The influence of platinum surface oxidation on the performance of a polymer electrolyte membrane fuel cell—probing changes of catalytically active surface sites on a polycrystalline platinum electrode for the oxygen reduction reaction
To obtain fundamental insights into the performance of polymer electrolyte membrane (PEM) fuel cells, we perform a parallel investigation of the influence of platinum surface oxide (PtO) formation on the electrocatalytic activity toward the oxygen reduction reaction (ORR) for a polycrystalline plati...
Saved in:
Published in | Electrochemical science advances Vol. 2; no. 3 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Aachen
John Wiley & Sons, Inc
01.06.2022
Wiley-VCH |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To obtain fundamental insights into the performance of polymer electrolyte membrane (PEM) fuel cells, we perform a parallel investigation of the influence of platinum surface oxide (PtO) formation on the electrocatalytic activity toward the oxygen reduction reaction (ORR) for a polycrystalline platinum electrode in comparison with a commercial PEM fuel cell. PtO is formed by holding both systems at a constant potential for a given period of time. Conditioning potentials between 0.5 and 1.0 V versus SHE and conditioning times from 5 s up to 10 h are explored, respectively. We find that the voltage difference of the ORR between the oxidized and oxide‐free states depends on both the conditioning potential as well as the conditioning time at a given potential and furthermore increases with the applied target current. The change of the voltage loss over time, the so‐called voltage loss rate α, shows a maximum at potentials between 0.85 and 0.9 V and increases with increasing current density. We discuss various hypotheses to explain these findings obtained by linear voltammetry, Tafel slope analysis, Auger electron spectroscopy, and atomic force microscopy experiments. Finally, we conclude that the voltage loss rate is influenced by changes in the relative electrocatalytic activity of different crystal facets for the ORR as the oxide coverage varies. |
---|---|
AbstractList | Abstract To obtain fundamental insights into the performance of polymer electrolyte membrane (PEM) fuel cells, we perform a parallel investigation of the influence of platinum surface oxide (PtO) formation on the electrocatalytic activity toward the oxygen reduction reaction (ORR) for a polycrystalline platinum electrode in comparison with a commercial PEM fuel cell. PtO is formed by holding both systems at a constant potential for a given period of time. Conditioning potentials between 0.5 and 1.0 V versus SHE and conditioning times from 5 s up to 10 h are explored, respectively. We find that the voltage difference of the ORR between the oxidized and oxide‐free states depends on both the conditioning potential as well as the conditioning time at a given potential and furthermore increases with the applied target current. The change of the voltage loss over time, the so‐called voltage loss rate α, shows a maximum at potentials between 0.85 and 0.9 V and increases with increasing current density. We discuss various hypotheses to explain these findings obtained by linear voltammetry, Tafel slope analysis, Auger electron spectroscopy, and atomic force microscopy experiments. Finally, we conclude that the voltage loss rate is influenced by changes in the relative electrocatalytic activity of different crystal facets for the ORR as the oxide coverage varies. To obtain fundamental insights into the performance of polymer electrolyte membrane (PEM) fuel cells, we perform a parallel investigation of the influence of platinum surface oxide (PtO) formation on the electrocatalytic activity toward the oxygen reduction reaction (ORR) for a polycrystalline platinum electrode in comparison with a commercial PEM fuel cell. PtO is formed by holding both systems at a constant potential for a given period of time. Conditioning potentials between 0.5 and 1.0 V versus SHE and conditioning times from 5 s up to 10 h are explored, respectively. We find that the voltage difference of the ORR between the oxidized and oxide‐free states depends on both the conditioning potential as well as the conditioning time at a given potential and furthermore increases with the applied target current. The change of the voltage loss over time, the so‐called voltage loss rate α, shows a maximum at potentials between 0.85 and 0.9 V and increases with increasing current density. We discuss various hypotheses to explain these findings obtained by linear voltammetry, Tafel slope analysis, Auger electron spectroscopy, and atomic force microscopy experiments. Finally, we conclude that the voltage loss rate is influenced by changes in the relative electrocatalytic activity of different crystal facets for the ORR as the oxide coverage varies. To obtain fundamental insights into the performance of polymer electrolyte membrane (PEM) fuel cells, we perform a parallel investigation of the influence of platinum surface oxide (PtO) formation on the electrocatalytic activity toward the oxygen reduction reaction (ORR) for a polycrystalline platinum electrode in comparison with a commercial PEM fuel cell. PtO is formed by holding both systems at a constant potential for a given period of time. Conditioning potentials between 0.5 and 1.0 V versus SHE and conditioning times from 5 s up to 10 h are explored, respectively. We find that the voltage difference of the ORR between the oxidized and oxide‐free states depends on both the conditioning potential as well as the conditioning time at a given potential and furthermore increases with the applied target current. The change of the voltage loss over time, the so‐called voltage loss rate α , shows a maximum at potentials between 0.85 and 0.9 V and increases with increasing current density. We discuss various hypotheses to explain these findings obtained by linear voltammetry, Tafel slope analysis, Auger electron spectroscopy, and atomic force microscopy experiments. Finally, we conclude that the voltage loss rate is influenced by changes in the relative electrocatalytic activity of different crystal facets for the ORR as the oxide coverage varies. To obtain fundamental insights into the performance of polymer electrolyte membrane (PEM) fuel cells, we perform a parallel investigation of the influence of platinum surface oxide (PtO) formation on the electrocatalytic activity toward the oxygen reduction reaction (ORR) for a polycrystalline platinum electrode in comparison with a commercial PEM fuel cell. PtO is formed by holding both systems at a constant potential for a given period of time. Conditioning potentials between 0.5 and 1.0 V versus SHE and conditioning times from 5 s up to 10 h are explored, respectively. We find that the voltage difference of the ORR between the oxidized and oxide‐free states depends on both the conditioning potential as well as the conditioning time at a given potential and furthermore increases with the applied target current. The change of the voltage loss over time, the so‐called voltage loss rate α, shows a maximum at potentials between 0.85 and 0.9 V and increases with increasing current density. We discuss various hypotheses to explain these findings obtained by linear voltammetry, Tafel slope analysis, Auger electron spectroscopy, and atomic force microscopy experiments. Finally, we conclude that the voltage loss rate is influenced by changes in the relative electrocatalytic activity of different crystal facets for the ORR as the oxide coverage varies. |
