide‐free states depends on both the conditioning potential as well as the conditioning time at a given potential and furthermore increases with the applied target current. The change of the voltage loss over time, the so‐called voltage loss rate α, shows a maximum at potentials between 0.85 and 0.9 V and increases with increasing current density. We discuss various hypotheses to explain these findings obtained by linear voltammetry, Tafel slope analysis, Auger electron spectroscopy, and atomic force microscopy experiments. Finally, we conclude that the voltage loss rate is influenced by changes in the relative electrocatalytic activity of different crystal facets for the ORR as the oxide coverage varies.
AbstractList Abstract To obtain fundamental insights into the performance of polymer electrolyte membrane (PEM) fuel cells, we perform a parallel investigation of the influence of platinum surface oxide (PtO) formation on the electrocatalytic activity toward the oxygen reduction reaction (ORR) for a polycrystalline platinum electrode in comparison with a commercial PEM fuel cell. PtO is formed by holding both systems at a constant potential for a given period of time. Conditioning potentials between 0.5 and 1.0 V versus SHE and conditioning times from 5 s up to 10 h are explored, respectively. We find that the voltage difference of the ORR between the oxidized and oxide‐free states depends on both the conditioning potential as well as the conditioning time at a given potential and furthermore increases with the applied target current. The change of the voltage loss over time, the so‐called voltage loss rate α, shows a maximum at potentials between 0.85 and 0.9 V and increases with increasing current density. We discuss various hypotheses to explain these findings obtained by linear voltammetry, Tafel slope analysis, Auger electron spectroscopy, and atomic force microscopy experiments. Finally, we conclude that the voltage loss rate is influenced by changes in the relative electrocatalytic activity of different crystal facets for the ORR as the oxide coverage varies.
To obtain fundamental insights into the performance of polymer electrolyte membrane (PEM) fuel cells, we perform a parallel investigation of the influence of platinum surface oxide (PtO) formation on the electrocatalytic activity toward the oxygen reduction reaction (ORR) for a polycrystalline platinum electrode in comparison with a commercial PEM fuel cell. PtO is formed by holding both systems at a constant potential for a given period of time. Conditioning potentials between 0.5 and 1.0 V versus SHE and conditioning times from 5 s up to 10 h are explored, respectively. We find that the voltage difference of the ORR between the oxidized and oxide‐free states depends on both the conditioning potential as well as the conditioning time at a given potential and furthermore increases with the applied target current. The change of the voltage loss over time, the so‐called voltage loss rate α, shows a maximum at potentials between 0.85 and 0.9 V and increases with increasing current density. We discuss various hypotheses to explain these findings obtained by linear voltammetry, Tafel slope analysis, Auger electron spectroscopy, and atomic force microscopy experiments. Finally, we conclude that the voltage loss rate is influenced by changes in the relative electrocatalytic activity of different crystal facets for the ORR as the oxide coverage varies.
To obtain fundamental insights into the performance of polymer electrolyte membrane (PEM) fuel cells, we perform a parallel investigation of the influence of platinum surface oxide (PtO) formation on the electrocatalytic activity toward the oxygen reduction reaction (ORR) for a polycrystalline platinum electrode in comparison with a commercial PEM fuel cell. PtO is formed by holding both systems at a constant potential for a given period of time. Conditioning potentials between 0.5 and 1.0 V versus SHE and conditioning times from 5 s up to 10 h are explored, respectively. We find that the voltage difference of the ORR between the oxidized and oxide‐free states depends on both the conditioning potential as well as the conditioning time at a given potential and furthermore increases with the applied target current. The change of the voltage loss over time, the so‐called voltage loss rate α , shows a maximum at potentials between 0.85 and 0.9 V and increases with increasing current density. We discuss various hypotheses to explain these findings obtained by linear voltammetry, Tafel slope analysis, Auger electron spectroscopy, and atomic force microscopy experiments. Finally, we conclude that the voltage loss rate is influenced by changes in the relative electrocatalytic activity of different crystal facets for the ORR as the oxide coverage varies.
To obtain fundamental insights into the performance of polymer electrolyte membrane (PEM) fuel cells, we perform a parallel investigation of the influence of platinum surface oxide (PtO) formation on the electrocatalytic activity toward the oxygen reduction reaction (ORR) for a polycrystalline platinum electrode in comparison with a commercial PEM fuel cell. PtO is formed by holding both systems at a constant potential for a given period of time. Conditioning potentials between 0.5 and 1.0 V versus SHE and conditioning times from 5 s up to 10 h are explored, respectively. We find that the voltage difference of the ORR between the oxidized and oxide‐free states depends on both the conditioning potential as well as the conditioning time at a given potential and furthermore increases with the applied target current. The change of the voltage loss over time, the so‐called voltage loss rate α, shows a maximum at potentials between 0.85 and 0.9 V and increases with increasing current density. We discuss various hypotheses to explain these findings obtained by linear voltammetry, Tafel slope analysis, Auger electron spectroscopy, and atomic force microscopy experiments. Finally, we conclude that the voltage loss rate is influenced by changes in the relative electrocatalytic activity of different crystal facets for the ORR as the oxide coverage varies.
