Dynamic redistribution of STAT1 protein in IFN signaling visualized by GFP fusion proteins
STAT proteins (signal transducers and activators of transcription) are a family of transcription factors which are used by many cytokines and cell growth factors for initiating gene expression. They are activated by tyrosine phosphorylation through the cytoplasmic domain of stimulated receptors. Upo...
Saved in:
Published in | European journal of biochemistry Vol. 260; no. 1; pp. 137 - 144 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Science Ltd
01.02.1999
|
Subjects | |
Online Access | Get full text |
ISSN | 0014-2956 1432-1033 |
DOI | 10.1046/j.1432-1327.1999.00149.x |
Cover
Abstract | STAT proteins (signal transducers and activators of transcription) are a family of transcription factors which are used by many cytokines and cell growth factors for initiating gene expression. They are activated by tyrosine phosphorylation through the cytoplasmic domain of stimulated receptors. Upon phosphorylation STAT proteins dimerize, translocate to the nucleus and activate transcription by binding to specific recognition sites. Different cytokines activate different subsets of STATs and other signaling proteins.
We have made use of green fluoresencent protein (GFP) fusion proteins to visualize the subcellular localization and trafficking of STAT1, STAT2 and p48 during interferon (IFN) stimulation and have analysed in detail STAT1‐GFP trafficking in living cells. Analysis of GFP fusion proteins allowed the determination of time kinetics of subcellular trafficking in individual living cells. STAT1‐GFP is indistinguishable from its wild‐type protein displaying strong activity as transcriptional activator as well as the same time kinetics of transport to the nucleus and retreat to the cytoplasm. After prolonged exposure to IFN, STAT1‐GFP is no longer retained in the nucleus and relocation to the cytoplasm is observed. Restimulation with the same type of IFN does not lead to repeated nuclear translocation of STAT1‐GFP. STAT1 is not subject of inhibition, as restimulation with another type of IFN allows immediate reuse of previously activated STAT1‐GFP. However, restimulation with the same type of IFN can be achieved when the primary stimulus is removed after a short induction period. This method of visualizing signal transduction reveals a considerable inhomogeneity with respect to the extent of STAT1‐GFP shuttling within a clonal cell population, indicating that competence for full‐blasted IFN response is restricted to a cellular subpopulation whereas other cells respond incompletely, retarded or not at all. |
---|---|
AbstractList | STAT proteins (signal transducers and activators of transcription) are a family of transcription factors which are used by many cytokines and cell growth factors for initiating gene expression. They are activated by tyrosine phosphorylation through the cytoplasmic domain of stimulated receptors. Upon phosphorylation STAT proteins dimerize, translocate to the nucleus and activate transcription by binding to specific recognition sites. Different cytokines activate different subsets of STATs and other signaling proteins. We have made use of green fluoresencent protein (GFP) fusion proteins to visualize the subcellular localization and trafficking of STAT1, STAT2 and p48 during interferon (IFN) stimulation and have analysed in detail STAT1-GFP trafficking in living cells. Analysis of GFP fusion proteins allowed the determination of time kinetics of subcellular trafficking in individual living cells. STAT1-GFP is indistinguishable from its wild-type protein displaying strong activity as transcriptional activator as well as the same time kinetics of transport to the nucleus and retreat to the cytoplasm. After prolonged exposure to IFN, STAT1-GFP