Can we predict real‐time fMRI neurofeedback learning success from pretraining brain activity?

Neurofeedback training has been shown to influence behavior in healthy participants as well as to alleviate clinical symptoms in neurological, psychosomatic, and psychiatric patient populations. However, many real‐time fMRI neurofeedback studies report large inter‐individual differences in learning...

Full description

Saved in:
Bibliographic Details
Published inHuman brain mapping Vol. 41; no. 14; pp. 3839 - 3854
Main Authors Haugg, Amelie, Sladky, Ronald, Skouras, Stavros, McDonald, Amalia, Craddock, Cameron, Kirschner, Matthias, Herdener, Marcus, Koush, Yury, Papoutsi, Marina, Keynan, Jackob N., Hendler, Talma, Cohen Kadosh, Kathrin, Zich, Catharina, MacInnes, Jeff, Adcock, R. Alison, Dickerson, Kathryn, Chen, Nan‐Kuei, Young, Kymberly, Bodurka, Jerzy, Yao, Shuxia, Becker, Benjamin, Auer, Tibor, Schweizer, Renate, Pamplona, Gustavo, Emmert, Kirsten, Haller, Sven, Van De Ville, Dimitri, Blefari, Maria‐Laura, Kim, Dong‐Youl, Lee, Jong‐Hwan, Marins, Theo, Fukuda, Megumi, Sorger, Bettina, Kamp, Tabea, Liew, Sook‐Lei, Veit, Ralf, Spetter, Maartje, Weiskopf, Nikolaus, Scharnowski, Frank
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.10.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Neurofeedback training has been shown to influence behavior in healthy participants as well as to alleviate clinical symptoms in neurological, psychosomatic, and psychiatric patient populations. However, many real‐time fMRI neurofeedback studies report large inter‐individual differences in learning success. The factors that cause this vast variability between participants remain unknown and their identification could enhance treatment success. Thus, here we employed a meta‐analytic approach including data from 24 different neurofeedback studies with a total of 401 participants, including 140 patients, to determine whether levels of activity in target brain regions during pretraining functional localizer or no‐feedback runs (i.e., self‐regulation in the absence of neurofeedback) could predict neurofeedback learning success. We observed a slightly positive correlation between pretraining activity levels during a functional localizer run and neurofeedback learning success, but we were not able to identify common brain‐based success predictors across our diverse cohort of studies. Therefore, advances need to be made in finding robust models and measures of general neurofeedback learning, and in increasing the current study database to allow for investigating further factors that might influence neurofeedback learning. Many real‐time fMRI neurofeedback studies report large inter‐individual differences in learning success, but the factors that cause this vast variability between participants remain unknown. Here, we used a meta‐analytic approach including data from 24 different neurofeedback studies with a total of 401 participants to determine whether levels of activity in target brain regions during pretraining functional localizer or no‐feedback runs could predict neurofeedback learning success. We were not able to identify common brain‐based success predictors across our diverse cohort of studies.
AbstractList Neurofeedback training has been shown to influence behavior in healthy participants as well as to alleviate clinical symptoms in neurological, psychosomatic, and psychiatric patient populations. However, many real-time fMRI neurofeedback studies report large inter-individual differences in learning success. The factors that cause this vast variability between participants remain unknown and their identification could enhance treatment success. Thus, here we employed a meta-analytic approach including data from 24 different neurofeedback studies with a total of 401 participants, including 140 patients, to determine whether levels of activity in target brain regions during pretraining functional localizer or no-feedback runs (i.e., self-regulation in the absence of neurofeedback) could predict neurofeedback learning success. We observed a slightly positive correlation between pretraining activity levels during a functional localizer run and neurofeedback learning success, but we were not able to identify common brain-based success predictors across our diverse cohort of studies. Therefore, advances need to be made in finding robust models and measures of general neurofeedback learning, and in increasing the current study database to allow for investigating further factors that might influence neurofeedback learning.
Neurofeedback training has been shown to influence behavior in healthy participants as well as to alleviate clinical symptoms in neurological, psychosomatic, and psychiatric patient populations. However, many real‐time fMRI neurofeedback studies report large inter‐individual differences in learning success. The factors that cause this vast variability between participants remain unknown and their identification could enhance treatment success. Thus, here we employed a meta‐analytic approach including data from 24 different neurofeedback studies with a total of 401 participants, including 140 patients, to determine whether levels of activity in target brain regions during pretraining functional localizer or no‐feedback runs (i.e., self‐regulation in the absence of neurofeedback) could predict neurofeedback learning success. We observed a slightly positive correlation between pretraining activity levels during a functional localizer run and neurofeedback learning success, but we were not able to identify common brain‐based success predictors across our diverse cohort of studies. Therefore, advances need to be made in finding robust models and measures of general neurofeedback learning, and in increasing the current study database to allow for investigating further factors that might influence neurofeedback learning. Many real‐time fMRI neurofeedback studies report large inter‐individual differences in learning success, but the factors that cause this vast variability between participants remain unknown. Here, we used a meta‐analytic approach including data from 24 different neurofeedback studies with a total of 401 participants to determine whether levels of activity in target brain regions during pretraining functional localizer or no‐feedback runs could predict neurofeedback learning success. We were not able to identify common brain‐based success predictors across our diverse cohort of studies.
Neurofeedback training has been shown to influence behavior in healthy participants as well as to alleviate clinical symptoms in neurological, psychosomatic, and psychiatric patient populations. However, many real-time fMRI neurofeedback studies report large inter-individual differences in learning success. The factors that cause this vast variability between participants remain unknown and their identification could enhance treatment success. Thus, here we employed a meta-analytic approach including data from 24 different neurofeedback studies with a total of 401 participants, including 140 patients, to determine whether levels of activity in target brain regions during pretraining functional localizer or no-feedback runs (i.e., self-regulation in the absence of neurofeedback) could predict neurofeedback learning success. We observed a slightly positive correlation between pretraining activity levels during a functional localizer run and neurofeedback learning success, but we were not able to identify common brain-based success predictors across our diverse cohort of studies. Therefore, advances need to be made in finding robust models and measures of general neurofeedback learning, and in increasing the current study database to allow for investigating further factors that might influence neurofeedback learning.Neurofeedback training has been shown to influence behavior in healthy participants as well as to alleviate clinical symptoms in neurological, psychosomatic, and psychiatric patient populations. However, many real-time fMRI neurofeedback studies report large inter-individual differences in learning success. The factors that cause this vast variability between participants remain unknown and their identification could enhance treatment success. Thus, here we employed a meta-analytic approach including data from 24 different neurofeedback studies with a total of 401 participants, including 140 patients, to determine whether levels of activity in target brain regions during pretraining functional localizer or no-feedback runs (i.e., self-regulation in the absence of neurofeedback) could predict neurofeedback learning success. We observed a slightly positive correlation between pretraining activity levels during a functional localizer run and neurofeedback learning success, but we were not able to identify common brain-based success predictors across our diverse cohort of studies. Therefore, advances need to be made in finding robust models and measures of general neurofeedback learning, and in increasing the current study database to allow for investigating further factors that might influence neurofeedback learning.
Audience Academic
Author Hendler, Talma
Bodurka, Jerzy
Sorger, Bettina
Pamplona, Gustavo
Blefari, Maria‐Laura
Haugg, Amelie
Lee, Jong‐Hwan
Fukuda, Megumi
Papoutsi, Marina
Cohen Kadosh, Kathrin
Weiskopf, Nikolaus
MacInnes, Jeff
Dickerson, Kathryn
Sladky, Ronald
Kamp, Tabea
Chen, Nan‐Kuei
Kirschner, Matthias
Herdener, Marcus
Auer, Tibor
Kim, Dong‐Youl
Scharnowski, Frank
Liew, Sook‐Lei
Marins, Theo
Craddock, Cameron
Koush, Yury
Adcock, R. Alison
Schweizer, Renate
Veit, Ralf
Young, Kymberly
Spetter, Maartje
Zich, Catharina
Keynan, Jackob N.