Author Kirsch, Sebastian
Jacob, Timo
Schmidt, Lasse
Mattausch, Yannick
Eckl, Maximilian Johann
Jung, Christoph Karsten
Kibler, Ludwig Alfons
Huebner, Gerold
Mueller, Jonathan Edward
Author_xml – sequence: 1
  givenname: Maximilian Johann
  orcidid: 0000-0001-8161-0457
  surname: Eckl
  fullname: Eckl, Maximilian Johann
  organization: Universität Ulm
– sequence: 2
  givenname: Yannick
  surname: Mattausch
  fullname: Mattausch, Yannick
  organization: Universität Ulm
– sequence: 3
  givenname: Christoph Karsten
  surname: Jung
  fullname: Jung, Christoph Karsten
  organization: Karlsruhe Institute of Technology (KIT)
– sequence: 4
  givenname: Sebastian
  surname: Kirsch
  fullname: Kirsch, Sebastian
  organization: Volkswagen AG
– sequence: 5
  givenname: Lasse
  surname: Schmidt
  fullname: Schmidt, Lasse
  organization: Volkswagen AG
– sequence: 6
  givenname: Gerold
  surname: Huebner
  fullname: Huebner, Gerold
  organization: Volkswagen AG
– sequence: 7
  givenname: Jonathan Edward
  orcidid: 0000-0001-8811-8799
  surname: Mueller
  fullname: Mueller, Jonathan Edward
  organization: Volkswagen AG
– sequence: 8
  givenname: Ludwig Alfons
  surname: Kibler
  fullname: Kibler, Ludwig Alfons
  email: ludwig.kibler@uni-ulm.de
  organization: Universität Ulm
– sequence: 9
  givenname: Timo
  surname: Jacob
  fullname: Jacob, Timo
  email: timo.jacob@uni-ulm.de
  organization: Karlsruhe Institute of Technology (KIT)
BookMark eNqFUs1u1DAQjlCRKKVXzpY47-KfZBMfq6pApZV6oJytiTPeeuXYi51Ac-MheELOPES92WVBSAjJkj2j78_2vCzOfPBYFK8ZXTJK-Vt0CZac8lzQUj4rzvlKNotK1vXZH-cXxWVK2wzhTQaW7Lz4ef-AxHrjRvQaSTBk52CwfuxJGqOBfe_RdrkVPMlryPAdRhNiD0cCkF1wU4-RoEM9xFwMSHrs2wgeiRnREY3O_fj2fRdDa_2G6AfwG0x7toYBMsFqcG4ioAf7BU_WyQ57lD966DiljHY2y55iHk277BTinC88Thv0JGI36jl3RJgPr4rnBlzCy-N-UXx6d3N__WGxvnt_e321XuhyxeWiAc2kFBXXdbOqWFVrIxrWNVCyWhjaQGsqWumS12WHvG1AAje8Es2KlSjoSlwUtwfdLsBW7aLtIU4qgFVzI8SNgpiv7FAZzdqaV1SYmpcMhTRCtJQyIRsuGHRZ681BK7_d5xHToLZhjD7HV4JKWolSUJ5R5QGlY0gpolHaDvOnDRGsU4yq_Zio_Zio05hk2vIv2q-w_yTIA-GrdTj9B61u1h-vfnOfAD492Og
CitedBy_id crossref_primary_10_1039_D2TA09152F
crossref_primary_10_1016_j_jpowsour_2023_232771
crossref_primary_10_1039_D4CP01807A
crossref_primary_10_1021_acsenergylett_4c01987
crossref_primary_10_1021_acs_jpcc_4c05592
crossref_primary_10_1016_j_jpowsour_2023_233418
Cites_doi 10.1016/0013-4686(77)85032-9
10.1002/cphc.201500527
10.1016/j.elspec.2017.06.005
10.1021/jp0499171
10.1016/0022-0728(94)03467-2
10.1016/S0022-0728(97)00303-3
10.1149/1.1888367
10.1016/j.ijhydene.2021.01.058
10.1021/ja00275a013
10.1149/1.1837646
10.1016/0013-4686(87)87021-4
10.1016/j.jpowsour.2014.07.039
10.1016/j.jpowsour.2018.04.084
10.1021/j100011a001
10.1149/1.3635632
10.1002/cssc.201200847
10.1038/nature11115
10.1103/PhysRevB.76.155421
10.1063/1.347255
10.1016/S0022-0728(73)80307-9
10.1016/j.jelechem.2006.01.022
10.1016/j.apcatb.2004.06.021
10.1016/j.jpowsour.2006.01.030
10.1007/s11244-013-0177-0
10.1016/j.jpowsour.2003.12.035
10.1016/S0022-0728(72)80509-6
10.1149/1.2411659
10.1016/0304-386X(83)90074-9
10.1038/ncomms12440
10.1039/b923956a
10.1016/0079-6816(95)00040-6
10.1016/j.jpowsour.2006.12.051
10.1038/npjcompumats.2015.11
10.1016/j.jelechem.2007.03.023
10.1016/B978-0-444-63278-4.00007-0
10.1016/j.renene.2005.09.003
10.1002/jrs.1250220102
10.1021/jp037593v
10.1002/smll.201905159
10.1016/B978-0-12-409547-2.13333-5
10.1139/v68-149
10.1002/anie.201609317
10.1063/1.459319
10.1021/jp9533382
10.1143/JJAP.38.2089
10.1016/0022-0728(92)80448-D
10.1016/j.carbon.2004.09.004
10.1007/s12678-014-0201-6
10.1039/C4CP03111C
10.5796/electrochemistry.84.511
10.1016/0022-0728(92)80584-Q
10.1246/bcsj.38.1330
10.1016/0013-4686(81)90037-2
10.1016/j.electacta.2016.12.028
10.1149/06917.0273ecst
10.1007/s12678-010-0036-8
10.1016/j.jpowsour.2003.09.033
10.1016/j.jpowsour.2007.07.048
10.1149/1.3210593
10.1038/srep13801
10.1016/S0167-5729(01)00022-X
10.1016/S0378-7753(01)00807-2
10.1016/B978-0-444-63278-4.00004-5
10.1007/s12678-014-0189-y
10.1149/1.2220925
10.1149/2.088205jes
10.1016/S0022-0728(00)00407-1
10.1021/jp004368u
10.1135/cccc19720499
ContentType Journal Article
Copyright 2021 The Authors. published by Wiley‐VCH GmbH.
2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. published by Wiley‐VCH GmbH.
– notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1002/elsa.202100049
DatabaseName Wiley Online Library Open Access
CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList

CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access (Freely Accessible)
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2698-5977
EndPage n/a
ExternalDocumentID oai_doaj_org_article_fc1b72503f7241e39f33b001398231ad
10_1002_elsa_202100049
ELSA202100049
Genre article
GroupedDBID 0R~
1OC
24P
AAFWJ
AAHHS
ABDBF
ACCFJ
ACCMX
ACUHS
ADZOD
AEEZP
AEQDE
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
BENPR
CCPQU
EBS
GROUPED_DOAJ
IAO
IGS
ITC
M~E
OK1
PIMPY
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
AAMMB
ABUWG
AEFGJ
AGXDD
AIDQK
AIDYY
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
WIN
ID FETCH-LOGICAL-c4629-8ac199352c7865157cf381d8a4173f08abf505c4274de2b8a9a2f2538614e3063
IEDL.DBID 24P
ISSN 2698-5977
IngestDate Wed Aug 27 01:29:31 EDT 2025
Sat Jul 26 02:46:42 EDT 2025
Tue Jul 01 01:12:54 EDT 2025
Thu Apr 24 23:12:11 EDT 2025
Wed Jan 22 16:24:00 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4629-8ac199352c7865157cf381d8a4173f08abf505c4274de2b8a9a2f2538614e3063
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8811-8799
0000-0001-8161-0457
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Felsa.202100049
PQID 3090534302
PQPubID 6860408
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_fc1b72503f7241e39f33b001398231ad
proquest_journals_3090534302
crossref_citationtrail_10_1002_elsa_202100049
crossref_primary_10_1002_elsa_202100049
wiley_primary_10_1002_elsa_202100049_ELSA202100049
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2022
2022-06-00
20220601
2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: June 2022
PublicationDecade 2020
PublicationPlace Aachen
PublicationPlace_xml – name: Aachen
PublicationTitle Electrochemical science advances
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Wiley-VCH
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley-VCH
References 2010; 12
1994; 377
2001; 102
1997; 435
2004; 127
2006; 31
1987; 32
2012; 486
2020; 16
1983; 10
1977; 22
1996; 100
2007; 76
2013; 6
2001; 105
2001; 495
1986; 108
2014; 5
2007; 172
1973; 43
2004; 130
2002; 45
1997; 144
2019; 25
2014; 16
2016; 84
2014; 57
1990; 93
2021; 46
1968; 46
2015; 16
2015; 5
2011; 2
2005; 152
2004; 49
2007; 165
1995; 99
1993; 140
2005; 43
1981; 26
2002
2007; 607
1965; 38
2004; 108
2006; 155
2016; 7
2015; 69
2016; 2
1991; 69
2018; 392
2019; 41
1995; 49
1991; 22
1999; 38
1992; 334
2017; 56
2018
1992; 339
2014
2017; 221
2006; 589
1969; 116
2012; 159
1972; 34
2017; 224
2005; 56
2014; 269
1966
1972; 37
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
Jerkiewicz G. (e_1_2_8_15_1) 2004; 49
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_38_1
e_1_2_8_57_1
Pourbaix M. (e_1_2_8_14_1) 1966
e_1_2_8_70_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
Kaskiala T. (e_1_2_8_73_1) 2002
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_69_1
e_1_2_8_2_1
Du C. (e_1_2_8_23_1) 2014
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
Si F. (e_1_2_8_22_1) 2014
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_50_1
e_1_2_8_71_1
References_xml – volume: 16
  year: 2014
  publication-title: Phys. Chem. Chem. Phys.
– volume: 334
  start-page: 359
  year: 1992
  publication-title: J. Electroanal. Chem.
– year: 1966
– volume: 34
  start-page: 141
  year: 1972
  publication-title: J. Electroanal. Chem.
– volume: 2
  start-page: 60
  year: 2011
  publication-title: Electrocatalysis
– volume: 221
  start-page: 44
  year: 2017
  publication-title: J. Electron Spectrosc. Relat. Phenom.
– volume: 93
  start-page: 8361
  year: 1990
  publication-title: J. Chem. Phys.
– volume: 102
  start-page: 242
  year: 2001
  publication-title: J. Power Sources
– volume: 5
  start-page: 262
  year: 2014
  publication-title: Electrocatalysis
– volume: 140
  start-page: 2872
  year: 1993
  publication-title: J. Electrochem. Soc.
– volume: 34
  start-page: 131
  year: 1972
  publication-title: J. Electroanal. Chem.
– volume: 100
  start-page: 6715
  year: 1996
  publication-title: J. Phys. Chem.
– volume: 56
  start-page: 2594
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 435
  start-page: 179
  year: 1997
  publication-title: J. Electroanal. Chem.
– volume: 22
  start-page: 175
  year: 1977
  publication-title: Electrochim. Acta
– volume: 16
  year: 2020
  publication-title: Small
– volume: 392
  start-page: 274
  year: 2018
  publication-title: J. Power Sources
– volume: 12
  start-page: 4184
  year: 2010
  publication-title: Phys. Chem. Chem. Phys.
– volume: 57
  start-page: 222
  year: 2014
  publication-title: Top. Catal.
– volume: 43
  start-page: 9
  year: 1973
  publication-title: J. Electroanal. Chem.
– volume: 38
  start-page: 1330
  year: 1965
  publication-title: Bull. Chem. Soc. Jpn.
– volume: 43
  start-page: 179
  year: 2005
  publication-title: Carbon
– volume: 144
  start-page: 1591
  year: 1997
  publication-title: J. Electrochem. Soc.
– volume: 16
  start-page: 2797
  year: 2015
  publication-title: ChemPhysChem
– volume: 108
  start-page: 4127
  year: 2004
  publication-title: J. Phys. Chem. B
– volume: 152
  start-page: A970
  year: 2005
  publication-title: J. Electrochem. Soc.
– volume: 130
  start-page: 42
  year: 2004
  publication-title: J. Power Sources
– volume: 607
  start-page: 158
  year: 2007
  publication-title: J. Electroanal. Chem.
– volume: 31
  start-page: 719
  year: 2006
  publication-title: Renew. Energy
– volume: 38
  start-page: 2089
  year: 1999
  publication-title: Jpn. J. Appl. Phys., Part 2
– volume: 172
  start-page: 145
  year: 2007
  publication-title: J. Power Sources
– volume: 69
  start-page: 273
  year: 2015
  publication-title: ECS Trans
– volume: 105
  start-page: 9396
  year: 2001
  publication-title: J. Phys. Chem. A
– volume: 26
  start-page: 781
  year: 1981
  publication-title: Electrochim. Acta
– volume: 108
  start-page: 4315
  year: 1986
  publication-title: J. Am. Chem. Soc.
– volume: 269
  start-page: 621
  year: 2014
  publication-title: J. Power Sources
– volume: 377
  start-page: 249
  year: 1994
  publication-title: J. Electroanal. Chem.
– volume: 45
  start-page: 117
  year: 2002
  publication-title: Surf. Sci. Rep.
– volume: 108
  start-page: 7893
  year: 2004
  publication-title: J. Phys. Chem. B
– volume: 116
  start-page: 1681
  year: 1969
  publication-title: J. Electrochem. Soc.
– volume: 165
  start-page: 667
  year: 2007
  publication-title: J. Power Sources
– volume: 6
  start-page: 1091
  year: 2013
  publication-title: ChemSusChem
– volume: 69
  start-page: 1596
  year: 1991
  publication-title: J. Appl. Phys.
– volume: 84
  start-page: 511
  year: 2016
  publication-title: Electrochemistry
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 10
  start-page: 21
  year: 1983
  publication-title: Hydrometallurgy
– volume: 5
  year: 2015
  publication-title: Sci. Rep.
– volume: 25
  start-page: 433
  year: 2019
  publication-title: ECS Trans.
– volume: 486
  start-page: 43
  year: 2012
  publication-title: Nature
– volume: 155
  start-page: 95
  year: 2006
  publication-title: J. Power Sources
– volume: 5
  start-page: 354
  year: 2014
  publication-title: Electrocatalysis
– volume: 224
  start-page: 220
  year: 2017
  publication-title: Electrochim. Acta
– volume: 159
  start-page: B531
  year: 2012
  publication-title: J. Electrochem. Soc.
– volume: 41
  start-page: 985
  year: 2019
  publication-title: ECS Trans.
– volume: 46
  start-page: 875
  year: 1968
  publication-title: Can. J. Chem.
– volume: 56
  start-page: 9
  year: 2005
  publication-title: Appl. Catal. B Environ.
– volume: 46
  year: 2021
  publication-title: Int. J. Hydrogen Energy
– start-page: 231
  year: 2014
– volume: 76
  year: 2007
  publication-title: Phys. Rev. B
– start-page: 853
  year: 2002
– volume: 495
  start-page: 134
  year: 2001
  publication-title: J. Electroanal. Chem.
– volume: 2
  year: 2016
  publication-title: npj Comput. Mater.
– volume: 49
  start-page: 331
  year: 1995
  publication-title: Prog. Surf. Sci.
– start-page: 133
  year: 2014
– volume: 37
  start-page: 499
  year: 1972
  publication-title: Collect. Czech. Chem. Commun.
– volume: 339
  start-page: 123
  year: 1992
  publication-title: J. Electroanal. Chem.
– volume: 22
  start-page: 1
  issue: 1
  year: 1991
  publication-title: J. Raman Spectrosc.
– start-page: 820
  year: 2018
– volume: 127
  start-page: 127
  year: 2004
  publication-title: J. Power Sources
– volume: 32
  start-page: 129
  year: 1987
  publication-title: Electrochim. Acta
– volume: 49
  start-page: 1451
  year: 2004
  publication-title: Electrochim. Acta
– volume: 589
  start-page: 120
  year: 2006
  publication-title: J. Electroanal. Chem.
– volume: 99
  start-page: 3411
  year: 1995
  publication-title: J. Phys. Chem.
– ident: e_1_2_8_38_1
  doi: 10.1016/0013-4686(77)85032-9
– ident: e_1_2_8_20_1
  doi: 10.1002/cphc.201500527
– ident: e_1_2_8_17_1
  doi: 10.1016/j.elspec.2017.06.005
– ident: e_1_2_8_74_1
  doi: 10.1021/jp0499171
– ident: e_1_2_8_66_1
  doi: 10.1016/0022-0728(94)03467-2
– ident: e_1_2_8_68_1
  doi: 10.1016/S0022-0728(97)00303-3
– ident: e_1_2_8_57_1
  doi: 10.1149/1.1888367
– ident: e_1_2_8_47_1
  doi: 10.1016/j.ijhydene.2021.01.058
– ident: e_1_2_8_60_1
  doi: 10.1021/ja00275a013
– ident: e_1_2_8_67_1
  doi: 10.1149/1.1837646
– ident: e_1_2_8_56_1
  doi: 10.1016/0013-4686(87)87021-4
– ident: e_1_2_8_39_1
  doi: 10.1016/j.jpowsour.2014.07.039
– ident: e_1_2_8_28_1
  doi: 10.1016/j.jpowsour.2018.04.084
– ident: e_1_2_8_65_1
  doi: 10.1021/j100011a001
– volume-title: Atlas of Electrochemical Equilibria in Aqueous Solutions
  year: 1966
  ident: e_1_2_8_14_1
– ident: e_1_2_8_44_1
  doi: 10.1149/1.3635632
– ident: e_1_2_8_45_1
  doi: 10.1002/cssc.201200847
– ident: e_1_2_8_8_1
  doi: 10.1038/nature11115
– ident: e_1_2_8_63_1
  doi: 10.1103/PhysRevB.76.155421
– ident: e_1_2_8_64_1
  doi: 10.1063/1.347255
– ident: e_1_2_8_35_1
  doi: 10.1016/S0022-0728(73)80307-9
– ident: e_1_2_8_50_1
  doi: 10.1016/j.jelechem.2006.01.022
– ident: e_1_2_8_25_1
  doi: 10.1016/j.apcatb.2004.06.021
– ident: e_1_2_8_3_1
  doi: 10.1016/j.jpowsour.2006.01.030
– ident: e_1_2_8_61_1