is no longer retained in the nucleus and relocation to the cytoplasm is observed. Restimulation with the same type of IFN does not lead to repeated nuclear translocation of STAT1-GFP. STAT1 is not subject of inhibition, as restimulation with another type of IFN allows immediate reuse of previously activated STAT1-GFP. However, restimulation with the same type of IFN can be achieved when the primary stimulus is removed after a short induction period. This method of visualizing signal transduction reveals a considerable inhomogeneity with respect to the extent of STAT1-GFP shuttling within a clonal cell population, indicating that competence for full-blasted IFN response is restricted to a cellular subpopulation whereas other cells respond incompletely, retarded or not at all.STAT proteins (signal transducers and activators of transcription) are a family of transcription factors which are used by many cytokines and cell growth factors for initiating gene expression. They are activated by tyrosine phosphorylation through the cytoplasmic domain of stimulated receptors. Upon phosphorylation STAT proteins dimerize, translocate to the nucleus and activate transcription by binding to specific recognition sites. Different cytokines activate different subsets of STATs and other signaling proteins. We have made use of green fluoresencent protein (GFP) fusion proteins to visualize the subcellular localization and trafficking of STAT1, STAT2 and p48 during interferon (IFN) stimulation and have analysed in detail STAT1-GFP trafficking in living cells. Analysis of GFP fusion proteins allowed the determination of time kinetics of subcellular trafficking in individual living cells. STAT1-GFP is indistinguishable from its wild-type protein displaying strong activity as transcriptional activator as well as the same time kinetics of transport to the nucleus and retreat to the cytoplasm. After prolonged exposure to IFN, STAT1-GFP is no longer retained in the nucleus and relocation to the cytoplasm is observed. Restimulation with the same type of IFN does not lead to repeated nuclear translocation of STAT1-GFP. STAT1 is not subject of inhibition, as restimulation with another type of IFN allows immediate reuse of previously activated STAT1-GFP. However, restimulation with the same type of IFN can be achieved when the primary stimulus is removed after a short induction period. This method of visualizing signal transduction reveals a considerable inhomogeneity with respect to the extent of STAT1-GFP shuttling within a clonal cell population, indicating that competence for full-blasted IFN response is restricted to a cellular subpopulation whereas other cells respond incompletely, retarded or not at all. STAT proteins (signal transducers and activators of transcription) are a family of transcription factors which are used by many cytokines and cell growth factors for initiating gene expression. They are activated by tyrosine phosphorylation through the cytoplasmic domain of stimulated receptors. Upon phosphorylation STAT proteins dimerize, translocate to the nucleus and activate transcription by binding to specific recognition sites. Different cytokines activate different subsets of STATs and other signaling proteins. We have made use of green fluoresencent protein (GFP) fusion proteins to visualize the subcellular localization and trafficking of STAT1, STAT2 and p48 during interferon (IFN) stimulation and have analysed in detail STAT1‐GFP trafficking in living cells. Analysis of GFP fusion proteins allowed the determination of time kinetics of subcellular trafficking in individual living cells. STAT1‐GFP is indistinguishable from its wild‐type protein displaying strong activity as transcriptional activator as well as the same time kinetics of transport to the nucleus and retreat to the cytoplasm. After prolonged exposure to IFN, STAT1‐GFP is no longer retained in the nucleus and relocation to the cytoplasm is observed. Restimulation with the same type of IFN does not lead to repeated nuclear translocation of STAT1‐GFP. STAT1 is not subject of inhibition, as restimulation with another type of IFN allows immediate reuse of previously activated STAT1‐GFP. However, restimulation with the same type of IFN can be achieved when the primary stimulus is removed after a short induction period. This method of visualizing signal transduction reveals a considerable inhomogeneity with respect to the extent of STAT1‐GFP shuttling within a clonal cell population, indicating that competence for full‐blasted IFN response is restricted to a cellular subpopulation whereas other cells respond incompletely, retarded or not at all. STAT proteins (signal transducers and activators of transcription) are a family of transcription factors which are used by many cytokines and cell growth factors for initiating gene expression. They are activated by tyrosine phosphorylation through the cytoplasmic domain of stimulated receptors. Upon phosphorylation STAT proteins dimerize, translocate to the nucleus and activate transcription by binding to specific recognition sites. Different cytokines activate different subsets of STATs and other signaling proteins. We have made use of green fluoresencent protein (GFP) fusion proteins to visualize the subcellular localization and trafficking of STAT1, STAT2 and p48 during interferon (IFN) stimulation and have analysed in detail STAT1-GFP trafficking in living cells. Analysis of GFP fusion proteins allowed the determination of time kinetics of subcellular trafficking in individual living cells. STAT1-GFP is indistinguishable from its wild-type protein displaying strong activity as transcriptional activator as well as the same time kinetics of transport to the nucleus and retreat to the cytoplasm. After prolonged exposure to IFN, STAT1-GFP is no longer retained in the nucleus and relocation to the cytoplasm is observed. Restimulation with the same type of IFN does not lead to repeated nuclear translocation of STAT1-GFP. STAT1 is not subject of inhibition, as restimulation with another type of IFN allows immediate reuse of previously activated STAT1-GFP. However, restimulation with the same type of IFN can be achieved when the primary stimulus is removed after a short induction period. This method of visualizing signal transduction reveals a considerable inhomogeneity with respect to the extent of STAT1-GFP shuttling within a clonal cell population, indicating that competence for full-blasted IFN response is restricted to a cellular subpopulation whereas other cells respond incompletely, retarded or not at all. |
Author | Köster, Mario Hauser, Hansjörg |
Author_xml | – sequence: 1 givenname: Mario surname: Köster fullname: Köster, Mario – sequence: 2 givenname: Hansjörg surname: Hauser fullname: Hauser, Hansjörg |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/10091593$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUtLAzEUhYMoWqt_QbJyN2Me82gWClqtFkQF68ZNSDI3kjKd0cmMWn-9GVsR3ChcyCX5zrnknl20WdUVIIQpiSlJsqN5TBPOIspZHlMhREwITUT8voEGqwfC-SYa9LcRE2m2g3a9nxNCMpHl22iHEiJoKvgAPZ4vK7VwBjdQON82TnetqytcW3w_O51R_NzULbgKh5pObrB3T5UqXfWEX53vQvcBBdZLfDm5w7bzvXSt8Htoy6rSw_76HKKHycVsfBVd315Ox6fXkUkyJqIcwFiT8kwVjBapVaNMkRG1GTegmc1zoZlhvABCNagCwGpRJCrVSpNc5YwP0eHKNwx-6cC3cuG8gbJUFdSdl-HPSSjyJ0jzhCcj0jserMFOL6CQz41bqGYpv9cWgJMVYJra-wasNK5V_eLaRrkygLLPSc5lH4fsc5J9TvIrJ_keDEa_DH5m_Ck9XknfXAnLf-vk5OLsPnT8Ez2Tqww |
CitedBy_id | crossref_primary_10_1111_j_1742_4658_2006_05626_x crossref_primary_10_1038_ncb957 crossref_primary_10_3390_v10040196 crossref_primary_10_1038_sj_onc_1203522 crossref_primary_10_1073_pnas_0237333100 crossref_primary_10_1186_1743_422X_7_265 crossref_primary_10_1038_nri1885 crossref_primary_10_1016_j_jaci_2007_01_004 crossref_primary_10_1038_sj_cr_7310015 crossref_primary_10_1002_cyto_a_22057 crossref_primary_10_1247_csf_21052 crossref_primary_10_1073_pnas_190318397 crossref_primary_10_1095_biolreprod_104_029405 crossref_primary_10_1111_j_1745_7270_2008_00480_x crossref_primary_10_1016_S0014_4827_03_00100_9 crossref_primary_10_1186_1743_422X_8_351 crossref_primary_10_1128_JVI_02465_06 crossref_primary_10_1038_srep09045 crossref_primary_10_1089_10799900050044769 crossref_primary_10_1038_s41388_023_02767_7 crossref_primary_10_1371_journal_ppat_1010533 crossref_primary_10_1016_j_copbio_2004_11_002 crossref_primary_10_1016_j_cytogfr_2007_06_021 crossref_primary_10_1109_TCBB_2015_2443784 crossref_primary_10_1074_jbc_M910105199 crossref_primary_10_4161_jkst_27080 crossref_primary_10_1042_bse0450109 crossref_primary_10_4049_jimmunol_168_9_4567 crossref_primary_10_1016_S0014_5793_02_03842_5 crossref_primary_10_1074_jbc_M008821200 crossref_primary_10_1186_1471_2105_14_41 crossref_primary_10_1016_j_micinf_2006_02_031 crossref_primary_10_1038_icb_2010_69 crossref_primary_10_1089_jir_2023_0039 crossref_primary_10_1242_jcs_02822 crossref_primary_10_1186_s13045_021_01214_y crossref_primary_10_1189_jlb_0603252 crossref_primary_10_1126_scisignal_adf5494 crossref_primary_10_1111_cmi_12887 crossref_primary_10_1242_jcs_017160 crossref_primary_10_1093_bioinformatics_btp619 crossref_primary_10_1016_j_semcancer_2022_08_003 crossref_primary_10_1016_S0014_5793_03_00411_3 crossref_primary_10_1046_j_1432_1327_1999_00719_x crossref_primary_10_1046_j_1365_2443_2002_00575_x crossref_primary_10_1126_stke_2003_195_re13 crossref_primary_10_1016_j_cellsig_2008_10_006 crossref_primary_10_1128_JVI_00622_17 crossref_primary_10_1093_intimm_dxz061 |
Cites_doi | 10.1073/pnas.91.26.12501 10.1038/387523a0 10.1046/j.1365-2362.1996.103248.x 10.1038/43206 10.1016/S0968-0004(00)89099-4 10.1016/0378-1119(88)90023-6 10.1002/j.1460-2075.1991.tb08026.x 10.1073/pnas.93.10.4845 10.1016/0042-6822(73)90341-3 10.1016/0955-0674(94)90035-3 10.1126/science.8197455 10.1073/pnas.89.16.7836 10.1002/j.1460-2075.1996.tb01016.x 10.1038/43219 10.1042/bj3350147 10.1002/j.1460-2075.1993.tb06106.x 10.1093/emboj/16.23.7067 10.1128/MCB.11.8.4189 10.1038/43213 10.1126/science.273.5282.1717 10.1016/0092-8674(94)90357-3 10.1016/S0168-9525(00)89053-8 10.1099/0022-1317-17-1-107 10.1074/jbc.271.10.5790 10.1073/pnas.82.23.7870 10.1128/MCB.13.12.7515 10.1073/pnas.89.16.7840 10.1002/j.1460-2075.1989.tb03444.x 10.1016/0378-1119(94)90186-4 10.1101/gad.2.4.383 10.1126/science.1281555 10.1126/science.7690989 10.1073/pnas.89.12.5547 10.1016/0378-1119(88)90585-9 |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TM 7X8 |
DOI | 10.1046/j.1432-1327.1999.00149.x |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Nucleic Acids Abstracts CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1432-1033 |
EndPage | 144 |
ExternalDocumentID | 10091593 10_1046_j_1432_1327_1999_00149_x FEBS149 |
Genre | article Journal Article |
GroupedDBID | -DZ -~X .55 .GA .GJ .Y3 10A 1OC 24P 29G 31~ 36B 3O- 4.4 51W 51X 52N 52O 52P 52R 52S 52T 52W 52X 53G 5GY 5HH 5LA 5RE 66C 7PT 8-1 8-4 8-5 930 A01 A03 AAEVG AAHHS AAZKR ABDBF ABDPE ABEFU ABJNI ACCFJ ACFBH ACGFS ACMXC ACNCT ACUHS ACXQS ADBBV ADIZJ ADZOD AEEZP AEIMD AEQDE AEUQT AFBPY AFPWT AFZJQ AI. AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR BAWUL BY8 C45 CAG CO8 COF CS3 D-7 D-F DIK E3Z EAD EAP EAS EAU EBB EBC EBD EBS EBX EJD EMB EMK EMOBN EST ESX EX3 F00 F01 F04 F5P G-S GODZA GX1 HZI IH2 IHE IPNFZ L7B LH4 LP6 LP7 LW6 MVM O9- OBS OHT OVD P4B P4D QB0 RIG ROL SDH SUPJJ SV3 TEORI TR2 TUS UB1 VH1 WH7 WOW WQJ WRC WXI X7M XG1 Y6R YFH YSK YUY ZGI ZXP AAYXX AETEA CITATION CGR CUY CVF ECM EIF NPM PKN 1OB 7TM AAMMB AEFGJ AGXDD AIDQK AIDYY 7X8 |
ID | FETCH-LOGICAL-c4629-7eecfc536ad21d5fa86a081f63ceb2f779b2c23de01beadeefb9d4a5bab07a723 |
IEDL.DBID | 24P |
ISSN | 0014-2956 |
IngestDate | Fri Sep 05 03:59:27 EDT 2025 Fri Sep 05 00:02:52 EDT 2025 Wed Feb 19 02:33:29 EST 2025 Thu Apr 24 23:03:03 EDT 2025 Tue Jul 01 01:02:27 EDT 2025 Wed Jan 22 16:45:12 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4629-7eecfc536ad21d5fa86a081f63ceb2f779b2c23de01beadeefb9d4a5bab07a723 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PMID | 10091593 |
PQID | 17434802 |
PQPubID | 23462 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_69649640 proquest_miscellaneous_17434802 pubmed_primary_10091593 crossref_citationtrail_10_1046_j_1432_1327_1999_00149_x crossref_primary_10_1046_j_1432_1327_1999_00149_x wiley_primary_10_1046_j_1432_1327_1999_00149_x_FEBS149 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 1900 |
PublicationDate | February (II) 1999 |
PublicationDateYYYYMMDD | 1999-02-01 |
PublicationDate_xml | – month: 02 year: 1999 text: February (II) 1999 |
PublicationDecade | 1990 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: England |
PublicationTitle | European journal of biochemistry |
PublicationTitleAlternate | Eur J Biochem |
PublicationYear | 1999 |
Publisher | Blackwell Science Ltd |
Publisher_xml | – name: Blackwell Science Ltd |
References | 1973; 52 1991; 10 1991; 11 1995; 11 1989; 8 1996; 93 1993; 261 1998; 335 1985; 82 1996; 15 1987; 37 1995; 20 1988; 2 1994; 264 1993; 13 1993; 12 1994; 149 1977; 17 1997; 387 1992; 258 1996; 271 1988; 68 1997; 16 1988; 62 1996; 273 1994; 91 1992; 89 1996; 26 1994; 76 1989 1994; 6 e_1_2_7_5_2 e_1_2_7_4_2 e_1_2_7_3_2 e_1_2_7_2_2 e_1_2_7_9_2 e_1_2_7_8_2 e_1_2_7_7_2 e_1_2_7_6_2 e_1_2_7_19_2 e_1_2_7_18_2 e_1_2_7_16_2 e_1_2_7_15_2 e_1_2_7_14_2 e_1_2_7_13_2 e_1_2_7_12_2 e_1_2_7_11_2 e_1_2_7_10_2 e_1_2_7_26_2 e_1_2_7_27_2 e_1_2_7_28_2 e_1_2_7_29_2 e_1_2_7_25_2 e_1_2_7_30_2 e_1_2_7_23_2 e_1_2_7_31_2 e_1_2_7_22_2 e_1_2_7_32_2 e_1_2_7_21_2 e_1_2_7_33_2 e_1_2_7_20_2 e_1_2_7_34_2 e_1_2_7_35_2 e_1_2_7_36_2 e_1_2_7_37_2 Sambrook J. (e_1_2_7_17_2) 1989 Reiser W. (e_1_2_7_24_2) 1987; 37 |
References_xml | – volume: 76 start-page: 821 year: 1994 end-page: 828 article-title: Interferon activation of the transcription factor Stat91 involves dimerization through SH2‐phosphotyrosyl peptide interactions. publication-title: Cell – volume: 8 start-page: 831 year: 1989 end-page: 839 article-title: Overlapping sites for constitutive and induced DNA binding factors involved in interferon‐stimulated transcription. publication-title: EMBO J. – volume: 52 start-page: 456 year: 1973 end-page: 467 article-title: A new technique for the assay of infectivity of human Ad5 DNA. publication-title: Virology – volume: 273 start-page: 1717 year: 1996 end-page: 1719 article-title: Regulation of interferon‐γ‐activated Stat1 by the ubiquitin‐proteasome pathway. publication-title: Science – volume: 11 start-page: 219 year: 1995 end-page: 220 article-title: Identification of mammalian cell clones exhibiting highly regulated expression from inducible promoters. publication-title: Trends Genet. – volume: 82 start-page: 7870 year: 1985 end-page: 7873 article-title: Cloning of firefly luciferase cDNA and the expression of active luciferase in Escherichia coli. publication-title: Proc. Natl Acad. Sci. USA – volume: 26 start-page: 1 year: 1996 end-page: 12 article-title: The Jak‐Stat pathway: specific signal transduction from the cell membrane to the nucleus. publication-title: Eur. J. Clin. Invest. – volume: 13 start-page: 7515 year: 1993 end-page: 7521 article-title: A nuclear tyrosine phosphatase downregulates interferon‐induced gene expression. publication-title: Mol. Cell. Biol. – volume: 6 start-page: 415 year: 1994 end-page: 424 article-title: Signal transduction from the cell surface to the nucleus through the phosphorylation of transcription factors. publication-title: Curr. Opin. Cell Biol. – year: 1989 – volume: 62 start-page: 121 year: 1988 end-page: 126 article-title: Efficient transformation of mammalian cells with constructs containing a puromycin‐resistance marker. publication-title: Gene – volume: 93 start-page: 4845 year: 1996 end-page: 4850 article-title: Visualization of glucocorticoid receptor translocation and intranuclear organization in living cells with a green fluorescent protein chimera. publication-title: Proc. Natl Acad. Sci. USA – volume: 11 start-page: 4189 year: 1991 end-page: 4195 article-title: Isolation and characterization of a new mutant cell line unresponsive to alpha and beta interferons. publication-title: Mol. Cell. Biol. – volume: 89 start-page: 7836 year: 1992 end-page: 7839 article-title: Proteins of transcription factor ISGF‐3: One gene encodes the 91‐ and 84‐kDa ISGF‐3 proteins that are activated by interferon‐α. publication-title: Proc. Natl Acad. Sci. USA – volume: 258 start-page: 1808 year: 1992 end-page: 1812 article-title: Activation of transcription by IFN: Tyrosine phosphorylation of a 91‐kD DNA binding protein. publication-title: Science – volume: 89 start-page: 7840 year: 1992 end-page: 7843 article-title: The proteins of ISGF‐3, the interferon α‐induced transcriptional activator, define a gene family involved in signal transduction. publication-title: Proc. Natl Acad. Sci. USA – volume: 37 start-page: 482 year: 1987 end-page: 485 article-title: Recombinant human interferon‐beta from mammalian cell lines. publication-title: Drug Res. – volume: 335 start-page: 147 year: 1998 end-page: 157 article-title: Functional domains of Interferon Regulatory Factor 1 (IRF‐1). publication-title: Biochem. J. – volume: 2 start-page: 383 year: 1988 end-page: 393 article-title: Interferon‐induced nuclear factors that bind a shared promoter element correlate with positive and negative transcriptional control. publication-title: Genes Dev. – volume: 261 start-page: 1744 year: 1993 end-page: 1746 article-title: A single phosphotyrosine residue of Stat91 required for gene activation by interferon‐gamma. publication-title: Science – volume: 20 start-page: 448 year: 1995 end-page: 455 article-title: Understanding, improving and using green fluorescent proteins. publication-title: Trends Biochem. Sci. – volume: 264 start-page: 1415 year: 1994 end-page: 1421 article-title: Jak‐STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. publication-title: Science – volume: 89 start-page: 5547 year: 1992 end-page: 5551 article-title: Tight control of gene expression in mammalian cells by tetracycline‐responsive promoters. publication-title: Proc. Natl Acad. Sci. USA – volume: 149 start-page: 387 year: 1994 end-page: 388 article-title: A multifuctional vector family for gene expression in mammalian cells. publication-title: Gene – volume: 387 start-page: 921 year: 1997 end-page: 924 article-title: A new protein containing an SH2 domain that inhibits Jak kinases. publication-title: Nature – volume: 91 start-page: 12501 year: 1994 end-page: 12504 article-title: Wavelength mutations and posttranslational autoxidation of green fluorescent protein. publication-title: Proc. Natl Acad. Sci. USA – volume: 68 start-page: 213 year: 1988 end-page: 219 article-title: Vectors for efficient expression in mammalian fibroblastoid, myeloid and lymphoid cells via transfection or infection. publication-title: Gene – volume: 17 start-page: 107 year: 1977 end-page: 109 article-title: High interferon producing line of transformed murine cells. publication-title: J. Gen. Virol. – volume: 12 start-page: 4221 year: 1993 end-page: 4228 article-title: Complementation of a mutant cell line: central role of the 91 kDa polypeptide of ISGF3 in the interferon‐α and ‐γ signal transduction pathway. publication-title: EMBO J. – volume: 387 start-page: 924 year: 1997 end-page: 928 article-title: Structure and function of a new Stat‐induced Stat inhibitor. publication-title: Nature – volume: 16 start-page: 7067 year: 1997 end-page: 7077 article-title: Extracellular signal‐dependent nuclear import of Stat1 is mediated by nuclear pore‐targeting complex formation with NPI‐1, but not Rch1. publication-title: EMBO J. – volume: 15 start-page: 6262 year: 1996 end-page: 6268 article-title: The rapid inactivation of nuclear tyrosine phosphorylated Stat1 depends upon a protein tyrosine phosphatase. publication-title: EMBO J. – volume: 10 start-page: 927 year: 1991 end-page: 932 article-title: Cytoplasmic activation of GAF, an IFN‐gamma‐regulated DNA‐binding factor. publication-title: EMBO J. – volume: 387 start-page: 917 year: 1997 end-page: 921 article-title: A family of cytokine‐inducible inhibitors of signalling. publication-title: Nature – volume: 387 start-page: 523 year: 1997 end-page: 527 article-title: The dynamics of pre‐mRNA splicing factor in living cells. publication-title: Nature – volume: 271 start-page: 5790 year: 1996 end-page: 5794 article-title: Formation of STAT1‐STAT2 heterodimers and their role in the activation of IRF‐1 gene transcription by interferon‐α. publication-title: J. Biol. Chem. – ident: e_1_2_7_37_2 doi: 10.1073/pnas.91.26.12501 – ident: e_1_2_7_5_2 doi: 10.1038/387523a0 – ident: e_1_2_7_13_2 doi: 10.1046/j.1365-2362.1996.103248.x – ident: e_1_2_7_30_2 doi: 10.1038/43206 – ident: e_1_2_7_3_2 doi: 10.1016/S0968-0004(00)89099-4 – ident: e_1_2_7_18_2 doi: 10.1016/0378-1119(88)90023-6 – ident: e_1_2_7_26_2 doi: 10.1002/j.1460-2075.1991.tb08026.x – ident: e_1_2_7_4_2 doi: 10.1073/pnas.93.10.4845 – volume: 37 start-page: 482 year: 1987 ident: e_1_2_7_24_2 article-title: Recombinant human interferon‐beta from mammalian cell lines. publication-title: Drug Res. – ident: e_1_2_7_22_2 doi: 10.1016/0042-6822(73)90341-3 – ident: e_1_2_7_2_2 doi: 10.1016/0955-0674(94)90035-3 – ident: e_1_2_7_6_2 doi: 10.1126/science.8197455 – ident: e_1_2_7_8_2 doi: 10.1073/pnas.89.16.7836 – ident: e_1_2_7_16_2 doi: 10.1002/j.1460-2075.1996.tb01016.x – ident: e_1_2_7_32_2 doi: 10.1038/43219 – ident: e_1_2_7_36_2 doi: 10.1042/bj3350147 – ident: e_1_2_7_21_2 doi: 10.1002/j.1460-2075.1993.tb06106.x – ident: e_1_2_7_33_2 doi: 10.1093/emboj/16.23.7067 – ident: e_1_2_7_34_2 doi: 10.1128/MCB.11.8.4189 – ident: e_1_2_7_31_2 doi: 10.1038/43213 – ident: e_1_2_7_15_2 doi: 10.1126/science.273.5282.1717 – ident: e_1_2_7_12_2 doi: 10.1016/0092-8674(94)90357-3 – ident: e_1_2_7_28_2 doi: 10.1016/S0168-9525(00)89053-8 – ident: e_1_2_7_20_2 doi: 10.1099/0022-1317-17-1-107 – ident: e_1_2_7_35_2 doi: 10.1074/jbc.271.10.5790 – ident: e_1_2_7_25_2 doi: 10.1073/pnas.82.23.7870 – ident: e_1_2_7_29_2 doi: 10.1128/MCB.13.12.7515 – ident: e_1_2_7_7_2 doi: 10.1073/pnas.89.16.7840 – ident: e_1_2_7_14_2 doi: 10.1002/j.1460-2075.1989.tb03444.x – ident: e_1_2_7_19_2 doi: 10.1016/0378-1119(94)90186-4 – ident: e_1_2_7_9_2 doi: 10.1101/gad.2.4.383 – ident: e_1_2_7_10_2 doi: 10.1126/science.1281555 – volume-title: Molecular Cloning: a Laboratory Manual year: 1989 ident: e_1_2_7_17_2 – ident: e_1_2_7_11_2 doi: 10.1126/science.7690989 – ident: e_1_2_7_27_2 doi: 10.1073/pnas.89.12.5547 – ident: e_1_2_7_23_2 doi: 10.1016/0378-1119(88)90585-9 |
SSID | ssj0006967 |
Score | 1.6077387 |
Snippet | STAT proteins (signal transducers and activators of transcription) are a family of transcription factors which are used by many cytokines and cell growth... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 137 |
SubjectTerms | Animals Cell Line DNA-Binding Proteins - genetics DNA-Binding Proteins - metabolism Fluorescent Antibody Technique GFP fusion protein green fluorescent protein Green Fluorescent Proteins Humans Interferon-Stimulated Gene Factor 3 Interferon-Stimulated Gene Factor 3, gamma Subunit Interferons - pharmacology Kinetics Luminescent Proteins - genetics Mice Microscopy, Fluorescence Nuclear Proteins - genetics Nuclear Proteins - metabolism nuclear trafficking Recombinant Fusion Proteins - genetics signal transduction Signal Transduction - genetics STAT proteins Stat1 protein STAT1 Transcription Factor STAT2 Transcription Factor Trans-Activators - genetics Trans-Activators - metabolism Transcription Factors - genetics Transcription Factors - metabolism tyrosine |
Title | Dynamic redistribution of STAT1 protein in IFN signaling visualized by GFP fusion proteins |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1046%2Fj.1432-1327.1999.00149.x https://www.ncbi.nlm.nih.gov/pubmed/10091593 https://www.proquest.com/docview/17434802 https://www.proquest.com/docview/69649640 |
Volume | 260 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NSxwxFA-iB3spumvbVdvmUHobmUkyyeS4fkytoAiuIF5CPkHQWXFdUf968zIzS6UWpJBDDvMyIS8f7yXv_X4I_aDcy0qGkMWNj2XMOpoZz0hWcG2lqSqmBSQnH5_ww3N2dFFedPFPkAvT4kMsLtxgZaT9Gha4Ni0LSZ7QbWGR09goJQJS7hLsJJM70Z5cgUxboHEg7HSxK3PJW_zM2CUSnYIuqqd_4XyrpddH1V_252tzNp1H9Rr62BmSeNxqfh0t-WaAhuMmOtE3T_gnTqGd6c58gFb3elq3Ibrcbzno8R1k5C74rvA04LPJeFLghNxw1eBYftcnGAI8NOSs44erGWRgPnuHzRP-VZ_iMIe7tl5itoHO64PJ3mHWESxklnEiM-G9DbakXDtSuDLoiutoIgRObXS4gxDSEEuo83lhILDaByMd06XRJhdaEPoJLTfTxn9BOLdlIWx0T4zzTDpRFSVQqXPjKlkJyUdI9GOpbIc-DiQY1yq9gjOevBBKFGhBgRZU0oJ6HKFiIXnbInC8Q-Z7ry4VhxfeQHTjp_OZAgeMVTn59xdxorBY8hH63Or5j79G46qUdIR4Uvy7u6Pqg92zWNv8X8Et9KGFi4Awmm20fH8391-jMXRvvqVZ_gLH6Puy |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NaxQxFA_SHupF-uHH1mpzEG-jM0kmmRzX2nGr7VLoFoqXkGQSKNRZ6XbF-tf3vczMYlGhCDnkMC8T8vLxe9-EvOEy6ErHmMHFJzLhG565IFhWSOu1qyphFQYnn0zl5Fx8vigv-nJAGAvT5YdYKdzwZKT7Gg84KqTf92bJ_pRzGJUzhTF3Ke-k0O8AUK4LgOno38fE6epallp2CTRhTgykgt6tZzBx_m2k-2_VHwD0Pp5ND1K9SZ70SJKOO9ZvkUeh3SY74xak6G-39C1Nvp1Jab5NNg6Gum475OvHrgg9vcaQ3FXBKzqP9Gw2nhU0pW64bCm0o3pK0cPDYtA6_XG5wBDMX6Gh7pZ-qk9pXKKybaBYPCXn9eHsYJL1FRYyD0ukMxWCj77k0jasaMpoK2kBI0TJPUjcUSntmGe8CXnh0LM6RKcbYUtnXa6sYvwZWWvnbXhBaO7LQnmQT1wThG5UVZRYS126ptKV0nJE1LCWxvfpx7EKxpVJZnAhkxjCmUEuGOSCSVwwP0ekWFF-71JwPIBmf2CXgeVFI4htw3y5MCiBiSpn__4CNoqAlo_I847Pv_0V0FWp-YjIxPgHT8fUhx_OoLf7v4T7ZGMyOzk2x0fTLy_J4y53BPrU7JG1m-tleAXI6Ma9Tjv-Dn9__yU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NSxwxFA-iYHsRq7autjWH4m3amSSTTI5bdfxouyy4gvQS8glCOyuuW6p_ffMyM0ulFUTIIYd5mZCXl_xe3hdCHyj3spIhZPHgYxmzjmbGM5IVXFtpqoppAcHJ30b85IKdXZaXnf8TxMK0-SEWD24gGem8BgG_duFTZ5XshJzGQSkREHKX0k4y-THiyRWw_YGQEjZenMpc8jZ_ZpwSiUpB59XTWzj_N9LDq-of_PkQzqb7qF5Hax2QxMOW86_Qkm820OawiUr0zzu8j5NrZ3oz30AvDvqybpvo-2Fbgx7fQETuot4VngZ8PhlOCpwyN1w1OLbTeoTBwUNDzDr-dTWDCMx777C5w8f1GIc5vLX1FLMtdFEfTQ5Osq7AQmYZJzIT3ttgS8q1I4Urg664jhAhcGqjwh2EkIZYQp3PCwOO1T4Y6ZgujTa50ILQ12i5mTZ-G-HcloWwUT0xzjPpRFWUUEqdG1fJSkg-QKJfS2W77ONQBOOHSlZwxpMWQokCLijggkpcUL8HqFhQXrcZOJ5As9ezS8XlBRuIbvx0PlOggLEqJ49_ETcKiy0foDctn__6awRXpaQDxBPjnzwdVR99Po-9necS7qHV8WGtvp6Ovuyil23mCPCoeYuWb2_m_l3ERbfmfdrwfwDdF_5O |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+redistribution+of+STAT1+protein+in+IFN+signaling+visualized+by+GFP+fusion+proteins&rft.jtitle=European+journal+of+biochemistry&rft.au=K%C3%B6ster%2C+Mario&rft.au=Hauser%2C+Hansj%C3%B6rg&rft.date=1999-02-01&rft.issn=0014-2956&rft.eissn=1432-1033&rft.volume=260&rft.issue=1&rft.spage=137&rft.epage=144&rft_id=info:doi/10.1046%2Fj.1432-1327.1999.00149.x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1046_j_1432_1327_1999_00149_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-2956&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-2956&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-2956&client=summon |