Author | Kirsch, Sebastian Jacob, Timo Schmidt, Lasse Mattausch, Yannick Eckl, Maximilian Johann Jung, Christoph Karsten Kibler, Ludwig Alfons Huebner, Gerold Mueller, Jonathan Edward |
Author_xml | – sequence: 1 givenname: Maximilian Johann orcidid: 0000-0001-8161-0457 surname: Eckl fullname: Eckl, Maximilian Johann organization: Universität Ulm – sequence: 2 givenname: Yannick surname: Mattausch fullname: Mattausch, Yannick organization: Universität Ulm – sequence: 3 givenname: Christoph Karsten surname: Jung fullname: Jung, Christoph Karsten organization: Karlsruhe Institute of Technology (KIT) – sequence: 4 givenname: Sebastian surname: Kirsch fullname: Kirsch, Sebastian organization: Volkswagen AG – sequence: 5 givenname: Lasse surname: Schmidt fullname: Schmidt, Lasse organization: Volkswagen AG – sequence: 6 givenname: Gerold surname: Huebner fullname: Huebner, Gerold organization: Volkswagen AG – sequence: 7 givenname: Jonathan Edward orcidid: 0000-0001-8811-8799 surname: Mueller fullname: Mueller, Jonathan Edward organization: Volkswagen AG – sequence: 8 givenname: Ludwig Alfons surname: Kibler fullname: Kibler, Ludwig Alfons email: ludwig.kibler@uni-ulm.de organization: Universität Ulm – sequence: 9 givenname: Timo surname: Jacob fullname: Jacob, Timo email: timo.jacob@uni-ulm.de organization: Karlsruhe Institute of Technology (KIT) |
BookMark | eNqFUs1u1DAQjlCRKKVXzpY47-KfZBMfq6pApZV6oJytiTPeeuXYi51Ac-MheELOPES92WVBSAjJkj2j78_2vCzOfPBYFK8ZXTJK-Vt0CZac8lzQUj4rzvlKNotK1vXZH-cXxWVK2wzhTQaW7Lz4ef-AxHrjRvQaSTBk52CwfuxJGqOBfe_RdrkVPMlryPAdRhNiD0cCkF1wU4-RoEM9xFwMSHrs2wgeiRnREY3O_fj2fRdDa_2G6AfwG0x7toYBMsFqcG4ioAf7BU_WyQ57lD966DiljHY2y55iHk277BTinC88Thv0JGI36jl3RJgPr4rnBlzCy-N-UXx6d3N__WGxvnt_e321XuhyxeWiAc2kFBXXdbOqWFVrIxrWNVCyWhjaQGsqWumS12WHvG1AAje8Es2KlSjoSlwUtwfdLsBW7aLtIU4qgFVzI8SNgpiv7FAZzdqaV1SYmpcMhTRCtJQyIRsuGHRZ681BK7_d5xHToLZhjD7HV4JKWolSUJ5R5QGlY0gpolHaDvOnDRGsU4yq_Zio_Zio05hk2vIv2q-w_yTIA-GrdTj9B61u1h-vfnOfAD492Og |
CitedBy_id | crossref_primary_10_1039_D2TA09152F crossref_primary_10_1016_j_jpowsour_2023_232771 crossref_primary_10_1039_D4CP01807A crossref_primary_10_1021_acsenergylett_4c01987 crossref_primary_10_1021_acs_jpcc_4c05592 crossref_primary_10_1016_j_jpowsour_2023_233418 |
Cites_doi | 10.1016/0013-4686(77)85032-9 10.1002/cphc.201500527 10.1016/j.elspec.2017.06.005 10.1021/jp0499171 10.1016/0022-0728(94)03467-2 10.1016/S0022-0728(97)00303-3 10.1149/1.1888367 10.1016/j.ijhydene.2021.01.058 10.1021/ja00275a013 10.1149/1.1837646 10.1016/0013-4686(87)87021-4 10.1016/j.jpowsour.2014.07.039 10.1016/j.jpowsour.2018.04.084 10.1021/j100011a001 10.1149/1.3635632 10.1002/cssc.201200847 10.1038/nature11115 10.1103/PhysRevB.76.155421 10.1063/1.347255 10.1016/S0022-0728(73)80307-9 10.1016/j.jelechem.2006.01.022 10.1016/j.apcatb.2004.06.021 10.1016/j.jpowsour.2006.01.030 10.1007/s11244-013-0177-0 10.1016/j.jpowsour.2003.12.035 10.1016/S0022-0728(72)80509-6 10.1149/1.2411659 10.1016/0304-386X(83)90074-9 10.1038/ncomms12440 10.1039/b923956a 10.1016/0079-6816(95)00040-6 10.1016/j.jpowsour.2006.12.051 10.1038/npjcompumats.2015.11 10.1016/j.jelechem.2007.03.023 10.1016/B978-0-444-63278-4.00007-0 10.1016/j.renene.2005.09.003 10.1002/jrs.1250220102 10.1021/jp037593v 10.1002/smll.201905159 10.1016/B978-0-12-409547-2.13333-5 10.1139/v68-149 10.1002/anie.201609317 10.1063/1.459319 10.1021/jp9533382 10.1143/JJAP.38.2089 10.1016/0022-0728(92)80448-D 10.1016/j.carbon.2004.09.004 10.1007/s12678-014-0201-6 10.1039/C4CP03111C 10.5796/electrochemistry.84.511 10.1016/0022-0728(92)80584-Q 10.1246/bcsj.38.1330 10.1016/0013-4686(81)90037-2 10.1016/j.electacta.2016.12.028 10.1149/06917.0273ecst 10.1007/s12678-010-0036-8 10.1016/j.jpowsour.2003.09.033 10.1016/j.jpowsour.2007.07.048 10.1149/1.3210593 10.1038/srep13801 10.1016/S0167-5729(01)00022-X 10.1016/S0378-7753(01)00807-2 10.1016/B978-0-444-63278-4.00004-5 10.1007/s12678-014-0189-y 10.1149/1.2220925 10.1149/2.088205jes 10.1016/S0022-0728(00)00407-1 10.1021/jp004368u 10.1135/cccc19720499 |