  doi: 10.1007/s11244-013-0177-0
– ident: e_1_2_8_11_1
  doi: 10.1016/j.jpowsour.2003.12.035
– ident: e_1_2_8_34_1
  doi: 10.1016/S0022-0728(72)80509-6
– volume: 49
  start-page: 1451
  year: 2004
  ident: e_1_2_8_15_1
  publication-title: Electrochim. Acta
– ident: e_1_2_8_31_1
  doi: 10.1149/1.2411659
– ident: e_1_2_8_33_1
  doi: 10.1016/S0022-0728(72)80509-6
– ident: e_1_2_8_71_1
  doi: 10.1016/0304-386X(83)90074-9
– ident: e_1_2_8_41_1
  doi: 10.1038/ncomms12440
– ident: e_1_2_8_42_1
  doi: 10.1039/b923956a
– ident: e_1_2_8_69_1
  doi: 10.1016/0079-6816(95)00040-6
– ident: e_1_2_8_5_1
  doi: 10.1016/j.jpowsour.2006.12.051
– ident: e_1_2_8_58_1
  doi: 10.1038/npjcompumats.2015.11
– ident: e_1_2_8_16_1
  doi: 10.1016/j.jelechem.2007.03.023
– start-page: 231
  volume-title: Rotating Electrode Methods Oxygen Reduction Electrocatalysts
  year: 2014
  ident: e_1_2_8_23_1
  doi: 10.1016/B978-0-444-63278-4.00007-0
– ident: e_1_2_8_4_1
  doi: 10.1016/j.renene.2005.09.003
– ident: e_1_2_8_40_1
  doi: 10.1002/jrs.1250220102
– ident: e_1_2_8_53_1
  doi: 10.1021/jp037593v
– ident: e_1_2_8_18_1
  doi: 10.1002/smll.201905159
– ident: e_1_2_8_21_1
  doi: 10.1016/B978-0-12-409547-2.13333-5
– ident: e_1_2_8_30_1
  doi: 10.1139/v68-149
– ident: e_1_2_8_43_1
  doi: 10.1002/anie.201609317
– ident: e_1_2_8_48_1
  doi: 10.1063/1.459319
– ident: e_1_2_8_75_1
  doi: 10.1021/jp9533382
– ident: e_1_2_8_62_1
  doi: 10.1143/JJAP.38.2089
– ident: e_1_2_8_36_1
  doi: 10.1016/0022-0728(92)80448-D
– ident: e_1_2_8_10_1
  doi: 10.1016/j.carbon.2004.09.004
– ident: e_1_2_8_13_1
  doi: 10.1007/s12678-014-0201-6
– ident: e_1_2_8_19_1
  doi: 10.1039/C4CP03111C
– ident: e_1_2_8_46_1
  doi: 10.5796/electrochemistry.84.511
– ident: e_1_2_8_49_1
  doi: 10.1016/0022-0728(92)80584-Q
– ident: e_1_2_8_29_1
  doi: 10.1246/bcsj.38.1330
– ident: e_1_2_8_55_1
  doi: 10.1016/0013-4686(81)90037-2
– ident: e_1_2_8_70_1
  doi: 10.1016/j.electacta.2016.12.028
– ident: e_1_2_8_51_1
  doi: 10.1149/06917.0273ecst
– ident: e_1_2_8_27_1
  doi: 10.1007/s12678-010-0036-8
– ident: e_1_2_8_12_1
  doi: 10.1007/s12678-010-0036-8
– ident: e_1_2_8_9_1
  doi: 10.1016/j.jpowsour.2003.09.033
– ident: e_1_2_8_7_1
  doi: 10.1016/j.jpowsour.2007.07.048
– ident: e_1_2_8_72_1
  doi: 10.1149/1.3210593
– start-page: 853
  volume-title: Miner. Eng.
  year: 2002
  ident: e_1_2_8_73_1
– ident: e_1_2_8_54_1
  doi: 10.1038/srep13801
– ident: e_1_2_8_26_1
  doi: 10.1016/S0167-5729(01)00022-X
– ident: e_1_2_8_2_1
  doi: 10.1016/S0378-7753(01)00807-2
– start-page: 133
  volume-title: Rotating Electrode Methods Oxygen Reduction Electrocatalysts
  year: 2014
  ident: e_1_2_8_22_1
  doi: 10.1016/B978-0-444-63278-4.00004-5
– ident: e_1_2_8_37_1
  doi: 10.1007/s12678-014-0189-y
– ident: e_1_2_8_6_1
  doi: 10.1149/1.2220925
– ident: e_1_2_8_52_1
  doi: 10.1149/2.088205jes
– ident: e_1_2_8_24_1
  doi: 10.1016/S0022-0728(00)00407-1
– ident: e_1_2_8_59_1
  doi: 10.1021/jp004368u
– ident: e_1_2_8_32_1
  doi: 10.1135/cccc19720499
SSID ssj0002810041
Score 2.220176
Snippet To obtain fundamental insights into the performance of polymer electrolyte membrane (PEM) fuel cells, we perform a parallel investigation of the influence of...
