In vitro response of monocyte-derived macrophages to a decellularized pericardial biomaterial

Decellularized tissue‐derived heart valves are an example of biomaterials derived from natural scaffolds. These types of implants are increasing in popularity although their in vivo performance is still only poorly understood and has, at times, been catastrophic. It is apparent that better understan...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomedical materials research. Part A Vol. 93A; no. 1; pp. 280 - 288
Main Authors Ariganello, Marianne B., Labow, Rosalind S., Lee, J. Michael
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.04.2010
Wiley-Blackwell
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Decellularized tissue‐derived heart valves are an example of biomaterials derived from natural scaffolds. These types of implants are increasing in popularity although their in vivo performance is still only poorly understood and has, at times, been catastrophic. It is apparent that better understanding is required before these biomaterials can be used safely. In this study, the human monocyte‐derived macrophage (MDM) response to decellularized bovine pericardium (DBP) was used as a model to predict the biological performance of these materials on implantation. Human monocytes differentiated on tissue culture polystyrene (TCPS) for 14 days were trypsinized and reseeded onto DBP, TCPS, and polydimethylsiloxane (PDMS) for 48 h. The MDMs on DBP contained less intracellular and extracellular esterase activity compared with MDMs on TCPS and PDMS, as well as less acid phosphatase activity than on TCPS. As well, morphologically, MDMs on DBP were less spread, less multinucleated and did not display many lamellipodia. Taken together, these data represent the first evidence of the MDM response to intact, native extracellular matrix, demonstrating that these cells reacted with an altered, possibly reduced foreign body response on this natural scaffold compared with the two control surfaces. This in vitro MDM cell model may provide a novel method for predicting and elucidating the biological performance of tissue‐derived biomaterials, thereby directing a more rational design of biomaterials for tissue regeneration purposes. © 2009 Wiley Periodicals, Inc. J Biomed Mater Res 2010
AbstractList Decellularized tissue‐derived heart valves are an example of biomaterials derived from natural scaffolds. These types of implants are increasing in popularity although their in vivo performance is still only poorly understood and has, at times, been catastrophic. It is apparent that better understanding is required before these biomaterials can be used safely. In this study, the human monocyte‐derived macrophage (MDM) response to decellularized bovine pericardium (DBP) was used as a model to predict the biological performance of these materials on implantation. Human monocytes differentiated on tissue culture polystyrene (TCPS) for 14 days were trypsinized and reseeded onto DBP, TCPS, and polydimethylsiloxane (PDMS) for 48 h. The MDMs on DBP contained less intracellular and extracellular esterase activity compared with MDMs on TCPS and PDMS, as well as less acid phosphatase activity than on TCPS. As well, morphologically, MDMs on DBP were less spread, less multinucleated and did not display many lamellipodia. Taken together, these data represent the first evidence of the MDM response to intact, native extracellular matrix, demonstrating that these cells reacted with an altered, possibly reduced foreign body response on this natural scaffold compared with the two control surfaces. This in vitro MDM cell model may provide a novel method for predicting and elucidating the biological performance of tissue‐derived biomaterials, thereby directing a more rational design of biomaterials for tissue regeneration purposes. © 2009 Wiley Periodicals, Inc. J Biomed Mater Res 2010
Decellularized tissue‐derived heart valves are an example of biomaterials derived from natural scaffolds. These types of implants are increasing in popularity although their in vivo performance is still only poorly understood and has, at times, been catastrophic. It is apparent that better understanding is required before these biomaterials can be used safely. In this study, the human monocyte‐derived macrophage (MDM) response to decellularized bovine pericardium (DBP) was used as a model to predict the biological performance of these materials on implantation. Human monocytes differentiated on tissue culture polystyrene (TCPS) for 14 days were trypsinized and reseeded onto DBP, TCPS, and polydimethylsiloxane (PDMS) for 48 h. The MDMs on DBP contained less intracellular and extracellular esterase activity compared with MDMs on TCPS and PDMS, as well as less acid phosphatase activity than on TCPS. As well, morphologically, MDMs on DBP were less spread, less multinucleated and did not display many lamellipodia. Taken together, these data represent the first evidence of the MDM response to intact, native extracellular matrix, demonstrating that these cells reacted with an altered, possibly reduced foreign body response on this natural scaffold compared with the two control surfaces. This in vitro MDM cell model may provide a novel method for predicting and elucidating the biological performance of tissue‐derived biomaterials, thereby directing a more rational design of biomaterials for tissue regeneration purposes. © 2009 Wiley Periodicals, Inc. J Biomed Mater Res 2010
Decellularized tissue-derived heart valves are an example of biomaterials derived from natural scaffolds. These types of implants are increasing in popularity although their in vivo performance is still only poorly understood and has, at times, been catastrophic. It is apparent that better understanding is required before these biomaterials can be used safely. In this study, the human monocyte-derived macrophage (MDM) response to decellularized bovine pericardium (DBP) was used as a model to predict the biological performance of these materials on implantation. Human monocytes differentiated on tissue culture polystyrene (TCPS) for 14 days were trypsinized and reseeded onto DBP, TCPS, and polydimethylsiloxane (PDMS) for 48 h. The MDMs on DBP contained less intracellular and extracellular esterase activity compared with MDMs on TCPS and PDMS, as well as less acid phosphatase activity than on TCPS. As well, morphologically, MDMs on DBP were less spread, less multinucleated and did not display many lamellipodia. Taken together, these data represent the first evidence of the MDM response to intact, native extracellular matrix, demonstrating that these cells reacted with an altered, possibly reduced foreign body response on this natural scaffold compared with the two control surfaces. This in vitro MDM cell model may provide a novel method for predicting and elucidating the biological performance of tissue-derived biomaterials, thereby directing a more rational design of biomaterials for tissue regeneration purposes.