ContentType | Journal Article |
Copyright | 2021 The Authors. published by Wiley‐VCH GmbH. 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 The Authors. published by Wiley‐VCH GmbH. – notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.1002/elsa.202100049 |
DatabaseName | Wiley Online Library Open Access CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access (Freely Accessible) url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2698-5977 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_fc1b72503f7241e39f33b001398231ad 10_1002_elsa_202100049 ELSA202100049 |
Genre | article |
GroupedDBID | 0R~ 1OC 24P AAFWJ AAHHS ABDBF ACCFJ ACCMX ACUHS ADZOD AEEZP AEQDE AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN BENPR CCPQU EBS GROUPED_DOAJ IAO IGS ITC M~E OK1 PIMPY AAYXX AFPKN CITATION PHGZM PHGZT AAMMB ABUWG AEFGJ AGXDD AIDQK AIDYY AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO WIN |
ID | FETCH-LOGICAL-c4629-8ac199352c7865157cf381d8a4173f08abf505c4274de2b8a9a2f2538614e3063 |
IEDL.DBID | 24P |
ISSN | 2698-5977 |
IngestDate | Wed Aug 27 01:29:31 EDT 2025 Sat Jul 26 02:46:42 EDT 2025 Tue Jul 01 01:12:54 EDT 2025 Thu Apr 24 23:12:11 EDT 2025 Wed Jan 22 16:24:00 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4629-8ac199352c7865157cf381d8a4173f08abf505c4274de2b8a9a2f2538614e3063 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8811-8799 0000-0001-8161-0457 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Felsa.202100049 |
PQID | 3090534302 |
PQPubID | 6860408 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_fc1b72503f7241e39f33b001398231ad proquest_journals_3090534302 crossref_citationtrail_10_1002_elsa_202100049 crossref_primary_10_1002_elsa_202100049 wiley_primary_10_1002_elsa_202100049_ELSA202100049 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2022 2022-06-00 20220601 2022-06-01 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: June 2022 |
PublicationDecade | 2020 |
PublicationPlace | Aachen |
PublicationPlace_xml | – name: Aachen |
PublicationTitle | Electrochemical science advances |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Inc Wiley-VCH |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley-VCH |
References | 2010; 12 1994; 377 2001; 102 1997; 435 2004; 127 2006; 31 1987; 32 2012; 486 2020; 16 1983; 10 1977; 22 1996; 100 2007; 76 2013; 6 2001; 105 2001; 495 1986; 108 2014; 5 2007; 172 1973; 43 2004; 130 2002; 45 1997; 144 2019; 25 2014; 16 2016; 84 2014; 57 1990; 93 2021; 46 1968; 46 2015; 16 2015; 5 2011; 2 2005; 152 2004; 49 2007; 165 1995; 99 1993; 140 2005; 43 1981; 26 2002 2007; 607 1965; 38 2004; 108 2006; 155 2016; 7 2015; 69 2016; 2 1991; 69 2018; 392 2019; 41 1995; 49 1991; 22 1999; 38 1992; 334 2017; 56 2018 1992; 339 2014 2017; 221 2006; 589 1969; 116 2012; 159 1972; 34 2017; 224 2005; 56 2014; 269 1966 1972; 37 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 Jerkiewicz G. (e_1_2_8_15_1) 2004; 49 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_38_1 e_1_2_8_57_1 Pourbaix M. (e_1_2_8_14_1) 1966 e_1_2_8_70_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 Kaskiala T. (e_1_2_8_73_1) 2002 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_69_1 e_1_2_8_2_1 Du C. (e_1_2_8_23_1) 2014 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 Si F. (e_1_2_8_22_1) 2014 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_50_1 e_1_2_8_71_1 |
References_xml | – volume: 16 year: 2014 publication-title: Phys. Chem. Chem. Phys. – volume: 334 start-page: 359 year: 1992 publication-title: J. Electroanal. Chem. – year: 1966 – volume: 34 start-page: 141 year: 1972 publication-title: J. Electroanal. Chem. – volume: 2 start-page: 60 year: 2011 publication-title: Electrocatalysis – volume: 221 start-page: 44 year: 2017 publication-title: J. Electron Spectrosc. Relat. Phenom. – volume: 93 start-page: 8361 year: 1990 publication-title: J. Chem. Phys. – volume: 102 start-page: 242 year: 2001 publication-title: J. Power Sources – volume: 5 start-page: 262 year: 2014 publication-title: Electrocatalysis – volume: 140 start-page: 2872 year: 1993 publication-title: J. Electrochem. Soc. – volume: 34 start-page: 131 year: 1972 publication-title: J. Electroanal. Chem. – volume: 100 start-page: 6715 year: 1996 publication-title: J. Phys. Chem. – volume: 56 start-page: 2594 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 435 start-page: 179 year: 1997 publication-title: J. Electroanal. Chem. – volume: 22 start-page: 175 year: 1977 publication-title: Electrochim. Acta – volume: 16 year: 2020 publication-title: Small – volume: 392 start-page: 274 year: 2018 publication-title: J. Power Sources – volume: 12 start-page: 4184 year: 2010 publication-title: Phys. Chem. Chem. Phys. – volume: 57 start-page: 222 year: 2014 publication-title: Top. Catal. – volume: 43 start-page: 9 year: 1973 publication-title: J. Electroanal. Chem. – volume: 38 start-page: 1330 year: 1965 publication-title: Bull. Chem. Soc. Jpn. – volume: 43 start-page: 179 year: 2005 publication-title: Carbon – volume: 144 start-page: 1591 year: 1997 publication-title: J. Electrochem. Soc. – volume: 16 start-page: 2797 year: 2015 publication-title: ChemPhysChem – volume: 108 start-page: 4127 year: 2004 publication-title: J. Phys. Chem. B – volume: 152 start-page: A970 year: 2005 publication-title: J. Electrochem. Soc. – volume: 130 start-page: 42 year: 2004 publication-title: J. Power Sources – volume: 607 start-page: 158 year: 2007 publication-title: J. Electroanal. Chem. – volume: 31 start-page: 719 year: 2006 publication-title: Renew. Energy – volume: 38 start-page: 2089 year: 1999 publication-title: Jpn. J. Appl. Phys., Part 2 – volume: 172 start-page: 145 year: 2007 publication-title: J. Power Sources – volume: 69 start-page: 273 year: 2015 publication-title: ECS Trans – volume: 105 start-page: 9396 year: 2001 publication-title: J. Phys. Chem. A – volume: 26 start-page: 781 year: 1981 publication-title: Electrochim. Acta – volume: 108 start-page: 4315 year: 1986 publication-title: J. Am. Chem. Soc. – volume: 269 start-page: 621 year: 2014 publication-title: J. Power Sources – volume: 377 start-page: 249 year: 1994 publication-title: J. Electroanal. Chem. – volume: 45 start-page: 117 year: 2002 publication-title: Surf. Sci. Rep. – volume: 108 start-page: 7893 year: 2004 publication-title: J. Phys. Chem. B – volume: 116 start-page: 1681 year: 1969 publication-title: J. Electrochem. Soc. – volume: 165 start-page: 667 year: 2007 publication-title: J. Power Sources – volume: 6 start-page: 1091 year: 2013 publication-title: ChemSusChem – volume: 69 start-page: 1596 year: 1991 publication-title: J. Appl. Phys. – volume: 84 start-page: 511 year: 2016 publication-title: Electrochemistry – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 10 start-page: 21 year: 1983 publication-title: Hydrometallurgy – volume: 5 year: 2015 publication-title: Sci. Rep. – volume: 25 start-page: 433 year: 2019 publication-title: ECS Trans. – volume: 486 start-page: 43 year: 2012 publication-title: Nature – volume: 155 start-page: 95 year: 2006 publication-title: J. Power Sources – volume: 5 start-page: 354 year: 2014 publication-title: Electrocatalysis – volume: 224 start-page: 220 year: 2017 publication-title: Electrochim. Acta – volume: 159 start-page: B531 year: 2012 publication-title: J. Electrochem. Soc. – volume: 41 start-page: 985 year: 2019 publication-title: ECS Trans. – volume: 46 start-page: 875 year: 1968 publication-title: Can. J. Chem. – volume: 56 start-page: 9 year: 2005 publication-title: Appl. Catal. B Environ. – volume: 46 year: 2021 publication-title: Int. J. Hydrogen Energy – start-page: 231 year: 2014 – volume: 76 year: 2007 publication-title: Phys. Rev. B – start-page: 853 year: 2002 – volume: 495 start-page: 134 year: 2001 publication-title: J. Electroanal. Chem. – volume: 2 year: 2016 publication-title: npj Comput. Mater. – volume: 49 start-page: 331 year: 1995 publication-title: Prog. Surf. Sci. – start-page: 133 year: 2014 – volume: 37 start-page: 499 year: 1972 publication-title: Collect. Czech. Chem. Commun. – volume: 339 start-page: 123 year: 1992 publication-title: J. Electroanal. Chem. – volume: 22 start-page: 1 issue: 1 year: 1991 publication-title: J. Raman Spectrosc. – start-page: 820 year: 2018 – volume: 127 start-page: 127 year: 2004 publication-title: J. Power Sources – volume: 32 start-page: 129 year: 1987 publication-title: Electrochim. Acta – volume: 49 start-page: 1451 year: 2004 publication-title: Electrochim. Acta – volume: 589 start-page: 120 year: 2006 publication-title: J. Electroanal. Chem. – volume: 99 start-page: 3411 year: 1995 publication-title: J. Phys. Chem. – ident: e_1_2_8_38_1 doi: 10.1016/0013-4686(77)85032-9 – ident: e_1_2_8_20_1 doi: 10.1002/cphc.201500527 – ident: e_1_2_8_17_1 doi: 10.1016/j.elspec.2017.06.005 – ident: e_1_2_8_74_1 doi: 10.1021/jp0499171 – ident: e_1_2_8_66_1 doi: 10.1016/0022-0728(94)03467-2 – ident: e_1_2_8_68_1 doi: 10.1016/S0022-0728(97)00303-3 – ident: e_1_2_8_57_1 doi: 10.1149/1.1888367 – ident: e_1_2_8_47_1 doi: 10.1016/j.ijhydene.2021.01.058 – ident: e_1_2_8_60_1 doi: 10.1021/ja00275a013 – ident: e_1_2_8_67_1 doi: 10.1149/1.1837646 – ident: e_1_2_8_56_1 doi: 10.1016/0013-4686(87)87021-4 – ident: e_1_2_8_39_1 doi: 10.1016/j.jpowsour.2014.07.039 – ident: e_1_2_8_28_1 doi: 10.1016/j.jpowsour.2018.04.084 – ident: e_1_2_8_65_1 doi: 10.1021/j100011a001 – volume-title: Atlas of Electrochemical Equilibria in Aqueous Solutions year: 1966 ident: e_1_2_8_14_1 – ident: e_1_2_8_44_1 doi: 10.1149/1.3635632 – ident: e_1_2_8_45_1 doi: 10.1002/cssc.201200847 – ident: e_1_2_8_8_1 doi: 10.1038/nature11115 – ident: e_1_2_8_63_1 doi: 10.1103/PhysRevB.76.155421 – ident: e_1_2_8_64_1 doi: 10.1063/1.347255 – ident: e_1_2_8_35_1 doi: 10.1016/S0022-0728(73)80307-9 – ident: e_1_2_8_50_1 doi: 10.1016/j.jelechem.2006.01.022 – ident: e_1_2_8_25_1 doi: 10.1016/j.apcatb.2004.06.021 – ident: e_1_2_8_3_1 doi: 10.1016/j.jpowsour.2006.01.030 – ident: e_1_2_8_61_1 doi: 10.1007/s11244-013-0177-0 – ident: e_1_2_8_11_1 doi: 10.1016/j.jpowsour.2003.12.035 – ident: e_1_2_8_34_1 doi: 10.1016/S0022-0728(72)80509-6 – volume: 49 start-page: 1451 year: 2004 ident: e_1_2_8_15_1 publication-title: Electrochim. Acta – ident: e_1_2_8_31_1 doi: 10.1149/1.2411659 – ident: e_1_2_8_33_1 doi: 10.1016/S0022-0728(72)80509-6 – ident: e_1_2_8_71_1 doi: 10.1016/0304-386X(83)90074-9 – ident: e_1_2_8_41_1 doi: 10.1038/ncomms12440 – ident: e_1_2_8_42_1 doi: 10.1039/b923956a – ident: e_1_2_8_69_1 doi: 10.1016/0079-6816(95)00040-6 – ident: e_1_2_8_5_1 doi: 10.1016/j.jpowsour.2006.12.051 – ident: e_1_2_8_58_1 doi: 10.1038/npjcompumats.2015.11 – ident: e_1_2_8_16_1 doi: 10.1016/j.jelechem.2007.03.023 – start-page: 231 volume-title: Rotating Electrode Methods Oxygen Reduction Electrocatalysts year: 2014 ident: e_1_2_8_23_1 doi: 10.1016/B978-0-444-63278-4.00007-0 – ident: e_1_2_8_4_1 doi: 10.1016/j.renene.2005.09.003 – ident: e_1_2_8_40_1 doi: 10.1002/jrs.1250220102 – ident: e_1_2_8_53_1 doi: 10.1021/jp037593v – ident: e_1_2_8_18_1 doi: 10.1002/smll.201905159 – ident: e_1_2_8_21_1 doi: 10.1016/B978-0-12-409547-2.13333-5 – ident: e_1_2_8_30_1 doi: 10.1139/v68-149 – ident: e_1_2_8_43_1 doi: 10.1002/anie.201609317 – ident: e_1_2_8_48_1 doi: 10.1063/1.459319 – ident: e_1_2_8_75_1 doi: 10.1021/jp9533382 – ident: e_1_2_8_62_1 doi: 10.1143/JJAP.38.2089 – ident: e_1_2_8_36_1 doi: 10.1016/0022-0728(92)80448-D – ident: e_1_2_8_10_1 doi: 10.1016/j.carbon.2004.09.004 – ident: e_1_2_8_13_1 doi: 10.1007/s12678-014-0201-6 – ident: e_1_2_8_19_1 doi: 10.1039/C4CP03111C – ident: e_1_2_8_46_1 doi: 10.5796/electrochemistry.84.511 – ident: e_1_2_8_49_1 doi: 10.1016/0022-0728(92)80584-Q – ident: e_1_2_8_29_1 doi: 10.1246/bcsj.38.1330 – ident: e_1_2_8_55_1 doi: 10.1016/0013-4686(81)90037-2 – ident: e_1_2_8_70_1 doi: 10.1016/j.electacta.2016.12.028 – ident: e_1_2_8_51_1 doi: 10.1149/06917.0273ecst – ident: e_1_2_8_27_1 doi: 10.1007/s12678-010-0036-8 – ident: e_1_2_8_12_1 doi: 10.1007/s12678-010-0036-8 – ident: e_1_2_8_9_1 doi: 10.1016/j.jpowsour.2003.09.033 – ident: e_1_2_8_7_1 doi: 10.1016/j.jpowsour.2007.07.048 – ident: e_1_2_8_72_1 doi: 10.1149/1.3210593 – start-page: 853 volume-title: Miner. Eng. year: 2002 ident: e_1_2_8_73_1 – ident: e_1_2_8_54_1 doi: 10.1038/srep13801 – ident: e_1_2_8_26_1 doi: 10.1016/S0167-5729(01)00022-X – ident: e_1_2_8_2_1 doi: 10.1016/S0378-7753(01)00807-2 – start-page: 133 volume-title: Rotating Electrode Methods Oxygen Reduction Electrocatalysts year: 2014 ident: e_1_2_8_22_1 doi: 10.1016/B978-0-444-63278-4.00004-5 – ident: e_1_2_8_37_1 doi: 10.1007/s12678-014-0189-y – ident: e_1_2_8_6_1 doi: 10.1149/1.2220925 – ident: e_1_2_8_52_1 doi: 10.1149/2.088205jes – ident: e_1_2_8_24_1 doi: 10.1016/S0022-0728(00)00407-1 – ident: e_1_2_8_59_1 doi: 10.1021/jp004368u – ident: e_1_2_8_32_1 doi: 10.1135/cccc19720499 |
SSID | ssj0002810041 |
Score | 2.220176 |
Snippet | To obtain fundamental insights into the performance of polymer electrolyte membrane (PEM) fuel cells, we perform a parallel investigation of the influence of... Abstract To obtain fundamental insights into the performance of polymer electrolyte membrane (PEM) fuel cells, we perform a parallel investigation of the... |
SourceID | doaj proquest crossref wiley |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Alternative energy Carbon Electrodes Electrolytes Fuel cells Hydrogen Influence Oxidation Single crystals Sulfuric acid |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUQl3JBpQWxFJAPSD1FJLaJkyMgEKpKLwWJm2U7tgTKJqvsrkRu_RH8Qs78CGacD5YD4lJpD7uRI4_i2Zk3E_s9Qo5MmlnUKYpskbBIWJ1GhuUy8sI4YzLuTTjFf_0nvboVv-5O7lakvnBPWEcP3D24Y28TIyFPcy8h2Tiee85NAC74AksXGH0h560UUw-hZYRMaMnA0hizY8g0SDPEkgCK32WhQNb_DmGu4tSQaC6_ks0eIdLTzrItsuaqb-TL-SDM9p28wNLS-0FchNaeznBDW7Wc0vmy8RqvPd53WkkUPgDx6OztfADeoOmsLtupa2gvg1O2C0enbgq1c-WoX7qSYkv_-d8TKs5AeqPdCeE53h1aPm1ogpct1SFijlPj2-g5TtvNYZsW8CcSf7s3M_tJC5ipboJ99WMLnkwbJJINdgOWDV-2ye3lxc35VdSLNkRWpCyPMm1xT-AJszJDmXVpPYCCItMikdzHmTYeQJcVUA0XjplM55p5BmEXcIKD-oXvkPWqrtwuodrblFtdmFQaqCJzI0yWyzwWRnJZWDch0bCIyvaM5iisUaqOi5kpXHQ1LvqE_BzHzzoujw9HnqFPjKOQgztcAM9UvWeqzzxzQvYHj1J9YJgrHucQ9gSP2YSw4GWfmKIufv89HX_t_Q_DfpANhoc4Qi9pn6wvmqU7AGi1MIfhX_QKtNklPQ priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Nb9QwELVge4AL4lMsFOQDEqeoiZ3Gzgm11VYVggoBlXqLbMdGlbJJmuxKzY0fwS_kzI9gxnGy9ABIe8hGTsbKTMbPE_s9Qt7oTBrUKYpMmbAoNSqLNMtF5FJttZbcab-L_-N5dnaRvr88vAwFtz4sq5xyok_UZWOwRn7A4xziJeUxe9deR6gahV9Xg4TGXbIHKVjKBdk7Xp1_-jxXWZhERrRkYmuM2QGMOEg3xBIPjm-NRp60_xbS_BOv-gHn9CF5EJAiPRpd-4jcsfVjcu9kEmh7Qn6Bi-nVJDJCG0dbXNhWb9e033ZO4bmbq1EzicIPoB5td_sE8AJF26Ya1rajQQ6nGjaWru0a5tC1pW5rK4ql_Z_ff6DyDAxzdNwp3OPVvvQz-GJ4NVDlM-dsGp9bj2ZHG6YbAIciAbjddTMYLcFS0_n-NTcDRDTtkFDW9xswrT94Si5OV19PzqIg3hCZNGN5JJXBtYGHzAiJcuvCOAAHpVRpIriLpdIOwJdJYVZcWqalyhVzDNIv4AUL8xj-jCzqprbPCVXOZNyoUmdCw2wy16mWucjjVAsuSmOXJJqcWJjAbI4CG1UxcjKzAp1ezE5fkrdz-3bk9Phry2OMibkVcnH7E033rQivduFMogUgSe4EwCHLc8e59tAaP7Gqckn2p4gqQoLoi104LwnzUfafrhSrD1-O5n8v_n3Pl-Q-w20avlq0TxabbmtfAXja6NfhDfkNJUsfNQ priority: 102 providerName: ProQuest |
Title | The influence of platinum surface oxidation on the performance of a polymer electrolyte membrane fuel cell—probing changes of catalytically active surface sites on a polycrystalline platinum electrode for the oxygen reduction reaction |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Felsa.202100049 https://www.proquest.com/docview/3090534302 https://doaj.org/article/fc1b72503f7241e39f33b001398231ad |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZtcmgvpU-6SbroUOjJxCsplnzcTXcJpQ2hbSA3I8lSCezai70L8a0_Ir-w5_6IzsiPzR5KoWDwA8kjPNLo01jzDSHvTaIs5imKbD5hkbA6iQxLZeSFccYo7k2I4v9ymVxci083ZzcPovhbfojB4YYjI9hrHODa1Kc70lCYOpA3iE0Cyn1MDjG-Fjf1MXE1eFmYQkY0XHWxJFURkq31zI0xO91_xd7MFAj891DnQ-waJp_Fc_KsQ4102qr5BXnkipfkyXmfrO0V-Q3qprd9whFaerrGTW7FdkXrbeU1Pru7bfMnUTgA9tH1LmYAK2i6LpfNylW0S42zbDaOrtwKPlLhqN-6JUU3_6-f95iFBqY82kYN11g7uIGa4BhfNlQHKzqIxj_UNYptZdiqAUyKZOBu18xOaA6Syiq0r7xroHfTCsllQ7sB34aL1-R6Mf9-fhF1iRwiKxKWRkpb3Cd4xqxUmHpdWg9AIVdaTCT3sdLGAxCzAlbIuWNG6VQzz8AUA3ZwsKbhb8hBURbuLaHa24RbnZtEGlhZpkYYlco0FkZymVs3IlGvxMx2LOeYbGOZtfzMLEOlZ4PSR-TDUH7d8nv8teQM-8RQCnm5w4Oy-pF1wzzzdmIkoEruJUAjx1PPuQkwG3-36nxETvoelXXGos54nIIpFDxmI8JCL_tHU7L552_T4e7ofyodk6cMAzmCP-mEHGyqrXsH8GpjxmEEjcnhdPZxtoDzbH559XUcnBV_AFIcJ0c |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELbK9lAuiF-xUMAHEKeoiZ3m54BQW7ba0u0KQSv1FmzHriplk5DsiubGQ_AcPBRnHoIZ52fpAThVyiGJnIylGc98HtvzEfJSBpFCniJHpR5zfCUCR7I4dIwvtZQRN9Ke4j-ZB9Mz__357vkG-dGfhcFtlb1PtI46LRTmyHe4G4O9-Nxlb8svDrJG4epqT6HRmsWxbr7ClK1-c_QO9PuKscPJ6cHU6VgFHOUHLHYioXDT2i5TYYQ84KEyELXSSPheyI0bCWkAFSgfpmupZjISsWCGgV-AQKYBYHP47y2y6fPAZSOyuT-Zf_g4ZHVYhBXYvL46pMt2IMJheSPmWTB-LfpZkoBryPZPfGwD3OFdcqdDpnSvNaV7ZEPn98nWQU8I94D8ApOilz2pCS0MLXEjXb5a0HpVGYHvri5bjiYKF0BLWq7PJeAHgpZF1ix0RTv6naxZarrQC5iz55qalc4oLiX8_PYdmW4grNL2ZHKNX9tUU2OT71lDhfXUg2jUU41iWxmqagD3YsFxve5mJzQFSUVl-1dcNTCCaIUFbG2_AUPbm4fk7EbU-oiM8iLXjwkVRgVciVQGoYTZayx9GcVh7Poy5GGq9Jg4vRIT1VVSR0KPLGlrQLMElZ4MSh-T10P7sq0h8teW-2gTQyus_W1fFNVF0rmSxChPhoBcuQkBfmkeG86lhfK4pCvSMdnuLSrpHFKdrIfPmDBrZf_pSjKZfdobnp78-58vyNb09GSWzI7mx0_JbYZHRGymapuMltVKPwPgtpTPu9FCyeebHqC_AXeZWZA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELagSMCl4lcsFPABiVPUXduNnWMpXRUoVSWo1JtlOzaqlE2i7K7U3HgInpBzH4IZ52e7B4SElEMS2RkrY48_jz3fEPLOpsphnqLE5TOWCGfSxLJMJkFYb63iwcYo_q9n6cmF-Hx5cHkrir_jhxgdbjgyor3GAV7nYX9DGgpTB_IGsVlEuXfJPdzxw0NdTJyPXhamkBENV10szVSCZGsDc-OU7W9_YmtmigT-W6jzNnaNk8_8EdntUSM97NT8mNzx5RPy4GhI1vaU3IC66dWQcIRWgdZ4yK1cL-hy3QSD766vuvxJFC6AfbTexAxgBUPrqmgXvqF9apyiXXm68Av4SaWnYe0Lim7-3z9_YRYamPJoFzW8xNrRDdRGx3jRUhOt6Cgad6iXKLaT4ZoWMCmSgftNM3uhOUiqmti-6rqF3k0bJJeN7QZ8G2-ekYv58fejk6RP5JA4kbIsUcbhOcED5qTC1OvSBQAKuTJiJnmYKmMDADEnYIWce2aVyQwLDEwxYAcPaxr-nOyUVelfEGqCS7kzuU2lhZVlZoVVmcymwkouc-cnJBmUqF3Pco7JNgrd8TMzjUrXo9In5P1Yvu74Pf5a8gP2ibEU8nLHF1XzQ_fDXAc3sxJQJQ8SoJHnWeDcRpiN260mn5C9oUfp3lgsNZ9mYAoFn7IJYbGX_aMp-vj02-H49PJ_Kr0l988_zvXpp7Mvr8hDhjEd0bW0R3ZWzdq_BqS1sm_iYPoD87Il5A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+influence+of+platinum+surface+oxidation+on+the+performance+of+a+polymer+electrolyte+membrane+fuel+cell%E2%80%94probing+changes+of+catalytically+active+surface+sites+on+a+polycrystalline+platinum+electrode+for+the+oxygen+reduction+reaction&rft.jtitle=Electrochemical+science+advances&rft.au=Eckl%2C+Maximilian+Johann&rft.au=Mattausch%2C+Yannick&rft.au=Jung%2C+Christoph+Karsten&rft.au=Kirsch%2C+Sebastian&rft.date=2022-06-01&rft.issn=2698-5977&rft.eissn=2698-5977&rft.volume=2&rft.issue=3&rft_id=info:doi/10.1002%2Felsa.202100049&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_elsa_202100049 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2698-5977&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2698-5977&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2698-5977&client=summon |