Abstract To obtain fundamental insights into the performance of polymer electrolyte membrane (PEM) fuel cells, we perform a parallel investigation of the...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Alternative energy
Carbon
Electrodes
Electrolytes
Fuel cells
Hydrogen
Influence
Oxidation
Single crystals
Sulfuric acid
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUQl3JBpQWxFJAPSD1FJLaJkyMgEKpKLwWJm2U7tgTKJqvsrkRu_RH8Qs78CGacD5YD4lJpD7uRI4_i2Zk3E_s9Qo5MmlnUKYpskbBIWJ1GhuUy8sI4YzLuTTjFf_0nvboVv-5O7lakvnBPWEcP3D24Y28TIyFPcy8h2Tiee85NAC74AksXGH0h560UUw-hZYRMaMnA0hizY8g0SDPEkgCK32WhQNb_DmGu4tSQaC6_ks0eIdLTzrItsuaqb-TL-SDM9p28wNLS-0FchNaeznBDW7Wc0vmy8RqvPd53WkkUPgDx6OztfADeoOmsLtupa2gvg1O2C0enbgq1c-WoX7qSYkv_-d8TKs5AeqPdCeE53h1aPm1ogpct1SFijlPj2-g5TtvNYZsW8CcSf7s3M_tJC5ipboJ99WMLnkwbJJINdgOWDV-2ye3lxc35VdSLNkRWpCyPMm1xT-AJszJDmXVpPYCCItMikdzHmTYeQJcVUA0XjplM55p5BmEXcIKD-oXvkPWqrtwuodrblFtdmFQaqCJzI0yWyzwWRnJZWDch0bCIyvaM5iisUaqOi5kpXHQ1LvqE_BzHzzoujw9HnqFPjKOQgztcAM9UvWeqzzxzQvYHj1J9YJgrHucQ9gSP2YSw4GWfmKIufv89HX_t_Q_DfpANhoc4Qi9pn6wvmqU7AGi1MIfhX_QKtNklPQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Nb9QwELVge4AL4lMsFOQDEqeoiZ3Gzgm11VYVggoBlXqLbMdGlbJJmuxKzY0fwS_kzI9gxnGy9ABIe8hGTsbKTMbPE_s9Qt7oTBrUKYpMmbAoNSqLNMtF5FJttZbcab-L_-N5dnaRvr88vAwFtz4sq5xyok_UZWOwRn7A4xziJeUxe9deR6gahV9Xg4TGXbIHKVjKBdk7Xp1_-jxXWZhERrRkYmuM2QGMOEg3xBIPjm-NRp60_xbS_BOv-gHn9CF5EJAiPRpd-4jcsfVjcu9kEmh7Qn6Bi-nVJDJCG0dbXNhWb9e033ZO4bmbq1EzicIPoB5td_sE8AJF26Ya1rajQQ6nGjaWru0a5tC1pW5rK4ql_Z_ff6DyDAxzdNwp3OPVvvQz-GJ4NVDlM-dsGp9bj2ZHG6YbAIciAbjddTMYLcFS0_n-NTcDRDTtkFDW9xswrT94Si5OV19PzqIg3hCZNGN5JJXBtYGHzAiJcuvCOAAHpVRpIriLpdIOwJdJYVZcWqalyhVzDNIv4AUL8xj-jCzqprbPCVXOZNyoUmdCw2wy16mWucjjVAsuSmOXJJqcWJjAbI4CG1UxcjKzAp1ezE5fkrdz-3bk9Phry2OMibkVcnH7E033rQivduFMogUgSe4EwCHLc8e59tAaP7Gqckn2p4gqQoLoi104LwnzUfafrhSrD1-O5n8v_n3Pl-Q-w20avlq0TxabbmtfAXja6NfhDfkNJUsfNQ
  priority: 102
  providerName: ProQuest
Title The influence of platinum surface oxidation on the performance of a polymer electrolyte membrane fuel cell—probing changes of catalytically active surface sites on a polycrystalline platinum electrode for the oxygen reduction reaction
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Felsa.202100049
https://www.proquest.com/docview/3090534302
https://doaj.org/article/fc1b72503f7241e39f33b001398231ad
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZtcmgvpU-6SbroUOjJxCsplnzcTXcJpQ2hbSA3I8lSCezai70L8a0_Ir-w5_6IzsiPzR5KoWDwA8kjPNLo01jzDSHvTaIs5imKbD5hkbA6iQxLZeSFccYo7k2I4v9ymVxci083ZzcPovhbfojB4YYjI9hrHODa1Kc70lCYOpA3iE0Cyn1MDjG-Fjf1MXE1eFmYQkY0XHWxJFURkq31zI0xO91_xd7MFAj891DnQ-waJp_Fc_KsQ4102qr5BXnkipfkyXmfrO0V-Q3qprd9whFaerrGTW7FdkXrbeU1Pru7bfMnUTgA9tH1LmYAK2i6LpfNylW0S42zbDaOrtwKPlLhqN-6JUU3_6-f95iFBqY82kYN11g7uIGa4BhfNlQHKzqIxj_UNYptZdiqAUyKZOBu18xOaA6Syiq0r7xroHfTCsllQ7sB34aL1-R6Mf9-fhF1iRwiKxKWRkpb3Cd4xqxUmHpdWg9AIVdaTCT3sdLGAxCzAlbIuWNG6VQzz8AUA3ZwsKbhb8hBURbuLaHa24RbnZtEGlhZpkYYlco0FkZymVs3IlGvxMx2LOeYbGOZtfzMLEOlZ4PSR-TDUH7d8nv8teQM-8RQCnm5w4Oy-pF1wzzzdmIkoEruJUAjx1PPuQkwG3-36nxETvoelXXGos54nIIpFDxmI8JCL_tHU7L552_T4e7ofyodk6cMAzmCP-mEHGyqrXsH8GpjxmEEjcnhdPZxtoDzbH559XUcnBV_AFIcJ0c