Van De Ville, Dimitri
Haller, Sven
McDonald, Amalia
Becker, Benjamin
Skouras, Stavros
Yao, Shuxia
Emmert, Kirsten
AuthorAffiliation 27 Department Cognitive Neuroscience, Faculty of Psychology and Neuroscience Maastricht University Maastricht The Netherlands
3 Department of Biological and Medical Psychology University of Bergen Bergen Norway
14 Department of Biomedical Engineering University of Arizona Tucson Arizona
12 Institute for Learning and Brain Sciences University of Washington Seattle Washington
1 Psychiatric University Hospital Zurich University of Zurich Zürich Switzerland
7 Magnetic Resonance Research Center, Department of Radiology & Biomedical Imaging Yale University New Haven Connecticut
28 Division of Occupational Science and Occupational Therapy University of Southern California Los Angeles California
16 Laureate Institute for Brain Research Tulsa Oklahoma
6 McConnell Brain Imaging Centre Montréal Neurological Institute, McGill University Montreal Canada
18 Functional Imaging Laboratory German Primate Center Göttingen Germany
2 Faculty of Psychology University of Vienna Vienna Austria
22 Center for Neuroprosth
AuthorAffiliation_xml – name: 20 Department of Neurology University Medical Center Schleswig‐Holstein, Kiel University Kiel Germany
– name: 26 School of Fundamental Science and Engineering Waseda University Tokyo Japan
– name: 3 Department of Biological and Medical Psychology University of Bergen Bergen Norway
– name: 13 Department of Psychiatry and Behavioral Sciences Duke University Durham North Carolina
– name: 29 Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich University of Tübingen Tübingen Germany
– name: 8 UCL Huntington's Disease Centre Institute of Neurology, University College London London England
– name: 31 Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany
– name: 21 Radiology‐Department of Surgical Sciences Uppsala University Uppsala Sweden
– name: 11 Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences University of Oxford Oxford England
– name: 7 Magnetic Resonance Research Center, Department of Radiology & Biomedical Imaging Yale University New Haven Connecticut
– name: 5 Department of Diagnostic Medicine The University of Texas at Austin Dell Medical School Austin Texas
– name: 19 Hôpital and Ophtalmique Jules Gonin University of Lausanne Lausanne Switzerland
– name: 24 Department of Brain and Cognitive Engineering Korea University Seoul Korea
– name: 30 School of Psychology University of Birmingham Birmingham England
– name: 22 Center for Neuroprosthetics Ecole Polytechnique Féderale de Lausanne Lausanne Switzerland
– name: 1 Psychiatric University Hospital Zurich University of Zurich Zürich Switzerland
– name: 4 Department of Psychology University of Virginia Charlottesville Virginia
– name: 16 Laureate Institute for Brain Research Tulsa Oklahoma
– name: 6 McConnell Brain Imaging Centre Montréal Neurological Institute, McGill University Montreal Canada
– name: 14 Department of Biomedical Engineering University of Arizona Tucson Arizona
– name: 25 D'Or Institute for Research and Education (IDOR) Rio de Janeiro Brazil
– name: 17 Clinical Hospital of Chengdu the Brain Science Institute, MOE Key Laboratory for Neuroinformation University of Electronic Science and Technology of China Chengdu China
– name: 18 Functional Imaging Laboratory German Primate Center Göttingen Germany
– name: 10 School of Psychology University of Surrey Guildford England
– name: 12 Institute for Learning and Brain Sciences University of Washington Seattle Washington
– name: 27 Department Cognitive Neuroscience, Faculty of Psychology and Neuroscience Maastricht University Maastricht The Netherlands
– name: 2 Faculty of Psychology University of Vienna Vienna Austria
– name: 23 Department of Radiology and Medical Informatics, Faculty of Medicine University of Geneva Geneva Switzerland
– name: 15 Department of Psychiatry, School of Medicine University of Pittsburgh Pittsburgh Pennsylvania
– name: 9 Functional Brain Center Wohl Institute for Advanced Imaging, Tel‐Aviv Sourasky Medical Center, Tel‐Aviv University Tel Aviv Israel
– name: 28 Division of Occupational Science and Occupational Therapy University of Southern California Los Angeles California
Author_xml – sequence: 1
  givenname: Amelie
  orcidid: 0000-0002-9583-6585
  surname: Haugg
  fullname: Haugg, Amelie
  email: amelie.haugg@uzh.ch
  organization: University of Vienna
– sequence: 2
  givenname: Ronald
  surname: Sladky
  fullname: Sladky, Ronald
  organization: University of Vienna
– sequence: 3
  givenname: Stavros
  surname: Skouras
  fullname: Skouras, Stavros
  organization: University of Bergen
– sequence: 4
  givenname: Amalia
  surname: McDonald
  fullname: McDonald, Amalia
  organization: University of Virginia
– sequence: 5
  givenname: Cameron
  surname: Craddock
  fullname: Craddock, Cameron
  organization: The University of Texas at Austin Dell Medical School
– sequence: 6
  givenname: Matthias
  surname: Kirschner
  fullname: Kirschner, Matthias
  organization: Montréal Neurological Institute, McGill University
– sequence: 7
  givenname: Marcus
  surname: Herdener
  fullname: Herdener, Marcus
  organization: University of Zurich
– sequence: 8
  givenname: Yury
  orcidid: 0000-0002-3684-5641
  surname: Koush
  fullname: Koush, Yury
  organization: Yale University
– sequence: 9
  givenname: Marina
  surname: Papoutsi
  fullname: Papoutsi, Marina
  organization: Institute of Neurology, University College London
– sequence: 10
  givenname: Jackob N.
  surname: Keynan
  fullname: Keynan, Jackob N.
  organization: Wohl Institute for Advanced Imaging, Tel‐Aviv Sourasky Medical Center, Tel‐Aviv University
– sequence: 11
  givenname: Talma
  surname: Hendler
  fullname: Hendler, Talma
  organization: Wohl Institute for Advanced Imaging, Tel‐Aviv Sourasky Medical Center, Tel‐Aviv University
– sequence: 12
  givenname: Kathrin
  surname: Cohen Kadosh
  fullname: Cohen Kadosh, Kathrin
  organization: University of Surrey
– sequence: 13
  givenname: Catharina
  surname: Zich
  fullname: Zich, Catharina
  organization: University of Oxford
– sequence: 14
  givenname: Jeff
  surname: MacInnes
  fullname: MacInnes, Jeff
  organization: University of Washington
– sequence: 15
  givenname: R. Alison
  surname: Adcock
  fullname: Adcock, R. Alison
  organization: Duke University
– sequence: 16
  givenname: Kathryn
  surname: Dickerson
  fullname: Dickerson, Kathryn
  organization: Duke University
– sequence: 17
  givenname: Nan‐Kuei
  surname: Chen
  fullname: Chen, Nan‐Kuei
  organization: University of Arizona
– sequence: 18
  givenname: Kymberly
  surname: Young
  fullname: Young, Kymberly
  organization: University of Pittsburgh
– sequence: 19
  givenname: Jerzy
  orcidid: 0000-0003-0053-9746
  surname: Bodurka
  fullname: Bodurka, Jerzy
  organization: Laureate Institute for Brain Research
– sequence: 20
  givenname: Shuxia
  orcidid: 0000-0002-5259-6374
  surname: Yao
  fullname: Yao, Shuxia
  organization: University of Electronic Science and Technology of China
– sequence: 21
  givenname: Benjamin
  orcidid: 0000-0002-9014-9671
  surname: Becker
  fullname: Becker, Benjamin
  organization: University of Electronic Science and Technology of China
– sequence: 22
  givenname: Tibor
  surname: Auer
  fullname: Auer, Tibor
  organization: University of Surrey
– sequence: 23
  givenname: Renate
  surname: Schweizer
  fullname: Schweizer, Renate
  organization: German Primate Center
– sequence: 24
  givenname: Gustavo
  orcidid: 0000-0002-0278-203X
  surname: Pamplona
  fullname: Pamplona, Gustavo
  organization: University of Lausanne
– sequence: 25
  givenname: Kirsten
  surname: Emmert
  fullname: Emmert, Kirsten
  organization: University Medical Center Schleswig‐Holstein, Kiel University
– sequence: 26
  givenname: Sven
  surname: Haller
  fullname: Haller, Sven
  organization: Uppsala University
– sequence: 27
  givenname: Dimitri
  surname: Van De Ville
  fullname: Van De Ville, Dimitri
  organization: University of Geneva
– sequence: 28
  givenname: Maria‐Laura
  surname: Blefari
  fullname: Blefari, Maria‐Laura
  organization: Ecole Polytechnique Féderale de Lausanne
– sequence: 29
  givenname: Dong‐Youl
  surname: Kim
  fullname: Kim, Dong‐Youl
  organization: Korea University
– sequence: 30
  givenname: Jong‐Hwan
  surname: Lee
  fullname: Lee, Jong‐Hwan
  organization: Korea University
– sequence: 31
  givenname: Theo
  surname: Marins
  fullname: Marins, Theo
  organization: D'Or Institute for Research and Education (IDOR)
– sequence: 32
  givenname: Megumi
  orcidid: 0000-0002-8608-4756
  surname: Fukuda
  fullname: Fukuda, Megumi
  organization: Waseda University
– sequence: 33
  givenname: Bettina
  surname: Sorger
  fullname: Sorger, Bettina
  organization: Maastricht University
– sequence: 34
  givenname: Tabea
  orcidid: 0000-0002-4868-3248
  surname: Kamp
  fullname: Kamp, Tabea
  organization: Maastricht University
– sequence: 35
  givenname: Sook‐Lei
  surname: Liew
  fullname: Liew, Sook‐Lei
  organization: University of Southern California
– sequence: 36
  givenname: Ralf
  surname: Veit
  fullname: Veit, Ralf
  organization: University of Tübingen
– sequence: 37
  givenname: Maartje
  surname: Spetter
  fullname: Spetter, Maartje
  organization: University of Birmingham
– sequence: 38
  givenname: Nikolaus
  surname: Weiskopf
  fullname: Weiskopf, Nikolaus
  organization: Max Planck Institute for Human Cognitive and Brain Sciences
– sequence: 39
  givenname: Frank
  surname: Scharnowski
  fullname: Scharnowski, Frank
  organization: University of Vienna
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32729652$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-417506$$DView record from Swedish Publication Index
BookMark eNp9kt1uFCEYhiemxv7ogTdgJvFEE3cLDAPDSc26_rRJGxOjnhKG-dhSZ2CFmW72zEvwGr0Smd1a3UYNBxB43pfvg_cw23PeQZY9xmiKESLHl3U3JSWqxL3sACPBJwiLYm9cs3IiKMf72WGMVwhhXCL8INsvCCeCleQgk3Pl8hXkywCN1X0eQLU_vn3vbQe5ufhwljsYgjcATa30l7wFFZx1izwOWkOMuQm-G8V9UHZzUI-LXOneXtt-_fJhdt-oNsKjm_ko-_T2zcf56eT8_buz-ex8oikjYlIYyhTUyijUVFhRQUQtSqqBpXsNKplQdUGhLBWtgONCUQIGqwZzA5VAuDjKXmx94wqWQy2XwXYqrKVXVr62n2fSh4UcBkkxLxFL-MkWT2wHjQaXGmh3VLsnzl7Khb-WnDLBK5IMnt0YBP91gNjLzkYNbasc-CFKQokYy65EQp_eQa_8EFx6jUQVohSMM_abWqgWpHXGp3v1aCpnPH0kFnxT9_QvVBoNdFanVBib9ncET_5s9LbDXwlIwPMtoIOPMYC5RTCSY7pkSpfcpCuxx3dYbXvVWz--kW3_p1ilutb_tpanry62ip-MluEF
CitedBy_id crossref_primary_10_1098_rstb_2023_0093
crossref_primary_10_1098_rstb_2023_0094
crossref_primary_10_1098_rstb_2023_0095
crossref_primary_10_1016_j_neuroimage_2025_121079
crossref_primary_10_1162_netn_a_00338
crossref_primary_10_1016_j_celrep_2021_109890
crossref_primary_10_1124_pharmrev_121_000514
crossref_primary_10_1016_j_biopsycho_2023_108521
crossref_primary_10_1016_j_clinph_2023_09_011
crossref_primary_10_1111_psyp_14237
crossref_primary_10_3389_fnins_2023_1212549
crossref_primary_10_3390_app11167725
crossref_primary_10_1098_rstb_2024_0186
crossref_primary_10_1016_j_neuroimage_2021_118207
crossref_primary_10_1016_j_neuroimage_2021_118733
crossref_primary_10_1093_brain_awac239
crossref_primary_10_1176_appi_ajp_21100999
crossref_primary_10_1016_j_neubiorev_2024_105680
crossref_primary_10_1002_hbm_25336
crossref_primary_10_1016_j_tins_2024_08_007
crossref_primary_10_3389_fnhum_2020_578119
crossref_primary_10_1038_s41597_021_00845_7
crossref_primary_10_1016_j_neuroimage_2020_117194
Cites_doi 10.1016/j.ebiom.2018.10.052
10.3389/fnbeh.2015.00341
10.1016/j.biopsych.2015.12.024
10.1038/tp.2013.24
10.3389/fnbeh.2014.00350
10.1371/journal.pone.0038115
10.1080/00029157.1978.10403966
10.1016/j.neuroscience.2016.09.026
10.1016/j.neuroscience.2016.12.050
10.1093/ntr/ntt122
10.1002/hbm.23921
10.1073/pnas.1516857113
10.3389/fnhum.2013.00478
10.1016/j.neuroimage.2012.02.053
10.1177/1073858419860115
10.3389/fnhum.2017.00271
10.1016/j.neuroimage.2013.05.010
10.1523/JNEUROSCI.2118-07.2007
10.1176/appi.ajp.2017.16060637
10.1016/j.appet.2017.01.032
10.1109/NER.2013.6696025
10.1177/1545968315619699
10.1371/journal.pone.0133034
10.1038/ncomms13669
10.1073/pnas.0505210102
10.1371/journal.pone.0091090
10.1038/nrn.2016.164
10.1371/journal.pone.0088785
10.1016/j.neuroimage.2015.08.074
10.1162/jocn_a_01396
10.1016/j.neuroimage.2016.10.048
10.1111/nyas.13338
10.1016/j.nicl.2016.12.023
10.1073/pnas.1210738110
10.1016/j.neuroimage.2014.03.073
10.1016/j.neuroimage.2020.117053
10.1016/j.pscychresns.2013.03.003
10.1016/j.neuroimage.2017.12.071
10.1016/j.biopsycho.2015.03.009
10.1126/science.1212003
10.3389/fnbeh.2014.00299
10.1093/scan/nsw016
10.1002/hbm.23402
10.1007/s10548-014-0384-4
10.1002/9780470479216.corpsy0943
10.3389/fnbeh.2014.00338
10.1016/j.neuroimage.2014.05.072
10.1016/j.neuroimage.2018.10.021
10.3389/fnhum.2015.00547
10.1136/bmj.327.7414.557
10.3389/fnbeh.2015.00148
10.1016/j.neuroimage.2016.02.035
10.1016/j.neuroimage.2019.01.058
10.1007/s00330-009-1595-z
10.1177/1545968310385128
10.1093/cercor/bhv138
10.1016/j.neuron.2016.02.002
10.1093/braincomms/fcaa049
10.1016/j.neuroimage.2013.05.019
10.1371/journal.pone.0024522
10.1016/j.biopsycho.2013.02.019
10.1371/journal.pone.0135872
10.1111/j.1369-1600.2012.00449.x
10.1016/j.neuroimage.2007.01.018
10.1002/hbm.20621
10.1016/j.neuroimage.2015.09.042
10.1002/jrsm.1260
10.3389/fpsyt.2016.00111
10.1503/jpn.140200
10.1162/jocn_a_00802
10.3389/fnhum.2015.00160
10.3389/fnbeh.2015.00018
10.1016/j.neuroimage.2013.02.041
10.1073/pnas.1721572115
10.1111/j.1552-6569.2010.00529.x
10.1007/s11682-016-9547-0
10.1371/journal.pone.0042570
10.1038/s41562-016-0006
10.1002/ima.20139
10.1523/JNEUROSCI.6334-11.2012
10.1016/0304-3959(83)90125-2
10.1016/j.neuroimage.2010.08.078
10.1016/j.neuroimage.2019.05.008
10.1016/j.bandl.2010.07.008
10.1523/JNEUROSCI.3498-11.2011
10.1093/brain/awaa011
10.1007/s10548-013-0331-9
ContentType Journal Article
Copyright 2020 The Authors. published by Wiley Periodicals LLC.
2020 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.
COPYRIGHT 2020 John Wiley & Sons, Inc.
2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 The Authors. published by Wiley Periodicals LLC.
– notice: 2020 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.
– notice: COPYRIGHT 2020 John Wiley & Sons, Inc.
– notice: 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
ACNBI
ADTPV
AOWAS
D8T
DF2
ZZAVC
DOI 10.1002/hbm.25089
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Chemoreception Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
SWEPUB Uppsala universitet full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Uppsala universitet
SwePub Articles full text
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE

Technology Research Database


MEDLINE - Academic

CrossRef

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
DocumentTitleAlternate Haugg et al
EISSN 1097-0193
EndPage 3854
ExternalDocumentID oai_DiVA_org_uu_417506
PMC7469782
A710619706
32729652
10_1002_hbm_25089
HBM25089
Genre article
Research Support, Non-U.S. Gov't
Meta-Analysis
Journal Article
GrantInformation_xml – fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
  funderid: 32003B_166566; BSSG10_155915; 100014_178841
– fundername: Foundation for Research in Science and the Humanities at the University of Zurich
  funderid: STWF‐17‐012
– fundername: Forschungskredit of the University of Zurich
  funderid: FK‐18‐030
– fundername: Forschungskredit of the University of Zurich
  grantid: FK-18-030
– fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
  grantid: BSSG10_155915
– fundername: Medical Research Council
  grantid: MR/L012936/1
– fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
  grantid: 100014_178841
– fundername: Foundation for Research in Science and the Humanities at the University of Zurich
  grantid: STWF-17-012
– fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
  grantid: 32003B_166566
– fundername: Foundation for Research in Science and the Humanities at the University of Zurich
  grantid: STWF‐17‐012
– fundername: ;
  grantid: 32003B_166566; BSSG10_155915; 100014_178841
– fundername: Forschungskredit of the University of Zurich
  grantid: FK‐18‐030
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAONW
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABIVO
ABPVW
ACCFJ
ACCMX
ACGFS
ACIWK
ACPOU
ACPRK
ACXQS
ADBBV
ADEOM
ADIZJ
ADMGS
ADPDF
ADXAS
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFPWT
AFRAH
AFZJQ
AHMBA
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DU5
EBD
EBS
EMOBN
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HBH
HHY
HHZ
HZ~
IAO
IHR
ITC
IX1
J0M
JPC
KQQ
L7B
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P4D
PALCI
PIMPY
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RPM
RWD
RWI
RX1
RYL
SUPJJ
SV3
TEORI
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WYISQ
XG1
XSW
XV2
ZZTAW
~IA
~WT
.Y3
31~
7X7
8FI
8FJ
AAFWJ
AANHP
AAYXX
ABEML
ABJNI
ABUWG
ACBWZ
ACRPL
ACSCC
ACYXJ
ADNMO
AFKRA
AFPKN
AGQPQ
ASPBG
AVWKF
AZFZN
BENPR
BFHJK
CCPQU
CITATION
EJD
FEDTE
FYUFA
GAKWD
HF~
HMCUK
HVGLF
LW6
M6M
PHGZM
PHGZT
RIWAO
RJQFR
SAMSI
UKHRP
WXSBR
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
ACNBI
ADTPV
AOWAS
D8T
DF2
ZZAVC
ID FETCH-LOGICAL-c4629-3f46aebafa0d81a4929b954ce6dbaf0569ab34e55a48e713a42ef1ad17fe89013
IEDL.DBID DR2
ISSN 1065-9471
1097-0193
IngestDate Thu Aug 21 07:02:51 EDT 2025
Thu Aug 21 18:26:49 EDT 2025
Tue Aug 05 10:24:11 EDT 2025
Sat Jul 26 01:18:52 EDT 2025
Tue Jun 17 21:37:37 EDT 2025
Tue Jun 10 20:44:05 EDT 2025
Tue Jul 22 01:41:59 EDT 2025
Tue Jul 01 01:10:59 EDT 2025
Thu Apr 24 23:10:07 EDT 2025
Wed Jan 22 16:34:35 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords meta-analysis
real-time fMRI
fMRI
learning
functional neuroimaging
neurofeedback
Language English
License Attribution
2020 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4629-3f46aebafa0d81a4929b954ce6dbaf0569ab34e55a48e713a42ef1ad17fe89013
Notes Funding information
Foundation for Research in Science and the Humanities at the University of Zurich, Grant/Award Number: STWF‐17‐012; Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung, Grant/Award Numbers: 32003B_166566, BSSG10_155915, 100014_178841; Forschungskredit of the University of Zurich, Grant/Award Number: FK‐18‐030
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Funding information Foundation for Research in Science and the Humanities at the University of Zurich, Grant/Award Number: STWF‐17‐012; Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung, Grant/Award Numbers: 32003B_166566, BSSG10_155915, 100014_178841; Forschungskredit of the University of Zurich, Grant/Award Number: FK‐18‐030
ORCID 0000-0002-4868-3248
0000-0002-5259-6374
0000-0003-0053-9746
0000-0002-0278-203X
0000-0002-9583-6585
0000-0002-3684-5641
0000-0002-9014-9671
0000-0002-8608-4756
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.25089
PMID 32729652
PQID 2439596766
PQPubID 996345
PageCount 16
ParticipantIDs swepub_primary_oai_DiVA_org_uu_417506
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7469782
proquest_miscellaneous_2429056989
proquest_journals_2439596766
gale_infotracmisc_A710619706
gale_infotracacademiconefile_A710619706
pubmed_primary_32729652
crossref_primary_10_1002_hbm_25089
crossref_citationtrail_10_1002_hbm_25089
wiley_primary_10_1002_hbm_25089_HBM25089
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 1, 2020
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: October 1, 2020
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: San Antonio
PublicationTitle Human brain mapping
PublicationTitleAlternate Hum Brain Mapp
PublicationYear 2020
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2012; 61
1976; 20
2017; 8
2017; 1
2013; 3
2011; 117
2014; 27
2016; 30
2011; 54
2015; 108
1983; 17
2013; 7
2017; 112
2007; 35
2014; 22
2013; 18
2010; 20
2018; 39
2013; 15
2003; 327
2018; 172
1978; 21
2005; 102
2017; 38
2017; 1396
2018; 378
2016; 113
2016; 41
1983
2013; 110
2016; 80
2011; 25
2014; 96
2014; 9
2014; 8
2014; 95
2012; 22
2018; 37
2016; 89
2007; 27
2019; 198
2011; 334
2017; 20
2019; 31
2010
2020; 143
2008; 18
2015; 10
2016; 124
2011; 31
2016; 18
2015; 9
2019; 185
2011; 6
2017; 378
2012; 32
2019; 189
2016; 11
2016; 7
2015; 28
2009; 30
2015; 27
2017; 14
2020
2017; 11
2013; 75
2018; 115
2019
2013; 213
2020; 26
2013; 81
2013
2012; 7
2014; 100
2017; 146
2016; 26
2016; 130
e_1_2_9_75_1
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_79_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_90_1
e_1_2_9_92_1
e_1_2_9_71_1
Emmert K. (e_1_2_9_18_1) 2014; 8
e_1_2_9_14_1
Marins T. F. (e_1_2_9_48_1) 2015; 9
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_85_1
e_1_2_9_8_1
e_1_2_9_81_1
e_1_2_9_4_1
e_1_2_9_60_1
Zilverstand A. (e_1_2_9_89_1) 2015; 9
e_1_2_9_2_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_78_1
Auer T. (e_1_2_9_3_1) 2015; 9
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_76_1
Kober S. E. (e_1_2_9_39_1) 2017; 11
e_1_2_9_91_1
e_1_2_9_93_1
e_1_2_9_70_1
Blefari M. L. (e_1_2_9_6_1) 2015; 9
Guan M. (e_1_2_9_26_1) 2014; 22
Koush Y. (e_1_2_9_41_1) 2015; 27
Stumpf H. (e_1_2_9_77_1) 1983
e_1_2_9_15_1
e_1_2_9_38_1
Witte M. (e_1_2_9_83_1) 2013; 7
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
Skouras S. (e_1_2_9_72_1) 2019
e_1_2_9_42_1
e_1_2_9_63_1
Scheinost D. (e_1_2_9_66_1) 2014; 8
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_84_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_86_1
e_1_2_9_7_1
e_1_2_9_80_1
e_1_2_9_5_1
e_1_2_9_82_1
Zerssen D. (e_1_2_9_88_1) 1976; 20
Paret C. (e_1_2_9_55_1) 2014; 8
e_1_2_9_9_1
e_1_2_9_25_1
Gerin M. I. (e_1_2_9_23_1) 2016; 7
e_1_2_9_27_1
e_1_2_9_69_1
e_1_2_9_29_1
References_xml – volume: 27
  start-page: 7498
  issue: 28
  year: 2007
  end-page: 7507
  article-title: Direct instrumental conditioning of neural activity using functional magnetic resonance imaging‐derived reward feedback
  publication-title: The Journal of Neuroscience
– volume: 20
  start-page: 696
  issue: 3
  year: 2010
  end-page: 703
  article-title: Real‐time fMRI feedback training may improve chronic tinnitus
  publication-title: European Radiology
– volume: 54
  start-page: 1427
  issue: 2
  year: 2011
  end-page: 1431
  article-title: Neurofeedback training of the upper alpha frequency band in EEG improves cognitive performance
  publication-title: NeuroImage
– volume: 185
  start-page: 545
  year: 2019
  end-page: 555
  article-title: NeuroImage a systematic review of the psychological factors that in fl uence neurofeedback learning outcomes
  publication-title: NeuroImage
– volume: 117
  start-page: 123
  issue: 3
  year: 2011
  end-page: 132
  article-title: Reorganization of functional and effective connectivity during real‐time fMRI‐BCI modulation of prosody processing
  publication-title: Brain and Language
– volume: 61
  start-page: 21
  issue: 1
  year: 2012
  end-page: 31
  article-title: Investigation of fMRI neurofeedback of differential primary motor cortex activity using kinesthetic motor imagery
  publication-title: NeuroImage
– volume: 18
  start-page: 69
  issue: 1
  year: 2008
  end-page: 78
  article-title: Neurofeedback fMRI‐mediated learning and consolidation of regional brain activation during motor imagery
  publication-title: International Journal of Imaging Systems and Technology
– volume: 378
  start-page: 71
  year: 2018
  end-page: 88
  article-title: N EUROSCIENCE when the brain takes ‘BOLD’ steps: Real‐time fMRI neurofeedback can further enhance the ability to gradually self‐regulate regional brain activation
  publication-title: Neuroscience
– volume: 7
  start-page: 1
  issue: JUN
  year: 2016
  end-page: 11
  article-title: Real‐time fMRI neurofeedback with war veterans with chronic PTSD: A feasibility study
  publication-title: Frontiers in Psychiatry
– volume: 95
  start-page: 59
  issue: 1
  year: 2014
  end-page: 69
  article-title: Modulation of frontal‐midline theta by neurofeedback
  publication-title: Biological Psychology
– volume: 15
  start-page: 2120
  issue: 12
  year: 2013
  end-page: 2124
  article-title: Sustained reduction of nicotine craving with real‐time neurofeedback: Exploring the role of severity of dependence
  publication-title: Nicotine & Tobacco Research
– volume: 6
  start-page: e24522
  issue: 9
  year: 2011
  article-title: Self‐regulation of amygdala activation using real‐time FMRI neurofeedback
  publication-title: PLoS ONE
– volume: 32
  start-page: 17830
  issue: 49
  year: 2012
  end-page: 17841
  article-title: Improving visual perception through neurofeedback
  publication-title: Journal of Neuroscience
– volume: 7
  start-page: 1
  issue: August
  year: 2013
  end-page: 8
  article-title: Control beliefs can predict the ability to up‐regulate sensorimotor rhythm during neurofeedback training
  publication-title: Frontiers in Human Neuroscience
– volume: 198
  start-page: 150
  issue: June 2018
  year: 2019
  end-page: 159
  article-title: NeuroImage the effects of psychiatric history and age on self‐regulation of the default mode network
  publication-title: NeuroImage
– volume: 113
  start-page: E2413
  issue: 17
  year: 2016
  end-page: E2420
  article-title: Covert neurofeedback without awareness shapes cortical network spontaneous connectivity
  publication-title: Proceedings of the National Academy of Sciences
– volume: 26
  start-page: 117
  issue: 2
  year: 2020
  end-page: 133
  article-title: Regions and connections: Complementary approaches to characterize brain organization and function
  publication-title: The Neuroscientist
– volume: 100
  start-page: 1
  year: 2014
  end-page: 14
  article-title: Self‐regulation of inter‐hemispheric visual cortex balance through real‐time fMRI neurofeedback training
  publication-title: NeuroImage
– volume: 189
  start-page: 533
  year: 2019
  end-page: 542
  article-title: Neurofeedback of core language network nodes modulates connectivity with the default‐mode network: A double‐blind fMRI neurofeedback study on auditory verbal hallucinations
  publication-title: NeuroImage
– start-page: 117053
  year: 2020
  article-title: Modulatory effects of dynamic fMRI‐based neurofeedback on emotion regulation networks in adolescent females
  publication-title: NeuroImage
– volume: 20
  start-page: 915
  year: 1976
  end-page: 918
  article-title: Die Befindlichkeitsskala (BS)—ein einfaches Instrument zur Objektivierung von Befindlichkeitsstörungen, insbesondere im Rahmen von Längsschnittuntersuchungen
  publication-title: Arzneimittelforschung
– volume: 9
  start-page: 1
  issue: February
  year: 2015
  end-page: 11
  article-title: Improvement in precision grip force control with self‐modulation of primary motor cortex during motor imagery
  publication-title: Frontiers in Behavioral Neuroscience
– volume: 115
  start-page: 201721572
  issue: 13
  year: 2018
  end-page: 201723475
  article-title: Towards an unconscious neural reinforcement intervention for common fears
  publication-title: Proceedings of the National Academy of Sciences
– volume: 1396
  start-page: 126
  year: 2017
  end-page: 143
  article-title: A network engineering perspective on probing and perturbing cognition with neurofeedback
  publication-title: Annals of the New York Academy of Sciences
– volume: 35
  start-page: 1238
  issue: 3
  year: 2007
  end-page: 1246
  article-title: Regulation of anterior insular cortex activity using real‐time fMRI
  publication-title: NeuroImage
– volume: 146
  start-page: 157
  issue: October 2016
  year: 2017
  end-page: 170
  article-title: The real‐time fMRI neurofeedback based stratification of default network regulation neuroimaging data repository
  publication-title: NeuroImage
– volume: 213
  start-page: 79
  issue: 1
  year: 2013
  end-page: 81
  article-title: Reduction of cue‐induced craving through realtime neurofeedback in nicotine users: The role of region of interest selection and multiple visits
  publication-title: Psychiatry Research: Neuroimaging
– volume: 18
  start-page: 86
  year: 2016
  end-page: 100
  article-title: Closed‐loop brain training: The science of neurofeedback
  publication-title: Nature Neuroscience
– volume: 124
  start-page: 806
  year: 2016
  end-page: 812
  article-title: Meta‐analysis of real‐time fMRI neurofeedback studies using individual participant data: How is brain regulation mediated?
  publication-title: NeuroImage
– volume: 20
  start-page: 748
  year: 2017
  end-page: 755
  article-title: Randomized clinical trial of real‐time fMRI amygdala neurofeedback for major depressive disorder: Effects on symptoms and autobiographical memory recall
  publication-title: American Journal of Psychiatry
– volume: 8
  start-page: 1
  issue: October
  year: 2014
  end-page: 13
  article-title: Comparison of anterior cingulate vs. insular cortex as targets for real‐time fMRI regulation during pain stimulation
  publication-title: Frontiers in Behavioral Neuroscience
– volume: 9
  start-page: 1
  issue: December
  year: 2015
  end-page: 12
  article-title: Enhancing motor network activity using real‐time functional MRI neurofeedback of left premotor cortex
  publication-title: Frontiers in Behavioral Neuroscience
– volume: 124
  start-page: 214
  year: 2016
  end-page: 223
  article-title: Enhanced control of dorsolateral prefrontal cortex neurophysiology with real‐time functional magnetic resonance imaging (rt‐fMRI) neurofeedback training and working memory practice
  publication-title: NeuroImage
– volume: 143
  start-page: 976
  issue: 3
  year: 2020
  end-page: 992
  article-title: Earliest amyloid and tau deposition modulate the influence of limbic networks during closed‐loop hippocampal downregulation
  publication-title: Brain: A Journal of Neurology
– volume: 27
  start-page: 1552
  issue: 8
  year: 2015
  end-page: 1572
  article-title: The inclusion of functional connectivity information into fMRI‐based neurofeedback improves its efficacy in the reduction of cigarette cravings
  publication-title: Journal of Cognitive Neuroscience
– year: 2019
  article-title: The effect of APOE genotype and streamline density volume, on hippocampal CA1 down‐regulation: a real‐time fMRI virtual reality neurofeedback study
  publication-title: bioRxiv
– volume: 18
  start-page: 739
  issue: 4
  year: 2013
  end-page: 748
  article-title: Volitional reduction of anterior cingulate cortex activity produces decreased Cue craving in smoking cessation: A preliminary real‐time fMRI study
  publication-title: Addiction Biology
– volume: 10
  start-page: 1
  issue: 8
  year: 2015
  end-page: 26
  article-title: Self‐regulation of anterior insula with real‐time fMRI and its behavioral effects in obsessive‐compulsive disorder: A feasibility study
  publication-title: PLoS ONE
– volume: 172
  start-page: 786
  issue: September 2017
  year: 2018
  end-page: 807
  article-title: Neurofeedback with fMRI: A critical systematic review
  publication-title: NeuroImage
– volume: 8
  start-page: 537
  issue: 4
  year: 2017
  end-page: 553
  article-title: Introduction, comparison, and validation of meta ‐ essentials: A free and simple tool for meta ‐ analysis
  publication-title: Res Synth Methods
– volume: 30
  start-page: 1605
  issue: 5
  year: 2009
  end-page: 1614
  article-title: Self‐regulation of regional cortical activity using real‐time fMRI: The right inferior frontal gyrus and linguistic processing
  publication-title: Human Brain Mapping
– volume: 26
  start-page: 3125
  issue: 7
  year: 2016
  end-page: 3134
  article-title: Dissociation of neural networks for predisposition and for training‐related plasticity in auditory‐motor learning
  publication-title: Cerebral Cortex
– volume: 7
  start-page: e38115
  issue: 6
  year: 2012
  article-title: Real‐time self‐regulation of emotion networks in patients with depression
  publication-title: PLoS ONE
– volume: 1
  start-page: 1
  issue: 1
  year: 2017
  end-page: 7
  article-title: Fear reduction without fear through reinforcement of neural activity that bypasses conscious exposure
  publication-title: Nature Human Behaviour
– volume: 3
  start-page: e250
  issue: November 2012
  year: 2013
  article-title: Orbitofrontal cortex neurofeedback produces lasting changes in contamination anxiety and resting‐state connectivity
  publication-title: Translational Psychiatry
– volume: 11
  start-page: 712
  issue: 3
  year: 2017
  end-page: 721
  article-title: Active pain coping is associated with the response in real‐time fMRI neurofeedback during pain
  publication-title: Brain Imaging and Behavior
– volume: 96
  start-page: 237
  year: 2014
  end-page: 244
  article-title: Control of nucleus accumbens activity with neurofeedback
  publication-title: NeuroImage
– volume: 75
  start-page: 176
  year: 2013
  end-page: 184
  article-title: Neurofeedback‐mediated self‐regulation of the dopaminergic midbrain
  publication-title: NeuroImage
– volume: 10
  start-page: e0133034
  issue: 7
  year: 2015
  article-title: Modulation of craving related brain responses using real‐time fMRI in patients with alcohol use disorder
  publication-title: PLoS ONE
– volume: 25
  start-page: 259
  issue: 3
  year: 2011
  end-page: 267
  article-title: Detection of cerebral reorganization induced by real‐time fMRI feedback training of insula activation: A multivariate investigation
  publication-title: Neurorehabilitation and Neural Repair
– volume: 39
  start-page: 1339
  issue: 3
  year: 2018
  end-page: 1353
  article-title: Stimulating neural plasticity with real‐time fMRI neurofeedback in Huntington's disease: A proof of concept study
  publication-title: Human Brain Mapping
– volume: 130
  start-page: 230
  year: 2016
  end-page: 240
  article-title: Voluntary control of anterior insula and its functional connections is feedback‐independent and increases pain empathy
  publication-title: NeuroImage
– volume: 112
  start-page: 188
  year: 2017
  end-page: 195
  article-title: Volitional regulation of brain responses to food stimuli in overweight and obese subjects: A real‐time fMRI feedback study
  publication-title: Appetite
– volume: 27
  start-page: 1193
  issue: 2
  year: 2015
  end-page: 1202
  article-title: Learning control over emotion networks through connectivity‐based neurofeedback
  publication-title: Cerebral Cortex
– volume: 9
  start-page: e88785
  issue: 2
  year: 2014
  article-title: Real‐time fMRI neurofeedback training of amygdala activity in patients with major depressive disorder
  publication-title: PLoS ONE
– volume: 7
  start-page: 3
  issue: 8
  year: 2012
  end-page: 8
  article-title: The obese brain athlete: Self‐regulation of the anterior insula in adiposity
  publication-title: PLoS ONE
– volume: 11
  start-page: 1
  issue: May
  year: 2017
  end-page: 12
  article-title: Ability to gain control over one' s own brain activity and its relation to spiritual practice: A multimodal imaging study
  publication-title: Frontiers in Human Neuroscience
– year: 1983
– volume: 81
  start-page: 243
  year: 2013
  end-page: 252
  article-title: Dynamic reconfiguration of human brain functional networks through neurofeedback
  publication-title: NeuroImage
– volume: 30
  start-page: 671
  issue: 7
  year: 2016
  end-page: 675
  article-title: Improving motor Corticothalamic communication after stroke using real‐time fMRI connectivity‐based neurofeedback
  publication-title: Neurorehabilitation and Neural Repair
– volume: 9
  start-page: 1
  issue: June
  year: 2015
  end-page: 12
  article-title: fMRI neurofeedback facilitates anxiety regulation in females with spider phobia
  publication-title: Frontiers in Behavioral Neuroscience
– volume: 89
  start-page: 1331
  issue: 6
  year: 2016
  end-page: 1342
  article-title: Cognitive Neurostimulation: Learning to volitionally sustain ventral tegmental area activation
  publication-title: Neuron
– volume: 27
  start-page: 138
  issue: 1
  year: 2014
  end-page: 148
  article-title: Real‐time neurofeedback using functional MRI could improve down‐regulation of amygdala activity during emotional stimulation: A proof‐of‐concept study
  publication-title: Brain Topography
– volume: 31
  start-page: 16309
  issue: 45
  year: 2011
  end-page: 16317
  article-title: Real‐time functional magnetic resonance imaging neurofeedback for treatment of Parkinson's disease
  publication-title: Journal of Neuroscience
– volume: 81
  start-page: 422
  year: 2013
  end-page: 430
  article-title: Connectivity‐based neurofeedback: Dynamic causal modeling for real‐time fMRI
  publication-title: NeuroImage
– volume: 102
  start-page: 18626
  issue: 51
  year: 2005
  end-page: 18631
  article-title: Control over brain activation and pain learned by using real‐time functional MRI
  publication-title: Proceedings of the National Academy of Sciences
– volume: 28
  start-page: 197
  issue: 2
  year: 2015
  end-page: 207
  article-title: Upregulation of the rostral anterior cingulate cortex can Alter the perception of emotions: fMRI‐based neurofeedback at 3 and 7 T
  publication-title: Brain Topography
– volume: 22
  start-page: 5889
  year: 2014
  article-title: Self‐regulation of rACC activation in patients with postherpetic neuralgia: A preliminary study using real‐time fMRI neurofeedback
  publication-title: Ismrm
– volume: 41
  start-page: 48
  issue: 1
  year: 2016
  end-page: 55
  article-title: Individualized real‐time fMRI neurofeedback to attenuate craving in nicotine‐dependent smokers
  publication-title: Journal of Psychiatry and Neuroscience
– volume: 110
  start-page: 13630
  issue: 33
  year: 2013
  end-page: 13635
  article-title: Brain‐computer interfaces increase whole‐brain signal to noise
  publication-title: Proceedings of the National Academy of Sciences
– volume: 17
  start-page: 33
  issue: 1
  year: 1983
  end-page: 44
  article-title: The use of coping strategies in chronic low back pain patients: Relationship to patient characteristics and current adjustment
  publication-title: Pain
– volume: 7
  year: 2016
  article-title: Multivoxel neurofeedback selectively modulates confidence without changing perceptual performance
  publication-title: Nature Communications
– volume: 9
  start-page: e91090
  issue: 3
  year: 2014
  article-title: Connectivity changes underlying neurofeedback training of visual cortex activity
  publication-title: PLoS ONE
– volume: 8
  start-page: 338
  issue: September
  year: 2014
  article-title: Resting state functional connectivity predicts neurofeedback response
  publication-title: Frontiers in Behavioral Neuroscience
– year: 2010
– volume: 21
  start-page: 84
  issue: 2–3
  year: 1978
  end-page: 108
  article-title: The Barber suggestibility scale and the creative imagination scale: Experimental and clinical applications
  publication-title: American Journal of Clinical Hypnosis
– volume: 38
  start-page: 541
  issue: 1
  year: 2017
  end-page: 560
  article-title: The neurobiology of emotion regulation in posttraumatic stress disorder: Amygdala downregulation via real‐time fMRI neurofeedback
  publication-title: Human Brain Mapping
– volume: 9
  start-page: 160
  year: 2015
  article-title: Functional MRI neurofeedback training on connectivity between two regions induces long‐lasting changes in intrinsic functional network
  publication-title: Frontiers in Human Neuroscience
– volume: 334
  start-page: 1413
  issue: 6061
  year: 2011
  end-page: 1415
  article-title: Perceptual learning incepted by decoded fMRI neurofeedback without stimulus presentation
  publication-title: Science
– volume: 37
  start-page: 489
  year: 2018
  end-page: 498
  article-title: Self‐regulation of the dopaminergic reward circuit in cocaine users with mental imagery and neurofeedback
  publication-title: eBioMedicine
– volume: 9
  start-page: 547
  issue: October
  year: 2015
  article-title: Training efficiency and transfer success in an extended real‐time functional MRI neurofeedback training of the Somatomotor cortex of healthy subjects
  publication-title: Frontiers in Human Neuroscience
– volume: 11
  start-page: 952
  issue: 6
  year: 2016
  end-page: 960
  article-title: Alterations of amygdala‐prefrontal connectivity with real‐time fMRI neurofeedback in BPD patients
  publication-title: Social Cognitive and Affective Neuroscience
– volume: 108
  start-page: 85
  year: 2015
  end-page: 97
  article-title: Manipulating motor performance and memory through real‐time fMRI neurofeedback
  publication-title: Biological Psychology
– volume: 22
  start-page: 58
  issue: 1
  year: 2012
  end-page: 66
  article-title: Intermittent “real‐time” fMRI feedback is superior to continuous presentation for a motor imagery task: A pilot study
  publication-title: Journal of Neuroimaging
– volume: 31
  start-page: 808
  issue: 2
  year: 2019
  end-page: 820
  article-title: Independent components of neural activation associated with 100 days of cognitive training
  publication-title: Journal of Cognitive Neuroscience
– volume: 8
  start-page: 1
  issue: September
  year: 2014
  end-page: 15
  article-title: Down‐regulation of amygdala activation with real‐time fMRI neurofeedback in a healthy female sample
  publication-title: Frontiers in Behavioral Neuroscience
– volume: 378
  start-page: 155
  year: 2017
  end-page: 164
  article-title: Can we predict who will respond to neurofeedback? A review of the inefficacy problem and existing predictors for successful EEG neurofeedback learning
  publication-title: Neuroscience
– volume: 80
  start-page: 490
  issue: 6
  year: 2016
  end-page: 496
  article-title: Limbic activity modulation guided by functional magnetic resonance imaging–inspired electroencephalography improves implicit emotion regulation
  publication-title: Biological Psychiatry
– volume: 14
  start-page: 97
  year: 2017
  end-page: 104
  article-title: Continuous vs. intermittent neurofeedback to regulate auditory cortex activity of tinnitus patients using real‐time fMRI ‐ a pilot study
  publication-title: NeuroImage: Clinical
– volume: 327
  start-page: 557
  issue: 7414
  year: 2003
  end-page: 560
  article-title: Measuring inconsistency in meta‐analyses
  publication-title: Bmj
– issue: 1
  year: 2020
  article-title: Activity or connectivity? A randomized controlled feasibility study evaluating neurofeedback training in Huntington's disease
  publication-title: Brain Communications
– year: 2013
– ident: e_1_2_9_38_1
  doi: 10.1016/j.ebiom.2018.10.052
– volume: 9
  start-page: 1
  year: 2015
  ident: e_1_2_9_48_1
  article-title: Enhancing motor network activity using real‐time functional MRI neurofeedback of left premotor cortex
  publication-title: Frontiers in Behavioral Neuroscience
  doi: 10.3389/fnbeh.2015.00341
– ident: e_1_2_9_36_1
  doi: 10.1016/j.biopsych.2015.12.024
– ident: e_1_2_9_65_1
  doi: 10.1038/tp.2013.24
– volume: 8
  start-page: 1
  year: 2014
  ident: e_1_2_9_18_1
  article-title: Comparison of anterior cingulate vs. insular cortex as targets for real‐time fMRI regulation during pain stimulation
  publication-title: Frontiers in Behavioral Neuroscience
  doi: 10.3389/fnbeh.2014.00350
– ident: e_1_2_9_46_1
  doi: 10.1371/journal.pone.0038115
– ident: e_1_2_9_4_1
  doi: 10.1080/00029157.1978.10403966
– ident: e_1_2_9_74_1
  doi: 10.1016/j.neuroscience.2016.09.026
– ident: e_1_2_9_2_1
  doi: 10.1016/j.neuroscience.2016.12.050
– ident: e_1_2_9_11_1
  doi: 10.1093/ntr/ntt122
– ident: e_1_2_9_54_1
  doi: 10.1002/hbm.23921
– ident: e_1_2_9_57_1
  doi: 10.1073/pnas.1516857113
– volume: 7
  start-page: 1
  year: 2013
  ident: e_1_2_9_83_1
  article-title: Control beliefs can predict the ability to up‐regulate sensorimotor rhythm during neurofeedback training
  publication-title: Frontiers in Human Neuroscience
  doi: 10.3389/fnhum.2013.00478
– ident: e_1_2_9_13_1
  doi: 10.1016/j.neuroimage.2012.02.053
– ident: e_1_2_9_33_1
  doi: 10.1177/1073858419860115
– volume: 11
  start-page: 1
  year: 2017
  ident: e_1_2_9_39_1
  article-title: Ability to gain control over one' s own brain activity and its relation to spiritual practice: A multimodal imaging study
  publication-title: Frontiers in Human Neuroscience
  doi: 10.3389/fnhum.2017.00271
– ident: e_1_2_9_42_1
  doi: 10.1016/j.neuroimage.2013.05.010
– ident: e_1_2_9_7_1
  doi: 10.1523/JNEUROSCI.2118-07.2007
– ident: e_1_2_9_86_1
  doi: 10.1176/appi.ajp.2017.16060637
– ident: e_1_2_9_75_1
  doi: 10.1016/j.appet.2017.01.032
– ident: e_1_2_9_9_1
  doi: 10.1109/NER.2013.6696025
– ident: e_1_2_9_45_1
  doi: 10.1177/1545968315619699
– ident: e_1_2_9_35_1
  doi: 10.1371/journal.pone.0133034
– ident: e_1_2_9_15_1
  doi: 10.1038/ncomms13669
– ident: e_1_2_9_16_1
  doi: 10.1073/pnas.0505210102
– ident: e_1_2_9_63_1
  doi: 10.1371/journal.pone.0091090
– ident: e_1_2_9_70_1
  doi: 10.1038/nrn.2016.164
– ident: e_1_2_9_87_1
  doi: 10.1371/journal.pone.0088785
– ident: e_1_2_9_67_1
  doi: 10.1016/j.neuroimage.2015.08.074
– ident: e_1_2_9_69_1
  doi: 10.1162/jocn_a_01396
– ident: e_1_2_9_49_1
  doi: 10.1016/j.neuroimage.2016.10.048
– ident: e_1_2_9_5_1
  doi: 10.1111/nyas.13338
– ident: e_1_2_9_19_1
  doi: 10.1016/j.nicl.2016.12.023
– ident: e_1_2_9_52_1
  doi: 10.1073/pnas.1210738110
– ident: e_1_2_9_24_1
  doi: 10.1016/j.neuroimage.2014.03.073
– ident: e_1_2_9_93_1
  doi: 10.1016/j.neuroimage.2020.117053
– ident: e_1_2_9_29_1
  doi: 10.1016/j.pscychresns.2013.03.003
– ident: e_1_2_9_82_1
  doi: 10.1016/j.neuroimage.2017.12.071
– ident: e_1_2_9_64_1
  doi: 10.1016/j.biopsycho.2015.03.009
– ident: e_1_2_9_68_1
  doi: 10.1126/science.1212003
– volume: 8
  start-page: 1
  year: 2014
  ident: e_1_2_9_55_1
  article-title: Down‐regulation of amygdala activation with real‐time fMRI neurofeedback in a healthy female sample
  publication-title: Frontiers in Behavioral Neuroscience
  doi: 10.3389/fnbeh.2014.00299
– ident: e_1_2_9_56_1
  doi: 10.1093/scan/nsw016
– volume: 22
  start-page: 5889
  year: 2014
  ident: e_1_2_9_26_1
  article-title: Self‐regulation of rACC activation in patients with postherpetic neuralgia: A preliminary study using real‐time fMRI neurofeedback
  publication-title: Ismrm
– ident: e_1_2_9_51_1
  doi: 10.1002/hbm.23402
– ident: e_1_2_9_25_1
  doi: 10.1007/s10548-014-0384-4
– ident: e_1_2_9_76_1
  doi: 10.1002/9780470479216.corpsy0943
– volume: 20
  start-page: 915
  year: 1976
  ident: e_1_2_9_88_1
  article-title: Die Befindlichkeitsskala (BS)—ein einfaches Instrument zur Objektivierung von Befindlichkeitsstörungen, insbesondere im Rahmen von Längsschnittuntersuchungen
  publication-title: Arzneimittelforschung
– volume: 8
  start-page: 338
  year: 2014
  ident: e_1_2_9_66_1
  article-title: Resting state functional connectivity predicts neurofeedback response
  publication-title: Frontiers in Behavioral Neuroscience
  doi: 10.3389/fnbeh.2014.00338
– ident: e_1_2_9_58_1
  doi: 10.1016/j.neuroimage.2014.05.072
– ident: e_1_2_9_14_1
  doi: 10.1016/j.neuroimage.2018.10.021
– volume: 9
  start-page: 547
  year: 2015
  ident: e_1_2_9_3_1
  article-title: Training efficiency and transfer success in an extended real‐time functional MRI neurofeedback training of the Somatomotor cortex of healthy subjects
  publication-title: Frontiers in Human Neuroscience
  doi: 10.3389/fnhum.2015.00547
– ident: e_1_2_9_32_1
  doi: 10.1136/bmj.327.7414.557
– volume: 9
  start-page: 1
  year: 2015
  ident: e_1_2_9_89_1
  article-title: fMRI neurofeedback facilitates anxiety regulation in females with spider phobia
  publication-title: Frontiers in Behavioral Neuroscience
  doi: 10.3389/fnbeh.2015.00148
– ident: e_1_2_9_84_1
  doi: 10.1016/j.neuroimage.2016.02.035
– ident: e_1_2_9_92_1
  doi: 10.1016/j.neuroimage.2019.01.058
– ident: e_1_2_9_27_1
  doi: 10.1007/s00330-009-1595-z
– ident: e_1_2_9_43_1
  doi: 10.1177/1545968310385128
– ident: e_1_2_9_31_1
  doi: 10.1093/cercor/bhv138
– ident: e_1_2_9_47_1
  doi: 10.1016/j.neuron.2016.02.002
– ident: e_1_2_9_53_1
  doi: 10.1093/braincomms/fcaa049
– ident: e_1_2_9_28_1
  doi: 10.1016/j.neuroimage.2013.05.019
– ident: e_1_2_9_91_1
  doi: 10.1371/journal.pone.0024522
– ident: e_1_2_9_21_1
  doi: 10.1016/j.biopsycho.2013.02.019
– ident: e_1_2_9_10_1
  doi: 10.1371/journal.pone.0135872
– ident: e_1_2_9_44_1
  doi: 10.1111/j.1369-1600.2012.00449.x
– year: 2019
  ident: e_1_2_9_72_1
  article-title: The effect of APOE genotype and streamline density volume, on hippocampal CA1 down‐regulation: a real‐time fMRI virtual reality neurofeedback study
  publication-title: bioRxiv
– ident: e_1_2_9_12_1
  doi: 10.1016/j.neuroimage.2007.01.018
– ident: e_1_2_9_61_1
  doi: 10.1002/hbm.20621
– ident: e_1_2_9_20_1
  doi: 10.1016/j.neuroimage.2015.09.042
– ident: e_1_2_9_80_1
  doi: 10.1002/jrsm.1260
– volume: 7
  start-page: 1
  year: 2016
  ident: e_1_2_9_23_1
  article-title: Real‐time fMRI neurofeedback with war veterans with chronic PTSD: A feasibility study
  publication-title: Frontiers in Psychiatry
  doi: 10.3389/fpsyt.2016.00111
– ident: e_1_2_9_30_1
  doi: 10.1503/jpn.140200
– volume-title: Schlauchfiguren: ein Test zur Beurteilung des räumlichen Vorstellungsvermögens
  year: 1983
  ident: e_1_2_9_77_1
– ident: e_1_2_9_37_1
  doi: 10.1162/jocn_a_00802
– ident: e_1_2_9_50_1
  doi: 10.3389/fnhum.2015.00160
– volume: 9
  start-page: 1
  year: 2015
  ident: e_1_2_9_6_1
  article-title: Improvement in precision grip force control with self‐modulation of primary motor cortex during motor imagery
  publication-title: Frontiers in Behavioral Neuroscience
  doi: 10.3389/fnbeh.2015.00018
– ident: e_1_2_9_79_1
  doi: 10.1016/j.neuroimage.2013.02.041
– ident: e_1_2_9_81_1
  doi: 10.1073/pnas.1721572115
– ident: e_1_2_9_34_1
  doi: 10.1111/j.1552-6569.2010.00529.x
– ident: e_1_2_9_17_1
  doi: 10.1007/s11682-016-9547-0
– ident: e_1_2_9_22_1
  doi: 10.1371/journal.pone.0042570
– ident: e_1_2_9_40_1
  doi: 10.1038/s41562-016-0006
– ident: e_1_2_9_85_1
  doi: 10.1002/ima.20139
– ident: e_1_2_9_62_1
  doi: 10.1523/JNEUROSCI.6334-11.2012
– ident: e_1_2_9_59_1
  doi: 10.1016/0304-3959(83)90125-2
– ident: e_1_2_9_90_1
  doi: 10.1016/j.neuroimage.2010.08.078
– ident: e_1_2_9_71_1
  doi: 10.1016/j.neuroimage.2019.05.008
– ident: e_1_2_9_60_1
  doi: 10.1016/j.bandl.2010.07.008
– volume: 27
  start-page: 1193
  issue: 2
  year: 2015
  ident: e_1_2_9_41_1
  article-title: Learning control over emotion networks through connectivity‐based neurofeedback
  publication-title: Cerebral Cortex
– ident: e_1_2_9_78_1
  doi: 10.1523/JNEUROSCI.3498-11.2011
– ident: e_1_2_9_73_1
  doi: 10.1093/brain/awaa011
– ident: e_1_2_9_8_1
  doi: 10.1007/s10548-013-0331-9
SSID ssj0011501
Score 2.4630594
SecondaryResourceType review_article
Snippet Neurofeedback training has been shown to influence behavior in healthy participants as well as to alleviate clinical symptoms in neurological, psychosomatic,...
SourceID swepub
pubmedcentral
proquest
gale
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3839
SubjectTerms Adult
Biofeedback
Biofeedback training
Brain
Brain - diagnostic imaging
Brain - physiology
Brain Mapping
Electroencephalography
Feedback
fMRI
Functional magnetic resonance imaging
functional neuroimaging
Humans
Laws, regulations and rules
Learning
Magnetic Resonance Imaging
Meta-analysis
neurofeedback
Neurofeedback - physiology
Observational learning
Patients
Practice, Psychological
Prognosis
real-time fMRI
Success
Title Can we predict real‐time fMRI neurofeedback learning success from pretraining brain activity?
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.25089
https://www.ncbi.nlm.nih.gov/pubmed/32729652
https://www.proquest.com/docview/2439596766
https://www.proquest.com/docview/2429056989
https://pubmed.ncbi.nlm.nih.gov/PMC7469782
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-417506
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VHhAXHi3QhbIyiEcv2SaO4yTigJZCtSAtQhVFPSBZduK0VdtstbsRghM_gd_IL2HGeUBWICFu0XqcOLNjzzfO-BuAxwg5bJDnxitkiAEKunwPUZH0wpDIt5LcTzL6ojt9JyeH4u1RdLQGz9uzMDU_RLfhRjPDrdc0wbVZ7P4iDT0xFyP03wkd3qNcLQJEBx11FAEdF2yhi_VSXIFbViGf73Y9e75odUX-zSWtpks2pKJ9POsc0v4N-NS-Sp2HcjaqlmaUfV1hefzPd70J1xugysa1Zd2CNVtuwOa4xCD94gt7ylzqqNuT34Cr0-YL_SaoPV2yz5ZdzumnJUNMev7j23cqYc-K6cEbVtZsIDY3OjtjTdGKY7aoXOVGRsddqHNbuoIZumB0_IKqXLy4DYf7rz_sTbymiIOXCclTLyyE1NboQvt5EmiBcMykkcisxOcUCL9SbUJho0iLxGLErAW3RaDzIC5sgmAlvAPr5ay0W8B0pHWCFscRsolYozpyiYAoNolvA8GzAey0f6fKGoZzGu25qrmZuUI9KqfHATzqRC9rWo8_CT0jm1A01fE-mW5OLOBoiDRLjWOKp9PYlwPY7kniFM36za1VqWaJWCiOUDBKZSyx-WHXTD0p7a20s4pkeEoqorHcrY2wG27IMS6SER9A3DPPToCIw_st5emJIxCPhUwRGQ7gSW3IvS6vTj-O1Wx-rKpKoXIjGv6OM86_a0pNXk7dxb1_F70P1zjtXbjEyG1YX84r-wAB3tIM4QoX74due2ToZvVPxG5OtA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6VIgGXAi3QQAGD-Okl28RxnERCQkuh2kK3h6pFvSDLSZy2aputthshOPEIPCNPwozzA1mBhLhF63EymR17vnHsbwCeIeQwfp6nbiEDTFAw5LuIiqQbBES-FedenNEX3fGuHB2I94fh4QK8as_C1PwQ3YIbjQw7X9MApwXpjV-socfp-QADeJxcgatU0dsmVHsdeRRBHZtuYZB1E5yDW14hj290XXvRaH5O_i0ozW-YbGhF-4jWhqStm_CpfZl6J8rpoJqlg-zrHM_j_77tLVhqsCob1s51GxZMuQwrwxLz9PMv7AWzu0ftsvwyXBs3H-lXQG3qkn027GJKP80YwtKzH9--UxV7Voz3tllZE4KYPNXZKWvqVhyxy8oWb2R04oU6t9UrWEoXjE5gUKGL13fgYOvd_ubIbeo4uJmQPHGDQkhtUl1oL499LRCRpUkoMiPxOQUisESngTBhqEVsMGnWgpvC17kfFSZGvBLchcVyUppVYDrUOkan44jaRKTRHLlETBSlsWd8wTMH1tv_U2UNyTlpe6Zqemau0I7K2tGBp53oRc3s8Sehl-QUikY73ifTzaEF1IZ4s9QwopQ6iTzpwFpPEkdp1m9u3Uo1s8Sl4ogGw0RGEpufdM3Uk3a-lWZSkQxPyESky73aCzt1A46pkQy5A1HPPzsB4g7vt5Qnx5ZDPBIyQXDowPPak3td3p58HKrJ9EhVlULjhqT-uvXOv1tKjd6M7cX9fxd9DNdH--MdtbO9--EB3OC0lGH3Sa7B4mxamYeI92bpIzusfwK3A1ED
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NIU28MNj4CBtgEB97SZc6jpOIB1Q2qg7ohCaG9oBkOYmzTdvSqmuE4Ik_gb-Rv4Q75wNSgYR4alSfm8v17PudY_8O4AlCDtPPssTNpY8JCoZ8F1GRdH2fyLeizItSeqM73pejQ_HmKDhaghfNWZiKH6JdcKORYedrGuDTLN_-RRp6klz0MH5H8RW4KiR-EiI6aLmjCOnYbAtjrBvjFNzQCnl8u-3aCUaLU_JvMWlxv2TNKtoFtDYiDVfhU_Ms1UaUs145T3rp1wWax_982BtwvUaqbFC51k1YMsUarA8KzNIvvrBnzO4dtYvya7Ayrl_Rr4Pa0QX7bNh0Rl_NGYLS8x_fvlMNe5aPD_ZYUdGBmCzR6Rmrq1Ycs8vSlm5kdN6FOje1K1hCF4zOX1CZi5e34HD4-sPOyK2rOLipkDx2_VxIbRKday-L-logHkviQKRG4n1yxF-xTnxhgkCLyGDKrAU3eV9n_TA3EaIV_zYsF5PC3AWmA60jdDmOmE2EGs2RSUREYRJ5pi946sBW83eqtKY4J23PVUXOzBXaUVk7OvC4FZ1WvB5_EnpOPqForOPvpLo-soDaEGuWGoSUUMehJx3Y7EjiGE27zY1XqXqOuFQcsWAQy1Bi86O2mXrSvrfCTEqS4TGZiHS5Uzlhq67PMTGSAXcg7LhnK0DM4d2W4vTEMoiHQsYIDR14Wjlyp8vu6ceBmsyOVVkqNG5A6m9Z5_y7pdTo1dhe3Pt30Yew8n53qN7t7b_dgGuc1jHsJslNWJ7PSnMfwd48eWAH9U-v6k-7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Can+we+predict+real-time+fMRI+neurofeedback+learning+success+from+pretraining+brain+activity%3F&rft.jtitle=Human+brain+mapping&rft.au=Haugg%2C+Amelie&rft.au=Sladky%2C+Ronald&rft.au=Skouras%2C+Stavros&rft.au=McDonald%2C+Amalia&rft.date=2020-10-01&rft.issn=1097-0193&rft.eissn=1097-0193&rft.volume=41&rft.issue=14&rft.spage=3839&rft_id=info:doi/10.1002%2Fhbm.25089&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon