Pigment epithelium-derived factor acts as an opponent of growth-stimulatory factors in retinal glial-endothelial cell interactions

Pigment epithelium‐derived factor (PEDF), a glycoprotein with pleiotropic functions, is naturally occuring in the eye and considered as crucial to prevent pathological angiogenesis. Since retinal glial (Müller) cells produce PEDF, the authors have studied its impact on glial–endothelial cellular int...

Full description

Saved in:
Bibliographic Details
Published inGlia Vol. 55; no. 6; pp. 642 - 651
Main Authors Yafai, Yousef, Lange, Johannes, Wiedemann, Peter, Reichenbach, Andreas, Eichler, Wolfram
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 15.04.2007
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Pigment epithelium‐derived factor (PEDF), a glycoprotein with pleiotropic functions, is naturally occuring in the eye and considered as crucial to prevent pathological angiogenesis. Since retinal glial (Müller) cells produce PEDF, the authors have studied its impact on glial–endothelial cellular interactions. Bovine retinal endothelial cells were cultured in the presence of culture media originating from primary Müller cells, and endothelial proliferation as well as phosphorylation of the mitogen‐activated protein kinases extracellular signal‐regulated kinases (ERK)‐1/‐2 were investigated. The concerted activity of Müller‐cell derived soluble mediators attenuated endothelial proliferation and ERK‐1/‐2 activation, regardless of whether the Müller cells were preincubated under normoxia or hypoxia, and even though the endothelial cells were stimulated by vascular endothelial growth factor‐A (VEGF). This inhibitory activity was no longer demonstrable if high levels of basic fibroblast growth factor or VEGF were supplied, suggesting that in cases of pathological neovascularization, overproduction of proangiogenic mediators overrides the “antiangiogenic background” provided by Müller cells. However, neutralizing the activity of PEDF partially restored endothelial cell proliferation and resulted in increased ERK‐1/‐2 activation, which is in concordance with findings demonstrating that exogenously applied PEDF is able to suppress VEGF‐induced ERK‐1/‐2 phosphorylation. PEDF production by Müller cells is not only regulated by retinal oxygen but also by the activity of soluble factors released from retinal endothelial cells. For instance, PEDF levels were significantly elevated in glial (Müller)–endothelial cell cocultures as compared with bovine retinal endothelial cell‐free Müller cell cultures. These results have implications for the pathogenesis of retinal neovascularization since the Müller cell may be regarded as a central control element which modulates retinal PEDF levels and, thus, is of critical importance for adjusting the balance between proangiogenic and antiangiogenic mediators. © 2007 Wiley‐Liss, Inc.
AbstractList Pigment epithelium‐derived factor (PEDF), a glycoprotein with pleiotropic functions, is naturally occuring in the eye and considered as crucial to prevent pathological angiogenesis. Since retinal glial (Müller) cells produce PEDF, the authors have studied its impact on glial–endothelial cellular interactions. Bovine retinal endothelial cells were cultured in the presence of culture media originating from primary Müller cells, and endothelial proliferation as well as phosphorylation of the mitogen‐activated protein kinases extracellular signal‐regulated kinases (ERK)‐1/‐2 were investigated. The concerted activity of Müller‐cell derived soluble mediators attenuated endothelial proliferation and ERK‐1/‐2 activation, regardless of whether the Müller cells were preincubated under normoxia or hypoxia, and even though the endothelial cells were stimulated by vascular endothelial growth factor‐A (VEGF). This inhibitory activity was no longer demonstrable if high levels of basic fibroblast growth factor or VEGF were supplied, suggesting that in cases of pathological neovascularization, overproduction of proangiogenic mediators overrides the “antiangiogenic background” provided by Müller cells. However, neutralizing the activity of PEDF partially restored endothelial cell proliferation and resulted in increased ERK‐1/‐2 activation, which is in concordance with findings demonstrating that exogenously applied PEDF is able to suppress VEGF‐induced ERK‐1/‐2 phosphorylation. PEDF production by Müller cells is not only regulated by retinal oxygen but also by the activity of soluble factors released from retinal endothelial cells. For instance, PEDF levels were significantly elevated in glial (Müller)–endothelial cell cocultures as compared with bovine retinal endothelial cell‐free Müller cell cultures. These results have implications for the pathogenesis of retinal neovascularization since the Müller cell may be regarded as a central control element which modulates retinal PEDF levels and, thus, is of critical importance for adjusting the balance between proangiogenic and antiangiogenic mediators. © 2007 Wiley‐Liss, Inc.
Pigment epithelium-derived factor (PEDF), a glycoprotein with pleiotropic functions, is naturally occuring in the eye and considered as crucial to prevent pathological angiogenesis. Since retinal glial (Muller) cells produce PEDF, the authors have studied its impact on glial-endothelial cellular interactions. Bovine retinal endothelial cells were cultured in the presence of culture media originating from primary Muller cells, and endothelial proliferation as well as phosphorylation of the mitogen-activated protein kinases extracellular signal-regulated kinases (ERK)-1/-2 were investigated. The concerted activity of Muller-cell derived soluble mediators attenuated endothelial proliferation and ERK-1/-2 activation, regardless of whether the Muller cells were preincubated under normoxia or hypoxia, and even though the endothelial cells were stimulated by vascular endothelial growth factor-A (VEGF). This inhibitory activity was no longer demonstrable if high levels of basic fibroblast growth factor or VEGF were supplied, suggesting that in cases of pathological neovascularization, overproduction of proangiogenic mediators overrides the antiangiogenic background provided by Muller cells. However, neutralizing the activity of PEDF partially restored endothelial cell proliferation and resulted in increased ERK-1/-2 activation, which is in concordance with findings demonstrating that exogenously applied PEDF is able to suppress VEGF-induced ERK-1/-2 phosphorylation. PEDF production by Muller cells is not only regulated by retinal oxygen but also by the activity of soluble factors released from retinal endothelial cells. For instance, PEDF levels were significantly elevated in glial (Muller)-endothelial cell cocultures as compared with bovine retinal endothelial cell-free Muller cell cultures. These results have implications for the pathogenesis of retinal neovascularization since the Muller cell may be regarded as a central control element which modulates retinal PEDF levels and, thus, is of critical importance for adjusting the balance between proangiogenic and antiangiogenic mediators.
Abstract Pigment epithelium‐derived factor (PEDF), a glycoprotein with pleiotropic functions, is naturally occuring in the eye and considered as crucial to prevent pathological angiogenesis. Since retinal glial (Müller) cells produce PEDF, the authors have studied its impact on glial–endothelial cellular interactions. Bovine retinal endothelial cells were cultured in the presence of culture media originating from primary Müller cells, and endothelial proliferation as well as phosphorylation of the mitogen‐activated protein kinases extracellular signal‐regulated kinases (ERK)‐1/‐2 were investigated. The concerted activity of Müller‐cell derived soluble mediators attenuated endothelial proliferation and ERK‐1/‐2 activation, regardless of whether the Müller cells were preincubated under normoxia or hypoxia, and even though the endothelial cells were stimulated by vascular endothelial growth factor‐A (VEGF). This inhibitory activity was no longer demonstrable if high levels of basic fibroblast growth factor or VEGF were supplied, suggesting that in cases of pathological neovascularization, overproduction of proangiogenic mediators overrides the “antiangiogenic background” provided by Müller cells. However, neutralizing the activity of PEDF partially restored endothelial cell proliferation and resulted in increased ERK‐1/‐2 activation, which is in concordance with findings demonstrating that exogenously applied PEDF is able to suppress VEGF‐induced ERK‐1/‐2 phosphorylation. PEDF production by Müller cells is not only regulated by retinal oxygen but also by the activity of soluble factors released from retinal endothelial cells. For instance, PEDF levels were significantly elevated in glial (Müller)–endothelial cell cocultures as compared with bovine retinal endothelial cell‐free Müller cell cultures. These results have implications for the pathogenesis of retinal neovascularization since the Müller cell may be regarded as a central control element which modulates retinal PEDF levels and, thus, is of critical importance for adjusting the balance between proangiogenic and antiangiogenic mediators. © 2007 Wiley‐Liss, Inc.
Pigment epithelium-derived factor (PEDF), a glycoprotein with pleiotropic functions, is naturally occuring in the eye and considered as crucial to prevent pathological angiogenesis. Since retinal glial (Müller) cells produce PEDF, the authors have studied its impact on glial-endothelial cellular interactions. Bovine retinal endothelial cells were cultured in the presence of culture media originating from primary Müller cells, and endothelial proliferation as well as phosphorylation of the mitogen-activated protein kinases extracellular signal-regulated kinases (ERK)-1/-2 were investigated. The concerted activity of Müller-cell derived soluble mediators attenuated endothelial proliferation and ERK-1/-2 activation, regardless of whether the Müller cells were preincubated under normoxia or hypoxia, and even though the endothelial cells were stimulated by vascular endothelial growth factor-A (VEGF). This inhibitory activity was no longer demonstrable if high levels of basic fibroblast growth factor or VEGF were supplied, suggesting that in cases of pathological neovascularization, overproduction of proangiogenic mediators overrides the "antiangiogenic background" provided by Müller cells. However, neutralizing the activity of PEDF partially restored endothelial cell proliferation and resulted in increased ERK-1/-2 activation, which is in concordance with findings demonstrating that exogenously applied PEDF is able to suppress VEGF-induced ERK-1/-2 phosphorylation. PEDF production by Müller cells is not only regulated by retinal oxygen but also by the activity of soluble factors released from retinal endothelial cells. For instance, PEDF levels were significantly elevated in glial (Müller)-endothelial cell cocultures as compared with bovine retinal endothelial cell-free Müller cell cultures. These results have implications for the pathogenesis of retinal neovascularization since the Müller cell may be regarded as a central control element which modulates retinal PEDF levels and, thus, is of critical importance for adjusting the balance between proangiogenic and antiangiogenic mediators.
Author Yafai, Yousef
Eichler, Wolfram
Reichenbach, Andreas
Wiedemann, Peter
Lange, Johannes
Author_xml – sequence: 1
  givenname: Yousef
  surname: Yafai
  fullname: Yafai, Yousef
  organization: University of Leipzig, Eye Hospital, Liebigstrasse 10-14, D-04103 Leipzig, Germany
– sequence: 2
  givenname: Johannes
  surname: Lange
  fullname: Lange, Johannes
  organization: University of Leipzig, Eye Hospital, Liebigstrasse 10-14, D-04103 Leipzig, Germany
– sequence: 3
  givenname: Peter
  surname: Wiedemann
  fullname: Wiedemann, Peter
  organization: University of Leipzig, Eye Hospital, Liebigstrasse 10-14, D-04103 Leipzig, Germany
– sequence: 4
  givenname: Andreas
  surname: Reichenbach
  fullname: Reichenbach, Andreas
  organization: Paul Flechsig Institute for Brain Research, Jahnallee 59, D-04109 Leipzig, Germany
– sequence: 5
  givenname: Wolfram
  surname: Eichler
  fullname: Eichler, Wolfram
  email: eichwolf@rz.uni-leipzig.de
  organization: University of Leipzig, Eye Hospital, Liebigstrasse 10-14, D-04103 Leipzig, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/17309061$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9v1DAQxS1URLeFCx8A5cQBycV_4jg5VlW7bbUqHKAr9WI5yWRrSOzUdmj3yifH2yxwA2nkka3fezPWO0IH1llA6C0lJ5QQ9nHTG33CSF6JF2hBSVViSnlxgBakrHJM84oeoqMQvhFC00W-QodUclKRgi7Qz89mM4CNGYwm3kNvpgG34M0PaLNON9H5LJ0h06ls5sYxjU6067KNd4_xHodohqnXCdzuBSEzNvMQjdV9ttutx2Bb9-yeXhro-0RE8Ik2zobX6GWn-wBv9v0Yfb04_3J2iVeflldnpyvc5AUTmHNRyyJvWSu6ti7rnAnGeU1l2UAhctpJDpJSANKWTdMS0ZVMN5WQhJI65yU_Ru9n39G7hwlCVIMJu220BTcFJQkrGJHsvyAjBRcz-GEGG-9C8NCp0ZtB-62iRO2iUbvvq-doEvxu7zrVA7R_0X0WCaAz8Gh62P7DSi1XV6e_TfGsMSHC0x-N9t9VIbkUan2zVNe36_LuZn2tKP8F-72skw
CitedBy_id crossref_primary_10_1242_dev_069153
crossref_primary_10_4199_C00122ED1V01Y201412NGL003
crossref_primary_10_1042_CS20130463
crossref_primary_10_1371_journal_pone_0006956
crossref_primary_10_1007_s00417_020_05021_y
crossref_primary_10_1016_j_exer_2008_06_003
crossref_primary_10_1016_j_trsl_2017_02_002
crossref_primary_10_1002_jnr_21519
crossref_primary_10_1002_glia_20860
crossref_primary_10_1002_jnr_22732
crossref_primary_10_1111_j_1755_3768_2011_02307_x
crossref_primary_10_1007_s11064_012_0747_8
crossref_primary_10_1016_j_trsl_2018_12_006
crossref_primary_10_1080_02713683_2019_1648831
crossref_primary_10_1159_000362371
crossref_primary_10_1002_glia_22477
crossref_primary_10_1016_j_lfs_2010_05_007
crossref_primary_10_1097_00029330_200709010_00013
crossref_primary_10_1016_j_preteyeres_2015_06_003
crossref_primary_10_1155_2017_3034953
crossref_primary_10_2337_db10_0008
crossref_primary_10_1002_glia_22694
crossref_primary_10_1371_journal_pone_0068773
crossref_primary_10_1002_glia_22376
crossref_primary_10_1097_IAE_0000000000002412
crossref_primary_10_1074_jbc_M110_151548
crossref_primary_10_1016_j_bbrc_2013_01_057
crossref_primary_10_3389_fcell_2022_855178
crossref_primary_10_3390_antiox9090854
Cites_doi 10.1086/315779
10.1016/S0002-9394(02)01568-4
10.1016/S0002-9394(02)01549-0
10.1038/nature04482
10.1073/pnas.84.8.2292
10.1084/jem.20022027
10.1167/iovs.01-1193
10.1016/S0014-5793(01)02110-X
10.1006/exer.1997.0365
10.1126/science.285.5425.245
10.1016/j.bbrc.2004.11.041
10.1172/JCI20682
10.1097/00006982-200502000-00001
10.1136/bjo.81.3.228
10.1016/j.preteyeres.2004.05.002
10.1097/00001756-200011090-00026
10.1001/archopht.1995.01100120068012
10.1073/pnas.92.3.905
10.1038/359843a0
10.1016/j.yexcr.2004.05.020
10.1016/j.exer.2003.12.013
10.1038/nm1095-1024
10.1126/science.2479986
10.1074/jbc.270.47.28316
10.1091/mbc.4.12.1317
10.1016/S0002-9394(01)01008-X
10.1074/jbc.274.33.23463
10.1002/(SICI)1098-1136(199810)24:2<216::AID-GLIA6>3.0.CO;2-1
10.1016/0002-9394(74)90010-5
10.1002/glia.20291
10.1096/fj.05-4313fje
10.1038/nm0402-349
10.1074/jbc.273.21.13313
10.1001/archopht.1990.01070080113046
10.1001/archopht.1997.01100160331011
10.1002/glia.440130306
10.1126/science.2479987
10.1016/j.ajo.2003.11.015
10.1159/000267567
10.1016/S0006-291X(02)00548-X
10.1056/NEJM199412013312203
10.1097/00001756-200112210-00048
10.1080/10739680490503375
10.1074/jbc.M600353200
10.2337/diabetes.50.12.2641
10.1523/JNEUROSCI.20-18-06781.2000
10.1016/S0968-0004(03)00193-2
10.1002/cne.10705
10.1006/excr.1998.4359
10.1097/01.wnr.0000133071.00786.a4
10.1523/JNEUROSCI.15-07-04738.1995
10.1038/nm0195-27
10.1016/j.bbrc.2006.07.188
10.1074/jbc.275.7.5096
10.1016/S0002-9394(14)75794-0
ContentType Journal Article
Copyright Copyright © 2007 Wiley‐Liss, Inc.
Copyright_xml – notice: Copyright © 2007 Wiley‐Liss, Inc.
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7TK
7X8
DOI 10.1002/glia.20495
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList
Neurosciences Abstracts
CrossRef
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1098-1136
EndPage 651
ExternalDocumentID 10_1002_glia_20495
17309061
GLIA20495
ark_67375_WNG_JVW8ZNWJ_1
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft
  funderid: Wi 880/13‐2; Re 849/8‐3; GRK 1097/1‐1
– fundername: Interdisciplinary Centre for Clinical Research at the University of Leipzig
  funderid: 01KS9504, Project C5
– fundername: Ernst und Berta Grimmke Stiftung, Düsseldorf, Germany
GroupedDBID ---
-~X
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABHUG
ABIJN
ABIVO
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEQTP
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AHBTC
AHMBA
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWD
RWI
RX1
RYL
SUPJJ
TEORI
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
X7M
XG1
XV2
ZZTAW
~IA
~WT
AITYG
HGLYW
OIG
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7TK
7X8
ID FETCH-LOGICAL-c4625-335b764d2d5fdb8b425233b178ce6541f73e711ee0d8ccd05f82ac957010b4383
IEDL.DBID DR2
ISSN 0894-1491
IngestDate Fri Aug 16 03:06:07 EDT 2024
Sat Aug 17 00:29:54 EDT 2024
Fri Aug 23 03:36:21 EDT 2024
Tue Aug 27 07:18:20 EDT 2024
Sat Aug 24 00:52:19 EDT 2024
Wed Jan 17 05:02:30 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4625-335b764d2d5fdb8b425233b178ce6541f73e711ee0d8ccd05f82ac957010b4383
Notes istex:97FDF0E0BC3A0DBD1B8BC37AC2811BCBD7581C04
ark:/67375/WNG-JVW8ZNWJ-1
Ernst und Berta Grimmke Stiftung, Düsseldorf, Germany
Deutsche Forschungsgemeinschaft - No. Wi 880/13-2; No. Re 849/8-3; No. GRK 1097/1-1
Interdisciplinary Centre for Clinical Research at the University of Leipzig - No. 01KS9504, Project C5
ArticleID:GLIA20495
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 17309061
PQID 20635072
PQPubID 23462
PageCount 10
ParticipantIDs proquest_miscellaneous_70262072
proquest_miscellaneous_20635072
crossref_primary_10_1002_glia_20495
pubmed_primary_17309061
wiley_primary_10_1002_glia_20495_GLIA20495
istex_primary_ark_67375_WNG_JVW8ZNWJ_1
PublicationCentury 2000
PublicationDate 15 April 2007
PublicationDateYYYYMMDD 2007-04-15
PublicationDate_xml – month: 04
  year: 2007
  text: 15 April 2007
  day: 15
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Glia
PublicationTitleAlternate Glia
PublicationYear 2007
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References Shweiki D, Itin A, Soffer D, Keshet E. 1992. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359: 843-845.
Kim I, Ryan AM, Rohan R, Amano S, Agular S, Miller JW, Adamis AP. 1999. Constitutive expression of VEGF, VEGFR-1, and VEGFR-2 in normal eyes. Invest Ophthalmol Vis Sci 40: 2115-2121.
Park JE, Keller GA, Ferrara N. 1993. The vascular endothelial growth factor (VEGF) isoforms: Differential deposition into the subepithelial extracellular matrix and bioactivity of extracellular matrix-bound VEGF. Mol Biol Cell 4: 1317-1326.
Pierce EA, Avery RL, Foley ED, Aiello LP, Smith LE. 1995. Vascular endothelial growth factor/vascular permeability factor expression in a mouse model of retinal neovascularization. Proc Natl Acad Sci USA 92: 905-909.
Eichler W, Kuhrt H, Hoffmann S, Wiedemann P, Reichenbach A. 2000. VEGF release by retinal glia depends on both oxygen and glucose supply. Neuroreport 11: 3533-3537.
Yoshida A, Khalil AK, Ishibashi T, Inomata H. 1998. Role of NF-κ B-mediated interleukin-8 expression in intraocular neovascularization. Invest Ophthalmol Vis Sci 39: 1097-1106.
Aiello LP, Northrup JM, Keyt BA, Takagi H, Iwamoto MA. 1995. Hypoxic regulation of vascular endothelial growth factor in retinal cells. Arch Ophthalmol 113: 1538-1544.
Duh EJ, Yang HS, Haller JA, De Juan E, Humayun MS, Gehlbach P, Melia M, Pieramici D, Harlan JB, Campochiaro PA, Zack DJ. 2004. Vitreous levels of pigment epithelium-derived factor and vascular endothelial growth factor: Implications for ocular angiogenesis. Am J Ophthalmol 137: 668-674.
Antonetti DA, Barber AJ, Hollinger LA, Wolpert EB, Gardner TW. 1999. Vascular endothelial growth factor induces rapid phosphorylation of tight junction proteins occludin and zonula occluden 1. A potential mechanism for vascular permeability in diabetic retinopathy and tumors. J Biol Chem 274: 23463-23467.
Folkman J. 1995. Angiogenesis in cancer, vascular, rheumatoid, and other diseases. Nat Med 1: 27-31.
Sandercoe TM, Geller SF, Hendrickson AE, Stone J, Provis JM. 2003. VEGF expression by ganglion cells in central retina before formation of the foveal depression in monkey retina: Evidence of developmental hypoxia. J Comp Neurol 462: 42-54.
Gao G, Li Y, Zhang D, Gee S, Crosson C, Ma J. 2001. Unbalanced expression of VEGF and PEDF in ischemia-induced retinal neovascularization. FEBS Lett 489: 270-276.
Storkebaum E, Carmeliet P. 2004. VEGF: A critical player in neurodegeneration. J Clin Invest 113: 14-18.
Keck PJ, Hauser SD, Krivi G, Sanzo K, Warren T, Feder J, Connolly DT. 1989. Vascular permeability factor, an endothelial cell mitogen related to PDGF. Science 246: 1309-1312.
Adamis AP, Miller JW, Bernal MT, D'Amico DJ, Folkman J, Yeo TK, Yeo KT. 1994. Increased vascular endothelial growth factor levels in the vitreous of eyes with proliferative diabetic retinopathy. Am J Ophthalmol 118: 445-450.
Dawson DW, Volpert OV, Gillis P, Crawford SE, Xu H, Benedict W, Bouck NP. 1999. Pigment epithelium-derived factor: A potent inhibitor of angiogenesis. Science 285: 245-258.
Amin RH, Frank RN, Kennedy A, Eliott D, Puklin JE, Abrams W. 1997. Vascular endothelial growth factor is present in glial cells of the retina and optic nerve of human subjects with nonproliferative diabetic retinopathy. Invest Ophthalmol Vis Sci 38: 36-47.
Duh EJ, Yang HS, Suzuma I, Miyagi M, Youngman E, Mori K, Katai M, Yan L, Suzuma K, West K, Davarya S, Tong P, Gehlbach P, Pearlman J, Crabb JW, Aiello LP, Campochiaro PA, Zack DJ. 2002. Pigment epithelium-derived factor suppresses ischemia-induced retinal neovascularization and VEGF-induced migration and growth. Invest Ophthalmol Vis Sci 43: 821-829.
Murata T, Ishibashi T, Khalil A, Hata Y, Yoshikawa H, Inomata H. 1995. Vascular endothelial growth factor plays a role in hyperpermeability of diabetic retinal vessels. Ophthalmic Res 27: 48-52.
Volpert OV, Zaichuk T, Zhou W, Reiher F, Ferguson TA, Stuart PM, Amin A, Bouck NP. 2002. Inducer-stimulated Fas targets activated endothelium for destruction by anti-angiogenic thrombospondin-1 and pigment epithelium-derived factor. Nat Med 8: 349-357.
Alon T, Hemo I, Itin A, Pe'er J, Stone J, Keshet E. 1995. Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity. Nat Med 1: 1024-1028.
Eichler W, Yafai Y, Wiedemann P, Reichenbach A. 2004a. Angiogenesis-related factors derived from retinal glial (Müller) cells in hypoxia. Neuroreport 15: 1633-1637.
Cross MJ, Dixelius J, Matsumoto T, Claesson-Welsh L. 2003. VEGF receptor signal transduction. Trends Biochem Sci 28: 488-489.
Cinátl JJr, Bittóová M, Margraf S, Vogel JU, Cinátl J, Preiser W, Doerr HW. 2000. Cytomegalovirus infection decreases expression of thrombospondin-1 and -2 in cultured human retinal glial cells: Effects of antiviral agents. J Infect Dis 182: 643-651.
Ogata N, Tombran-Tink J, Nishikawa M, Nishimura T, Mitsuma Y, Sakamoto T, Matsumura M. 2001. Pigment epithelium-derived factor in the vitreous is low in diabetic retinopathy and high in rhegmatogenous retinal detachment. Am J Ophthalmol 132: 378-382.
Hutchings H, Maître-Boube M, Tombran-Tink J, Plouët J. 2002. Pigment epithelium-derived factor exerts opposite effects on endothelial cells of different phenotypes. Biochem Biophys Res Commun 294: 764-769.
Aparicio S, Sawant S, Lara N, Barnstable CJ, Tombran-Tink J. 2005. Expression of angiogenesis factors in human umbilical vein endothelial cells and their regulation by PEDF. Biochem Biophys Res Commun 326: 387-394.
Chan-Ling T, Gock B, Stone J. 1995. The effect of oxygen on vasoformative cell division. Evidence that that 'physiological hypoxia' is the stimulus for normal retinal vasculogenesis. Invest Ophthalmol Vis Sci 36: 1201-1214.
Gariano RF, Gardner TW. 2005. Retinal angiogenesis in development and disease. Nature 438: 960-966.
Ishida S, Usui T, Yamashiro K, Kaji Y, Amano S, Ogura Y, Hida T, Oguchi Y, Ambati J, Miller JW, Gragoudas ES, Ng YS, D'Amore PA, Shima DT, Adamis AP. 2003. VEGF164-mediated inflammation is required for pathological, but not physiological, ischemia-induced retinal neovascularization. J Exp Med 198: 483-489.
Tombran-Tink J, Lara N, Apricio SE, Potluri P, Gee S, Ma JX, Chader G, Barnstable CJ. 2004. Retinoic acid and dexamethasone regulate the expression of PEDF in retinal and endothelial cells. Exp Eye Res 78: 945-955.
Yafai Y, Iandiev I, Wiedemann P, Reichenbach A, Eichler W. 2004. Retinal endothelial angiogenic activity: Effects of hypoxia and glial (Müller) cells. Microcirculation 11: 577-586.
Bullard LE, Qi X, Penn JS. 2003. Role for extracellular signal-responsive kinase-1 and -2 in retinal angiogenesis. Invest Ophthalmol Vis Sci 44: 1722-1731.
Vlodavsky I, Folkman J, Sullivan R, Fridman R, Ishai-Michaeli R, Sasse J, Klagsbrun M. 1987. Endothelial cell-derived basic fibroblast growth factor: Synthesis and deposition into subendothelial extracellular matrix. Proc Natl Acad Sci USA 84: 2292-2296.
Spranger J, Osterhoff M, Reimann M, Mohlig M, Ristow M, Francis MK, Cristofalo V, Hammes HP, Smith G, Boulton M, Pfeiffer AF. 2001. Loss of the antiangiogenic pigment epithelium-derived factor in patients with angiogenic eye disease. Diabetes 50: 2641-2645.
Boulton M, Gregor Z, McLeod D, Charteris D, Jarvis-Evans J, Moriarty P, Khaliq A, Foreman D, Allamby D, Bardsley B. 1997. Intravitreal growth factors in proliferative diabetic retinopathy: Correlation with neovascular activity and glycaemic management. Br J Ophthalmol 81: 228-233.
Eichler W, Yafai Y, Keller T, Wiedemann P, Reichenbach A. 2004b. PEDF derived from glial Müller cells: A possible regulator of retinal angiogenesis. Exp Cell Res 299: 68-78.
Zhang SX, Wang JJ, Gao G, Shao C, Mott R, Ma JX. 2006. Pigment epithelium-derived factor (PEDF) is an endogenous antiinflammatory factor. FASEB J 20: 323-325.
Provis JM, Leech J, Diaz CM, Penfold PL, Stone J, Keshet E. 1997. Development of the human retinal vasculature: Cellular relations and VEGF expression. Exp Eye Res 65: 555-568.
Stone J, Itin A, Alon T, Pe'er J, Gnessin H, Chan-Ling T, Keshet E. 1995. Development of retinal vasculature is mediated by hypoxia-induced vascular endothelial growth factor (VEGF) expression by neuroglia. J Neurosci 15: 4738-4747.
Notari L, Baladron V, Aroca-Aguilar JD, Balko N, Heredia R, Meyer C, Notario PM, Saravanamuthu S, Nueda ML, Sanchez-Sanchez F, Escribano J, Laborda J, Becerra SP. 2006. Identification of a lipase-linked cell membrane receptor for pigment epithelium-derived factor. J Biol Chem 281: 38022-38037.
Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N. 1989. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246: 1306-1309.
Reichenbach A, Stolzenburg JU, Wolburg H, Härtig W, el-Hifnawi E, Martin H. 1995. Effects of enhanced extracellular ammonia concentration on cultured mammalian retinal glial (Müller) cells. Glia 13: 195-208.
Ambati J, Chalam KV, Chawla DK, D'Angio CT, Guillet EG, Rose SJ. Vanderlinde ER, Ambati BK. 1997. Elevated γ-aminobutyric acid, glutamate, and vascular endothelial growth factor levels in the vitreous of patients with proliferative diabetic retinopathy. Arch Ophthalmol 115: 1161-1166.
Chen L, Zhang SS, Barnstable CJ, Tombran-Tink J. 2006. PEDF induces apoptosis in human endothelial cells by activating p38 MAP kinase dependent cleavage of multiple caspases. Biochem Biophys Res Commun 348: 1288-1295.
Li C, Tang Y, Li F, Turner S, Li K, Zhou X, Centola M, Yan X, Cao W. 2006. 17β-estradiol (βE2) protects human retinal Muller cell against oxidative stress in vitro: Evaluation of its effects on gene expression by cDNA microarray. Glia 53: 392-400.
Gupta K, Kshirsagar S, Li W, Gui L, Ramakrishnan S, Gupta P, Law PY, Hebbel RP. 1999. VEGF prevents apoptosis of human microvascular endothelial cells via opposing effects on MAPK/ERK and SAPK/JNK signaling. Exp Cell Res 247: 495-504.
Kahn HA, Hiller R. 1974. Blindness caused by diabetic retinopathy. Am J Ophthalmol 78: 58
1997; 115
1990; 108
2001; 50
1997; 81
1995; 36
2004; 23
1999; 285
1999; 40
1999; 247
2003; 198
1993; 4
2005; 25
1998; 273
2001; 132
2004; 137
2006; 20
1987; 84
1995; 27
2000; 11
2002; 43
2004; 78
1992; 359
1999; 331
2006; 281
2001; 12
2003; 44
2004b; 299
1974; 78
2006; 53
1995; 92
1997; 65
2002; 294
1995; 15
1995; 13
2002; 134
2002; 8
2000; 20
2005; 438
1995; 113
2000; 275
1995; 1
1994; 118
2001; 489
1995; 270
1998; 24
2004; 11
1998; 39
2004a; 15
2004; 113
1989; 246
2005; 326
1999; 274
2000; 182
1997; 38
2003; 28
2006; 348
2003; 462
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Yourey PA (e_1_2_7_60_1) 2000; 20
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
Kim I (e_1_2_7_36_1) 1999; 40
Amin RH (e_1_2_7_8_1) 1997; 38
Yoshida A (e_1_2_7_59_1) 1998; 39
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_38_1
Chan‐Ling T (e_1_2_7_15_1) 1995; 36
Duh EJ (e_1_2_7_21_1) 2002; 43
References_xml – volume: 294
  start-page: 764
  year: 2002
  end-page: 769
  article-title: Pigment epithelium‐derived factor exerts opposite effects on endothelial cells of different phenotypes
  publication-title: Biochem Biophys Res Commun
– volume: 182
  start-page: 643
  year: 2000
  end-page: 651
  article-title: Cytomegalovirus infection decreases expression of thrombospondin‐1 and ‐2 in cultured human retinal glial cells: Effects of antiviral agents
  publication-title: J Infect Dis
– volume: 299
  start-page: 68
  year: 2004b
  end-page: 78
  article-title: PEDF derived from glial Müller cells: A possible regulator of retinal angiogenesis
  publication-title: Exp Cell Res
– volume: 50
  start-page: 2641
  year: 2001
  end-page: 2645
  article-title: Loss of the antiangiogenic pigment epithelium‐derived factor in patients with angiogenic eye disease
  publication-title: Diabetes
– volume: 78
  start-page: 945
  year: 2004
  end-page: 955
  article-title: Retinoic acid and dexamethasone regulate the expression of PEDF in retinal and endothelial cells
  publication-title: Exp Eye Res
– volume: 115
  start-page: 1161
  year: 1997
  end-page: 1166
  article-title: Elevated γ‐aminobutyric acid, glutamate, and vascular endothelial growth factor levels in the vitreous of patients with proliferative diabetic retinopathy
  publication-title: Arch Ophthalmol
– volume: 113
  start-page: 1538
  year: 1995
  end-page: 1544
  article-title: Hypoxic regulation of vascular endothelial growth factor in retinal cells
  publication-title: Arch Ophthalmol
– volume: 11
  start-page: 577
  year: 2004
  end-page: 586
  article-title: Retinal endothelial angiogenic activity: Effects of hypoxia and glial (Müller) cells
  publication-title: Microcirculation
– volume: 20
  start-page: 323
  year: 2006
  end-page: 325
  article-title: Pigment epithelium‐derived factor (PEDF) is an endogenous antiinflammatory factor
  publication-title: FASEB J
– volume: 81
  start-page: 228
  year: 1997
  end-page: 233
  article-title: Intravitreal growth factors in proliferative diabetic retinopathy: Correlation with neovascular activity and glycaemic management
  publication-title: Br J Ophthalmol
– volume: 53
  start-page: 392
  year: 2006
  end-page: 400
  article-title: 17β‐estradiol (βE2) protects human retinal Muller cell against oxidative stress in vitro: Evaluation of its effects on gene expression by cDNA microarray
  publication-title: Glia
– volume: 27
  start-page: 48
  year: 1995
  end-page: 52
  article-title: Vascular endothelial growth factor plays a role in hyperpermeability of diabetic retinal vessels
  publication-title: Ophthalmic Res
– volume: 113
  start-page: 14
  year: 2004
  end-page: 18
  article-title: VEGF: A critical player in neurodegeneration
  publication-title: J Clin Invest
– volume: 25
  start-page: 111
  year: 2005
  end-page: 118
  article-title: The role of vascular endothelial growth factor in ocular health and disease
  publication-title: Retina
– volume: 326
  start-page: 387
  year: 2005
  end-page: 394
  article-title: Expression of angiogenesis factors in human umbilical vein endothelial cells and their regulation by PEDF
  publication-title: Biochem Biophys Res Commun
– volume: 132
  start-page: 378
  year: 2001
  end-page: 382
  article-title: Pigment epithelium‐derived factor in the vitreous is low in diabetic retinopathy and high in rhegmatogenous retinal detachment
  publication-title: Am J Ophthalmol
– volume: 359
  start-page: 843
  year: 1992
  end-page: 845
  article-title: Vascular endothelial growth factor induced by hypoxia may mediate hypoxia‐initiated angiogenesis
  publication-title: Nature
– volume: 348
  start-page: 1288
  year: 2006
  end-page: 1295
  article-title: PEDF induces apoptosis in human endothelial cells by activating p38 MAP kinase dependent cleavage of multiple caspases
  publication-title: Biochem Biophys Res Commun
– volume: 92
  start-page: 905
  year: 1995
  end-page: 909
  article-title: Vascular endothelial growth factor/vascular permeability factor expression in a mouse model of retinal neovascularization
  publication-title: Proc Natl Acad Sci USA
– volume: 4
  start-page: 1317
  year: 1993
  end-page: 1326
  article-title: The vascular endothelial growth factor (VEGF) isoforms: Differential deposition into the subepithelial extracellular matrix and bioactivity of extracellular matrix‐bound VEGF
  publication-title: Mol Biol Cell
– volume: 118
  start-page: 445
  year: 1994
  end-page: 450
  article-title: Increased vascular endothelial growth factor levels in the vitreous of eyes with proliferative diabetic retinopathy
  publication-title: Am J Ophthalmol
– volume: 44
  start-page: 1722
  year: 2003
  end-page: 1731
  article-title: Role for extracellular signal‐responsive kinase‐1 and ‐2 in retinal angiogenesis
  publication-title: Invest Ophthalmol Vis Sci
– volume: 23
  start-page: 561
  year: 2004
  end-page: 577
  article-title: Neuroprotective and antiangiogenic actions of PEDF in the eye: Molecular targets and therapeutic potential
  publication-title: Prog Retin Eye Res
– volume: 12
  start-page: 4103
  year: 2001
  end-page: 4108
  article-title: Hypoxia: Modulation of endothelial cell proliferation by soluble factors released by retinal cells
  publication-title: Neuroreport
– volume: 273
  start-page: 13313
  year: 1998
  end-page: 13316
  article-title: Vascular endothelial growth factor induces expression of the antiapoptotic proteins Bcl‐2 and A1 in vascular endothelial cells
  publication-title: J Biol Chem
– volume: 275
  start-page: 5096
  year: 2000
  end-page: 5103
  article-title: Utilization of distinct signaling pathways by receptors for vascular endothelial cell growth factor and other mitogens in the induction of endothelial cell proliferation
  publication-title: J Biol Chem
– volume: 15
  start-page: 1633
  year: 2004a
  end-page: 1637
  article-title: Angiogenesis‐related factors derived from retinal glial (Müller) cells in hypoxia
  publication-title: Neuroreport
– volume: 11
  start-page: 3533
  year: 2000
  end-page: 3537
  article-title: VEGF release by retinal glia depends on both oxygen and glucose supply
  publication-title: Neuroreport
– volume: 462
  start-page: 42
  year: 2003
  end-page: 54
  article-title: VEGF expression by ganglion cells in central retina before formation of the foveal depression in monkey retina: Evidence of developmental hypoxia
  publication-title: J Comp Neurol
– volume: 274
  start-page: 23463
  year: 1999
  end-page: 23467
  article-title: Vascular endothelial growth factor induces rapid phosphorylation of tight junction proteins occludin and zonula occluden 1. A potential mechanism for vascular permeability in diabetic retinopathy and tumors
  publication-title: J Biol Chem
– volume: 438
  start-page: 960
  year: 2005
  end-page: 966
  article-title: Retinal angiogenesis in development and disease
  publication-title: Nature
– volume: 246
  start-page: 1309
  year: 1989
  end-page: 1312
  article-title: Vascular permeability factor, an endothelial cell mitogen related to PDGF
  publication-title: Science
– volume: 13
  start-page: 195
  year: 1995
  end-page: 208
  article-title: Effects of enhanced extracellular ammonia concentration on cultured mammalian retinal glial (Müller) cells
  publication-title: Glia
– volume: 134
  start-page: 220
  year: 2002
  end-page: 227
  article-title: Pigment epithelium derived factor is deficient in the vitreous of patients with choroidal neovascularization due to age‐related macular degeneration
  publication-title: Am J Ophthalmol
– volume: 20
  start-page: 6781
  year: 2000
  end-page: 6788
  article-title: Vascular endothelial cell growth factors promote the in vitro development of rat photoreceptor cells
  publication-title: J Neurosci
– volume: 489
  start-page: 270
  year: 2001
  end-page: 276
  article-title: Unbalanced expression of VEGF and PEDF in ischemia‐induced retinal neovascularization
  publication-title: FEBS Lett
– volume: 281
  start-page: 38022
  year: 2006
  end-page: 38037
  article-title: Identification of a lipase‐linked cell membrane receptor for pigment epithelium‐derived factor
  publication-title: J Biol Chem
– volume: 65
  start-page: 555
  year: 1997
  end-page: 568
  article-title: Development of the human retinal vasculature: Cellular relations and VEGF expression
  publication-title: Exp Eye Res
– volume: 108
  start-page: 869
  year: 1990
  end-page: 872
  article-title: Basic fibroblast growth factor levels in the vitreous of patients with proliferative diabetic retinopathy
  publication-title: Arch Ophthalmol
– volume: 8
  start-page: 349
  year: 2002
  end-page: 357
  article-title: Inducer‐stimulated Fas targets activated endothelium for destruction by anti‐angiogenic thrombospondin‐1 and pigment epithelium‐derived factor
  publication-title: Nat Med
– volume: 1
  start-page: 1024
  year: 1995
  end-page: 1028
  article-title: Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity
  publication-title: Nat Med
– volume: 28
  start-page: 488
  year: 2003
  end-page: 489
  article-title: VEGF receptor signal transduction
  publication-title: Trends Biochem Sci
– volume: 40
  start-page: 2115
  year: 1999
  end-page: 2121
  article-title: Constitutive expression of VEGF, VEGFR‐1, and VEGFR‐2 in normal eyes
  publication-title: Invest Ophthalmol Vis Sci
– volume: 247
  start-page: 495
  year: 1999
  end-page: 504
  article-title: VEGF prevents apoptosis of human microvascular endothelial cells via opposing effects on MAPK/ERK and SAPK/JNK signaling
  publication-title: Exp Cell Res
– volume: 84
  start-page: 2292
  year: 1987
  end-page: 2296
  article-title: Endothelial cell‐derived basic fibroblast growth factor: Synthesis and deposition into subendothelial extracellular matrix
  publication-title: Proc Natl Acad Sci USA
– volume: 134
  start-page: 348
  year: 2002
  end-page: 353
  article-title: Unbalanced vitreous levels of pigment epithelium‐derived factor and vascular endothelial growth factor in diabetic retinopathy
  publication-title: Am J Ophthalmol
– volume: 39
  start-page: 1097
  year: 1998
  end-page: 1106
  article-title: Role of NF‐κ B‐mediated interleukin‐8 expression in intraocular neovascularization
  publication-title: Invest Ophthalmol Vis Sci
– volume: 331
  start-page: 1480
  year: 1999
  end-page: 1487
  article-title: Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders
  publication-title: N Engl J Med
– volume: 246
  start-page: 1306
  year: 1989
  end-page: 1309
  article-title: Vascular endothelial growth factor is a secreted angiogenic mitogen
  publication-title: Science
– volume: 1
  start-page: 27
  year: 1995
  end-page: 31
  article-title: Angiogenesis in cancer, vascular, rheumatoid, and other diseases
  publication-title: Nat Med
– volume: 36
  start-page: 1201
  year: 1995
  end-page: 1214
  article-title: The effect of oxygen on vasoformative cell division. Evidence that that ‘physiological hypoxia’ is the stimulus for normal retinal vasculogenesis
  publication-title: Invest Ophthalmol Vis Sci
– volume: 137
  start-page: 668
  year: 2004
  end-page: 674
  article-title: Vitreous levels of pigment epithelium‐derived factor and vascular endothelial growth factor: Implications for ocular angiogenesis
  publication-title: Am J Ophthalmol
– volume: 15
  start-page: 4738
  year: 1995
  end-page: 4747
  article-title: Development of retinal vasculature is mediated by hypoxia‐induced vascular endothelial growth factor (VEGF) expression by neuroglia
  publication-title: J Neurosci
– volume: 43
  start-page: 821
  year: 2002
  end-page: 829
  article-title: Pigment epithelium‐derived factor suppresses ischemia‐induced retinal neovascularization and VEGF‐induced migration and growth
  publication-title: Invest Ophthalmol Vis Sci
– volume: 78
  start-page: 58
  year: 1974
  end-page: 67
  article-title: Blindness caused by diabetic retinopathy
  publication-title: Am J Ophthalmol
– volume: 270
  start-page: 28316
  year: 1995
  end-page: 28324
  article-title: Possible participation of autocrine and paracrine vascular endothelial growth factors in hypoxia‐induced proliferation of endothelial cells and pericytes
  publication-title: J Biol Chem
– volume: 198
  start-page: 483
  year: 2003
  end-page: 489
  article-title: VEGF164‐mediated inflammation is required for pathological, but not physiological, ischemia‐induced retinal neovascularization
  publication-title: J Exp Med
– volume: 38
  start-page: 36
  year: 1997
  end-page: 47
  article-title: Vascular endothelial growth factor is present in glial cells of the retina and optic nerve of human subjects with nonproliferative diabetic retinopathy
  publication-title: Invest Ophthalmol Vis Sci
– volume: 24
  start-page: 216
  year: 1998
  end-page: 225
  article-title: Effects of hypoxia on glial cell expression of angiogenesis regulating factors VEGF and TGF‐β
  publication-title: Glia
– volume: 285
  start-page: 245
  year: 1999
  end-page: 258
  article-title: Pigment epithelium‐derived factor: A potent inhibitor of angiogenesis
  publication-title: Science
– ident: e_1_2_7_17_1
  doi: 10.1086/315779
– ident: e_1_2_7_42_1
  doi: 10.1016/S0002-9394(02)01568-4
– ident: e_1_2_7_31_1
  doi: 10.1016/S0002-9394(02)01549-0
– ident: e_1_2_7_28_1
  doi: 10.1038/nature04482
– ident: e_1_2_7_55_1
  doi: 10.1073/pnas.84.8.2292
– ident: e_1_2_7_33_1
  doi: 10.1084/jem.20022027
– ident: e_1_2_7_14_1
  doi: 10.1167/iovs.01-1193
– volume: 43
  start-page: 821
  year: 2002
  ident: e_1_2_7_21_1
  article-title: Pigment epithelium‐derived factor suppresses ischemia‐induced retinal neovascularization and VEGF‐induced migration and growth
  publication-title: Invest Ophthalmol Vis Sci
  contributor:
    fullname: Duh EJ
– volume: 39
  start-page: 1097
  year: 1998
  ident: e_1_2_7_59_1
  article-title: Role of NF‐κ B‐mediated interleukin‐8 expression in intraocular neovascularization
  publication-title: Invest Ophthalmol Vis Sci
  contributor:
    fullname: Yoshida A
– ident: e_1_2_7_27_1
  doi: 10.1016/S0014-5793(01)02110-X
– ident: e_1_2_7_46_1
  doi: 10.1006/exer.1997.0365
– ident: e_1_2_7_19_1
  doi: 10.1126/science.285.5425.245
– ident: e_1_2_7_10_1
  doi: 10.1016/j.bbrc.2004.11.041
– ident: e_1_2_7_53_1
  doi: 10.1172/JCI20682
– ident: e_1_2_7_3_1
  doi: 10.1097/00006982-200502000-00001
– ident: e_1_2_7_13_1
  doi: 10.1136/bjo.81.3.228
– ident: e_1_2_7_11_1
  doi: 10.1016/j.preteyeres.2004.05.002
– ident: e_1_2_7_22_1
  doi: 10.1097/00001756-200011090-00026
– ident: e_1_2_7_5_1
  doi: 10.1001/archopht.1995.01100120068012
– ident: e_1_2_7_45_1
  doi: 10.1073/pnas.92.3.905
– ident: e_1_2_7_49_1
  doi: 10.1038/359843a0
– ident: e_1_2_7_23_1
  doi: 10.1016/j.yexcr.2004.05.020
– ident: e_1_2_7_54_1
  doi: 10.1016/j.exer.2003.12.013
– ident: e_1_2_7_6_1
  doi: 10.1038/nm1095-1024
– ident: e_1_2_7_37_1
  doi: 10.1126/science.2479986
– ident: e_1_2_7_40_1
  doi: 10.1074/jbc.270.47.28316
– ident: e_1_2_7_44_1
  doi: 10.1091/mbc.4.12.1317
– ident: e_1_2_7_43_1
  doi: 10.1016/S0002-9394(01)01008-X
– ident: e_1_2_7_9_1
  doi: 10.1074/jbc.274.33.23463
– ident: e_1_2_7_12_1
  doi: 10.1002/(SICI)1098-1136(199810)24:2<216::AID-GLIA6>3.0.CO;2-1
– ident: e_1_2_7_34_1
  doi: 10.1016/0002-9394(74)90010-5
– ident: e_1_2_7_38_1
  doi: 10.1002/glia.20291
– ident: e_1_2_7_61_1
  doi: 10.1096/fj.05-4313fje
– ident: e_1_2_7_56_1
  doi: 10.1038/nm0402-349
– ident: e_1_2_7_29_1
  doi: 10.1074/jbc.273.21.13313
– ident: e_1_2_7_50_1
  doi: 10.1001/archopht.1990.01070080113046
– ident: e_1_2_7_7_1
  doi: 10.1001/archopht.1997.01100160331011
– ident: e_1_2_7_47_1
  doi: 10.1002/glia.440130306
– volume: 40
  start-page: 2115
  year: 1999
  ident: e_1_2_7_36_1
  article-title: Constitutive expression of VEGF, VEGFR‐1, and VEGFR‐2 in normal eyes
  publication-title: Invest Ophthalmol Vis Sci
  contributor:
    fullname: Kim I
– ident: e_1_2_7_35_1
  doi: 10.1126/science.2479987
– ident: e_1_2_7_20_1
  doi: 10.1016/j.ajo.2003.11.015
– ident: e_1_2_7_39_1
  doi: 10.1159/000267567
– ident: e_1_2_7_32_1
  doi: 10.1016/S0006-291X(02)00548-X
– ident: e_1_2_7_4_1
  doi: 10.1056/NEJM199412013312203
– volume: 36
  start-page: 1201
  year: 1995
  ident: e_1_2_7_15_1
  article-title: The effect of oxygen on vasoformative cell division. Evidence that that ‘physiological hypoxia’ is the stimulus for normal retinal vasculogenesis
  publication-title: Invest Ophthalmol Vis Sci
  contributor:
    fullname: Chan‐Ling T
– ident: e_1_2_7_24_1
  doi: 10.1097/00001756-200112210-00048
– ident: e_1_2_7_58_1
  doi: 10.1080/10739680490503375
– ident: e_1_2_7_41_1
  doi: 10.1074/jbc.M600353200
– ident: e_1_2_7_51_1
  doi: 10.2337/diabetes.50.12.2641
– volume: 20
  start-page: 6781
  year: 2000
  ident: e_1_2_7_60_1
  article-title: Vascular endothelial cell growth factors promote the in vitro development of rat photoreceptor cells
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.20-18-06781.2000
  contributor:
    fullname: Yourey PA
– ident: e_1_2_7_18_1
  doi: 10.1016/S0968-0004(03)00193-2
– ident: e_1_2_7_48_1
  doi: 10.1002/cne.10705
– ident: e_1_2_7_30_1
  doi: 10.1006/excr.1998.4359
– ident: e_1_2_7_25_1
  doi: 10.1097/01.wnr.0000133071.00786.a4
– ident: e_1_2_7_52_1
  doi: 10.1523/JNEUROSCI.15-07-04738.1995
– ident: e_1_2_7_26_1
  doi: 10.1038/nm0195-27
– volume: 38
  start-page: 36
  year: 1997
  ident: e_1_2_7_8_1
  article-title: Vascular endothelial growth factor is present in glial cells of the retina and optic nerve of human subjects with nonproliferative diabetic retinopathy
  publication-title: Invest Ophthalmol Vis Sci
  contributor:
    fullname: Amin RH
– ident: e_1_2_7_16_1
  doi: 10.1016/j.bbrc.2006.07.188
– ident: e_1_2_7_57_1
  doi: 10.1074/jbc.275.7.5096
– ident: e_1_2_7_2_1
  doi: 10.1016/S0002-9394(14)75794-0
SSID ssj0011497
Score 2.0905879
Snippet Pigment epithelium‐derived factor (PEDF), a glycoprotein with pleiotropic functions, is naturally occuring in the eye and considered as crucial to prevent...
Pigment epithelium-derived factor (PEDF), a glycoprotein with pleiotropic functions, is naturally occuring in the eye and considered as crucial to prevent...
Abstract Pigment epithelium‐derived factor (PEDF), a glycoprotein with pleiotropic functions, is naturally occuring in the eye and considered as crucial to...
SourceID proquest
crossref
pubmed
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 642
SubjectTerms angiogenesis
Animals
Cattle
Cell Communication - physiology
Cell Proliferation - drug effects
Cells, Cultured
Coculture Techniques
cytokine
Endothelial Cells - cytology
Endothelial Cells - metabolism
Enzyme Activation - drug effects
Enzyme Activation - physiology
Extracellular Signal-Regulated MAP Kinases - drug effects
Extracellular Signal-Regulated MAP Kinases - metabolism
Eye Proteins - metabolism
Eye Proteins - pharmacology
Growth Inhibitors - metabolism
Growth Inhibitors - pharmacology
Guinea Pigs
Intercellular Signaling Peptides and Proteins - metabolism
Intercellular Signaling Peptides and Proteins - secretion
MAP Kinase Signaling System - drug effects
MAP Kinase Signaling System - physiology
Müller cell
Neovascularization, Pathologic - metabolism
Neovascularization, Pathologic - physiopathology
Nerve Growth Factors - metabolism
Nerve Growth Factors - pharmacology
Neuroglia - cytology
Neuroglia - metabolism
Oxygen Consumption - drug effects
Oxygen Consumption - physiology
PEDF
Pigment Epithelium of Eye - cytology
Pigment Epithelium of Eye - metabolism
Pigment Epithelium of Eye - secretion
proliferation
retina
Retina - cytology
Retina - metabolism
Retinal Artery - cytology
Retinal Artery - drug effects
Retinal Artery - metabolism
Serpins - metabolism
Serpins - pharmacology
Vascular Endothelial Growth Factor A - antagonists & inhibitors
Vascular Endothelial Growth Factor A - metabolism
Vascular Endothelial Growth Factor A - secretion
Title Pigment epithelium-derived factor acts as an opponent of growth-stimulatory factors in retinal glial-endothelial cell interactions
URI https://api.istex.fr/ark:/67375/WNG-JVW8ZNWJ-1/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fglia.20495
https://www.ncbi.nlm.nih.gov/pubmed/17309061
https://search.proquest.com/docview/20635072
https://search.proquest.com/docview/70262072
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFB5KffFFW-tlbdUBpQ9C2mRymQn0ZRHbuugiYt0iSJhb1qW7ybLZldanPvoo-A_7SzxnZi9UVFAIYQhnkjPJOWe-mcz5hpBnWRYyxUMd6ESGQaKYDAR0AwEvYyszHUWZwNzhN93s-CTpnKana-RgkQvj-SGWE27oGS5eo4NL1eyvSEP7wwHyBgHAhwCMTHqIiN4tuaMA5-ee5jNPAihHS25Str-qeq03uoEv9vx3UPM6cnVdz-Ft8mmhtF9xcrY3m6o9_fUXPsf_bdUGuTXHpLTtjWiTrNnqDtlqVzAeH13QXepWibrp9y3y7e2gjxOK1I4xm2M4mI2uLr8bsOMv1lC_ew-Fc0MlHBWtx-O6Qvm6pH0Y8k8_gziElRFuG1ZPLuZVGjqoKCZUoiKo3fDq8oetTO2eAdfwBwNFbouJz8Ro7pKTw5fvXxwH890cwAxgkBXEcap4lhhm0tIooSBYsDhWERfa4mbkJY8tjyJrQyO0NmFaCiZ1nnIYMSokVL1H1ivQ-AGh0lpe5jK3JbNJLKUwUpTcMquY0IIlLfJ08VWLsSftKDw9MyuwCYV7wS2y6z74UkROznCZG0-LXveo6HzoiY_dXqeIWuTJwiIKcD5ssKxsPWvgPoDXQs7-LMFDZPxHifvelFYKQWzNAU21yHNnEH_RtDh6_artSg__RXib3PQz0eAA6Q5Zn05m9hFAqKl67FzlJ7shHUY
link.rule.ids 315,786,790,1382,27955,27956,46327,46751
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdge4AXGBuM8jVLoD0gZUucDzuPFbB1pasQ2ujEi2UnTqnWJlXTIsbTHveIxH-4v4Q7u2u1CZBAiiIrOidn-84-X3y_I-RVkvhMcz_zskj5XqSZ8gQsAx4vQqOSLAgSgbHDh92kdRy1T-KT-dkcjIVx-BALhxtqhp2vUcHRIb27RA3tDwcIHAQW_m2yCvoeo16-_bhAjwJLP3VAn2nkQTlYoJOy3WXda-vRKnbtt98Zm9dtV7v47N13GVZri1mIZ05Od2ZTvZN9v4Ho-N_tWiP35mYpbTo5ekBumXKdbDRL2JKPzug2tQdFrQd-g1x8GPTRp0jNGAM6hoPZ6PL8Rw6i_NXk1CXwoXCvqYKrpNV4XJVIXxW0D7v-6Rcgh5llhJnDqsnZvEpNByXFmEpkBLkbXp7_NGVe2W_AM_zHQBHeYuKCMeqH5Hjv3dGbljdP6ACSAPssLwxjzZMoZ3lc5FpomC9YGOqAi8xgPvKCh4YHgTF-LrIs9-NCMJWlMYdNo0ZM1UdkpQSOHxOqjOFFqlJTMBOFSolciYIbZjQTmWBRg7y8GlY5drgd0iE0M4lNkLaDG2TbjviCRE1O8aQbj2Wvuy_bn3ric7fXlkGDbF2JhAT9wwar0lSzGt4DJpvP2Z8puI-g_0ix6WRpyRBMrykYVA3y2krEXziV-52Dpi09-RfiLXKndXTYkZ2D7vun5K5zTIM2xM_IynQyM8_BoprqF1ZvfgFviCFm
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEA-1BfHFqvXj6kcDSh-EbXezH8mCL4f12p71KGK9IkhINtnz6N3uch9ifeqjj4L_Yf8SZ7L3QUUFhWUJy2R3kswkM7OZXwh5liQ-09zPvCxSvhdppjwBy4DH89CqJAuCRGDu8JtOcnAStU_j0xXyYp4LU-NDLAJuqBluvkYFr0y-uwQN7Q36iBsEBv41shYlIUPXa-_tAjwKDP20xvlMIw_KwQKclO0u615ZjtawZ7_8zta8arq6tae1Tj7Oua63nJztTCd6J_v6C6Dj_zbrFrk5M0pps5ai22TFFnfIRrMAh3x4Trep2ybq4u8b5Ntxv4cRRWorTOcY9KfDy4vvBgT5szW0Pr6Hwn1MFVwFLauqLJC-zGkPfP7JJyCHeWWI54aVo_NZlTHtFxQzKpER5G5wefHDFqZ034Bn-IeBIrjFqE7FGN8lJ61X714eeLPjHEAOwMvywjDWPIkMM3FutNAwW7Aw1AEXmcXTyHMeWh4E1vpGZJnx41wwlaUxB5dRI6LqPbJaAMcPCFXW8jxVqc2ZjUKlhFEi55ZZzUQmWNQgT-ejKqsatUPW-MxMYhOk6-AG2XYDviBRozPc58Zj2e3sy_b7rvjQ6bZl0CBbc4mQoH3YYFXYcjqG94DB5nP2ZwruI-Q_UtyvRWnJEEyuKZhTDfLcCcRfOJX7R4dNV9r8F-Itcv14ryWPDjuvH5IbdVQadCF-RFYno6l9DObURD9xWvMTB-AgFQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pigment+epithelium%E2%80%90derived+factor+acts+as+an+opponent+of+growth%E2%80%90stimulatory+factors+in+retinal+glial%E2%80%93endothelial+cell+interactions&rft.jtitle=Glia&rft.au=Yafai%2C+Yousef&rft.au=Lange%2C+Johannes&rft.au=Wiedemann%2C+Peter&rft.au=Reichenbach%2C+Andreas&rft.date=2007-04-15&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=0894-1491&rft.eissn=1098-1136&rft.volume=55&rft.issue=6&rft.spage=642&rft.epage=651&rft_id=info:doi/10.1002%2Fglia.20495&rft.externalDBID=10.1002%252Fglia.20495&rft.externalDocID=GLIA20495
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0894-1491&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0894-1491&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0894-1491&client=summon