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELbK9lAuiF-xUMAHEKeoiZ3m54BQW7ba0u0KQSv1FmzHriplk5DsiubGQ_AcPBRnHoIZ52fpAThVyiGJnIylGc98HtvzEfJSBpFCniJHpR5zfCUCR7I4dIwvtZQRN9Ke4j-ZB9Mz__357vkG-dGfhcFtlb1PtI46LRTmyHe4G4O9-Nxlb8svDrJG4epqT6HRmsWxbr7ClK1-c_QO9PuKscPJ6cHU6VgFHOUHLHYioXDT2i5TYYQ84KEyELXSSPheyI0bCWkAFSgfpmupZjISsWCGgV-AQKYBYHP47y2y6fPAZSOyuT-Zf_g4ZHVYhBXYvL46pMt2IMJheSPmWTB-LfpZkoBryPZPfGwD3OFdcqdDpnSvNaV7ZEPn98nWQU8I94D8ApOilz2pCS0MLXEjXb5a0HpVGYHvri5bjiYKF0BLWq7PJeAHgpZF1ix0RTv6naxZarrQC5iz55qalc4oLiX8_PYdmW4grNL2ZHKNX9tUU2OT71lDhfXUg2jUU41iWxmqagD3YsFxve5mJzQFSUVl-1dcNTCCaIUFbG2_AUPbm4fk7EbU-oiM8iLXjwkVRgVciVQGoYTZayx9GcVh7Poy5GGq9Jg4vRIT1VVSR0KPLGlrQLMElZ4MSh-T10P7sq0h8teW-2gTQyus_W1fFNVF0rmSxChPhoBcuQkBfmkeG86lhfK4pCvSMdnuLSrpHFKdrIfPmDBrZf_pSjKZfdobnp78-58vyNb09GSWzI7mx0_JbYZHRGymapuMltVKPwPgtpTPu9FCyeebHqC_AXeZWZA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELagSMCl4lcsFPABiVPUXduNnWMpXRUoVSWo1JtlOzaqlE2i7K7U3HgInpBzH4IZ52e7B4SElEMS2RkrY48_jz3fEPLOpsphnqLE5TOWCGfSxLJMJkFYb63iwcYo_q9n6cmF-Hx5cHkrir_jhxgdbjgyor3GAV7nYX9DGgpTB_IGsVlEuXfJPdzxw0NdTJyPXhamkBENV10szVSCZGsDc-OU7W9_YmtmigT-W6jzNnaNk8_8EdntUSM97NT8mNzx5RPy4GhI1vaU3IC66dWQcIRWgdZ4yK1cL-hy3QSD766vuvxJFC6AfbTexAxgBUPrqmgXvqF9apyiXXm68Av4SaWnYe0Lim7-3z9_YRYamPJoFzW8xNrRDdRGx3jRUhOt6Cgad6iXKLaT4ZoWMCmSgftNM3uhOUiqmti-6rqF3k0bJJeN7QZ8G2-ekYv58fejk6RP5JA4kbIsUcbhOcED5qTC1OvSBQAKuTJiJnmYKmMDADEnYIWce2aVyQwLDEwxYAcPaxr-nOyUVelfEGqCS7kzuU2lhZVlZoVVmcymwkouc-cnJBmUqF3Pco7JNgrd8TMzjUrXo9In5P1Yvu74Pf5a8gP2ibEU8nLHF1XzQ_fDXAc3sxJQJQ8SoJHnWeDcRpiN260mn5C9oUfp3lgsNZ9mYAoFn7IJYbGX_aMp-vj02-H49PJ_Kr0l988_zvXpp7Mvr8hDhjEd0bW0R3ZWzdq_BqS1sm_iYPoD87Il5A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+influence+of+platinum+surface+oxidation+on+the+performance+of+a+polymer+electrolyte+membrane+fuel+cell%E2%80%94probing+changes+of+catalytically+active+surface+sites+on+a+polycrystalline+platinum+electrode+for+the+oxygen+reduction+reaction&rft.jtitle=Electrochemical+science+advances&rft.au=Eckl%2C+Maximilian+Johann&rft.au=Mattausch%2C+Yannick&rft.au=Jung%2C+Christoph+Karsten&rft.au=Kirsch%2C+Sebastian&rft.date=2022-06-01&rft.issn=2698-5977&rft.eissn=2698-5977&rft.volume=2&rft.issue=3&rft_id=info:doi/10.1002%2Felsa.202100049&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_elsa_202100049
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2698-5977&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2698-5977&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2698-5977&client=summon