Decellularized tissue-derived heart valves are an example of biomaterials derived from natural scaffolds. These types of implants are increasing in popularity although their in vivo performance is still only poorly understood and has, at times, been catastrophic. It is apparent that better understanding is required before these biomaterials can be used safely. In this study, the human monocyte-derived macrophage (MDM) response to decellularized bovine pericardium (DBP) was used as a model to predict the biological performance of these materials on implantation. Human monocytes differentiated on tissue culture polystyrene (TCPS) for 14 days were trypsinized and reseeded onto DBP, TCPS, and polydimethylsiloxane (PDMS) for 48 h. The MDMs on DBP contained less intracellular and extracellular esterase activity compared with MDMs on TCPS and PDMS, as well as less acid phosphatase activity than on TCPS. As well, morphologically, MDMs on DBP were less spread, less multinucleated and did not display many lamellipodia. Taken together, these data represent the first evidence of the MDM response to intact, native extracellular matrix, demonstrating that these cells reacted with an altered, possibly reduced foreign body response on this natural scaffold compared with the two control surfaces. This in vitro MDM cell model may provide a novel method for predicting and elucidating the biological performance of tissue-derived biomaterials, thereby directing a more rational design of biomaterials for tissue regeneration purposes. [copy 2009 Wiley Periodicals, Inc. J Biomed Mater Res 2010
Author Lee, J. Michael
Ariganello, Marianne B.
Labow, Rosalind S.
Author_xml – sequence: 1
  givenname: Marianne B.
  surname: Ariganello
  fullname: Ariganello, Marianne B.
  email: marigane@dal.ca
  organization: School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada
– sequence: 2
  givenname: Rosalind S.
  surname: Labow
  fullname: Labow, Rosalind S.
  organization: School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada
– sequence: 3
  givenname: J. Michael
  surname: Lee
  fullname: Lee, J. Michael
  organization: School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22546064$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/19562747$$D View this record in MEDLINE/PubMed
BookMark eNqF0Utv1DAQAGALFdEXJ-7IF8QBZXH8in2kFe0WFapKIKRKyJo4DrgkcbCzbZdfj8Mu5daebHm-mbFm9tHOEAaH0IuSLEpC6Nvrul_AglEh-BO0VwpBC66l2JnvXBeMarmL9lO6zlgSQZ-h3VILSSte7aFvZwO-8VMMOLo0hiE5HFrchyHY9eSKxkV_4xrcg41h_AHfXcJTwIAbZ13XrTqI_neOj9lZiI2HDtc-9DDlB-gO0dMWuuSeb88D9OXk_efjZXF-cXp2_O68sFxSXoBlVcNKpZnUVglWVwKsUJqWteKqYpXQXFHXKtvYVucg5dBYS2smgPBasgP0elN3jOHXyqXJ9D7NH4TBhVUySjHChdTicZmRJqqij8qKMcEo1SrLNxuZZ5RSdK0Zo-8hrk1JzLwik1dkwPxdUdYvt3VXde-a_3a7kwxebQEkC10bYbA-3TtKBZdEzoXKjbv1nVs_1NN8OPr4r3mxyfFpcnf3ORB_GjnP2Xz9dGr08vJKnlwtDWV_ANhvuc4
CitedBy_id crossref_primary_10_1089_ten_tec_2014_0167
crossref_primary_10_1177_1535370216648022
crossref_primary_10_1002_term_344
crossref_primary_10_1007_s13239_011_0049_3
crossref_primary_10_1016_j_compositesb_2021_109524
crossref_primary_10_1093_icvts_ivv282
crossref_primary_10_1016_j_actbio_2013_02_021
crossref_primary_10_1016_j_biomaterials_2010_09_004
crossref_primary_10_3390_polym3020740
crossref_primary_10_1007_s00441_011_1185_7
crossref_primary_10_1016_j_mtcomm_2022_104478
crossref_primary_10_3390_ijms22157981
crossref_primary_10_1002_jbm_a_35156
Cites_doi 10.1038/nri1733
10.1016/S1054-8807(02)00098-4
10.1038/nature01320
10.1016/j.tcb.2006.07.004
10.1016/S0945-053X(99)00052-9
10.1016/S1010-7940(03)00094-0
10.1016/S0039-6109(02)00208-6
10.3109/10428190009065825
10.1007/978-1-59745-443-8_18
10.1042/cs1040027
10.1086/500135
10.1002/jcp.10412
10.1016/1054-8807(93)90045-4
10.1016/j.injury.2006.02.035
10.1016/j.biomaterials.2007.04.043
10.1098/rstb.2007.2131
10.1002/1097-4636(200102)54:2<189::AID-JBM5>3.0.CO;2-8
10.1046/j.1365-2567.2001.01145.x
10.1016/0003-4975(95)00291-R
10.1177/002215549904700107
10.1002/jlb.37.4.407
10.1002/jbm.820280602
10.1002/jbm.a.30448
10.1016/j.tcb.2007.01.002
10.2741/2692
10.1161/CIRCULATIONAHA.104.473629
10.1016/S0142-9612(02)00137-0
10.1042/BA20030211
10.1016/0003-2697(76)90527-3
10.1023/A:1008967200706
10.1016/j.biomaterials.2006.06.020
ContentType Journal Article
Copyright Copyright © 2009 Wiley Periodicals, Inc.
2015 INIST-CNRS
Copyright_xml – notice: Copyright © 2009 Wiley Periodicals, Inc.
– notice: 2015 INIST-CNRS
DBID BSCLL
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
7QO
8FD
FR3
P64
DOI 10.1002/jbm.a.32554
DatabaseName Istex
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList CrossRef

Engineering Research Database
Engineering Research Database
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1552-4965
EndPage 288
ExternalDocumentID 10_1002_jbm_a_32554
19562747
22546064
JBM32554
ark_67375_WNG_9HQZ6FZH_2
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Natural Science and Engineering Research Council (NSERC)
– fundername: Canadian Federation of University Women (CFUW)
– fundername: CIHR Strategic Training Fellowship in Cell Signaling in Mucosal Inflammation and Pain
  funderid: STP53877
– fundername: Institute for Musculoskeletal Health and Arthritis (IMHA)
– fundername: Canadian Institutes of Health Research
  grantid: STP53877
GroupedDBID ---
-~X
.3N
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
4.4
4ZD
50Z
51W
51X
52N
52O
52P
52S
52T
52W
52X
53G
5GY
5VS
66C
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACXBN
ACXQS
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AZBYB
AZFZN
BAFTC
BDRZF
BFHJK
BROTX
BRXPI
BSCLL
BY8
CO8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
J0M
JPC
KQQ
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
QB0
QRW
R.K
RNS
ROL
RWI
RYL
SUPJJ
SV3
UB1
V2E
W8V
W99
WIH
WIK
WJL
WQJ
WRC
WXSBR
XG1
XV2
ZZTAW
~IA
~WT
ABHUG
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAMNL
AAYXX
ACRPL
CITATION
7X8
7QO
8FD
FR3
P64
ID FETCH-LOGICAL-c4624-ac37d3189369c853b75ac58921b84873759482ef8cdcf975a24adcc2b35a04b63
IEDL.DBID DR2
ISSN 1549-3296
1552-4965
IngestDate Wed Dec 04 02:05:23 EST 2024
Wed Dec 04 16:13:29 EST 2024
Wed Dec 04 01:46:45 EST 2024
Fri Dec 06 03:09:40 EST 2024
Sat Sep 28 07:55:52 EDT 2024
Sun Oct 22 16:02:09 EDT 2023
Sat Aug 24 01:06:21 EDT 2024
Wed Oct 30 09:53:14 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Cell culture
Prosthesis
Phosphoric monoester hydrolases
Esterases
Scaffold
Heart valve
Styrene polymer
Biomaterial
biomaterials
Ungulata
Biomedical engineering
Dimethylsiloxane polymer
Bovine
Monocyte
Enzyme
Tissue engineering
Glycoprotein
In vitro
Pericardium
decellularized bovine pericardium
Vertebrata
Mammalia
Collagen
Animal protein
Hydrolases
Circulatory system
Artiodactyla
Acid phosphatase
Comparative study
Macrophage
Language English
License CC BY 4.0
http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4624-ac37d3189369c853b75ac58921b84873759482ef8cdcf975a24adcc2b35a04b63
Notes Canadian Federation of University Women (CFUW)
CIHR Strategic Training Fellowship in Cell Signaling in Mucosal Inflammation and Pain - No. STP53877
ArticleID:JBM32554
Institute for Musculoskeletal Health and Arthritis (IMHA)
istex:B30310C1F5E60C8F16B75EA379B9AF2055AC65F5
Natural Science and Engineering Research Council (NSERC)
ark:/67375/WNG-9HQZ6FZH-2
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 19562747
PQID 733532298
PQPubID 23462
PageCount 9
ParticipantIDs proquest_miscellaneous_883045695
proquest_miscellaneous_869590872
proquest_miscellaneous_733532298
crossref_primary_10_1002_jbm_a_32554
pubmed_primary_19562747
pascalfrancis_primary_22546064
wiley_primary_10_1002_jbm_a_32554_JBM32554
istex_primary_ark_67375_WNG_9HQZ6FZH_2
PublicationCentury 2000
PublicationDate April 2010
PublicationDateYYYYMMDD 2010-04-01
PublicationDate_xml – month: 04
  year: 2010
  text: April 2010
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: Hoboken, NJ
– name: United States
PublicationTitle Journal of biomedical materials research. Part A
PublicationTitleAlternate J. Biomed. Mater. Res
PublicationYear 2010
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley-Blackwell
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley-Blackwell
References Schmidt D,Mol A,Kelm JM,Hoerstrup SP. In vitro heart valve tissue engineering. Methods Mol Med 2007; 140: 319-30.
Riddle JM,Jennings JJ,Stein PD,Magilligan DJJr. A morphologic overview of the porcine bioprosthetic valve-before and after its degeneration. Scan Electron Microsc 1984(Pt 1): 207-214.
Ray R,Choudhary SK,Kumar AS. Pathological aspects of explanted homograft mitral valve. Cardiovasc Pathol 2002; 11: 177-180.
Uphoff CC,Drexler HG. Biology of monocyte-specific esterase. Leuk Lymphoma 2000; 39: 257-270.
Schmidt D,Stock UA,Hoerstrup SP. Tissue engineering of heart valves using decellularized xenogeneic or polymeric starter matrices. Philos Trans R Soc Lond B Biol Sci 2007; 362: 1505-1512.
Dahm M,Husmann M,Eckhard M,Prufer D,Groh E,Oelert H. Relevance of immunologic reactions for tissue failure of bioprosthetic heart valves. Ann Thorac Surg 1995; 60(2 Suppl ): S348-S352.
Tsirogianni AK,Moutsopoulos NM,Moutsopoulos HM. Wound healing: Immunological aspects. Injury 2006; 37( Suppl 1): S5-S12.
Labow RS,Meek E,Matheson LA,Santerre JP. Human macrophage-mediated biodegradation of polyurethanes: Assessment of candidate enzyme activities. Biomaterials 2002; 23: 3969-3975.
DeFife KM,Jenney CR,Colton E,Anderson JM. Cytoskeletal and adhesive structural polarizations accompany IL-13-induced human macrophage fusion. J Histochem Cytochem 1999; 47: 65-74.
Lepidi H,Casalta JP,Fournier PE,Habib G,Collart F,Raoult D. Quantitative histological examination of bioprosthetic heart valves. Clin Infect Dis 2006; 42: 590-596.
Linder S. The matrix corroded: Podosomes and invadopodia in extracellular matrix degradation. Trends Cell Biol 2007; 17: 107-117.
Rieder E,Nigisch A,Dekan B,Kasimir MT,Muhlbacher F,Wolner E,Simon P,Weigel G. Granulocyte-based immune response against decellularized or glutaraldehyde cross-linked vascular tissue. Biomaterials 2006; 27: 5634-5642.
Grabenwoger M,Fitzal F,Gross C,Hutschala D,Bock P,Brucke P,Wolner E. Different modes of degeneration in autologous and heterologous heart valve prostheses. J Heart Valve Dis 2000; 9: 104-109; discussion 110-111.
Gordon S,Taylor PR. Monocyte and macrophage heterogeneity. Nat Rev Immunol 2005; 5: 953-964.
Zilla P,Human P,Bezuidenhout D. Bioprosthetic heart valves: The need for a quantum leap. Biotechnol Appl Biochem 2004; 40: 57-66.
Rieder E,Seebacher G,Kasimir MT,Eichmair E,Winter B,Dekan B,Wolner E,Simon P,Weigel G. Tissue engineering of heart valves: Decellularized porcine and human valve scaffolds differ importantly in residual potential to attract monocytic cells. Circulation 2005; 111: 2792-2797.
Matheson LA,Santerre JP,Labow RS. Changes in macrophage function and morphology due to biomedical polyurethane surfaces undergoing biodegradation. J Cell Physiol 2004; 199: 8-19.
Martinez FO,Sica A,Mantovani A,Locati M. Macrophage activation and polarization. Front Biosci 2008; 13: 453-461.
Nathan C. Points of control in inflammation. Nature 2002; 420: 846-852.
Badylak SF. The extracellular matrix as a biologic scaffold material. Biomaterials 2007; 28: 3587-93.
Anderson J. Mechanisms of inflammation and infection with implanted devices. Cardiovasc Pathol 1993; 2-3( Suppl): 33S-41S.
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976; 72: 248-254.
Courtman DW,Pereira CA,Kashef V,McComb D,Lee JM,Wilson GJ. Development of a pericardial acellular matrix biomaterial: Biochemical and mechanical effects of cell extraction. J Biomed Mater Res 1994; 28: 655-666.
Harris P,Ralph P. Human leukemic models of myelomonocytic development: A review of the HL-60 and U937 cell lines. J Leukoc Biol 1985; 37: 407-422.
Duffield JS. The inflammatory macrophage: A story of Jekyll and Hyde. Clin Sci (Lond) 2003; 104: 27-38.
Ariganello MB,Labow RS,Lee JM. Response of macrophage-like U937 cells to decellularized tissue heart valve materials. J Heart Valve Dis 2009; 18: 187-197.
Matthews JB,Green TR,Stone MH,Wroblewski BM,Fisher J,Ingham E. Comparison of the response of three human monocytic cell lines to challenge with polyethylene particles of known size and dose. J Mater Sci Mater Med 2001; 12: 249-258.
Steed DL. Wound-healing trajectories. Surg Clin North Am 2003; 83: 547-55, vi-vii.
Bune AJ,Hayman AR,Evans MJ,Cox TM. Mice lacking tartrate-resistant acid phosphatase (Acp 5) have disordered macrophage inflammatory responses and reduced clearance of the pathogen, Staphylococcus aureus. Immunology 2001; 102: 103-113.
Ziegler WH,Liddington RC,Critchley DR. The structure and regulation of vinculin. Trends Cell Biol 2006; 16: 453-460.
Simon P,Kasimir MT,Seebacher G,Weigel G,Ullrich R,Salzer-Muhar U,Rieder E,Wolner E. Early failure of the tissue engineered porcine heart valve SYNERGRAFT in pediatric patients. Eur J Cardiothorac Surg 2003; 23: 1002-1006; discussion 1006.
Labow RS,Meek E,Santerre JP. Model systems to assess the destructive potential of human neutrophils and monocyte-derived macrophages during the acute and chronic phases of inflammation. J Biomed Mater Res 2001; 54: 189-197.
Gowen BB,Borg TK,Ghaffar A,Mayer EP. Selective adhesion of macrophages to denatured forms of type I collagen is mediated by scavenger receptors. Matrix Biol 2000; 19: 61-71.
Matheson LA,Maksym GN,Santerre JP,Labow RS. Cyclic biaxial strain affects U937 macrophage-like morphology and enzymatic activities. J Biomed Mater Res A 2006; 76: 52-62.
2007; 17
2001; 102
2004; 40
2007; 140
2005; 111
2006; 76
2006; 16
2000; 9
2007; 362
2006; 37
2002; 11
1999; 47
1993; 2–3
2008; 13
1994; 28
2007; 28
2004; 199
1995; 60
2006; 42
2000; 19
2000; 39
2006; 27
1976; 72
2002; 23
2002; 420
2005; 5
1984
2003; 104
2003; 83
2001; 12
1985; 37
2009; 18
2003; 23
2001; 54
Riddle JM (e_1_2_6_9_2) 1984
e_1_2_6_31_2
Ariganello MB (e_1_2_6_19_2) 2009; 18
e_1_2_6_30_2
Grabenwoger M (e_1_2_6_12_2) 2000; 9
e_1_2_6_18_2
e_1_2_6_35_2
e_1_2_6_13_2
e_1_2_6_34_2
e_1_2_6_10_2
e_1_2_6_33_2
e_1_2_6_11_2
e_1_2_6_32_2
e_1_2_6_16_2
e_1_2_6_17_2
e_1_2_6_14_2
e_1_2_6_15_2
e_1_2_6_20_2
e_1_2_6_8_2
e_1_2_6_7_2
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_3_2
e_1_2_6_6_2
e_1_2_6_5_2
e_1_2_6_24_2
e_1_2_6_23_2
e_1_2_6_2_2
e_1_2_6_22_2
e_1_2_6_21_2
e_1_2_6_28_2
e_1_2_6_27_2
e_1_2_6_26_2
e_1_2_6_25_2
References_xml – volume: 2–3
  start-page: 33S
  issue: Suppl
  year: 1993
  end-page: 41S
  article-title: Mechanisms of inflammation and infection with implanted devices
  publication-title: Cardiovasc Pathol
– volume: 42
  start-page: 590
  year: 2006
  end-page: 596
  article-title: Quantitative histological examination of bioprosthetic heart valves
  publication-title: Clin Infect Dis
– volume: 18
  start-page: 187
  year: 2009
  end-page: 197
  article-title: Response of macrophage‐like U937 cells to decellularized tissue heart valve materials
  publication-title: J Heart Valve Dis
– volume: 28
  start-page: 655
  year: 1994
  end-page: 666
  article-title: Development of a pericardial acellular matrix biomaterial: Biochemical and mechanical effects of cell extraction
  publication-title: J Biomed Mater Res
– volume: 40
  start-page: 57
  year: 2004
  end-page: 66
  article-title: Bioprosthetic heart valves: The need for a quantum leap
  publication-title: Biotechnol Appl Biochem
– volume: 16
  start-page: 453
  year: 2006
  end-page: 460
  article-title: The structure and regulation of vinculin
  publication-title: Trends Cell Biol
– volume: 13
  start-page: 453
  year: 2008
  end-page: 461
  article-title: Macrophage activation and polarization
  publication-title: Front Biosci
– volume: 37
  start-page: 407
  year: 1985
  end-page: 422
  article-title: Human leukemic models of myelomonocytic development: A review of the HL‐60 and U937 cell lines
  publication-title: J Leukoc Biol
– volume: 60
  start-page: S348
  issue: 2 Suppl
  year: 1995
  end-page: S352
  article-title: Relevance of immunologic reactions for tissue failure of bioprosthetic heart valves
  publication-title: Ann Thorac Surg
– volume: 17
  start-page: 107
  year: 2007
  end-page: 117
  article-title: The matrix corroded: Podosomes and invadopodia in extracellular matrix degradation
  publication-title: Trends Cell Biol
– volume: 140
  start-page: 319
  year: 2007
  end-page: 30
  article-title: In vitro heart valve tissue engineering
  publication-title: Methods Mol Med
– volume: 362
  start-page: 1505
  year: 2007
  end-page: 1512
  article-title: Tissue engineering of heart valves using decellularized xenogeneic or polymeric starter matrices
  publication-title: Philos Trans R Soc Lond B Biol Sci
– volume: 102
  start-page: 103
  year: 2001
  end-page: 113
  article-title: Mice lacking tartrate‐resistant acid phosphatase (Acp 5) have disordered macrophage inflammatory responses and reduced clearance of the pathogen,
  publication-title: Immunology
– volume: 104
  start-page: 27
  year: 2003
  end-page: 38
  article-title: The inflammatory macrophage: A story of Jekyll and Hyde
  publication-title: Clin Sci (Lond)
– volume: 28
  start-page: 3587
  year: 2007
  end-page: 93
  article-title: The extracellular matrix as a biologic scaffold material
  publication-title: Biomaterials
– volume: 37
  start-page: S5
  issue: Suppl 1
  year: 2006
  end-page: S12
  article-title: Wound healing: Immunological aspects
  publication-title: Injury
– volume: 420
  start-page: 846
  year: 2002
  end-page: 852
  article-title: Points of control in inflammation
  publication-title: Nature
– volume: 76
  start-page: 52
  year: 2006
  end-page: 62
  article-title: Cyclic biaxial strain affects U937 macrophage‐like morphology and enzymatic activities
  publication-title: J Biomed Mater Res A
– volume: 199
  start-page: 8
  year: 2004
  end-page: 19
  article-title: Changes in macrophage function and morphology due to biomedical polyurethane surfaces undergoing biodegradation
  publication-title: J Cell Physiol
– volume: 23
  start-page: 3969
  year: 2002
  end-page: 3975
  article-title: Human macrophage‐mediated biodegradation of polyurethanes: Assessment of candidate enzyme activities
  publication-title: Biomaterials
– volume: 27
  start-page: 5634
  year: 2006
  end-page: 5642
  article-title: Granulocyte‐based immune response against decellularized or glutaraldehyde cross‐linked vascular tissue
  publication-title: Biomaterials
– volume: 47
  start-page: 65
  year: 1999
  end-page: 74
  article-title: Cytoskeletal and adhesive structural polarizations accompany IL‐13‐induced human macrophage fusion
  publication-title: J Histochem Cytochem
– volume: 23
  start-page: 1002
  year: 2003
  end-page: 1006
  article-title: Early failure of the tissue engineered porcine heart valve SYNERGRAFT in pediatric patients
  publication-title: Eur J Cardiothorac Surg
– volume: 9
  start-page: 104
  year: 2000
  end-page: 109
  article-title: Different modes of degeneration in autologous and heterologous heart valve prostheses
  publication-title: J Heart Valve Dis
– volume: 12
  start-page: 249
  year: 2001
  end-page: 258
  article-title: Comparison of the response of three human monocytic cell lines to challenge with polyethylene particles of known size and dose
  publication-title: J Mater Sci Mater Med
– start-page: 207
  issue: Pt 1
  year: 1984
  end-page: 214
  article-title: A morphologic overview of the porcine bioprosthetic valve–before and after its degeneration
  publication-title: Scan Electron Microsc
– volume: 39
  start-page: 257
  year: 2000
  end-page: 270
  article-title: Biology of monocyte‐specific esterase
  publication-title: Leuk Lymphoma
– volume: 5
  start-page: 953
  year: 2005
  end-page: 964
  article-title: Monocyte and macrophage heterogeneity
  publication-title: Nat Rev Immunol
– volume: 83
  start-page: 547
  year: 2003
  end-page: 55
  article-title: Wound‐healing trajectories
  publication-title: Surg Clin North Am
– volume: 54
  start-page: 189
  year: 2001
  end-page: 197
  article-title: Model systems to assess the destructive potential of human neutrophils and monocyte‐derived macrophages during the acute and chronic phases of inflammation
  publication-title: J Biomed Mater Res
– volume: 11
  start-page: 177
  year: 2002
  end-page: 180
  article-title: Pathological aspects of explanted homograft mitral valve
  publication-title: Cardiovasc Pathol
– volume: 111
  start-page: 2792
  year: 2005
  end-page: 2797
  article-title: Tissue engineering of heart valves: Decellularized porcine and human valve scaffolds differ importantly in residual potential to attract monocytic cells
  publication-title: Circulation
– volume: 72
  start-page: 248
  year: 1976
  end-page: 254
  article-title: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein‐dye binding
  publication-title: Anal Biochem
– volume: 19
  start-page: 61
  year: 2000
  end-page: 71
  article-title: Selective adhesion of macrophages to denatured forms of type I collagen is mediated by scavenger receptors
  publication-title: Matrix Biol
– ident: e_1_2_6_35_2
  doi: 10.1038/nri1733
– ident: e_1_2_6_10_2
  doi: 10.1016/S1054-8807(02)00098-4
– ident: e_1_2_6_14_2
  doi: 10.1038/nature01320
– ident: e_1_2_6_30_2
  doi: 10.1016/j.tcb.2006.07.004
– ident: e_1_2_6_33_2
  doi: 10.1016/S0945-053X(99)00052-9
– ident: e_1_2_6_18_2
  doi: 10.1016/S1010-7940(03)00094-0
– start-page: 207
  issue: 1
  year: 1984
  ident: e_1_2_6_9_2
  article-title: A morphologic overview of the porcine bioprosthetic valve–before and after its degeneration
  publication-title: Scan Electron Microsc
  contributor:
    fullname: Riddle JM
– ident: e_1_2_6_15_2
  doi: 10.1016/S0039-6109(02)00208-6
– ident: e_1_2_6_26_2
  doi: 10.3109/10428190009065825
– ident: e_1_2_6_2_2
  doi: 10.1007/978-1-59745-443-8_18
– ident: e_1_2_6_34_2
  doi: 10.1042/cs1040027
– ident: e_1_2_6_11_2
  doi: 10.1086/500135
– ident: e_1_2_6_22_2
  doi: 10.1002/jcp.10412
– ident: e_1_2_6_6_2
  doi: 10.1016/1054-8807(93)90045-4
– ident: e_1_2_6_7_2
  doi: 10.1016/j.injury.2006.02.035
– ident: e_1_2_6_3_2
  doi: 10.1016/j.biomaterials.2007.04.043
– ident: e_1_2_6_5_2
  doi: 10.1098/rstb.2007.2131
– ident: e_1_2_6_21_2
  doi: 10.1002/1097-4636(200102)54:2<189::AID-JBM5>3.0.CO;2-8
– ident: e_1_2_6_27_2
  doi: 10.1046/j.1365-2567.2001.01145.x
– ident: e_1_2_6_13_2
  doi: 10.1016/0003-4975(95)00291-R
– ident: e_1_2_6_28_2
  doi: 10.1177/002215549904700107
– ident: e_1_2_6_32_2
  doi: 10.1002/jlb.37.4.407
– volume: 9
  start-page: 104
  year: 2000
  ident: e_1_2_6_12_2
  article-title: Different modes of degeneration in autologous and heterologous heart valve prostheses
  publication-title: J Heart Valve Dis
  contributor:
    fullname: Grabenwoger M
– ident: e_1_2_6_20_2
  doi: 10.1002/jbm.820280602
– ident: e_1_2_6_24_2
  doi: 10.1002/jbm.a.30448
– ident: e_1_2_6_29_2
  doi: 10.1016/j.tcb.2007.01.002
– ident: e_1_2_6_8_2
  doi: 10.2741/2692
– ident: e_1_2_6_16_2
  doi: 10.1161/CIRCULATIONAHA.104.473629
– ident: e_1_2_6_25_2
  doi: 10.1016/S0142-9612(02)00137-0
– ident: e_1_2_6_4_2
  doi: 10.1042/BA20030211
– volume: 18
  start-page: 187
  year: 2009
  ident: e_1_2_6_19_2
  article-title: Response of macrophage‐like U937 cells to decellularized tissue heart valve materials
  publication-title: J Heart Valve Dis
  contributor:
    fullname: Ariganello MB
– ident: e_1_2_6_23_2
  doi: 10.1016/0003-2697(76)90527-3
– ident: e_1_2_6_31_2
  doi: 10.1023/A:1008967200706
– ident: e_1_2_6_17_2
  doi: 10.1016/j.biomaterials.2006.06.020
SSID ssj0026052
Score 2.1194713
Snippet Decellularized tissue‐derived heart valves are an example of biomaterials derived from natural scaffolds. These types of implants are increasing in popularity...
Decellularized tissue-derived heart valves are an example of biomaterials derived from natural scaffolds. These types of implants are increasing in popularity...
SourceID proquest
crossref
pubmed
pascalfrancis
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 280
SubjectTerms acid phosphatase
Acid Phosphatase - metabolism
Animals
Biocompatible Materials - pharmacology
Biological and medical sciences
biomaterials
Biotechnology
Cells, Cultured
collagen
decellularized bovine pericardium
DNA - metabolism
Esterases - metabolism
Fundamental and applied biological sciences. Psychology
Health. Pharmaceutical industry
Humans
Immunoblotting
Industrial applications and implications. Economical aspects
Intracellular Space - drug effects
Intracellular Space - metabolism
macrophage
Macrophages - cytology
Macrophages - drug effects
Macrophages - enzymology
Macrophages - ultrastructure
Medical sciences
Microscopy, Confocal
Miscellaneous
Pericardium - cytology
Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases
Technology. Biomaterials. Equipments
Vascular surgery: aorta, extremities, vena cava. Surgery of the lymphatic vessels
Title In vitro response of monocyte-derived macrophages to a decellularized pericardial biomaterial
URI https://api.istex.fr/ark:/67375/WNG-9HQZ6FZH-2/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjbm.a.32554
https://www.ncbi.nlm.nih.gov/pubmed/19562747
https://search.proquest.com/docview/733532298
https://search.proquest.com/docview/869590872
https://search.proquest.com/docview/883045695
Volume 93A
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbhQxELVQuMCBfWmWyIeIA1JPetybfWQbhkhEAhER5WKVNxFCuqPpnghy4hP4Rr6EKvdkkkEQCW4tuXxwucqu6np-xdhGDTCuoYRUeJmnhRtXqQk2pJXLTKWko9ofoS22q-lOsbVb7i6wOfQWZuCHWP5wI8-I5zU5OJhu84w09LM5HMEox5CY2EDHeU2Avpfvl-RRFKjHWidmQGkuVLV4nYcjm-fmrtxHl0m1XwkfCR2qKAy9Lf4UfK7GsvEymlwfOq52kcOQMCgHo3lvRvbkN4bH_17nDXZtEabyZ4Nd3WSXfHOLXT1HXnib6TcNP97vZy2fDThbz9vA0apb-633P7__cCh47B0_BGoT9gkPro73LQfuPJULCP-6f4LjR7FmRIb6hRMbAPTRK-6wncmrDy-m6aJdQ2qLShQp2Lx2eERQi0CLUYCpS7ClVGJsJKZFuEGqkMIHaZ0NCgdFAc5aYfISssJU-V221rSNv884UGZXyuCzYArvLdSZU1lQ1hsnMZ1P2MbppumjgZVDD_zLQqO-NOior4Q9iRu6lIHZAQHZ6lJ_3H6t1fTdXjXZm2qRsPWVHV9OENQuAKO2hPFTE9Dof6QlaHw773Sd5yUeikr-XURWijrL1-ICEUkVa5RL2L3BwM7WhRks_TpI2NNoJhctWG89fxs_HvyL8EN2ZcBEEB7pEVvrZ3P_GEOt3qxHj_oFIhUmHw
link.rule.ids 314,780,784,1375,27924,27925,46294,46718
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BewAOvB_hUXyoOCBlm3VezpHXkpZ2JVArql4svyL6SqrdbAU98RP4jfwSZpzdbRdBJbhF8vjg8Ywz4_n8DcBqrlQ_V6kKuRNxmNh-FurKVGFmI50VwlLtj9AWw6zcSTZ2093phRu9hen4IeYXbuQZ_rwmB6cL6bVz1tADfdxTvRhj4uQqLKPD9wnS9fbTnD6KQnVf7cQcKIx5kU3f5-HI2oXJC3-kZVLuV0JIqjEqqeq6W_wp_FyMZv3vaHAL5GwhHQrlsDdpdc-c_cbx-P8rvQ03p5Eqe9WZ1h244uq7cOMCf-E9kOs1O91vRw0bdVBbx5qKoWE35lvrfn7_YVHw1Fl2rKhT2Bc8u8asbZhi1lHFgCCw-2c4fuLLRmSrR4wIAVTrHeM-7Azebb8pw2nHhtAkGU9CZeLc4ilBXQINBgI6T5VJRcH7WmBmFOdEDsNdJYw1VYGDPFHWGK7jVEWJzuIHsFQ3tXsETFFyl4rKRZVOnDMqj2wRVYVx2grM6ANYne2aPOmIOWRHwcwl6ksq6fUVwAu_o3MZNTokLFueys_D97IoP-5lg71S8gBWFrZ8PoFTxwAM3AJgMxuQ6IKkJVW7ZjKWeRyneC4W4u8iIiuouXzOLxERVLRGuQAedhZ2vi5MYun2IICX3k4uW7DceL3lPx7_i_BzuFZub23KzfXhhydwvYNIEDzpKSy1o4l7hpFXq1e8e_0CczUqQA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELaglRAcKK_C8ig-VByQNt14X_aRUtK0QASIiqoXy09RSnejZFNBT_0J_Y38Ema8adpUUAluK3l88HjGntn5_A0hq6VS3VLlKmaOp3Fmu0WsvfFxYRNdCG6x9odoi0HR38m2d_PdKTYH38K0_BCzH27oGeG8RgcfWr92Thr6TR92VCeFkDi7Thazggmkzt_4NGOPwkg9FDshBYpTJorp8zwYWbswee5CWkTd_kCApBqDjnzb3OJP0ed8MBtuo95S23J1HEgMEYRy0Jk0umOOL1E8_vdC75Db0ziVvmoN6y655qp75NYF9sL7RG5V9Gi_GdV01AJtHa09BbOuzc_G_To5tSB45Cw9VNgn7CucXGPa1FRR67BegADY_WMYH4aiEVrqd4p0AKoJbvGA7PTefH7dj6f9GmID6s9iZdLSwhmBPQINhAG6zJXJuWBdzSEvSkukhmHOc2ONFzDIMmWNYTrNVZLpIl0mC1VduUeEKkztcu5d4nXmnFFlYkXihXHacsjnI7J6tmly2NJyyJaAmUnQl1Qy6CsiL8KGzmTU6ACRbGUuvww2peh_3Ct6e33JIrIyt-OzCQz7BUDYFhF6ZgISHBC1pCpXT8ayTNMcTkXB_y7CC4Gt5Ut2hQjHkjXIReRha2Dn64IUFv8dRORlMJOrFiy319-Hj8f_Ivyc3Piw0ZPvtgZvn5CbLT4CsUlPyUIzmrhnEHY1eiU412_eQCjv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+vitro+response+of+monocyte-derived+macrophages+to+a+decellularized+pericardial+biomaterial&rft.jtitle=Journal+of+biomedical+materials+research.+Part+A&rft.au=Ariganello%2C+Marianne+B&rft.au=Labow%2C+Rosalind+S&rft.au=Lee%2C+J+Michael&rft.date=2010-04-01&rft.eissn=1552-4965&rft.volume=93&rft.issue=1&rft.spage=280&rft_id=info:doi/10.1002%2Fjbm.a.32554&rft_id=info%3Apmid%2F19562747&rft.externalDocID=19562747
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-3296&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-3296&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-3296&client=summon