Can we predict real‐time fMRI neurofeedback learning success from pretraining brain activity?
Neurofeedback training has been shown to influence behavior in healthy participants as well as to alleviate clinical symptoms in neurological, psychosomatic, and psychiatric patient populations. However, many real‐time fMRI neurofeedback studies report large inter‐individual differences in learning...
Saved in:
Published in | Human brain mapping Vol. 41; no. 14; pp. 3839 - 3854 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.10.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Neurofeedback training has been shown to influence behavior in healthy participants as well as to alleviate clinical symptoms in neurological, psychosomatic, and psychiatric patient populations. However, many real‐time fMRI neurofeedback studies report large inter‐individual differences in learning success. The factors that cause this vast variability between participants remain unknown and their identification could enhance treatment success. Thus, here we employed a meta‐analytic approach including data from 24 different neurofeedback studies with a total of 401 participants, including 140 patients, to determine whether levels of activity in target brain regions during pretraining functional localizer or no‐feedback runs (i.e., self‐regulation in the absence of neurofeedback) could predict neurofeedback learning success. We observed a slightly positive correlation between pretraining activity levels during a functional localizer run and neurofeedback learning success, but we were not able to identify common brain‐based success predictors across our diverse cohort of studies. Therefore, advances need to be made in finding robust models and measures of general neurofeedback learning, and in increasing the current study database to allow for investigating further factors that might influence neurofeedback learning.
Many real‐time fMRI neurofeedback studies report large inter‐individual differences in learning success, but the factors that cause this vast variability between participants remain unknown. Here, we used a meta‐analytic approach including data from 24 different neurofeedback studies with a total of 401 participants to determine whether levels of activity in target brain regions during pretraining functional localizer or no‐feedback runs could predict neurofeedback learning success. We were not able to identify common brain‐based success predictors across our diverse cohort of studies. |
---|---|
AbstractList | Neurofeedback training has been shown to influence behavior in healthy participants as well as to alleviate clinical symptoms in neurological, psychosomatic, and psychiatric patient populations. However, many real-time fMRI neurofeedback studies report large inter-individual differences in learning success. The factors that cause this vast variability between participants remain unknown and their identification could enhance treatment success. Thus, here we employed a meta-analytic approach including data from 24 different neurofeedback studies with a total of 401 participants, including 140 patients, to determine whether levels of activity in target brain regions during pretraining functional localizer or no-feedback runs (i.e., self-regulation in the absence of neurofeedback) could predict neurofeedback learning success. We observed a slightly positive correlation between pretraining activity levels during a functional localizer run and neurofeedback learning success, but we were not able to identify common brain-based success predictors across our diverse cohort of studies. Therefore, advances need to be made in finding robust models and measures of general neurofeedback learning, and in increasing the current study database to allow for investigating further factors that might influence neurofeedback learning. Neurofeedback training has been shown to influence behavior in healthy participants as well as to alleviate clinical symptoms in neurological, psychosomatic, and psychiatric patient populations. However, many real‐time fMRI neurofeedback studies report large inter‐individual differences in learning success. The factors that cause this vast variability between participants remain unknown and their identification could enhance treatment success. Thus, here we employed a meta‐analytic approach including data from 24 different neurofeedback studies with a total of 401 participants, including 140 patients, to determine whether levels of activity in target brain regions during pretraining functional localizer or no‐feedback runs (i.e., self‐regulation in the absence of neurofeedback) could predict neurofeedback learning success. We observed a slightly positive correlation between pretraining activity levels during a functional localizer run and neurofeedback learning success, but we were not able to identify common brain‐based success predictors across our diverse cohort of studies. Therefore, advances need to be made in finding robust models and measures of general neurofeedback learning, and in increasing the current study database to allow for investigating further factors that might influence neurofeedback learning. Many real‐time fMRI neurofeedback studies report large inter‐individual differences in learning success, but the factors that cause this vast variability between participants remain unknown. Here, we used a meta‐analytic approach including data from 24 different neurofeedback studies with a total of 401 participants to determine whether levels of activity in target brain regions during pretraining functional localizer or no‐feedback runs could predict neurofeedback learning success. We were not able to identify common brain‐based success predictors across our diverse cohort of studies. Neurofeedback training has been shown to influence behavior in healthy participants as well as to alleviate clinical symptoms in neurological, psychosomatic, and psychiatric patient populations. However, many real-time fMRI neurofeedback studies report large inter-individual differences in learning success. The factors that cause this vast variability between participants remain unknown and their identification could enhance treatment success. Thus, here we employed a meta-analytic approach including data from 24 different neurofeedback studies with a total of 401 participants, including 140 patients, to determine whether levels of activity in target brain regions during pretraining functional localizer or no-feedback runs (i.e., self-regulation in the absence of neurofeedback) could predict neurofeedback learning success. We observed a slightly positive correlation between pretraining activity levels during a functional localizer run and neurofeedback learning success, but we were not able to identify common brain-based success predictors across our diverse cohort of studies. Therefore, advances need to be made in finding robust models and measures of general neurofeedback learning, and in increasing the current study database to allow for investigating further factors that might influence neurofeedback learning.Neurofeedback training has been shown to influence behavior in healthy participants as well as to alleviate clinical symptoms in neurological, psychosomatic, and psychiatric patient populations. However, many real-time fMRI neurofeedback studies report large inter-individual differences in learning success. The factors that cause this vast variability between participants remain unknown and their identification could enhance treatment success. Thus, here we employed a meta-analytic approach including data from 24 different neurofeedback studies with a total of 401 participants, including 140 patients, to determine whether levels of activity in target brain regions during pretraining functional localizer or no-feedback runs (i.e., self-regulation in the absence of neurofeedback) could predict neurofeedback learning success. We observed a slightly positive correlation between pretraining activity levels during a functional localizer run and neurofeedback learning success, but we were not able to identify common brain-based success predictors across our diverse cohort of studies. Therefore, advances need to be made in finding robust models and measures of general neurofeedback learning, and in increasing the current study database to allow for investigating further factors that might influence neurofeedback learning. |
Audience | Academic |
Author | Hendler, Talma Bodurka, Jerzy Sorger, Bettina Pamplona, Gustavo Blefari, Maria‐Laura Haugg, Amelie Lee, Jong‐Hwan Fukuda, Megumi Papoutsi, Marina Cohen Kadosh, Kathrin Weiskopf, Nikolaus MacInnes, Jeff Dickerson, Kathryn Sladky, Ronald Kamp, Tabea Chen, Nan‐Kuei Kirschner, Matthias Herdener, Marcus Auer, Tibor Kim, Dong‐Youl Scharnowski, Frank Liew, Sook‐Lei Marins, Theo Craddock, Cameron Koush, Yury Adcock, R. Alison Schweizer, Renate Veit, Ralf Young, Kymberly Spetter, Maartje Zich, Catharina Keynan, Jackob N. Van De Ville, Dimitri Haller, Sven McDonald, Amalia Becker, Benjamin Skouras, Stavros Yao, Shuxia Emmert, Kirsten |
AuthorAffiliation | 27 Department Cognitive Neuroscience, Faculty of Psychology and Neuroscience Maastricht University Maastricht The Netherlands 3 Department of Biological and Medical Psychology University of Bergen Bergen Norway 14 Department of Biomedical Engineering University of Arizona Tucson Arizona 12 Institute for Learning and Brain Sciences University of Washington Seattle Washington 1 Psychiatric University Hospital Zurich University of Zurich Zürich Switzerland 7 Magnetic Resonance Research Center, Department of Radiology & Biomedical Imaging Yale University New Haven Connecticut 28 Division of Occupational Science and Occupational Therapy University of Southern California Los Angeles California 16 Laureate Institute for Brain Research Tulsa Oklahoma 6 McConnell Brain Imaging Centre Montréal Neurological Institute, McGill University Montreal Canada 18 Functional Imaging Laboratory German Primate Center Göttingen Germany 2 Faculty of Psychology University of Vienna Vienna Austria 22 Center for Neuroprosth |
AuthorAffiliation_xml | – name: 20 Department of Neurology University Medical Center Schleswig‐Holstein, Kiel University Kiel Germany – name: 26 School of Fundamental Science and Engineering Waseda University Tokyo Japan – name: 3 Department of Biological and Medical Psychology University of Bergen Bergen Norway – name: 13 Department of Psychiatry and Behavioral Sciences Duke University Durham North Carolina – name: 29 Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich University of Tübingen Tübingen Germany – name: 8 UCL Huntington's Disease Centre Institute of Neurology, University College London London England – name: 31 Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany – name: 21 Radiology‐Department of Surgical Sciences Uppsala University Uppsala Sweden – name: 11 Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences University of Oxford Oxford England – name: 7 Magnetic Resonance Research Center, Department of Radiology & Biomedical Imaging Yale University New Haven Connecticut – name: 5 Department of Diagnostic Medicine The University of Texas at Austin Dell Medical School Austin Texas – name: 19 Hôpital and Ophtalmique Jules Gonin University of Lausanne Lausanne Switzerland – name: 24 Department of Brain and Cognitive Engineering Korea University Seoul Korea – name: 30 School of Psychology University of Birmingham Birmingham England – name: 22 Center for Neuroprosthetics Ecole Polytechnique Féderale de Lausanne Lausanne Switzerland – name: 1 Psychiatric University Hospital Zurich University of Zurich Zürich Switzerland – name: 4 Department of Psychology University of Virginia Charlottesville Virginia – name: 16 Laureate Institute for Brain Research Tulsa Oklahoma – name: 6 McConnell Brain Imaging Centre Montréal Neurological Institute, McGill University Montreal Canada – name: 14 Department of Biomedical Engineering University of Arizona Tucson Arizona – name: 25 D'Or Institute for Research and Education (IDOR) Rio de Janeiro Brazil – name: 17 Clinical Hospital of Chengdu the Brain Science Institute, MOE Key Laboratory for Neuroinformation University of Electronic Science and Technology of China Chengdu China – name: 18 Functional Imaging Laboratory German Primate Center Göttingen Germany – name: 10 School of Psychology University of Surrey Guildford England – name: 12 Institute for Learning and Brain Sciences University of Washington Seattle Washington – name: 27 Department Cognitive Neuroscience, Faculty of Psychology and Neuroscience Maastricht University Maastricht The Netherlands – name: 2 Faculty of Psychology University of Vienna Vienna Austria – name: 23 Department of Radiology and Medical Informatics, Faculty of Medicine University of Geneva Geneva Switzerland – name: 15 Department of Psychiatry, School of Medicine University of Pittsburgh Pittsburgh Pennsylvania – name: 9 Functional Brain Center Wohl Institute for Advanced Imaging, Tel‐Aviv Sourasky Medical Center, Tel‐Aviv University Tel Aviv Israel – name: 28 Division of Occupational Science and Occupational Therapy University of Southern California Los Angeles California |
Author_xml | – sequence: 1 givenname: Amelie orcidid: 0000-0002-9583-6585 surname: Haugg fullname: Haugg, Amelie email: amelie.haugg@uzh.ch organization: University of Vienna – sequence: 2 givenname: Ronald surname: Sladky fullname: Sladky, Ronald organization: University of Vienna – sequence: 3 givenname: Stavros surname: Skouras fullname: Skouras, Stavros organization: University of Bergen – sequence: 4 givenname: Amalia surname: McDonald fullname: McDonald, Amalia organization: University of Virginia – sequence: 5 givenname: Cameron surname: Craddock fullname: Craddock, Cameron organization: The University of Texas at Austin Dell Medical School – sequence: 6 givenname: Matthias surname: Kirschner fullname: Kirschner, Matthias organization: Montréal Neurological Institute, McGill University – sequence: 7 givenname: Marcus surname: Herdener fullname: Herdener, Marcus organization: University of Zurich – sequence: 8 givenname: Yury orcidid: 0000-0002-3684-5641 surname: Koush fullname: Koush, Yury organization: Yale University – sequence: 9 givenname: Marina surname: Papoutsi fullname: Papoutsi, Marina organization: Institute of Neurology, University College London – sequence: 10 givenname: Jackob N. surname: Keynan fullname: Keynan, Jackob N. organization: Wohl Institute for Advanced Imaging, Tel‐Aviv Sourasky Medical Center, Tel‐Aviv University – sequence: 11 givenname: Talma surname: Hendler fullname: Hendler, Talma organization: Wohl Institute for Advanced Imaging, Tel‐Aviv Sourasky Medical Center, Tel‐Aviv University – sequence: 12 givenname: Kathrin surname: Cohen Kadosh fullname: Cohen Kadosh, Kathrin organization: University of Surrey – sequence: 13 givenname: Catharina surname: Zich fullname: Zich, Catharina organization: University of Oxford – sequence: 14 givenname: Jeff surname: MacInnes fullname: MacInnes, Jeff organization: University of Washington – sequence: 15 givenname: R. Alison surname: Adcock fullname: Adcock, R. Alison organization: Duke University – sequence: 16 givenname: Kathryn surname: Dickerson fullname: Dickerson, Kathryn organization: Duke University – sequence: 17 givenname: Nan‐Kuei surname: Chen fullname: Chen, Nan‐Kuei organization: University of Arizona – sequence: 18 givenname: Kymberly surname: Young fullname: Young, Kymberly organization: University of Pittsburgh – sequence: 19 givenname: Jerzy orcidid: 0000-0003-0053-9746 surname: Bodurka fullname: Bodurka, Jerzy organization: Laureate Institute for Brain Research – sequence: 20 givenname: Shuxia orcidid: 0000-0002-5259-6374 surname: Yao fullname: Yao, Shuxia organization: University of Electronic Science and Technology of China – sequence: 21 givenname: Benjamin orcidid: 0000-0002-9014-9671 surname: Becker fullname: Becker, Benjamin organization: University of Electronic Science and Technology of China – sequence: 22 givenname: Tibor surname: Auer fullname: Auer, Tibor organization: University of Surrey – sequence: 23 givenname: Renate surname: Schweizer fullname: Schweizer, Renate organization: German Primate Center – sequence: 24 givenname: Gustavo orcidid: 0000-0002-0278-203X surname: Pamplona fullname: Pamplona, Gustavo organization: University of Lausanne – sequence: 25 givenname: Kirsten surname: Emmert fullname: Emmert, Kirsten organization: University Medical Center Schleswig‐Holstein, Kiel University – sequence: 26 givenname: Sven surname: Haller fullname: Haller, Sven organization: Uppsala University – sequence: 27 givenname: Dimitri surname: Van De Ville fullname: Van De Ville, Dimitri organization: University of Geneva – sequence: 28 givenname: Maria‐Laura surname: Blefari fullname: Blefari, Maria‐Laura organization: Ecole Polytechnique Féderale de Lausanne – sequence: 29 givenname: Dong‐Youl surname: Kim fullname: Kim, Dong‐Youl organization: Korea University – sequence: 30 givenname: Jong‐Hwan surname: Lee fullname: Lee, Jong‐Hwan organization: Korea University – sequence: 31 givenname: Theo surname: Marins fullname: Marins, Theo organization: D'Or Institute for Research and Education (IDOR) – sequence: 32 givenname: Megumi orcidid: 0000-0002-8608-4756 surname: Fukuda fullname: Fukuda, Megumi organization: Waseda University – sequence: 33 givenname: Bettina surname: Sorger fullname: Sorger, Bettina organization: Maastricht University – sequence: 34 givenname: Tabea orcidid: 0000-0002-4868-3248 surname: Kamp fullname: Kamp, Tabea organization: Maastricht University – sequence: 35 givenname: Sook‐Lei surname: Liew fullname: Liew, Sook‐Lei organization: University of Southern California – sequence: 36 givenname: Ralf surname: Veit fullname: Veit, Ralf organization: University of Tübingen – sequence: 37 givenname: Maartje surname: Spetter fullname: Spetter, Maartje organization: University of Birmingham – sequence: 38 givenname: Nikolaus surname: Weiskopf fullname: Weiskopf, Nikolaus organization: Max Planck Institute for Human Cognitive and Brain Sciences – sequence: 39 givenname: Frank surname: Scharnowski fullname: Scharnowski, Frank organization: University of Vienna |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32729652$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-417506$$DView record from Swedish Publication Index |
BookMark | eNp9kt1uFCEYhiemxv7ogTdgJvFEE3cLDAPDSc26_rRJGxOjnhKG-dhSZ2CFmW72zEvwGr0Smd1a3UYNBxB43pfvg_cw23PeQZY9xmiKESLHl3U3JSWqxL3sACPBJwiLYm9cs3IiKMf72WGMVwhhXCL8INsvCCeCleQgk3Pl8hXkywCN1X0eQLU_vn3vbQe5ufhwljsYgjcATa30l7wFFZx1izwOWkOMuQm-G8V9UHZzUI-LXOneXtt-_fJhdt-oNsKjm_ko-_T2zcf56eT8_buz-ex8oikjYlIYyhTUyijUVFhRQUQtSqqBpXsNKplQdUGhLBWtgONCUQIGqwZzA5VAuDjKXmx94wqWQy2XwXYqrKVXVr62n2fSh4UcBkkxLxFL-MkWT2wHjQaXGmh3VLsnzl7Khb-WnDLBK5IMnt0YBP91gNjLzkYNbasc-CFKQokYy65EQp_eQa_8EFx6jUQVohSMM_abWqgWpHXGp3v1aCpnPH0kFnxT9_QvVBoNdFanVBib9ncET_5s9LbDXwlIwPMtoIOPMYC5RTCSY7pkSpfcpCuxx3dYbXvVWz--kW3_p1ilutb_tpanry62ip-MluEF |
CitedBy_id | crossref_primary_10_1098_rstb_2023_0093 crossref_primary_10_1098_rstb_2023_0094 crossref_primary_10_1098_rstb_2023_0095 crossref_primary_10_1016_j_neuroimage_2025_121079 crossref_primary_10_1162_netn_a_00338 crossref_primary_10_1016_j_celrep_2021_109890 crossref_primary_10_1124_pharmrev_121_000514 crossref_primary_10_1016_j_biopsycho_2023_108521 crossref_primary_10_1016_j_clinph_2023_09_011 crossref_primary_10_1111_psyp_14237 crossref_primary_10_3389_fnins_2023_1212549 crossref_primary_10_3390_app11167725 crossref_primary_10_1098_rstb_2024_0186 crossref_primary_10_1016_j_neuroimage_2021_118207 crossref_primary_10_1016_j_neuroimage_2021_118733 crossref_primary_10_1093_brain_awac239 crossref_primary_10_1176_appi_ajp_21100999 crossref_primary_10_1016_j_neubiorev_2024_105680 crossref_primary_10_1002_hbm_25336 crossref_primary_10_1016_j_tins_2024_08_007 crossref_primary_10_3389_fnhum_2020_578119 crossref_primary_10_1038_s41597_021_00845_7 crossref_primary_10_1016_j_neuroimage_2020_117194 |
Cites_doi | 10.1016/j.ebiom.2018.10.052 10.3389/fnbeh.2015.00341 10.1016/j.biopsych.2015.12.024 10.1038/tp.2013.24 10.3389/fnbeh.2014.00350 10.1371/journal.pone.0038115 10.1080/00029157.1978.10403966 10.1016/j.neuroscience.2016.09.026 10.1016/j.neuroscience.2016.12.050 10.1093/ntr/ntt122 10.1002/hbm.23921 10.1073/pnas.1516857113 10.3389/fnhum.2013.00478 10.1016/j.neuroimage.2012.02.053 10.1177/1073858419860115 10.3389/fnhum.2017.00271 10.1016/j.neuroimage.2013.05.010 10.1523/JNEUROSCI.2118-07.2007 10.1176/appi.ajp.2017.16060637 10.1016/j.appet.2017.01.032 10.1109/NER.2013.6696025 10.1177/1545968315619699 10.1371/journal.pone.0133034 10.1038/ncomms13669 10.1073/pnas.0505210102 10.1371/journal.pone.0091090 10.1038/nrn.2016.164 10.1371/journal.pone.0088785 10.1016/j.neuroimage.2015.08.074 10.1162/jocn_a_01396 10.1016/j.neuroimage.2016.10.048 10.1111/nyas.13338 10.1016/j.nicl.2016.12.023 10.1073/pnas.1210738110 10.1016/j.neuroimage.2014.03.073 10.1016/j.neuroimage.2020.117053 10.1016/j.pscychresns.2013.03.003 10.1016/j.neuroimage.2017.12.071 10.1016/j.biopsycho.2015.03.009 10.1126/science.1212003 10.3389/fnbeh.2014.00299 10.1093/scan/nsw016 10.1002/hbm.23402 10.1007/s10548-014-0384-4 10.1002/9780470479216.corpsy0943 10.3389/fnbeh.2014.00338 10.1016/j.neuroimage.2014.05.072 10.1016/j.neuroimage.2018.10.021 10.3389/fnhum.2015.00547 10.1136/bmj.327.7414.557 10.3389/fnbeh.2015.00148 10.1016/j.neuroimage.2016.02.035 10.1016/j.neuroimage.2019.01.058 10.1007/s00330-009-1595-z 10.1177/1545968310385128 10.1093/cercor/bhv138 10.1016/j.neuron.2016.02.002 10.1093/braincomms/fcaa049 10.1016/j.neuroimage.2013.05.019 10.1371/journal.pone.0024522 10.1016/j.biopsycho.2013.02.019 10.1371/journal.pone.0135872 10.1111/j.1369-1600.2012.00449.x 10.1016/j.neuroimage.2007.01.018 10.1002/hbm.20621 10.1016/j.neuroimage.2015.09.042 10.1002/jrsm.1260 10.3389/fpsyt.2016.00111 10.1503/jpn.140200 10.1162/jocn_a_00802 10.3389/fnhum.2015.00160 10.3389/fnbeh.2015.00018 10.1016/j.neuroimage.2013.02.041 10.1073/pnas.1721572115 10.1111/j.1552-6569.2010.00529.x 10.1007/s11682-016-9547-0 10.1371/journal.pone.0042570 10.1038/s41562-016-0006 10.1002/ima.20139 10.1523/JNEUROSCI.6334-11.2012 10.1016/0304-3959(83)90125-2 10.1016/j.neuroimage.2010.08.078 10.1016/j.neuroimage.2019.05.008 10.1016/j.bandl.2010.07.008 10.1523/JNEUROSCI.3498-11.2011 10.1093/brain/awaa011 10.1007/s10548-013-0331-9 |
ContentType | Journal Article |
Copyright | 2020 The Authors. published by Wiley Periodicals LLC. 2020 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. COPYRIGHT 2020 John Wiley & Sons, Inc. 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020 The Authors. published by Wiley Periodicals LLC. – notice: 2020 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. – notice: COPYRIGHT 2020 John Wiley & Sons, Inc. – notice: 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QR 7TK 7U7 8FD C1K FR3 K9. P64 7X8 5PM ACNBI ADTPV AOWAS D8T DF2 ZZAVC |
DOI | 10.1002/hbm.25089 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Chemoreception Abstracts Neurosciences Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) SWEPUB Uppsala universitet full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Uppsala universitet SwePub Articles full text |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Toxicology Abstracts ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE Technology Research Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
DocumentTitleAlternate | Haugg et al |
EISSN | 1097-0193 |
EndPage | 3854 |
ExternalDocumentID | oai_DiVA_org_uu_417506 PMC7469782 A710619706 32729652 10_1002_hbm_25089 HBM25089 |
Genre | article Research Support, Non-U.S. Gov't Meta-Analysis Journal Article |
GrantInformation_xml | – fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung funderid: 32003B_166566; BSSG10_155915; 100014_178841 – fundername: Foundation for Research in Science and the Humanities at the University of Zurich funderid: STWF‐17‐012 – fundername: Forschungskredit of the University of Zurich funderid: FK‐18‐030 – fundername: Forschungskredit of the University of Zurich grantid: FK-18-030 – fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung grantid: BSSG10_155915 – fundername: Medical Research Council grantid: MR/L012936/1 – fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung grantid: 100014_178841 – fundername: Foundation for Research in Science and the Humanities at the University of Zurich grantid: STWF-17-012 – fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung grantid: 32003B_166566 – fundername: Foundation for Research in Science and the Humanities at the University of Zurich grantid: STWF‐17‐012 – fundername: ; grantid: 32003B_166566; BSSG10_155915; 100014_178841 – fundername: Forschungskredit of the University of Zurich grantid: FK‐18‐030 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAONW AAYCA AAZKR ABCQN ABCUV ABIJN ABIVO ABPVW ACCFJ ACCMX ACGFS ACIWK ACPOU ACPRK ACXQS ADBBV ADEOM ADIZJ ADMGS ADPDF ADXAS ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFPWT AFRAH AFZJQ AHMBA AIURR AIWBW AJBDE AJXKR ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DU5 EBD EBS EMOBN F00 F01 F04 F5P G-S G.N GNP GODZA GROUPED_DOAJ H.T H.X HBH HHY HHZ HZ~ IAO IHR ITC IX1 J0M JPC KQQ L7B LAW LC2 LC3 LH4 LITHE LOXES LP6 LP7 LUTES LYRES MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OK1 OVD OVEED P2P P2W P2X P4D PALCI PIMPY PQQKQ Q.N Q11 QB0 QRW R.K ROL RPM RWD RWI RX1 RYL SUPJJ SV3 TEORI UB1 V2E W8V W99 WBKPD WIB WIH WIK WIN WJL WNSPC WOHZO WQJ WRC WUP WYISQ XG1 XSW XV2 ZZTAW ~IA ~WT .Y3 31~ 7X7 8FI 8FJ AAFWJ AANHP AAYXX ABEML ABJNI ABUWG ACBWZ ACRPL ACSCC ACYXJ ADNMO AFKRA AFPKN AGQPQ ASPBG AVWKF AZFZN BENPR BFHJK CCPQU CITATION EJD FEDTE FYUFA GAKWD HF~ HMCUK HVGLF LW6 M6M PHGZM PHGZT RIWAO RJQFR SAMSI UKHRP WXSBR AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7QR 7TK 7U7 8FD C1K FR3 K9. P64 7X8 5PM ACNBI ADTPV AOWAS D8T DF2 ZZAVC |
ID | FETCH-LOGICAL-c4629-3f46aebafa0d81a4929b954ce6dbaf0569ab34e55a48e713a42ef1ad17fe89013 |
IEDL.DBID | DR2 |
ISSN | 1065-9471 1097-0193 |
IngestDate | Thu Aug 21 07:02:51 EDT 2025 Thu Aug 21 18:26:49 EDT 2025 Tue Aug 05 10:24:11 EDT 2025 Sat Jul 26 01:18:52 EDT 2025 Tue Jun 17 21:37:37 EDT 2025 Tue Jun 10 20:44:05 EDT 2025 Tue Jul 22 01:41:59 EDT 2025 Tue Jul 01 01:10:59 EDT 2025 Thu Apr 24 23:10:07 EDT 2025 Wed Jan 22 16:34:35 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Keywords | meta-analysis real-time fMRI fMRI learning functional neuroimaging neurofeedback |
Language | English |
License | Attribution 2020 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4629-3f46aebafa0d81a4929b954ce6dbaf0569ab34e55a48e713a42ef1ad17fe89013 |
Notes | Funding information Foundation for Research in Science and the Humanities at the University of Zurich, Grant/Award Number: STWF‐17‐012; Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung, Grant/Award Numbers: 32003B_166566, BSSG10_155915, 100014_178841; Forschungskredit of the University of Zurich, Grant/Award Number: FK‐18‐030 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Funding information Foundation for Research in Science and the Humanities at the University of Zurich, Grant/Award Number: STWF‐17‐012; Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung, Grant/Award Numbers: 32003B_166566, BSSG10_155915, 100014_178841; Forschungskredit of the University of Zurich, Grant/Award Number: FK‐18‐030 |
ORCID | 0000-0002-4868-3248 0000-0002-5259-6374 0000-0003-0053-9746 0000-0002-0278-203X 0000-0002-9583-6585 0000-0002-3684-5641 0000-0002-9014-9671 0000-0002-8608-4756 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.25089 |
PMID | 32729652 |
PQID | 2439596766 |
PQPubID | 996345 |
PageCount | 16 |
ParticipantIDs | swepub_primary_oai_DiVA_org_uu_417506 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7469782 proquest_miscellaneous_2429056989 proquest_journals_2439596766 gale_infotracmisc_A710619706 gale_infotracacademiconefile_A710619706 pubmed_primary_32729652 crossref_primary_10_1002_hbm_25089 crossref_citationtrail_10_1002_hbm_25089 wiley_primary_10_1002_hbm_25089_HBM25089 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 1, 2020 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: October 1, 2020 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: San Antonio |
PublicationTitle | Human brain mapping |
PublicationTitleAlternate | Hum Brain Mapp |
PublicationYear | 2020 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 2012; 61 1976; 20 2017; 8 2017; 1 2013; 3 2011; 117 2014; 27 2016; 30 2011; 54 2015; 108 1983; 17 2013; 7 2017; 112 2007; 35 2014; 22 2013; 18 2010; 20 2018; 39 2013; 15 2003; 327 2018; 172 1978; 21 2005; 102 2017; 38 2017; 1396 2018; 378 2016; 113 2016; 41 1983 2013; 110 2016; 80 2011; 25 2014; 96 2014; 9 2014; 8 2014; 95 2012; 22 2018; 37 2016; 89 2007; 27 2019; 198 2011; 334 2017; 20 2019; 31 2010 2020; 143 2008; 18 2015; 10 2016; 124 2011; 31 2016; 18 2015; 9 2019; 185 2011; 6 2017; 378 2012; 32 2019; 189 2016; 11 2016; 7 2015; 28 2009; 30 2015; 27 2017; 14 2020 2017; 11 2013; 75 2018; 115 2019 2013; 213 2020; 26 2013; 81 2013 2012; 7 2014; 100 2017; 146 2016; 26 2016; 130 e_1_2_9_75_1 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_79_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_90_1 e_1_2_9_92_1 e_1_2_9_71_1 Emmert K. (e_1_2_9_18_1) 2014; 8 e_1_2_9_14_1 Marins T. F. (e_1_2_9_48_1) 2015; 9 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_85_1 e_1_2_9_8_1 e_1_2_9_81_1 e_1_2_9_4_1 e_1_2_9_60_1 Zilverstand A. (e_1_2_9_89_1) 2015; 9 e_1_2_9_2_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_78_1 Auer T. (e_1_2_9_3_1) 2015; 9 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_76_1 Kober S. E. (e_1_2_9_39_1) 2017; 11 e_1_2_9_91_1 e_1_2_9_93_1 e_1_2_9_70_1 Blefari M. L. (e_1_2_9_6_1) 2015; 9 Guan M. (e_1_2_9_26_1) 2014; 22 Koush Y. (e_1_2_9_41_1) 2015; 27 Stumpf H. (e_1_2_9_77_1) 1983 e_1_2_9_15_1 e_1_2_9_38_1 Witte M. (e_1_2_9_83_1) 2013; 7 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 Skouras S. (e_1_2_9_72_1) 2019 e_1_2_9_42_1 e_1_2_9_63_1 Scheinost D. (e_1_2_9_66_1) 2014; 8 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_67_1 e_1_2_9_84_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_86_1 e_1_2_9_7_1 e_1_2_9_80_1 e_1_2_9_5_1 e_1_2_9_82_1 Zerssen D. (e_1_2_9_88_1) 1976; 20 Paret C. (e_1_2_9_55_1) 2014; 8 e_1_2_9_9_1 e_1_2_9_25_1 Gerin M. I. (e_1_2_9_23_1) 2016; 7 e_1_2_9_27_1 e_1_2_9_69_1 e_1_2_9_29_1 |
References_xml | – volume: 27 start-page: 7498 issue: 28 year: 2007 end-page: 7507 article-title: Direct instrumental conditioning of neural activity using functional magnetic resonance imaging‐derived reward feedback publication-title: The Journal of Neuroscience – volume: 20 start-page: 696 issue: 3 year: 2010 end-page: 703 article-title: Real‐time fMRI feedback training may improve chronic tinnitus publication-title: European Radiology – volume: 54 start-page: 1427 issue: 2 year: 2011 end-page: 1431 article-title: Neurofeedback training of the upper alpha frequency band in EEG improves cognitive performance publication-title: NeuroImage – volume: 185 start-page: 545 year: 2019 end-page: 555 article-title: NeuroImage a systematic review of the psychological factors that in fl uence neurofeedback learning outcomes publication-title: NeuroImage – volume: 117 start-page: 123 issue: 3 year: 2011 end-page: 132 article-title: Reorganization of functional and effective connectivity during real‐time fMRI‐BCI modulation of prosody processing publication-title: Brain and Language – volume: 61 start-page: 21 issue: 1 year: 2012 end-page: 31 article-title: Investigation of fMRI neurofeedback of differential primary motor cortex activity using kinesthetic motor imagery publication-title: NeuroImage – volume: 18 start-page: 69 issue: 1 year: 2008 end-page: 78 article-title: Neurofeedback fMRI‐mediated learning and consolidation of regional brain activation during motor imagery publication-title: International Journal of Imaging Systems and Technology – volume: 378 start-page: 71 year: 2018 end-page: 88 article-title: N EUROSCIENCE when the brain takes ‘BOLD’ steps: Real‐time fMRI neurofeedback can further enhance the ability to gradually self‐regulate regional brain activation publication-title: Neuroscience – volume: 7 start-page: 1 issue: JUN year: 2016 end-page: 11 article-title: Real‐time fMRI neurofeedback with war veterans with chronic PTSD: A feasibility study publication-title: Frontiers in Psychiatry – volume: 95 start-page: 59 issue: 1 year: 2014 end-page: 69 article-title: Modulation of frontal‐midline theta by neurofeedback publication-title: Biological Psychology – volume: 15 start-page: 2120 issue: 12 year: 2013 end-page: 2124 article-title: Sustained reduction of nicotine craving with real‐time neurofeedback: Exploring the role of severity of dependence publication-title: Nicotine & Tobacco Research – volume: 6 start-page: e24522 issue: 9 year: 2011 article-title: Self‐regulation of amygdala activation using real‐time FMRI neurofeedback publication-title: PLoS ONE – volume: 32 start-page: 17830 issue: 49 year: 2012 end-page: 17841 article-title: Improving visual perception through neurofeedback publication-title: Journal of Neuroscience – volume: 7 start-page: 1 issue: August year: 2013 end-page: 8 article-title: Control beliefs can predict the ability to up‐regulate sensorimotor rhythm during neurofeedback training publication-title: Frontiers in Human Neuroscience – volume: 198 start-page: 150 issue: June 2018 year: 2019 end-page: 159 article-title: NeuroImage the effects of psychiatric history and age on self‐regulation of the default mode network publication-title: NeuroImage – volume: 113 start-page: E2413 issue: 17 year: 2016 end-page: E2420 article-title: Covert neurofeedback without awareness shapes cortical network spontaneous connectivity publication-title: Proceedings of the National Academy of Sciences – volume: 26 start-page: 117 issue: 2 year: 2020 end-page: 133 article-title: Regions and connections: Complementary approaches to characterize brain organization and function publication-title: The Neuroscientist – volume: 100 start-page: 1 year: 2014 end-page: 14 article-title: Self‐regulation of inter‐hemispheric visual cortex balance through real‐time fMRI neurofeedback training publication-title: NeuroImage – volume: 189 start-page: 533 year: 2019 end-page: 542 article-title: Neurofeedback of core language network nodes modulates connectivity with the default‐mode network: A double‐blind fMRI neurofeedback study on auditory verbal hallucinations publication-title: NeuroImage – start-page: 117053 year: 2020 article-title: Modulatory effects of dynamic fMRI‐based neurofeedback on emotion regulation networks in adolescent females publication-title: NeuroImage – volume: 20 start-page: 915 year: 1976 end-page: 918 article-title: Die Befindlichkeitsskala (BS)—ein einfaches Instrument zur Objektivierung von Befindlichkeitsstörungen, insbesondere im Rahmen von Längsschnittuntersuchungen publication-title: Arzneimittelforschung – volume: 9 start-page: 1 issue: February year: 2015 end-page: 11 article-title: Improvement in precision grip force control with self‐modulation of primary motor cortex during motor imagery publication-title: Frontiers in Behavioral Neuroscience – volume: 115 start-page: 201721572 issue: 13 year: 2018 end-page: 201723475 article-title: Towards an unconscious neural reinforcement intervention for common fears publication-title: Proceedings of the National Academy of Sciences – volume: 1396 start-page: 126 year: 2017 end-page: 143 article-title: A network engineering perspective on probing and perturbing cognition with neurofeedback publication-title: Annals of the New York Academy of Sciences – volume: 35 start-page: 1238 issue: 3 year: 2007 end-page: 1246 article-title: Regulation of anterior insular cortex activity using real‐time fMRI publication-title: NeuroImage – volume: 146 start-page: 157 issue: October 2016 year: 2017 end-page: 170 article-title: The real‐time fMRI neurofeedback based stratification of default network regulation neuroimaging data repository publication-title: NeuroImage – volume: 213 start-page: 79 issue: 1 year: 2013 end-page: 81 article-title: Reduction of cue‐induced craving through realtime neurofeedback in nicotine users: The role of region of interest selection and multiple visits publication-title: Psychiatry Research: Neuroimaging – volume: 18 start-page: 86 year: 2016 end-page: 100 article-title: Closed‐loop brain training: The science of neurofeedback publication-title: Nature Neuroscience – volume: 124 start-page: 806 year: 2016 end-page: 812 article-title: Meta‐analysis of real‐time fMRI neurofeedback studies using individual participant data: How is brain regulation mediated? publication-title: NeuroImage – volume: 20 start-page: 748 year: 2017 end-page: 755 article-title: Randomized clinical trial of real‐time fMRI amygdala neurofeedback for major depressive disorder: Effects on symptoms and autobiographical memory recall publication-title: American Journal of Psychiatry – volume: 8 start-page: 1 issue: October year: 2014 end-page: 13 article-title: Comparison of anterior cingulate vs. insular cortex as targets for real‐time fMRI regulation during pain stimulation publication-title: Frontiers in Behavioral Neuroscience – volume: 9 start-page: 1 issue: December year: 2015 end-page: 12 article-title: Enhancing motor network activity using real‐time functional MRI neurofeedback of left premotor cortex publication-title: Frontiers in Behavioral Neuroscience – volume: 124 start-page: 214 year: 2016 end-page: 223 article-title: Enhanced control of dorsolateral prefrontal cortex neurophysiology with real‐time functional magnetic resonance imaging (rt‐fMRI) neurofeedback training and working memory practice publication-title: NeuroImage – volume: 143 start-page: 976 issue: 3 year: 2020 end-page: 992 article-title: Earliest amyloid and tau deposition modulate the influence of limbic networks during closed‐loop hippocampal downregulation publication-title: Brain: A Journal of Neurology – volume: 27 start-page: 1552 issue: 8 year: 2015 end-page: 1572 article-title: The inclusion of functional connectivity information into fMRI‐based neurofeedback improves its efficacy in the reduction of cigarette cravings publication-title: Journal of Cognitive Neuroscience – year: 2019 article-title: The effect of APOE genotype and streamline density volume, on hippocampal CA1 down‐regulation: a real‐time fMRI virtual reality neurofeedback study publication-title: bioRxiv – volume: 18 start-page: 739 issue: 4 year: 2013 end-page: 748 article-title: Volitional reduction of anterior cingulate cortex activity produces decreased Cue craving in smoking cessation: A preliminary real‐time fMRI study publication-title: Addiction Biology – volume: 10 start-page: 1 issue: 8 year: 2015 end-page: 26 article-title: Self‐regulation of anterior insula with real‐time fMRI and its behavioral effects in obsessive‐compulsive disorder: A feasibility study publication-title: PLoS ONE – volume: 172 start-page: 786 issue: September 2017 year: 2018 end-page: 807 article-title: Neurofeedback with fMRI: A critical systematic review publication-title: NeuroImage – volume: 8 start-page: 537 issue: 4 year: 2017 end-page: 553 article-title: Introduction, comparison, and validation of meta ‐ essentials: A free and simple tool for meta ‐ analysis publication-title: Res Synth Methods – volume: 30 start-page: 1605 issue: 5 year: 2009 end-page: 1614 article-title: Self‐regulation of regional cortical activity using real‐time fMRI: The right inferior frontal gyrus and linguistic processing publication-title: Human Brain Mapping – volume: 26 start-page: 3125 issue: 7 year: 2016 end-page: 3134 article-title: Dissociation of neural networks for predisposition and for training‐related plasticity in auditory‐motor learning publication-title: Cerebral Cortex – volume: 7 start-page: e38115 issue: 6 year: 2012 article-title: Real‐time self‐regulation of emotion networks in patients with depression publication-title: PLoS ONE – volume: 1 start-page: 1 issue: 1 year: 2017 end-page: 7 article-title: Fear reduction without fear through reinforcement of neural activity that bypasses conscious exposure publication-title: Nature Human Behaviour – volume: 3 start-page: e250 issue: November 2012 year: 2013 article-title: Orbitofrontal cortex neurofeedback produces lasting changes in contamination anxiety and resting‐state connectivity publication-title: Translational Psychiatry – volume: 11 start-page: 712 issue: 3 year: 2017 end-page: 721 article-title: Active pain coping is associated with the response in real‐time fMRI neurofeedback during pain publication-title: Brain Imaging and Behavior – volume: 96 start-page: 237 year: 2014 end-page: 244 article-title: Control of nucleus accumbens activity with neurofeedback publication-title: NeuroImage – volume: 75 start-page: 176 year: 2013 end-page: 184 article-title: Neurofeedback‐mediated self‐regulation of the dopaminergic midbrain publication-title: NeuroImage – volume: 10 start-page: e0133034 issue: 7 year: 2015 article-title: Modulation of craving related brain responses using real‐time fMRI in patients with alcohol use disorder publication-title: PLoS ONE – volume: 25 start-page: 259 issue: 3 year: 2011 end-page: 267 article-title: Detection of cerebral reorganization induced by real‐time fMRI feedback training of insula activation: A multivariate investigation publication-title: Neurorehabilitation and Neural Repair – volume: 39 start-page: 1339 issue: 3 year: 2018 end-page: 1353 article-title: Stimulating neural plasticity with real‐time fMRI neurofeedback in Huntington's disease: A proof of concept study publication-title: Human Brain Mapping – volume: 130 start-page: 230 year: 2016 end-page: 240 article-title: Voluntary control of anterior insula and its functional connections is feedback‐independent and increases pain empathy publication-title: NeuroImage – volume: 112 start-page: 188 year: 2017 end-page: 195 article-title: Volitional regulation of brain responses to food stimuli in overweight and obese subjects: A real‐time fMRI feedback study publication-title: Appetite – volume: 27 start-page: 1193 issue: 2 year: 2015 end-page: 1202 article-title: Learning control over emotion networks through connectivity‐based neurofeedback publication-title: Cerebral Cortex – volume: 9 start-page: e88785 issue: 2 year: 2014 article-title: Real‐time fMRI neurofeedback training of amygdala activity in patients with major depressive disorder publication-title: PLoS ONE – volume: 7 start-page: 3 issue: 8 year: 2012 end-page: 8 article-title: The obese brain athlete: Self‐regulation of the anterior insula in adiposity publication-title: PLoS ONE – volume: 11 start-page: 1 issue: May year: 2017 end-page: 12 article-title: Ability to gain control over one' s own brain activity and its relation to spiritual practice: A multimodal imaging study publication-title: Frontiers in Human Neuroscience – year: 1983 – volume: 81 start-page: 243 year: 2013 end-page: 252 article-title: Dynamic reconfiguration of human brain functional networks through neurofeedback publication-title: NeuroImage – volume: 30 start-page: 671 issue: 7 year: 2016 end-page: 675 article-title: Improving motor Corticothalamic communication after stroke using real‐time fMRI connectivity‐based neurofeedback publication-title: Neurorehabilitation and Neural Repair – volume: 9 start-page: 1 issue: June year: 2015 end-page: 12 article-title: fMRI neurofeedback facilitates anxiety regulation in females with spider phobia publication-title: Frontiers in Behavioral Neuroscience – volume: 89 start-page: 1331 issue: 6 year: 2016 end-page: 1342 article-title: Cognitive Neurostimulation: Learning to volitionally sustain ventral tegmental area activation publication-title: Neuron – volume: 27 start-page: 138 issue: 1 year: 2014 end-page: 148 article-title: Real‐time neurofeedback using functional MRI could improve down‐regulation of amygdala activity during emotional stimulation: A proof‐of‐concept study publication-title: Brain Topography – volume: 31 start-page: 16309 issue: 45 year: 2011 end-page: 16317 article-title: Real‐time functional magnetic resonance imaging neurofeedback for treatment of Parkinson's disease publication-title: Journal of Neuroscience – volume: 81 start-page: 422 year: 2013 end-page: 430 article-title: Connectivity‐based neurofeedback: Dynamic causal modeling for real‐time fMRI publication-title: NeuroImage – volume: 102 start-page: 18626 issue: 51 year: 2005 end-page: 18631 article-title: Control over brain activation and pain learned by using real‐time functional MRI publication-title: Proceedings of the National Academy of Sciences – volume: 28 start-page: 197 issue: 2 year: 2015 end-page: 207 article-title: Upregulation of the rostral anterior cingulate cortex can Alter the perception of emotions: fMRI‐based neurofeedback at 3 and 7 T publication-title: Brain Topography – volume: 22 start-page: 5889 year: 2014 article-title: Self‐regulation of rACC activation in patients with postherpetic neuralgia: A preliminary study using real‐time fMRI neurofeedback publication-title: Ismrm – volume: 41 start-page: 48 issue: 1 year: 2016 end-page: 55 article-title: Individualized real‐time fMRI neurofeedback to attenuate craving in nicotine‐dependent smokers publication-title: Journal of Psychiatry and Neuroscience – volume: 110 start-page: 13630 issue: 33 year: 2013 end-page: 13635 article-title: Brain‐computer interfaces increase whole‐brain signal to noise publication-title: Proceedings of the National Academy of Sciences – volume: 17 start-page: 33 issue: 1 year: 1983 end-page: 44 article-title: The use of coping strategies in chronic low back pain patients: Relationship to patient characteristics and current adjustment publication-title: Pain – volume: 7 year: 2016 article-title: Multivoxel neurofeedback selectively modulates confidence without changing perceptual performance publication-title: Nature Communications – volume: 9 start-page: e91090 issue: 3 year: 2014 article-title: Connectivity changes underlying neurofeedback training of visual cortex activity publication-title: PLoS ONE – volume: 8 start-page: 338 issue: September year: 2014 article-title: Resting state functional connectivity predicts neurofeedback response publication-title: Frontiers in Behavioral Neuroscience – year: 2010 – volume: 21 start-page: 84 issue: 2–3 year: 1978 end-page: 108 article-title: The Barber suggestibility scale and the creative imagination scale: Experimental and clinical applications publication-title: American Journal of Clinical Hypnosis – volume: 38 start-page: 541 issue: 1 year: 2017 end-page: 560 article-title: The neurobiology of emotion regulation in posttraumatic stress disorder: Amygdala downregulation via real‐time fMRI neurofeedback publication-title: Human Brain Mapping – volume: 9 start-page: 160 year: 2015 article-title: Functional MRI neurofeedback training on connectivity between two regions induces long‐lasting changes in intrinsic functional network publication-title: Frontiers in Human Neuroscience – volume: 334 start-page: 1413 issue: 6061 year: 2011 end-page: 1415 article-title: Perceptual learning incepted by decoded fMRI neurofeedback without stimulus presentation publication-title: Science – volume: 37 start-page: 489 year: 2018 end-page: 498 article-title: Self‐regulation of the dopaminergic reward circuit in cocaine users with mental imagery and neurofeedback publication-title: eBioMedicine – volume: 9 start-page: 547 issue: October year: 2015 article-title: Training efficiency and transfer success in an extended real‐time functional MRI neurofeedback training of the Somatomotor cortex of healthy subjects publication-title: Frontiers in Human Neuroscience – volume: 11 start-page: 952 issue: 6 year: 2016 end-page: 960 article-title: Alterations of amygdala‐prefrontal connectivity with real‐time fMRI neurofeedback in BPD patients publication-title: Social Cognitive and Affective Neuroscience – volume: 108 start-page: 85 year: 2015 end-page: 97 article-title: Manipulating motor performance and memory through real‐time fMRI neurofeedback publication-title: Biological Psychology – volume: 22 start-page: 58 issue: 1 year: 2012 end-page: 66 article-title: Intermittent “real‐time” fMRI feedback is superior to continuous presentation for a motor imagery task: A pilot study publication-title: Journal of Neuroimaging – volume: 31 start-page: 808 issue: 2 year: 2019 end-page: 820 article-title: Independent components of neural activation associated with 100 days of cognitive training publication-title: Journal of Cognitive Neuroscience – volume: 8 start-page: 1 issue: September year: 2014 end-page: 15 article-title: Down‐regulation of amygdala activation with real‐time fMRI neurofeedback in a healthy female sample publication-title: Frontiers in Behavioral Neuroscience – volume: 378 start-page: 155 year: 2017 end-page: 164 article-title: Can we predict who will respond to neurofeedback? A review of the inefficacy problem and existing predictors for successful EEG neurofeedback learning publication-title: Neuroscience – volume: 80 start-page: 490 issue: 6 year: 2016 end-page: 496 article-title: Limbic activity modulation guided by functional magnetic resonance imaging–inspired electroencephalography improves implicit emotion regulation publication-title: Biological Psychiatry – volume: 14 start-page: 97 year: 2017 end-page: 104 article-title: Continuous vs. intermittent neurofeedback to regulate auditory cortex activity of tinnitus patients using real‐time fMRI ‐ a pilot study publication-title: NeuroImage: Clinical – volume: 327 start-page: 557 issue: 7414 year: 2003 end-page: 560 article-title: Measuring inconsistency in meta‐analyses publication-title: Bmj – issue: 1 year: 2020 article-title: Activity or connectivity? A randomized controlled feasibility study evaluating neurofeedback training in Huntington's disease publication-title: Brain Communications – year: 2013 – ident: e_1_2_9_38_1 doi: 10.1016/j.ebiom.2018.10.052 – volume: 9 start-page: 1 year: 2015 ident: e_1_2_9_48_1 article-title: Enhancing motor network activity using real‐time functional MRI neurofeedback of left premotor cortex publication-title: Frontiers in Behavioral Neuroscience doi: 10.3389/fnbeh.2015.00341 – ident: e_1_2_9_36_1 doi: 10.1016/j.biopsych.2015.12.024 – ident: e_1_2_9_65_1 doi: 10.1038/tp.2013.24 – volume: 8 start-page: 1 year: 2014 ident: e_1_2_9_18_1 article-title: Comparison of anterior cingulate vs. insular cortex as targets for real‐time fMRI regulation during pain stimulation publication-title: Frontiers in Behavioral Neuroscience doi: 10.3389/fnbeh.2014.00350 – ident: e_1_2_9_46_1 doi: 10.1371/journal.pone.0038115 – ident: e_1_2_9_4_1 doi: 10.1080/00029157.1978.10403966 – ident: e_1_2_9_74_1 doi: 10.1016/j.neuroscience.2016.09.026 – ident: e_1_2_9_2_1 doi: 10.1016/j.neuroscience.2016.12.050 – ident: e_1_2_9_11_1 doi: 10.1093/ntr/ntt122 – ident: e_1_2_9_54_1 doi: 10.1002/hbm.23921 – ident: e_1_2_9_57_1 doi: 10.1073/pnas.1516857113 – volume: 7 start-page: 1 year: 2013 ident: e_1_2_9_83_1 article-title: Control beliefs can predict the ability to up‐regulate sensorimotor rhythm during neurofeedback training publication-title: Frontiers in Human Neuroscience doi: 10.3389/fnhum.2013.00478 – ident: e_1_2_9_13_1 doi: 10.1016/j.neuroimage.2012.02.053 – ident: e_1_2_9_33_1 doi: 10.1177/1073858419860115 – volume: 11 start-page: 1 year: 2017 ident: e_1_2_9_39_1 article-title: Ability to gain control over one' s own brain activity and its relation to spiritual practice: A multimodal imaging study publication-title: Frontiers in Human Neuroscience doi: 10.3389/fnhum.2017.00271 – ident: e_1_2_9_42_1 doi: 10.1016/j.neuroimage.2013.05.010 – ident: e_1_2_9_7_1 doi: 10.1523/JNEUROSCI.2118-07.2007 – ident: e_1_2_9_86_1 doi: 10.1176/appi.ajp.2017.16060637 – ident: e_1_2_9_75_1 doi: 10.1016/j.appet.2017.01.032 – ident: e_1_2_9_9_1 doi: 10.1109/NER.2013.6696025 – ident: e_1_2_9_45_1 doi: 10.1177/1545968315619699 – ident: e_1_2_9_35_1 doi: 10.1371/journal.pone.0133034 – ident: e_1_2_9_15_1 doi: 10.1038/ncomms13669 – ident: e_1_2_9_16_1 doi: 10.1073/pnas.0505210102 – ident: e_1_2_9_63_1 doi: 10.1371/journal.pone.0091090 – ident: e_1_2_9_70_1 doi: 10.1038/nrn.2016.164 – ident: e_1_2_9_87_1 doi: 10.1371/journal.pone.0088785 – ident: e_1_2_9_67_1 doi: 10.1016/j.neuroimage.2015.08.074 – ident: e_1_2_9_69_1 doi: 10.1162/jocn_a_01396 – ident: e_1_2_9_49_1 doi: 10.1016/j.neuroimage.2016.10.048 – ident: e_1_2_9_5_1 doi: 10.1111/nyas.13338 – ident: e_1_2_9_19_1 doi: 10.1016/j.nicl.2016.12.023 – ident: e_1_2_9_52_1 doi: 10.1073/pnas.1210738110 – ident: e_1_2_9_24_1 doi: 10.1016/j.neuroimage.2014.03.073 – ident: e_1_2_9_93_1 doi: 10.1016/j.neuroimage.2020.117053 – ident: e_1_2_9_29_1 doi: 10.1016/j.pscychresns.2013.03.003 – ident: e_1_2_9_82_1 doi: 10.1016/j.neuroimage.2017.12.071 – ident: e_1_2_9_64_1 doi: 10.1016/j.biopsycho.2015.03.009 – ident: e_1_2_9_68_1 doi: 10.1126/science.1212003 – volume: 8 start-page: 1 year: 2014 ident: e_1_2_9_55_1 article-title: Down‐regulation of amygdala activation with real‐time fMRI neurofeedback in a healthy female sample publication-title: Frontiers in Behavioral Neuroscience doi: 10.3389/fnbeh.2014.00299 – ident: e_1_2_9_56_1 doi: 10.1093/scan/nsw016 – volume: 22 start-page: 5889 year: 2014 ident: e_1_2_9_26_1 article-title: Self‐regulation of rACC activation in patients with postherpetic neuralgia: A preliminary study using real‐time fMRI neurofeedback publication-title: Ismrm – ident: e_1_2_9_51_1 doi: 10.1002/hbm.23402 – ident: e_1_2_9_25_1 doi: 10.1007/s10548-014-0384-4 – ident: e_1_2_9_76_1 doi: 10.1002/9780470479216.corpsy0943 – volume: 20 start-page: 915 year: 1976 ident: e_1_2_9_88_1 article-title: Die Befindlichkeitsskala (BS)—ein einfaches Instrument zur Objektivierung von Befindlichkeitsstörungen, insbesondere im Rahmen von Längsschnittuntersuchungen publication-title: Arzneimittelforschung – volume: 8 start-page: 338 year: 2014 ident: e_1_2_9_66_1 article-title: Resting state functional connectivity predicts neurofeedback response publication-title: Frontiers in Behavioral Neuroscience doi: 10.3389/fnbeh.2014.00338 – ident: e_1_2_9_58_1 doi: 10.1016/j.neuroimage.2014.05.072 – ident: e_1_2_9_14_1 doi: 10.1016/j.neuroimage.2018.10.021 – volume: 9 start-page: 547 year: 2015 ident: e_1_2_9_3_1 article-title: Training efficiency and transfer success in an extended real‐time functional MRI neurofeedback training of the Somatomotor cortex of healthy subjects publication-title: Frontiers in Human Neuroscience doi: 10.3389/fnhum.2015.00547 – ident: e_1_2_9_32_1 doi: 10.1136/bmj.327.7414.557 – volume: 9 start-page: 1 year: 2015 ident: e_1_2_9_89_1 article-title: fMRI neurofeedback facilitates anxiety regulation in females with spider phobia publication-title: Frontiers in Behavioral Neuroscience doi: 10.3389/fnbeh.2015.00148 – ident: e_1_2_9_84_1 doi: 10.1016/j.neuroimage.2016.02.035 – ident: e_1_2_9_92_1 doi: 10.1016/j.neuroimage.2019.01.058 – ident: e_1_2_9_27_1 doi: 10.1007/s00330-009-1595-z – ident: e_1_2_9_43_1 doi: 10.1177/1545968310385128 – ident: e_1_2_9_31_1 doi: 10.1093/cercor/bhv138 – ident: e_1_2_9_47_1 doi: 10.1016/j.neuron.2016.02.002 – ident: e_1_2_9_53_1 doi: 10.1093/braincomms/fcaa049 – ident: e_1_2_9_28_1 doi: 10.1016/j.neuroimage.2013.05.019 – ident: e_1_2_9_91_1 doi: 10.1371/journal.pone.0024522 – ident: e_1_2_9_21_1 doi: 10.1016/j.biopsycho.2013.02.019 – ident: e_1_2_9_10_1 doi: 10.1371/journal.pone.0135872 – ident: e_1_2_9_44_1 doi: 10.1111/j.1369-1600.2012.00449.x – year: 2019 ident: e_1_2_9_72_1 article-title: The effect of APOE genotype and streamline density volume, on hippocampal CA1 down‐regulation: a real‐time fMRI virtual reality neurofeedback study publication-title: bioRxiv – ident: e_1_2_9_12_1 doi: 10.1016/j.neuroimage.2007.01.018 – ident: e_1_2_9_61_1 doi: 10.1002/hbm.20621 – ident: e_1_2_9_20_1 doi: 10.1016/j.neuroimage.2015.09.042 – ident: e_1_2_9_80_1 doi: 10.1002/jrsm.1260 – volume: 7 start-page: 1 year: 2016 ident: e_1_2_9_23_1 article-title: Real‐time fMRI neurofeedback with war veterans with chronic PTSD: A feasibility study publication-title: Frontiers in Psychiatry doi: 10.3389/fpsyt.2016.00111 – ident: e_1_2_9_30_1 doi: 10.1503/jpn.140200 – volume-title: Schlauchfiguren: ein Test zur Beurteilung des räumlichen Vorstellungsvermögens year: 1983 ident: e_1_2_9_77_1 – ident: e_1_2_9_37_1 doi: 10.1162/jocn_a_00802 – ident: e_1_2_9_50_1 doi: 10.3389/fnhum.2015.00160 – volume: 9 start-page: 1 year: 2015 ident: e_1_2_9_6_1 article-title: Improvement in precision grip force control with self‐modulation of primary motor cortex during motor imagery publication-title: Frontiers in Behavioral Neuroscience doi: 10.3389/fnbeh.2015.00018 – ident: e_1_2_9_79_1 doi: 10.1016/j.neuroimage.2013.02.041 – ident: e_1_2_9_81_1 doi: 10.1073/pnas.1721572115 – ident: e_1_2_9_34_1 doi: 10.1111/j.1552-6569.2010.00529.x – ident: e_1_2_9_17_1 doi: 10.1007/s11682-016-9547-0 – ident: e_1_2_9_22_1 doi: 10.1371/journal.pone.0042570 – ident: e_1_2_9_40_1 doi: 10.1038/s41562-016-0006 – ident: e_1_2_9_85_1 doi: 10.1002/ima.20139 – ident: e_1_2_9_62_1 doi: 10.1523/JNEUROSCI.6334-11.2012 – ident: e_1_2_9_59_1 doi: 10.1016/0304-3959(83)90125-2 – ident: e_1_2_9_90_1 doi: 10.1016/j.neuroimage.2010.08.078 – ident: e_1_2_9_71_1 doi: 10.1016/j.neuroimage.2019.05.008 – ident: e_1_2_9_60_1 doi: 10.1016/j.bandl.2010.07.008 – volume: 27 start-page: 1193 issue: 2 year: 2015 ident: e_1_2_9_41_1 article-title: Learning control over emotion networks through connectivity‐based neurofeedback publication-title: Cerebral Cortex – ident: e_1_2_9_78_1 doi: 10.1523/JNEUROSCI.3498-11.2011 – ident: e_1_2_9_73_1 doi: 10.1093/brain/awaa011 – ident: e_1_2_9_8_1 doi: 10.1007/s10548-013-0331-9 |
SSID | ssj0011501 |
Score | 2.4630594 |
SecondaryResourceType | review_article |
Snippet | Neurofeedback training has been shown to influence behavior in healthy participants as well as to alleviate clinical symptoms in neurological, psychosomatic,... |
SourceID | swepub pubmedcentral proquest gale pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3839 |
SubjectTerms | Adult Biofeedback Biofeedback training Brain Brain - diagnostic imaging Brain - physiology Brain Mapping Electroencephalography Feedback fMRI Functional magnetic resonance imaging functional neuroimaging Humans Laws, regulations and rules Learning Magnetic Resonance Imaging Meta-analysis neurofeedback Neurofeedback - physiology Observational learning Patients Practice, Psychological Prognosis real-time fMRI Success |
Title | Can we predict real‐time fMRI neurofeedback learning success from pretraining brain activity? |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.25089 https://www.ncbi.nlm.nih.gov/pubmed/32729652 https://www.proquest.com/docview/2439596766 https://www.proquest.com/docview/2429056989 https://pubmed.ncbi.nlm.nih.gov/PMC7469782 https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-417506 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VHhAXHi3QhbIyiEcv2SaO4yTigJZCtSAtQhVFPSBZduK0VdtstbsRghM_gd_IL2HGeUBWICFu0XqcOLNjzzfO-BuAxwg5bJDnxitkiAEKunwPUZH0wpDIt5LcTzL6ojt9JyeH4u1RdLQGz9uzMDU_RLfhRjPDrdc0wbVZ7P4iDT0xFyP03wkd3qNcLQJEBx11FAEdF2yhi_VSXIFbViGf73Y9e75odUX-zSWtpks2pKJ9POsc0v4N-NS-Sp2HcjaqlmaUfV1hefzPd70J1xugysa1Zd2CNVtuwOa4xCD94gt7ylzqqNuT34Cr0-YL_SaoPV2yz5ZdzumnJUNMev7j23cqYc-K6cEbVtZsIDY3OjtjTdGKY7aoXOVGRsddqHNbuoIZumB0_IKqXLy4DYf7rz_sTbymiIOXCclTLyyE1NboQvt5EmiBcMykkcisxOcUCL9SbUJho0iLxGLErAW3RaDzIC5sgmAlvAPr5ay0W8B0pHWCFscRsolYozpyiYAoNolvA8GzAey0f6fKGoZzGu25qrmZuUI9KqfHATzqRC9rWo8_CT0jm1A01fE-mW5OLOBoiDRLjWOKp9PYlwPY7kniFM36za1VqWaJWCiOUDBKZSyx-WHXTD0p7a20s4pkeEoqorHcrY2wG27IMS6SER9A3DPPToCIw_st5emJIxCPhUwRGQ7gSW3IvS6vTj-O1Wx-rKpKoXIjGv6OM86_a0pNXk7dxb1_F70P1zjtXbjEyG1YX84r-wAB3tIM4QoX74due2ToZvVPxG5OtA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6VIgGXAi3QQAGD-Okl28RxnERCQkuh2kK3h6pFvSDLSZy2aputthshOPEIPCNPwozzA1mBhLhF63EymR17vnHsbwCeIeQwfp6nbiEDTFAw5LuIiqQbBES-FedenNEX3fGuHB2I94fh4QK8as_C1PwQ3YIbjQw7X9MApwXpjV-socfp-QADeJxcgatU0dsmVHsdeRRBHZtuYZB1E5yDW14hj290XXvRaH5O_i0ozW-YbGhF-4jWhqStm_CpfZl6J8rpoJqlg-zrHM_j_77tLVhqsCob1s51GxZMuQwrwxLz9PMv7AWzu0ftsvwyXBs3H-lXQG3qkn027GJKP80YwtKzH9--UxV7Voz3tllZE4KYPNXZKWvqVhyxy8oWb2R04oU6t9UrWEoXjE5gUKGL13fgYOvd_ubIbeo4uJmQPHGDQkhtUl1oL499LRCRpUkoMiPxOQUisESngTBhqEVsMGnWgpvC17kfFSZGvBLchcVyUppVYDrUOkan44jaRKTRHLlETBSlsWd8wTMH1tv_U2UNyTlpe6Zqemau0I7K2tGBp53oRc3s8Sehl-QUikY73ifTzaEF1IZ4s9QwopQ6iTzpwFpPEkdp1m9u3Uo1s8Sl4ogGw0RGEpufdM3Uk3a-lWZSkQxPyESky73aCzt1A46pkQy5A1HPPzsB4g7vt5Qnx5ZDPBIyQXDowPPak3td3p58HKrJ9EhVlULjhqT-uvXOv1tKjd6M7cX9fxd9DNdH--MdtbO9--EB3OC0lGH3Sa7B4mxamYeI92bpIzusfwK3A1ED |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NIU28MNj4CBtgEB97SZc6jpOIB1Q2qg7ohCaG9oBkOYmzTdvSqmuE4Ik_gb-Rv4Q75wNSgYR4alSfm8v17PudY_8O4AlCDtPPssTNpY8JCoZ8F1GRdH2fyLeizItSeqM73pejQ_HmKDhaghfNWZiKH6JdcKORYedrGuDTLN_-RRp6klz0MH5H8RW4KiR-EiI6aLmjCOnYbAtjrBvjFNzQCnl8u-3aCUaLU_JvMWlxv2TNKtoFtDYiDVfhU_Ms1UaUs145T3rp1wWax_982BtwvUaqbFC51k1YMsUarA8KzNIvvrBnzO4dtYvya7Ayrl_Rr4Pa0QX7bNh0Rl_NGYLS8x_fvlMNe5aPD_ZYUdGBmCzR6Rmrq1Ycs8vSlm5kdN6FOje1K1hCF4zOX1CZi5e34HD4-sPOyK2rOLipkDx2_VxIbRKday-L-logHkviQKRG4n1yxF-xTnxhgkCLyGDKrAU3eV9n_TA3EaIV_zYsF5PC3AWmA60jdDmOmE2EGs2RSUREYRJ5pi946sBW83eqtKY4J23PVUXOzBXaUVk7OvC4FZ1WvB5_EnpOPqForOPvpLo-soDaEGuWGoSUUMehJx3Y7EjiGE27zY1XqXqOuFQcsWAQy1Bi86O2mXrSvrfCTEqS4TGZiHS5Uzlhq67PMTGSAXcg7LhnK0DM4d2W4vTEMoiHQsYIDR14Wjlyp8vu6ceBmsyOVVkqNG5A6m9Z5_y7pdTo1dhe3Pt30Yew8n53qN7t7b_dgGuc1jHsJslNWJ7PSnMfwd48eWAH9U-v6k-7 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Can+we+predict+real-time+fMRI+neurofeedback+learning+success+from+pretraining+brain+activity%3F&rft.jtitle=Human+brain+mapping&rft.au=Haugg%2C+Amelie&rft.au=Sladky%2C+Ronald&rft.au=Skouras%2C+Stavros&rft.au=McDonald%2C+Amalia&rft.date=2020-10-01&rft.issn=1097-0193&rft.eissn=1097-0193&rft.volume=41&rft.issue=14&rft.spage=3839&rft_id=info:doi/10.1002%2Fhbm.25089&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon |