Role of adipose-derived stem cells in wound healing
Impaired wound healing remains a challenge to date and causes debilitating effects with tremendous suffering. Recent advances in tissue engineering approaches in the area of cell therapy have provided promising treatment options to meet the challenges of impaired skin wound healing such as diabetic...
Saved in:
Published in | Wound repair and regeneration Vol. 22; no. 3; pp. 313 - 325 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Blackwell Publishing Ltd
01.05.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Impaired wound healing remains a challenge to date and causes debilitating effects with tremendous suffering. Recent advances in tissue engineering approaches in the area of cell therapy have provided promising treatment options to meet the challenges of impaired skin wound healing such as diabetic foot ulcers. Over the last few years, stem cell therapy has emerged as a novel therapeutic approach for various diseases including wound repair and tissue regeneration. Several different types of stem cells have been studied in both preclinical and clinical settings such as bone marrow‐derived stem cells, adipose‐derived stem cells (ASCs), circulating angiogenic cells (e.g., endothelial progenitor cells), human dermal fibroblasts, and keratinocytes for wound healing. Adipose tissue is an abundant source of mesenchymal stem cells, which have shown an improved outcome in wound healing studies. ASCs are pluripotent stem cells with the ability to differentiate into different lineages and to secrete paracrine factors initiating tissue regeneration process. The abundant supply of fat tissue, ease of isolation, extensive proliferative capacities ex vivo, and their ability to secrete pro‐angiogenic growth factors make them an ideal cell type to use in therapies for the treatment of nonhealing wounds. In this review, we look at the pathogenesis of chronic wounds, role of stem cells in wound healing, and more specifically look at the role of ASCs, their mechanism of action and their safety profile in wound repair and tissue regeneration. |
---|---|
AbstractList | Impaired wound healing remains a challenge to date and causes debilitating effects with tremendous suffering. Recent advances in tissue engineering approaches in the area of cell therapy have provided promising treatment options to meet the challenges of impaired skin wound healing such as diabetic foot ulcers. Over the last few years, stem cell therapy has emerged as a novel therapeutic approach for various diseases including wound repair and tissue regeneration. Several different types of stem cells have been studied in both preclinical and clinical settings such as bone marrow-derived stem cells, adipose-derived stem cells (ASCs), circulating angiogenic cells (e.g., endothelial progenitor cells), human dermal fibroblasts, and keratinocytes for wound healing. Adipose tissue is an abundant source of mesenchymal stem cells, which have shown an improved outcome in wound healing studies. ASCs are pluripotent stem cells with the ability to differentiate into different lineages and to secrete paracrine factors initiating tissue regeneration process. The abundant supply of fat tissue, ease of isolation, extensive proliferative capacities ex vivo, and their ability to secrete pro-angiogenic growth factors make them an ideal cell type to use in therapies for the treatment of nonhealing wounds. In this review, we look at the pathogenesis of chronic wounds, role of stem cells in wound healing, and more specifically look at the role of ASCs, their mechanism of action and their safety profile in wound repair and tissue regeneration. Impaired wound healing remains a challenge to date and causes debilitating effects with tremendous suffering. Recent advances in tissue engineering approaches in the area of cell therapy have provided promising treatment options to meet the challenges of impaired skin wound healing such as diabetic foot ulcers. Over the last few years, stem cell therapy has emerged as a novel therapeutic approach for various diseases including wound repair and tissue regeneration. Several different types of stem cells have been studied in both preclinical and clinical settings such as bone marrow-derived stem cells, adipose-derived stem cells (ASCs), circulating angiogenic cells (e.g., endothelial progenitor cells), human dermal fibroblasts, and keratinocytes for wound healing. Adipose tissue is an abundant source of mesenchymal stem cells, which have shown an improved outcome in wound healing studies. ASCs are pluripotent stem cells with the ability to differentiate into different lineages and to secrete paracrine factors initiating tissue regeneration process. The abundant supply of fat tissue, ease of isolation, extensive proliferative capacities ex vivo, and their ability to secrete pro-angiogenic growth factors make them an ideal cell type to use in therapies for the treatment of nonhealing wounds. In this review, we look at the pathogenesis of chronic wounds, role of stem cells in wound healing, and more specifically look at the role of ASCs, their mechanism of action and their safety profile in wound repair and tissue regeneration.Impaired wound healing remains a challenge to date and causes debilitating effects with tremendous suffering. Recent advances in tissue engineering approaches in the area of cell therapy have provided promising treatment options to meet the challenges of impaired skin wound healing such as diabetic foot ulcers. Over the last few years, stem cell therapy has emerged as a novel therapeutic approach for various diseases including wound repair and tissue regeneration. Several different types of stem cells have been studied in both preclinical and clinical settings such as bone marrow-derived stem cells, adipose-derived stem cells (ASCs), circulating angiogenic cells (e.g., endothelial progenitor cells), human dermal fibroblasts, and keratinocytes for wound healing. Adipose tissue is an abundant source of mesenchymal stem cells, which have shown an improved outcome in wound healing studies. ASCs are pluripotent stem cells with the ability to differentiate into different lineages and to secrete paracrine factors initiating tissue regeneration process. The abundant supply of fat tissue, ease of isolation, extensive proliferative capacities ex vivo, and their ability to secrete pro-angiogenic growth factors make them an ideal cell type to use in therapies for the treatment of nonhealing wounds. In this review, we look at the pathogenesis of chronic wounds, role of stem cells in wound healing, and more specifically look at the role of ASCs, their mechanism of action and their safety profile in wound repair and tissue regeneration. Impaired wound healing remains a challenge to date and causes debilitating effects with tremendous suffering. Recent advances in tissue engineering approaches in the area of cell therapy have provided promising treatment options to meet the challenges of impaired skin wound healing such as diabetic foot ulcers. Over the last few years, stem cell therapy has emerged as a novel therapeutic approach for various diseases including wound repair and tissue regeneration. Several different types of stem cells have been studied in both preclinical and clinical settings such as bone marrow‐derived stem cells, adipose‐derived stem cells ( ASCs ), circulating angiogenic cells (e.g., endothelial progenitor cells), human dermal fibroblasts, and keratinocytes for wound healing. Adipose tissue is an abundant source of mesenchymal stem cells, which have shown an improved outcome in wound healing studies. ASCs are pluripotent stem cells with the ability to differentiate into different lineages and to secrete paracrine factors initiating tissue regeneration process. The abundant supply of fat tissue, ease of isolation, extensive proliferative capacities ex vivo, and their ability to secrete pro‐angiogenic growth factors make them an ideal cell type to use in therapies for the treatment of nonhealing wounds. In this review, we look at the pathogenesis of chronic wounds, role of stem cells in wound healing, and more specifically look at the role of ASCs , their mechanism of action and their safety profile in wound repair and tissue regeneration. |
Author | Wang, Wenxin Hassan, Waqar Ul Greiser, Udo |
Author_xml | – sequence: 1 givenname: Waqar Ul surname: Hassan fullname: Hassan, Waqar Ul organization: Charles Institute of Dermatology, School of Medicine and Medical Science, University College Dublin, Belfield, Dublin, Ireland – sequence: 2 givenname: Udo surname: Greiser fullname: Greiser, Udo organization: Charles Institute of Dermatology, School of Medicine and Medical Science, University College Dublin, Belfield, Dublin, Ireland – sequence: 3 givenname: Wenxin surname: Wang fullname: Wang, Wenxin email: wenxin.wang@ucd.ie organization: Charles Institute of Dermatology, School of Medicine and Medical Science, University College Dublin, Belfield, Dublin, Ireland |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24844331$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctOwzAQRS0EorwW_ADKEhZp_XayRBVQpKpIBVR2lhM7YEjiYieU_j0ppSyQgNnMLM69mrmzD7ZrVxsAjhHso64GC-_7CCNBtsAeYpjGVLCH7W6GXMQoxaIH9kN4hhAylia7oIdpQikhaA-QqStN5IpIaTt3wcTaePtmdBQaU0W5KcsQ2TpauLbW0ZNRpa0fD8FOocpgjr76Abi_vLgbjuLxzdX18Hwc55RjEueQGlgQqI1QHOsCCqWzNIG5zlRCscgIz1nGFOcEaZExnIpUc0Uo12mBCScH4HTtO_futTWhkZUNq5VUbVwbJBIJZBB3h_yPMiwIFjDBHXryhbZZZbSce1spv5SbTDrgbA3k3oXgTfGNIChXecsub_mZd8cOfrC5bVRjXd14Zcu_FAtbmuXv1nI2nW4U8Vphu5-8fyuUf5FcEMHkbHIlx5Nhcns5G8lb8gHGA55D |
CitedBy_id | crossref_primary_10_1016_j_bbalip_2023_159378 crossref_primary_10_4252_wjsc_v13_i8_1084 crossref_primary_10_1186_s13287_022_02892_2 crossref_primary_10_2174_1871530320999200817172200 crossref_primary_10_1155_2019_7135974 crossref_primary_10_1155_2018_2183736 crossref_primary_10_3390_life13030717 crossref_primary_10_1080_21691401_2018_1439836 crossref_primary_10_1016_j_jcyt_2022_08_005 crossref_primary_10_1038_s41598_024_62693_w crossref_primary_10_1016_j_medengphy_2016_05_013 crossref_primary_10_4252_wjsc_v16_i1_33 crossref_primary_10_1016_j_wndm_2016_02_004 crossref_primary_10_1007_s13770_024_00644_2 crossref_primary_10_1093_mam_ozaf011 crossref_primary_10_1093_asj_sjz214 crossref_primary_10_1002_lary_26855 crossref_primary_10_1097_SAP_0000000000001355 crossref_primary_10_3390_molecules24234231 crossref_primary_10_54393_pbmj_v5i4_364 crossref_primary_10_1007_s10856_021_06630_7 crossref_primary_10_1097_MD_0000000000011667 crossref_primary_10_1016_j_heliyon_2023_e20201 crossref_primary_10_1093_asj_sjz223 crossref_primary_10_3390_ijms19071897 crossref_primary_10_1016_j_ijpharm_2018_03_032 crossref_primary_10_1111_jocd_14043 crossref_primary_10_1097_PRS_0000000000010767 crossref_primary_10_1080_21655979_2024_2401269 crossref_primary_10_1155_2016_8281235 crossref_primary_10_1111_cpr_12240 crossref_primary_10_1155_2019_4683272 crossref_primary_10_3390_biomedicines10102584 crossref_primary_10_2147_CCID_S298105 crossref_primary_10_2147_DMSO_S286787 crossref_primary_10_3389_fcell_2021_667765 crossref_primary_10_3892_ijmm_2018_4006 crossref_primary_10_3892_mmr_2024_13367 crossref_primary_10_1080_00914037_2022_2090354 crossref_primary_10_1111_wrr_12582 crossref_primary_10_1007_s40778_018_0125_9 crossref_primary_10_1590_s0102_865020190060000005 crossref_primary_10_1093_asjof_ojae072 crossref_primary_10_1111_cpr_13562 crossref_primary_10_5812_archcid_135078 crossref_primary_10_1177_08853282231171681 crossref_primary_10_1016_j_carbpol_2015_05_081 crossref_primary_10_1089_hum_2020_275 crossref_primary_10_1089_ten_teb_2017_0142 crossref_primary_10_1016_j_lfs_2020_118091 crossref_primary_10_1089_ten_tec_2017_0178 crossref_primary_10_1111_iwj_14663 crossref_primary_10_1097_SAP_0000000000003796 crossref_primary_10_3390_ijms18061167 crossref_primary_10_1186_s13062_024_00534_6 crossref_primary_10_1186_s13287_020_02110_x crossref_primary_10_1007_s12035_019_1570_x crossref_primary_10_1097_GOX_0000000000002835 crossref_primary_10_5021_ad_2017_29_6_667 crossref_primary_10_1007_s00405_017_4595_7 crossref_primary_10_3390_gels10090547 crossref_primary_10_1590_1678_4162_9461 crossref_primary_10_1002_jcp_28141 crossref_primary_10_1155_2022_2976185 crossref_primary_10_1007_s12015_022_10328_w crossref_primary_10_1093_asj_sjab231 crossref_primary_10_1111_exd_14561 crossref_primary_10_1007_s13671_022_00357_6 crossref_primary_10_1155_2019_4286213 crossref_primary_10_1016_j_rvsc_2021_01_019 crossref_primary_10_1155_2018_6901983 crossref_primary_10_4252_wjsc_v12_i7_659 crossref_primary_10_1016_j_heliyon_2024_e24554 crossref_primary_10_1111_iwj_12499 crossref_primary_10_1186_s13287_016_0412_2 crossref_primary_10_1155_2021_5595172 crossref_primary_10_1007_s13770_017_0105_7 crossref_primary_10_1155_2019_2745640 crossref_primary_10_1186_s13287_020_01971_6 crossref_primary_10_2174_1574888X18666221216123259 crossref_primary_10_1016_j_mtbio_2025_101678 crossref_primary_10_1177_2041731416671278 crossref_primary_10_1016_j_fsc_2018_06_011 crossref_primary_10_34172_jlms_2024_40 crossref_primary_10_1093_molehr_gaz008 crossref_primary_10_4252_wjsc_v13_i10_1360 crossref_primary_10_3389_fcell_2023_1245872 crossref_primary_10_32604_biocell_2022_019448 crossref_primary_10_1080_08941939_2016_1236856 crossref_primary_10_1097_PRS_0000000000003125 crossref_primary_10_1097_PRS_0000000000005669 crossref_primary_10_1089_wound_2023_0136 crossref_primary_10_1002_jbm_b_34196 crossref_primary_10_5582_irdr_2019_01130 crossref_primary_10_3390_ijms24054956 crossref_primary_10_1016_j_jcms_2024_12_019 crossref_primary_10_1186_s13287_023_03441_1 crossref_primary_10_4103_njms_NJMS_167_20 crossref_primary_10_7717_peerj_2824 crossref_primary_10_1007_s12015_024_10762_y crossref_primary_10_3390_biomedicines10112902 crossref_primary_10_1016_j_lfs_2022_120563 crossref_primary_10_1093_burnst_tkab021 crossref_primary_10_1080_07388551_2016_1209157 crossref_primary_10_1007_s10856_019_6353_4 crossref_primary_10_1177_0268355516641546 crossref_primary_10_1002_cbf_3609 crossref_primary_10_2147_DMSO_S237294 crossref_primary_10_1186_s13287_023_03389_2 crossref_primary_10_1007_s12565_016_0352_z crossref_primary_10_3390_polym12122997 crossref_primary_10_1089_ten_teb_2020_0111 crossref_primary_10_1007_s13577_023_00887_6 crossref_primary_10_1186_s13287_020_01621_x crossref_primary_10_2485_jhtb_29_111 crossref_primary_10_1002_med_21789 crossref_primary_10_1002_adhm_201400415 crossref_primary_10_1016_j_jcyt_2016_10_010 crossref_primary_10_3390_jcm8070917 crossref_primary_10_1007_s10616_018_0211_y crossref_primary_10_4252_wjsc_v16_i3_257 crossref_primary_10_1007_s10561_015_9517_6 crossref_primary_10_1016_j_retram_2020_07_001 crossref_primary_10_1055_s_0041_1723785 crossref_primary_10_3390_medsci11010016 crossref_primary_10_1097_GOX_0000000000001547 crossref_primary_10_1186_s13287_023_03331_6 crossref_primary_10_3233_THC_248028 crossref_primary_10_1515_jim_2017_0102 crossref_primary_10_3390_pharmaceutics15041215 crossref_primary_10_1590_1980_5373_mr_2020_0415 crossref_primary_10_3390_plants10122635 crossref_primary_10_1186_s12967_015_0580_3 crossref_primary_10_3390_ebj2010002 crossref_primary_10_3389_fendo_2022_882469 crossref_primary_10_3390_ijms18010208 crossref_primary_10_1080_21688370_2021_1982364 crossref_primary_10_1111_exd_14248 crossref_primary_10_1002_cbf_3705 crossref_primary_10_1016_j_lfs_2020_118932 crossref_primary_10_1515_jim_2017_0094 crossref_primary_10_1080_13880209_2020_1861029 crossref_primary_10_3390_ijms21113885 crossref_primary_10_1016_j_actbio_2017_07_020 crossref_primary_10_1002_jcp_27922 crossref_primary_10_4252_wjsc_v16_i6_707 crossref_primary_10_1186_s12917_018_1577_y crossref_primary_10_1007_s13205_021_02958_7 crossref_primary_10_1007_s41745_020_00219_9 crossref_primary_10_1016_j_biopha_2023_116035 crossref_primary_10_1080_21691401_2020_1817057 crossref_primary_10_1097_j_pain_0000000000003092 crossref_primary_10_1111_iwj_13030 crossref_primary_10_1021_acs_biomac_9b01355 crossref_primary_10_1089_ten_tea_2016_0162 crossref_primary_10_1177_1534734615569913 crossref_primary_10_1097_PRS_0000000000010132 crossref_primary_10_1089_ten_tea_2023_0071 crossref_primary_10_1007_s11010_017_3265_9 crossref_primary_10_1055_s_0044_1786185 crossref_primary_10_1038_s41598_019_48657_5 crossref_primary_10_1111_wrr_12600 crossref_primary_10_1155_2017_9142493 crossref_primary_10_1166_jbt_2022_3052 crossref_primary_10_3389_fbioe_2024_1328504 crossref_primary_10_1016_j_ijom_2022_12_004 crossref_primary_10_1517_14712598_2015_1053867 crossref_primary_10_1016_j_ymeth_2019_07_004 crossref_primary_10_1177_15347346241227530 crossref_primary_10_1155_2019_2402916 crossref_primary_10_3390_cells11071198 crossref_primary_10_2217_nnm_2022_0281 crossref_primary_10_1080_2000656X_2020_1767116 crossref_primary_10_1038_s41401_022_00952_0 crossref_primary_10_1021_acsabm_3c00609 crossref_primary_10_24018_ejmed_2021_3_6_1105 crossref_primary_10_1007_s10103_022_03630_z crossref_primary_10_32628_IJSRST2296160 crossref_primary_10_1016_j_jss_2018_03_068 crossref_primary_10_1007_s00441_018_2879_x crossref_primary_10_1097_SAP_0000000000003039 crossref_primary_10_3389_fbioe_2015_00206 crossref_primary_10_4252_wjsc_v12_i6_488 crossref_primary_10_3892_ijmm_2017_2886 crossref_primary_10_3390_bioengineering10121378 crossref_primary_10_1007_s00266_020_01615_3 crossref_primary_10_1186_s13287_023_03620_0 crossref_primary_10_1007_s11626_018_0228_8 crossref_primary_10_3390_polym11020209 crossref_primary_10_1016_j_burns_2024_07_037 crossref_primary_10_1186_s13287_018_0887_0 crossref_primary_10_1007_s10735_017_9711_x crossref_primary_10_1089_neu_2014_3480 crossref_primary_10_1007_s40204_020_00144_1 crossref_primary_10_1177_24730114231207643 crossref_primary_10_1007_s10103_016_1985_9 crossref_primary_10_3390_jfb9010010 crossref_primary_10_3389_fbioe_2021_660145 crossref_primary_10_1172_JCI82788 crossref_primary_10_1007_s11033_019_05112_y crossref_primary_10_1111_exd_14042 crossref_primary_10_1016_j_jtv_2024_12_014 crossref_primary_10_1007_s10856_020_06433_2 crossref_primary_10_3390_jcm12052052 crossref_primary_10_1016_j_injury_2021_12_007 crossref_primary_10_1016_j_tice_2019_09_007 crossref_primary_10_1007_s10616_020_00369_9 crossref_primary_10_1111_jocd_13321 crossref_primary_10_3390_ijms242417197 crossref_primary_10_1016_j_jss_2021_05_035 crossref_primary_10_1177_15347346231174554 crossref_primary_10_1089_wound_2015_0627 crossref_primary_10_1590_1678_4162_10855 crossref_primary_10_1021_acsami_4c03217 crossref_primary_10_1097_01_ASW_0000547412_54135_b7 crossref_primary_10_1111_acel_14049 crossref_primary_10_1111_dth_14112 crossref_primary_10_1186_s13287_016_0310_7 crossref_primary_10_7759_cureus_30055 crossref_primary_10_1186_s13287_023_03478_2 crossref_primary_10_1016_j_yexcr_2018_07_030 crossref_primary_10_1155_2019_1201927 crossref_primary_10_3390_ijms20081811 crossref_primary_10_1177_15347346211027684 crossref_primary_10_1136_bmjdrc_2019_001033 crossref_primary_10_1007_s12015_023_10640_z crossref_primary_10_2174_1574888X13666181002161700 crossref_primary_10_1002_jcp_25712 crossref_primary_10_1089_fpsam_2021_0073 crossref_primary_10_2478_abm_2021_0002 crossref_primary_10_1007_s00403_023_02563_z crossref_primary_10_1021_acsami_7b01397 crossref_primary_10_1080_15476278_2023_2234517 crossref_primary_10_1186_s13287_019_1277_y crossref_primary_10_1371_journal_pone_0197744 crossref_primary_10_2174_1574888X17666220630162836 crossref_primary_10_1038_s41419_022_04752_6 crossref_primary_10_1016_j_actbio_2018_05_039 crossref_primary_10_2174_1570180819666220801111246 crossref_primary_10_1089_fpsam_2023_0163 crossref_primary_10_1371_journal_pone_0171712 crossref_primary_10_3390_pharmaceutics14061206 crossref_primary_10_1155_2017_4740709 crossref_primary_10_1016_j_anplas_2020_11_002 crossref_primary_10_1155_2017_9289213 crossref_primary_10_4252_wjsc_v16_i6_708 crossref_primary_10_1055_a_1250_7878 crossref_primary_10_1016_j_biocel_2014_10_017 crossref_primary_10_1016_j_jid_2019_03_1149 crossref_primary_10_1007_s10439_015_1508_z crossref_primary_10_1111_exd_13954 crossref_primary_10_3390_medicina59040706 crossref_primary_10_3390_cells8010056 |
Cites_doi | 10.1111/j.1524-475X.2009.00499.x 10.1016/j.jdermsci.2007.05.018 10.1002/jbm.820280504 10.1371/journal.pone.0055640 10.1097/SAP.0b013e3181723bbe 10.1016/j.jdermsci.2012.02.010 10.1016/j.cell.2006.07.024 10.1111/j.1349-7006.2007.00550.x 10.1097/01.prs.0000293876.10700.b8 10.1097/00004630-199311000-00010 10.1016/j.mehy.2008.10.033 10.1097/01.CCM.0000285991.36698.E2 10.1002/stem.194 10.1097/SAP.0b013e31817f01b6 10.1089/ten.tea.2009.0616 10.1186/1479-5876-7-29 10.1016/S0140-6736(02)09670-8 10.1016/S0002-9440(10)63754-6 10.1634/stemcells.2006-0394 10.1097/PRS.0b013e3181882046 10.1111/j.1524-475X.2007.00258.x 10.1002/jcp.20636 10.4161/org.4.3.6499 10.1007/1-4020-4448-8 10.1038/gt.2008.39 10.1016/S0142-9612(99)00207-0 10.1002/dmrr.216 10.1634/stemcells.2008-0276 10.1080/14653240310003026 10.1111/j.1749-6632.2009.04607.x 10.1634/stemcells.2007-0226 10.1634/stemcells.2004-0021 10.1046/j.1524-475X.1994.20305.x 10.1046/j.1524-475X.1996.40404.x 10.1007/s10517-005-0331-1 10.1634/stemcells.2005-0342 10.1038/mt.2009.40 10.1097/PRS.0b013e3181b17bb4 10.1016/j.cell.2008.07.041 10.1111/j.1742-1241.2007.01303.x 10.1111/j.1365-2141.2005.05409.x 10.2217/17460751.4.2.265 10.1111/j.1524-4725.2008.34283.x 10.7547/87507315-92-1-34 10.1016/S0039-6109(02)00202-5 10.1002/art.10767 10.1016/j.burns.2009.07.012 10.1097/01.prs.0000298322.70032.bc 10.1046/j.1524-4725.2002.02130.x 10.1002/jcp.1138 10.1097/SAP.0b013e318273f909 10.1186/1478-811X-9-12 10.1634/stemcells.2008-0031 10.1038/nature05664 10.1038/nature06188 10.1093/eurheartj/ehi285 10.1038/35102181 10.1016/j.jcms.2004.06.002 10.1002/stem.629 10.1161/CIRCRESAHA.108.176826 10.1038/nbt0188-25 10.1038/sj.clpt.6100301 10.1007/s00384-008-0559-0 10.1517/14712590903307362 10.1016/j.cpm.2009.08.001 10.1101/gad.1653708 10.3727/096368910X514170 10.1002/term.1700 10.1089/ten.2006.0315 10.1016/j.transci.2004.01.004 10.1634/stemcells.2008-0178 10.1111/j.1365-2796.2007.01844.x 10.1517/14712598.6.6.567 10.1097/SAP.0b013e318095a771 10.1007/s00266-007-9019-4 10.1002/term.158 10.1089/107632701300062859 10.1161/CIRCRESAHA.108.192138 10.1517/14712598.2.2.211 10.1634/stemcells.2008-0273 10.1097/PRS.0b013e3181b5a3f1 10.1007/s12015-010-9193-7 10.1126/science.1069210 10.1046/j.1524-475X.1999.00442.x 10.1056/NEJMra022361 10.1097/00004630-199703000-00010 10.1158/0008-5472.CAN-04-4194 10.2165/00128071-200304080-00007 10.1002/jor.1100090504 10.1634/stemcells.19-3-180 10.1097/BCR.0b013e3181f9353a 10.1161/01.CIR.0000121425.42966.F1 10.1016/j.diabres.2010.12.010 10.1186/scrt19 10.1016/S0169-409X(98)00025-8 10.1073/pnas.1115973108 10.1111/iwj.12039 10.1161/01.RES.0000135902.99383.6f 10.1161/01.CIR.0000057525.13182.24 10.1016/j.bbrc.2007.05.054 10.1007/s00403-009-1011-1 10.1097/PRS.0b013e318191be2d 10.1016/j.ahj.2008.06.025 10.1016/j.ijom.2009.01.001 10.1161/ATVBAHA.108.178962 10.2337/diacare.26.6.1856 10.1056/NEJMra0707253 10.4252/wjsc.v3.i4.25 10.1097/00004630-199603000-00006 10.2741/1184 10.1177/0022034509359125 10.1002/art.21212 10.1517/14712590903039684 10.1046/j.1524-4725.2001.00195.x 10.1146/annurev.cellbio.17.1.435 10.1007/s00268-003-7397-6 10.1046/j.1365-4362.1999.00832.x 10.1097/01.prs.0000225431.63010.1b 10.1016/j.tibtech.2006.01.010 10.1016/j.biocel.2003.11.001 10.1097/00000658-198110000-00005 10.1177/1090820X10362730 10.5021/ad.2011.23.2.150 10.1152/physrev.2003.83.3.835 10.1038/86439 10.1182/blood-2009-05-219907 10.1038/onc.2009.130 10.1016/j.jdermsci.2008.08.007 10.1016/j.jaad.2009.10.048 10.2174/1389201023378283 10.1016/S0140-6736(05)67700-8 10.1016/j.clindermatol.2006.12.005 10.1097/01.prs.0000299922.96006.24 10.1016/S0002-9610(02)00813-9 10.3727/096368910X520065 10.1007/s00109-008-0394-3 10.1089/ten.tea.2008.0359 10.1038/ncponc1132 10.1093/eurheartj/ehp568 |
ContentType | Journal Article |
Copyright | 2014 by the Wound Healing Society 2014 by the Wound Healing Society. |
Copyright_xml | – notice: 2014 by the Wound Healing Society – notice: 2014 by the Wound Healing Society. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7QO 8FD FR3 P64 |
DOI | 10.1111/wrr.12173 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | MEDLINE MEDLINE - Academic Engineering Research Database CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 1524-475X |
EndPage | 325 |
ExternalDocumentID | 24844331 10_1111_wrr_12173 WRR12173 ark_67375_WNG_LNC8SFWH_S |
Genre | article Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: Science Foundation Ireland, Principal Investigator Programme funderid: 10/IN.1/B2981 |
GroupedDBID | --- .3N .GA .Y3 04C 05W 0R~ 10A 123 1OB 1OC 29R 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5HH 5LA 5VS 66C 6PF 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAWTL AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABJNI ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACGOF ACMXC ACPOU ACSCC ACXBN ACXQS ADBTR ADEOM ADIZJ ADKYN ADMGS ADOJX ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFZJQ AHBTC AHEFC AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CAG COF CS3 CYRXZ D-6 D-7 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EAD EAP EAS EBC EBD EBS ECF ECT ECV EIHBH EJD EMB EMK EMOBN ENC EPT ESX EX3 F00 F01 F04 FEDTE FUBAC FZ0 G-S G.N GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI Q.N Q11 QB0 Q~Q R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ SV3 TEORI TUS UB1 W8V W99 WBKPD WH7 WHWMO WIH WIJ WIK WOHZO WOW WQ9 WQJ WRC WUP WVDHM WXI WXSBR XG1 YFH ZZTAW ~IA ~WT AAHQN AAIPD AAMNL AANHP AAYCA ACRPL ACUHS ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7X8 AAMMB AEFGJ AGXDD AIDQK AIDYY 7QO 8FD FR3 P64 |
ID | FETCH-LOGICAL-c4623-c04e0f30de7a62df07adb980cdba8427b36c5b5a6631d7b52979d6a346d9f2363 |
IEDL.DBID | DR2 |
ISSN | 1067-1927 1524-475X |
IngestDate | Thu Jul 10 21:58:07 EDT 2025 Fri Jul 11 12:27:28 EDT 2025 Wed Feb 19 01:51:51 EST 2025 Thu Apr 24 23:01:22 EDT 2025 Tue Jul 01 03:01:35 EDT 2025 Wed Jan 22 17:04:03 EST 2025 Wed Oct 30 09:49:08 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2014 by the Wound Healing Society. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4623-c04e0f30de7a62df07adb980cdba8427b36c5b5a6631d7b52979d6a346d9f2363 |
Notes | ArticleID:WRR12173 Science Foundation Ireland, Principal Investigator Programme - No. 10/IN.1/B2981 istex:B569260658C42169EC8C6BDF697B4D88B9223226 ark:/67375/WNG-LNC8SFWH-S ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
PMID | 24844331 |
PQID | 1527327082 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_1780502433 proquest_miscellaneous_1527327082 pubmed_primary_24844331 crossref_primary_10_1111_wrr_12173 crossref_citationtrail_10_1111_wrr_12173 wiley_primary_10_1111_wrr_12173_WRR12173 istex_primary_ark_67375_WNG_LNC8SFWH_S |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May‐June 2014 |
PublicationDateYYYYMMDD | 2014-05-01 |
PublicationDate_xml | – month: 05 year: 2014 text: May‐June 2014 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Wound repair and regeneration |
PublicationTitleAlternate | Wound Repair Regen |
PublicationYear | 2014 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | Gosain A, DiPietro LA. Aging and wound healing. World J Surg 2004; 28: 321-326. Gimble JM, Bunnell BA, Chiu ES, Guilak F. Concise review: adipose-derived stromal vascular fraction cells and stem cells: let's not get lost in translation. Stem Cells 2011; 29: 749-754. Mulder GD, Vande Berg JS. Cellular senescence and matrix metalloproteinase activity in chronic wounds: relevance to debridement and new technologies. J Am Podiatr Med Assoc 2002; 92: 34-37. Falanga V. Wound healing and its impairment in the diabetic foot. Lancet 2005; 366: 1736-1743. Sakaguchi Y, Sekiya I, Yagishita K, Muneta T. Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthritis Rheum 2005; 52: 2521-2529. Gonda K, Shigeura T, Sato T, Matsumoto D, Suga H, Inoue K, et al. Preserved proliferative capacity and multipotency of human adipose-derived stem cells after long-term cryopreservation. Plast Reconstr Surg 2008; 121: 401-410. Butler KL, Goverman J, Ma H, Fischman A, Yu Y-M, Bilodeau M, et al. Stem cells and burns: review and therapeutic implications. J Burn Care Res 2010; 31: 874-881. Bai X, Yan Y, Song Y-H, Seidensticker M, Rabinovich B, Metzele R, et al. Both cultured and freshly isolated adipose tissue-derived stem cells enhance cardiac function after acute myocardial infarction. Eur Heart J 2010; 31: 489-501. Bianco P, Robey PG. Stem cells in tissue engineering. Nature 2001; 414: 118-121. Cui L, Yin S, Liu W, Li N, Zhang W, Cao Y. Expanded adipose-derived stem cells suppress mixed lymphocyte reaction by secretion of prostaglandin E2. Tissue Eng 2007; 13: 1185-1195. Yoshimura K, Sato K, Aoi N, Kurita M, Hirohi T, Harii K. Cell-assisted lipotransfer for cosmetic breast augmentation: supportive use of adipose-derived stem/stromal cells. Aesthetic Plast Surg 2008; 32: 48-55. Trottier V, Marceau-Fortier G, Germain L, Vincent C, Fradette J. IFATS collection: using human adipose-derived stem/stromal cells for the production of new skin substitutes. Stem Cells 2008; 26: 2713-2723. Lee EY, Xia Y, Kim WS, Kim MH, Kim TH, Kim KJ, et al. Hypoxia-enhanced wound-healing function of adipose-derived stem cells: increase in stem cell proliferation and up-regulation of VEGF and bFGF. Wound Repair Regen 2009; 17: 540-547. Parker AM, Katz AJ. Adipose-derived stem cells for the regeneration of damaged tissues. Expert Opinion on Biological Therapy 2006; 6: 567-578. Gimble J, Guilak F. Adipose-derived adult stem cells: isolation, characterization, and differentiation potential. Cytotherapy 2003; 5: 362-369. Cornwell KG, Landsman A, James KS. Extracellular matrix biomaterials for soft tissue repair. Clin Podiatr Med Surg 2009; 26: 507-523. Tarte K, Gaillard J, Lataillade J-J, Fouillard L, Becker M, Mossafa H, et al. Clinical-grade production of human mesenchymal stromal cells: occurrence of aneuploidy without transformation. Blood 2010; 115: 1549-1553. Cai L, Johnstone BH, Cook TG, Tan J, Fishbein MC, Chen PS, et al. IFATS collection: human adipose tissue-derived stem cells induce angiogenesis and nerve sprouting following myocardial infarction, in conjunction with potent preservation of cardiac function. Stem Cells 2009; 27: 230-237. Mustoe TA, O'Shaughnessy K, Kloeters O. Chronic wound pathogenesis and current treatment strategies: a unifying hypothesis. Plast Reconstr Surg 2006; 117: 35s-41s. MacNeil S. Progress and opportunities for tissue-engineered skin. Nature 2007; 445: 874-880. Sun G, Zhang X, Shen Y-I, Sebastian R, Dickinson LE, Fox-Talbot K, et al. Dextran hydrogel scaffolds enhance angiogenic responses and promote complete skin regeneration during burn wound healing. Proc Natl Acad Sci 2011; 108: 20976-20981. Kakudo N, Minakata T, Mitsui T, Kushida S, Notodihardjo FZ, Kusumoto K. Proliferation-promoting effect of platelet-rich plasma on human adipose-derived stem cells and human dermal fibroblasts. Plast Reconstr Surg 2008; 122: 1352-1360. Rehman J, Traktuev D, Li J, Merfeld-Clauss S, Temm-Grove CJ, Bovenkerk JE, et al. Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation 2004; 109: 1292-1298. Marler JJ, Upton J, Langer R, Vacanti JP. Transplantation of cells in matrices for tissue regeneration. Adv Drug Del Rev 1998; 33: 165-182. Katz AJ, Tholpady A, Tholpady SS, Shang H, Ogle RC. Cell surface and transcriptional characterization of human adipose-derived adherent stromal (hADAS) cells. Stem Cells 2005; 23: 412-423. Altman AM, Yan Y, Matthias N, Bai X, Rios C, Mathur AB, et al. IFATS collection: human adipose-derived stem cells seeded on a silk fibroin-chitosan scaffold enhance wound repair in a murine soft tissue injury model. Stem Cells 2009; 27: 250-258. Van Brunt J, Klausner A. Growth factors speed wound healing. Nat Biotechnol 1988; 6: 25-30. Nambu M, Kishimoto S, Nakamura S, Mizuno H, Yanagibayashi S, Yamamoto N, et al. Accelerated wound healing in healing-impaired db/db mice by autologous adipose tissue-derived stromal cells combined with atelocollagen matrix. Ann Plast Surg 2009; 62: 317-321. Huang SP, Hsu CC, Chang SC, Wang CH, Deng SC, Dai NT, et al. Adipose-derived stem cells seeded on acellular dermal matrix grafts enhance wound healing in a murine model of a full-thickness defect. Ann Plast Surg 2012; 69: 656-662. Chung HM, Won CH, Sung JH. Responses of adipose-derived stem cells during hypoxia: enhanced skin-regenerative potential. Expert Opin Biol Ther 2009; 9: 1499-1508. Spaeth E, Klopp A, Dembinski J, Andreeff M, Marini F. Inflammation and tumor microenvironments: defining the migratory itinerary of mesenchymal stem cells. Gene Ther 2008; 15: 730-738. Liu TM, Martina M, Hutmacher DW, Hui JHP, Lee EH, Lim B. Identification of common pathways mediating differentiation of bone marrow-and adipose tissue-derived human mesenchymal stem cells into three mesenchymal lineages. Stem Cells 2007; 25: 750-760. Kim W-S, Park B-S, Sung J-H, Yang J-M, Park S-B, Kwak S-J, et al. Wound healing effect of adipose-derived stem cells: a critical role of secretory factors on human dermal fibroblasts. J Dermatol Sci 2007; 48: 15-24. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126: 663-676. Buravkova LB, Grinakovskaia OS, Andreeva EP, Zhambalova AP, Kozionova MP. [Characteristics of human lipoaspirate-isolated mesenchymal stromal cells cultivated under a lower oxygen tension]. Tsitologiia 2009; 51: 5-11. Lattari V, Jones LM, Varcelotti JR, Latenser BA, Sherman HF, Barrette RR. The use of a permanent dermal allograft in full-thickness burns of the hand and foot: a report of three cases. J Burn Care Rehabil 1997; 18: 147-155. Aranguren XL, Verfaillie CM, Luttun A. Emerging hurdles in stem cell therapy for peripheral vascular disease. J Mol Med (Berl) 2009; 87: 3-16. Lendeckel S, Jödicke A, Christophis P, Heidinger K, Wolff J, Fraser JK, et al. Autologous stem cells (adipose) and fibrin glue used to treat widespread traumatic calvarial defects: case report. J Craniomaxillofac Surg 2004; 32: 370-373. Musina R, Bekchanova E, Sukhikh G. Comparison of mesenchymal stem cells obtained from different human tissues. Bull Exp Biol Med 2005; 139: 504-509. Kern S, Eichler H, Stoeve J, Kluter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 2006; 24: 1294-1301. Falanga V. Advanced treatments for non-healing chronic wounds. EWMA J 2004; 4: 11-13. Lindroos B, Suuronen R, Miettinen S. The potential of adipose stem cells in regenerative medicine. Stem Cell Rev Rep 2011; 269-291. Rubio D, Garcia-Castro J, Martin MC, de la Fuente R, Cigudosa JC, Lloyd AC, et al. Spontaneous human adult stem cell transformation. Cancer Res 2005; 65: 3035-3039. Lu D, Chen B, Liang Z, Deng W, Jiang Y, Li S, et al. Comparison of bone marrow mesenchymal stem cells with bone marrow-derived mononuclear cells for treatment of diabetic critical limb ischemia and foot ulcer: a double-blind, randomized, controlled trial. Diabetes Res Clin Pract 2011; 92: 26-36. Singer AJ, Dagum AB. Current management of acute cutaneous wounds. N Engl J Med 2008; 359: 1037-1046. Atiyeh BS, Ioannovich J, Al-Amm CA, El-Musa KA. Management of acute and chronic open wounds: the importance of moist environment in optimal wound healing. Curr Pharm Biotechnol 2002; 3: 179-195. Lazarus GS, Cooper DM, Knighton DR, Percoraro RE, Rodeheaver G, Robson MC. Definitions and guidelines for assessment of wounds and evaluation of healing. Wound Repair Regen 1994; 2: 165-170. Levenberg S, Khademhosseini A, Langer R. Embryonic stem cells in tissue engineering. Methods Tissue Eng 2002; 457. Uysal AC, Mizuno H, Tobita M, Ogawa R, Hyakusoku H. The effect of adipose-derived stem cells on ischemia-reperfusion injury: immunohistochemical and ultrastructural evaluation. Plast Reconstr Surg 2009; 124: 804-815. Park I-H, Arora N, Huo H, Maherali N, Ahfeldt T, Shimamura A, et al. Disease-specific induced pluripotent stem cells. Cell 2008; 134: 877-886. Gnecchi M, Zhang Z, Ni A, Dzau VJ. Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res 2008; 103: 1204-1219. Gohari S, Gambla C, Healey M, Spaulding G, Gordon KB, Swan J, et al. Evaluation of tissue-engineered skin (human skin substitute) and secondary intention healing in the treatment of full thickness wounds after Mohs micrographic or excisional surgery. Dermatol Surg 2002; 28: 1107-1114. Ebrahimian TG, Pouzoulet F, Squiban C, Buard V, André M, Cousin B, et al. Cell therapy based on adipose tissue-derived stromal cells promotes physiological and pathological wound healing. Arterioscler Thromb Vasc Biol 2009; 29: 503-510. Gronthos S, Franklin DM, Leddy HA, Robey PG, Storms RW, Gimble JM. Surface protein characterization of human adipose tissue-derived stromal cells. J Cell Physiol 2001; 189: 54-63. Dietrich J, Imitola J, Kesari S. Mechanisms of disease: the role of stem cells in the biology and treatment of gliomas. Nat Clin Pract Oncol 2008; 5: 393- 2004; 164 2010; 16 2009; 87 2010; 19 2004; 28 1991; 97 2004; 9 2004; 4 2008; 34 1999; 284 2005; 65 2008; 32 2008; 103 2013; 8 2004; 32 2004; 30 2006; 208 2010; 1 2006; 24 2004; 36 2006; 27 2010; 115 2008; 26 2003; 48 2009; 123 2008; 359 2009; 124 2002; 92 2007; 61 2008; 22 2010; 30 2009; 15 2001; 414 2009; 17 2007; 445 2010; 31 1996; 17 2009; 62 2007; 449 2010; 36 2002; 2 2002; 3 1995 2001; 27 1993 2008; 122 2011; 3 2007; 98 2008; 121 2006; 117 2007; 13 2007; 15 2011; 9 2003; 349 2003; 107 2009; 72 2002; 360 2005; 366 1999; 38 2011; 92 2005; 129 2003; 26 2008; 46 2007; 82 2008; 134 2009; 1176 2009; 104 2001; 189 2010; 302 2007; 262 2005; 139 2008; 5 2008; 4 1994; 28 2005; 26 2007; 35 2010; 63 2005; 23 1981; 194 2002; 183 2009; 51 1990; 136 2009; 53 1999; 17 2001; 19 2011; 20 1997; 18 2003; 4 2003; 5 2011; 23 2001; 17 2012; 69 1996; 4 2008; 156 2006; 126 2003; 83 2008; 60 2011; 29 2012; 66 2007; 25 2009; 24 2011 2002; 295 2000; 21 2008; 15 2006; 6 2006 2002 2004; 109 1999; 7 2009; 27 2009; 26 2009; 29 2009; 28 2010; 89 1993; 14 2002; 28 2004; 95 2011; 108 2007; 358 2001; 7 1988; 6 2005; 52 2009; 9 2009; 7 2013 2009; 4 2009; 3 1994; 2 2009; 38 1998; 33 2007; 48 e_1_2_15_108_1 e_1_2_15_104_1 e_1_2_15_127_1 Vojtassak J (e_1_2_15_63_1) 2006; 27 e_1_2_15_42_1 e_1_2_15_88_1 e_1_2_15_69_1 e_1_2_15_3_1 e_1_2_15_134_1 e_1_2_15_80_1 e_1_2_15_27_1 e_1_2_15_61_1 e_1_2_15_111_1 e_1_2_15_130_1 e_1_2_15_46_1 e_1_2_15_84_1 e_1_2_15_65_1 Yuan F (e_1_2_15_95_1) 2008; 46 e_1_2_15_7_1 e_1_2_15_116_1 e_1_2_15_139_1 Di Rocco G (e_1_2_15_113_1) 2011 e_1_2_15_31_1 e_1_2_15_77_1 e_1_2_15_58_1 e_1_2_15_100_1 e_1_2_15_123_1 e_1_2_15_146_1 e_1_2_15_39_1 e_1_2_15_16_1 e_1_2_15_50_1 e_1_2_15_92_1 e_1_2_15_142_1 e_1_2_15_35_1 e_1_2_15_73_1 e_1_2_15_12_1 e_1_2_15_54_1 e_1_2_15_96_1 Falanga V (e_1_2_15_98_1) 1993 e_1_2_15_109_1 e_1_2_15_128_1 e_1_2_15_105_1 e_1_2_15_147_1 e_1_2_15_20_1 e_1_2_15_43_1 e_1_2_15_66_1 e_1_2_15_89_1 e_1_2_15_28_1 e_1_2_15_81_1 e_1_2_15_112_1 e_1_2_15_135_1 Falanga V (e_1_2_15_13_1) 2004; 4 e_1_2_15_24_1 e_1_2_15_47_1 e_1_2_15_62_1 e_1_2_15_85_1 e_1_2_15_131_1 e_1_2_15_150_1 e_1_2_15_6_1 e_1_2_15_117_1 e_1_2_15_136_1 Beckrich K (e_1_2_15_11_1) 1999; 17 Buravkova LB (e_1_2_15_124_1) 2009; 51 e_1_2_15_32_1 e_1_2_15_55_1 e_1_2_15_78_1 e_1_2_15_59_1 e_1_2_15_17_1 e_1_2_15_70_1 e_1_2_15_93_1 e_1_2_15_101_1 e_1_2_15_143_1 e_1_2_15_36_1 e_1_2_15_51_1 e_1_2_15_74_1 e_1_2_15_97_1 e_1_2_15_120_1 e_1_2_15_129_1 e_1_2_15_106_1 e_1_2_15_125_1 e_1_2_15_148_1 e_1_2_15_21_1 Levenberg S (e_1_2_15_23_1) 2002 e_1_2_15_67_1 e_1_2_15_40_1 Williams PL (e_1_2_15_2_1) 1995 e_1_2_15_29_1 e_1_2_15_132_1 e_1_2_15_48_1 e_1_2_15_82_1 e_1_2_15_25_1 e_1_2_15_151_1 e_1_2_15_44_1 e_1_2_15_86_1 e_1_2_15_9_1 e_1_2_15_118_1 e_1_2_15_90_1 e_1_2_15_5_1 e_1_2_15_114_1 e_1_2_15_137_1 e_1_2_15_10_1 e_1_2_15_56_1 e_1_2_15_79_1 e_1_2_15_18_1 e_1_2_15_94_1 e_1_2_15_121_1 e_1_2_15_144_1 e_1_2_15_37_1 e_1_2_15_71_1 e_1_2_15_14_1 e_1_2_15_52_1 e_1_2_15_140_1 e_1_2_15_33_1 e_1_2_15_75_1 e_1_2_15_107_1 e_1_2_15_149_1 e_1_2_15_19_1 e_1_2_15_126_1 e_1_2_15_41_1 e_1_2_15_68_1 Quaglino D (e_1_2_15_102_1) 1991; 97 Greenhalgh D (e_1_2_15_103_1) 1990; 136 e_1_2_15_110_1 e_1_2_15_26_1 e_1_2_15_49_1 e_1_2_15_60_1 e_1_2_15_83_1 e_1_2_15_133_1 e_1_2_15_152_1 e_1_2_15_22_1 e_1_2_15_45_1 e_1_2_15_64_1 e_1_2_15_87_1 e_1_2_15_8_1 e_1_2_15_119_1 e_1_2_15_138_1 e_1_2_15_4_1 e_1_2_15_115_1 e_1_2_15_30_1 e_1_2_15_57_1 e_1_2_15_99_1 e_1_2_15_145_1 e_1_2_15_15_1 e_1_2_15_38_1 e_1_2_15_72_1 e_1_2_15_91_1 e_1_2_15_122_1 e_1_2_15_141_1 e_1_2_15_34_1 e_1_2_15_53_1 e_1_2_15_76_1 |
References_xml | – reference: Kern S, Eichler H, Stoeve J, Kluter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 2006; 24: 1294-1301. – reference: Kakudo N, Minakata T, Mitsui T, Kushida S, Notodihardjo FZ, Kusumoto K. Proliferation-promoting effect of platelet-rich plasma on human adipose-derived stem cells and human dermal fibroblasts. Plast Reconstr Surg 2008; 122: 1352-1360. – reference: Riordan NH, Ichim TE, Min W-P, Wang H, Solano F, Lara F, et al. Non-expanded adipose stromal vascular fraction cell therapy for multiple sclerosis. J Transl Med 2009; 7: 1-9. – reference: Griffith LG, Naughton G. Tissue engineering-current challenges and expanding opportunities. Science 2002; 295: 1009. – reference: Liu TM, Martina M, Hutmacher DW, Hui JHP, Lee EH, Lim B. Identification of common pathways mediating differentiation of bone marrow-and adipose tissue-derived human mesenchymal stem cells into three mesenchymal lineages. Stem Cells 2007; 25: 750-760. – reference: Werner S, Grose R. Regulation of wound healing by growth factors and cytokines. Physiol Rev 2003; 83: 835-870. – reference: Atiyeh BS, Ioannovich J, Al-Amm CA, El-Musa KA. Management of acute and chronic open wounds: the importance of moist environment in optimal wound healing. Curr Pharm Biotechnol 2002; 3: 179-195. – reference: Branski LK, Herndon DN, Pereira C, Mlcak RP, Celis MM, Lee JO, et al. Longitudinal assessment of Integra in primary burn management: a randomized pediatric clinical trial. Crit Care Med 2007; 35: 2615-2623. – reference: Falanga V. Advanced treatments for non-healing chronic wounds. EWMA J 2004; 4: 11-13. – reference: Andrae J, Gallini R, Betsholtz C. Role of platelet-derived growth factors in physiology and medicine. Genes Dev 2008; 22: 1276-1312. – reference: Gosain A, DiPietro LA. Aging and wound healing. World J Surg 2004; 28: 321-326. – reference: Cornwell KG, Landsman A, James KS. Extracellular matrix biomaterials for soft tissue repair. Clin Podiatr Med Surg 2009; 26: 507-523. – reference: Kim W-S, Park B-S, Sung J-H, Yang J-M, Park S-B, Kwak S-J, et al. Wound healing effect of adipose-derived stem cells: a critical role of secretory factors on human dermal fibroblasts. J Dermatol Sci 2007; 48: 15-24. – reference: Song SH, Lee MO, Lee JS, Jeong HC, Kim HG, Kim WS, et al. Genetic modification of human adipose-derived stem cells for promoting wound healing. J Dermatol Sci 2012; 66: 98-107. – reference: Kim WS, Park BS, Park SH, Kim HK, Sung JH. Antiwrinkle effect of adipose-derived stem cell: activation of dermal fibroblast by secretory factors. J Dermatol Sci 2009; 53: 96-102. – reference: Sterodimas A, de Faria J, Nicaretta B, Papadopoulos O, Papalambros E, Illouz YG. Cell-assisted lipotransfer. Aesthet Surg J 2010; 30: 78-81. – reference: Nambu M, Kishimoto S, Nakamura S, Mizuno H, Yanagibayashi S, Yamamoto N, et al. Accelerated wound healing in healing-impaired db/db mice by autologous adipose tissue-derived stromal cells combined with atelocollagen matrix. Ann Plast Surg 2009; 62: 317-321. – reference: Tateishi-Yuyama E, Matsubara H, Murohara T, Ikeda U, Shintani S, Masaki H, et al. Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. Lancet 2002; 360: 427-435. – reference: Strauer BE, Kornowski R. Stem cell therapy in perspective. Circulation 2003; 107: 929-934. – reference: Lee EY, Xia Y, Kim WS, Kim MH, Kim TH, Kim KJ, et al. Hypoxia-enhanced wound-healing function of adipose-derived stem cells: increase in stem cell proliferation and up-regulation of VEGF and bFGF. Wound Repair Regen 2009; 17: 540-547. – reference: Nie C, Yang D, Morris SF. Local delivery of adipose-derived stem cells via acellular dermal matrix as a scaffold: a new promising strategy to accelerate wound healing. Med Hypotheses 2009; 72: 679-682. – reference: Winter A, Breit S, Parsch D, Benz K, Steck E, Hauner H, et al. Cartilage-like gene expression in differentiated human stem cell spheroids: a comparison of bone marrow-derived and adipose tissue-derived stromal cells. Arthritis Rheum 2003; 48: 418-429. – reference: Cui L, Yin S, Liu W, Li N, Zhang W, Cao Y. Expanded adipose-derived stem cells suppress mixed lymphocyte reaction by secretion of prostaglandin E2. Tissue Eng 2007; 13: 1185-1195. – reference: Gnecchi M, Zhang Z, Ni A, Dzau VJ. Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res 2008; 103: 1204-1219. – reference: Yoshimura K, Suga H, Eto H. Adipose-derived stem/progenitor cells: roles in adipose tissue remodeling and potential use for soft tissue augmentation. Regen Med 2009; 4: 265-273. – reference: Burke JF, Yannas IV, Quinby WC Jr, Bondoc CC, Jung WK. Successful use of a physiologically acceptable artificial skin in the treatment of extensive burn injury. Ann Surg 1981; 194: 413-428. – reference: Grayson WL, Zhao F, Bunnell B, Ma T. Hypoxia enhances proliferation and tissue formation of human mesenchymal stem cells. Biochem Biophys Res Commun 2007; 358: 948-953. – reference: Falanga V. Wound healing and its impairment in the diabetic foot. Lancet 2005; 366: 1736-1743. – reference: Mimeault M, Hauke R, Batra S. Stem cells: a revolution in therapeutics-recent advances in stem cell biology and their therapeutic applications in regenerative medicine and cancer therapies. Clin Pharmacol Therap 2007; 82: 252-264. – reference: Diegelmann RF, Evans MC. Wound healing: an overview of acute, fibrotic and delayed healing. Front Biosci 2004; 9: 283-289. – reference: Mesimäki K, Lindroos B, Tőrnwall J, Mauno J, Lindqvist C, Kontio R, et al. Novel maxillary reconstruction with ectopic bone formation by GMP adipose stem cells. Int J Oral Maxillofac Surg 2009; 38: 201-209. – reference: Tarte K, Gaillard J, Lataillade J-J, Fouillard L, Becker M, Mossafa H, et al. Clinical-grade production of human mesenchymal stromal cells: occurrence of aneuploidy without transformation. Blood 2010; 115: 1549-1553. – reference: Garcia-Olmo D, Herreros D, Pascual M, Pascual I, De-La-Quintana P, Trebol J, et al. Treatment of enterocutaneous fistula in Crohn's disease with adipose-derived stem cells: a comparison of protocols with and without cell expansion. Int J Colorectal Dis 2009; 24: 27-30. – reference: Wiegand C, Schönfelder U, Abel M, Ruth P, Kaatz M, Hipler U-C. Protease and pro-inflammatory cytokine concentrations are elevated in chronic compared to acute wounds and can be modulated by collagen type I in vitro. Arch Dermatol Res 2010; 302: 419-428. – reference: Guo S, DiPietro LA. Factors affecting wound healing. J Dent Res 2010; 89: 219-229. – reference: Thangarajah H, Vial IN, Chang E, El-Ftesi S, Januszyk M, Chang EI, et al. IFATS collection: adipose stromal cells adopt a proangiogenic phenotype under the influence of hypoxia. Stem Cells 2009; 27: 266-274. – reference: Sakaguchi Y, Sekiya I, Yagishita K, Muneta T. Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthritis Rheum 2005; 52: 2521-2529. – reference: Katz AJ, Tholpady A, Tholpady SS, Shang H, Ogle RC. Cell surface and transcriptional characterization of human adipose-derived adherent stromal (hADAS) cells. Stem Cells 2005; 23: 412-423. – reference: Pittenger MF, Martin BJ. Mesenchymal stem cells and their potential as cardiac therapeutics. Circ Res 2004; 95: 9-20. – reference: Menke NB, Ward KR, Witten TM, Bonchev DG, Diegelmann RF. Impaired wound healing. Clin Dermatol 2007; 25: 19-25. – reference: Sun G, Zhang X, Shen Y-I, Sebastian R, Dickinson LE, Fox-Talbot K, et al. Dextran hydrogel scaffolds enhance angiogenic responses and promote complete skin regeneration during burn wound healing. Proc Natl Acad Sci 2011; 108: 20976-20981. – reference: Fraser JK, Wulur I, Alfonso Z, Hedrick MH. Fat tissue: an underappreciated source of stem cells for biotechnology. Trends Biotechnol 2006; 24: 150-154. – reference: Ebrahimian T, Pouzoulet F, Squiban C, Buard V, André M, Cousin B, et al. Cell therapy based on adipose tissue-derived stromal cells promotes physiological and pathological wound healing. Arterioscler Thromb Vasc Biol 2009; 29: 503-510. – reference: Williams PL, Bannister LH, Berry MM, Collins P, Dyson M, Dussek JE. Gray's anatomy international student edition, 38th ed. Oxford: Churchill Livingstone, 1995. – reference: Crovetti G, Martinelli G, Issi M, Barone M, Guizzardi M, Campanati B, et al. Platelet gel for healing cutaneous chronic wounds. Transfus Apher Sci 2004; 30: 145-151. – reference: Boyce ST, Warden GD. Principles and practices for treatment of cutaneous wounds with cultured skin substitutes. Am J Surg 2002; 183: 445-456. – reference: van der Veen VC, van der Wal M, van Leeuwen MC, Ulrich MM, Middelkoop E. Biological background of dermal substitutes. Burns 2010; 36: 305-321. – reference: Mustoe TA, O'Shaughnessy K, Kloeters O. Chronic wound pathogenesis and current treatment strategies: a unifying hypothesis. Plast Reconstr Surg 2006; 117: 35s-41s. – reference: MacNeil S. Progress and opportunities for tissue-engineered skin. Nature 2007; 445: 874-880. – reference: Van Brunt J, Klausner A. Growth factors speed wound healing. Nat Biotechnol 1988; 6: 25-30. – reference: Le Blanc K, Ringdén O. Immunomodulation by mesenchymal stem cells and clinical experience. J Intern Med 2007; 262: 509-525. – reference: Kirana S, Stratmann B, Lammers D, Negrean M, Stirban A, Minartz P, et al. Wound therapy with autologous bone marrow stem cells in diabetic patients with ischaemia-induced tissue ulcers affecting the lower limbs. Int J Clin Pract 2007; 61: 690-694. – reference: Rubio D, Garcia-Castro J, Martin MC, de la Fuente R, Cigudosa JC, Lloyd AC, et al. Spontaneous human adult stem cell transformation. Cancer Res 2005; 65: 3035-3039. – reference: Spaeth E, Klopp A, Dembinski J, Andreeff M, Marini F. Inflammation and tumor microenvironments: defining the migratory itinerary of mesenchymal stem cells. Gene Ther 2008; 15: 730-738. – reference: Barry FP, Murphy JM. Mesenchymal stem cells: clinical applications and biological characterization. Int J Biochem Cell Biol 2004; 36: 568-584. – reference: Simka M, Majewski E. The social and economic burden of venous leg ulcers-focus on the role of micronized purified flavonoid fraction adjuvant therapy. Am J Clin Dermatol 2003; 4: 573-581. – reference: Hanson SE, Kleinbeck KR, Cantu D, Kim J, Bentz ML, Faucher LD, et al. Local delivery of allogeneic bone marrow and adipose tissue-derived mesenchymal stromal cells for cutaneous wound healing in a porcine model. J Tissue Eng Regen Med 2013 Feb 18 [Epub ahead of print]. – reference: Lendeckel S, Jödicke A, Christophis P, Heidinger K, Wolff J, Fraser JK, et al. Autologous stem cells (adipose) and fibrin glue used to treat widespread traumatic calvarial defects: case report. J Craniomaxillofac Surg 2004; 32: 370-373. – reference: Di Rocco G, Gentile A, Antonini A, Ceradini F, Wu JC, Capogrossi MC, et al. (2011) Enhanced healing of diabetic wounds by topical administration of adipose tissue-derived stromal cells overexpressing stromal-derived factor-1: biodistribution and engraftment analysis by bioluminescent imaging. Stem Cells Int 2010 Dec 26: 304562. – reference: Nie C, Yang D, Xu J, Si Z, Jin X, Zhang J. Locally administered adipose-derived stem cells accelerate wound healing through differentiation and vasculogenesis. Cell Transplant 2011; 20: 205-216. – reference: Nagai MK, Embil JM. Becaplermin: recombinant platelet derived growth factor, a new treatment for healing diabetic foot ulcers. Expert Opin Biol Ther 2002; 2: 211-218. – reference: Yoshimura K, Shigeura T, Matsumoto D, Sato T, Takaki Y, Aiba-Kojima E, et al. Characterization of freshly isolated and cultured cells derived from the fatty and fluid portions of liposuction aspirates. J Cell Physiol 2006; 208: 64-76. – reference: Chung HM, Won CH, Sung JH. Responses of adipose-derived stem cells during hypoxia: enhanced skin-regenerative potential. Expert Opin Biol Ther 2009; 9: 1499-1508. – reference: Wu Y, Chen L, Scott PG, Tredget EE. Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells 2007; 25: 2648-2659. – reference: Gronthos S, Franklin DM, Leddy HA, Robey PG, Storms RW, Gimble JM. Surface protein characterization of human adipose tissue-derived stromal cells. J Cell Physiol 2001; 189: 54-63. – reference: Gonda K, Shigeura T, Sato T, Matsumoto D, Suga H, Inoue K, et al. Preserved proliferative capacity and multipotency of human adipose-derived stem cells after long-term cryopreservation. Plast Reconstr Surg 2008; 121: 401-410. – reference: Lu F, Mizuno H, Uysal CA, Cai X, Ogawa R, Hyakusoku H. Improved viability of random pattern skin flaps through the use of adipose-derived stem cells. Plast Reconstr Surg 2008; 121: 50-58. – reference: Procházka V, Gumulec J, Jaluvka F, Salounová D, Jonszta T, Czerny D, et al. Cell therapy, a new standard in management of chronic critical limb ischemia and foot ulcer. Cell Transplant 2010; 19: 1413-1424. – reference: Braddock M, Campbell CJ, Zuder D. Current therapies for wound healing: electrical stimulation, biological therapeutics, and the potential for gene therapy. Int J Dermatol 1999; 38: 808-817. – reference: Lindroos B, Suuronen R, Miettinen S. The potential of adipose stem cells in regenerative medicine. Stem Cell Rev Rep 2011; 269-291. – reference: Schipper BM, Marra KG, Zhang W, Donnenberg AD, Rubin JP. Regional anatomic and age effects on cell function of human adipose-derived stem cells. Ann Plast Surg 2008; 60: 538-544. – reference: Greenhalgh D, Sprugel K, Murray M, Ross R. PDGF and FGF stimulate wound healing in the genetically diabetic mouse. Am J Pathol 1990; 136: 1235. – reference: Dietrich J, Imitola J, Kesari S. Mechanisms of disease: the role of stem cells in the biology and treatment of gliomas. Nat Clin Pract Oncol 2008; 5: 393-404. – reference: Levenberg S, Khademhosseini A, Langer R. Embryonic stem cells in tissue engineering. Methods Tissue Eng 2002; 457. – reference: Lenk K, Adams V, Lurz P, Erbs S, Linke A, Gielen S, et al. Therapeutical potential of blood-derived progenitor cells in patients with peripheral arterial occlusive disease and critical limb ischaemia. Eur Heart J 2005; 26: 1903-1909. – reference: Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284: 143-147. – reference: Aranguren XL, Verfaillie CM, Luttun A. Emerging hurdles in stem cell therapy for peripheral vascular disease. J Mol Med (Berl) 2009; 87: 3-16. – reference: Constantin G, Marconi S, Rossi B, Angiari S, Calderan L, Anghileri E, et al. Adipose-derived mesenchymal stem cells ameliorate chronic experimental autoimmune encephalomyelitis. Stem Cells 2009; 27: 2624-2635. – reference: Bianco P, Robey PG. Stem cells in tissue engineering. Nature 2001; 414: 118-121. – reference: Mathieu D. Handbook of hyperbaric medicine. New York: Springer, 2006: 812. – reference: Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126: 663-676. – reference: Beumer GJ, van Blitterswijk CA, Ponec M. Biocompatibility of a biodegradable matrix used as a skin substitute: an in vivo evaluation. J Biomed Mat Res 1994; 28: 545-552. – reference: Park B-S, Jang KA, Sung J-H, Park J-S, Kwon YH, Kim KJ, et al. Adipose-derived stem cells and their secretory factors as a promising therapy for skin aging. Dermatol Surg 2008; 34: 1323-1326. – reference: Lu D, Chen B, Liang Z, Deng W, Jiang Y, Li S, et al. Comparison of bone marrow mesenchymal stem cells with bone marrow-derived mononuclear cells for treatment of diabetic critical limb ischemia and foot ulcer: a double-blind, randomized, controlled trial. Diabetes Res Clin Pract 2011; 92: 26-36. – reference: Trengove NJ, Stacey MC, Macauley S, Bennett N, Gibson J, Burslem F, et al. Analysis of the acute and chronic wound environments: the role of proteases and their inhibitors. Wound Repair Regen 1999; 7: 442-452. – reference: Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW, et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 2007; 449: 557-563. – reference: Casteilla L, Planat-Benard V, Laharrague P, Cousin B. Adipose-derived stromal cells: their identity and uses in clinical trials, an update. World J Stem Cells 2011; 3: 25. – reference: Ebrahimian TG, Pouzoulet F, Squiban C, Buard V, André M, Cousin B, et al. Cell therapy based on adipose tissue-derived stromal cells promotes physiological and pathological wound healing. Arterioscler Thromb Vasc Biol 2009; 29: 503-510. – reference: Menasche P. Cell-based therapy for heart disease: a clinically oriented perspective. Mol Ther 2009; 17: 758-766. – reference: Bai X, Yan Y, Song Y-H, Seidensticker M, Rabinovich B, Metzele R, et al. Both cultured and freshly isolated adipose tissue-derived stem cells enhance cardiac function after acute myocardial infarction. Eur Heart J 2010; 31: 489-501. – reference: Quaglino D Jr, Nanney L, Ditesheim J, Davidson J. Transforming growth factor-beta stimulates wound healing and modulates extracellular matrix gene expression in pig skin: incisional wound model. J Invest Dermatol 1991; 97: 34. – reference: Vojtassak J, Danisovic L, Kubes M. Autologous bio-graft and mesenchymal stem cells in treatment of the diabetic foot. Neuro Endocrinol Lett 2006; 27 (Suppl. 2): 134-137. – reference: Yuan F, Lei YH, Fu XB, Sheng ZY, Cai S, Sun TZ. Promotive effect of adipose-derived stem cells on the wound model of human epidermal keratinocytes in vitro. Wai Ke Za Zhi 2008; 46: 1575. – reference: Lee SH, Lee JH, Cho KH. Effects of human adipose-derived stem cells on cutaneous wound healing in nude mice. Ann Dermatol 2011; 23: 150-155. – reference: Tsang MW, Wong WK, Hung CS, Lai KM, Tang W, Cheung EY, et al. Human epidermal growth factor enhances healing of diabetic foot ulcers. Diabetes Care 2003; 26: 1856-1861. – reference: Park I-H, Arora N, Huo H, Maherali N, Ahfeldt T, Shimamura A, et al. Disease-specific induced pluripotent stem cells. Cell 2008; 134: 877-886. – reference: Huss FR, Nyman E, Gustafson C-J, Gisselfält K, Liljensten E, Kratz G. Characterization of a new degradable polymer scaffold for regeneration of the dermis: in vitro and in vivo human studies. Organogenesis 2008; 4: 195-200. – reference: Rubina K, Kalinina N, Efimenko A, Lopatina T, Melikhova V, Tsokolaeva Z, et al. Adipose stromal cells stimulate angiogenesis via promoting progenitor cell differentiation, secretion of angiogenic factors, and enhancing vessel maturation. Tissue Eng Part A 2009; 15: 2039-2050. – reference: Eto H, Suga H, Matsumoto D, Inoue K, Aoi N, Kato H, et al. Characterization of structure and cellular components of aspirated and excised adipose tissue. Plast Reconstr Surg 2009; 124: 1087-1097. – reference: Blanton MW, Hadad I, Johnstone BH, Mund JA, Rogers PI, Eppley BL, et al. Adipose stromal cells and platelet-rich plasma therapies synergistically increase revascularization during wound healing. Plast Reconstr Surg 2009; 123 (2 Suppl.): 56S-64S. – reference: Buravkova LB, Grinakovskaia OS, Andreeva EP, Zhambalova AP, Kozionova MP. [Characteristics of human lipoaspirate-isolated mesenchymal stromal cells cultivated under a lower oxygen tension]. Tsitologiia 2009; 51: 5-11. – reference: Rehman J, Traktuev D, Li J, Merfeld-Clauss S, Temm-Grove CJ, Bovenkerk JE, et al. Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation 2004; 109: 1292-1298. – reference: Hong SJ, Jia S-X, Xie P, Xu W, Leung KP, Mustoe TA, et al. Topically delivered adipose derived stem cells show an activated-fibroblast phenotype and enhance granulation tissue formation in skin wounds. PLoS ONE 2013; 8: e55640. – reference: Phillips TJ. Current approaches to venous ulcers and compression. Dermatol Surg 2001; 27: 611-621. – reference: Wainwright D, Madden M, Luterman A, Hunt J, Monafo W, Heimbach D, et al. Clinical evaluation of an acellular allograft dermal matrix in full-thickness burns. J Burn Care Rehabil 1996; 17: 124-136. – reference: Lazarus GS, Cooper DM, Knighton DR, Percoraro RE, Rodeheaver G, Robson MC. Definitions and guidelines for assessment of wounds and evaluation of healing. Wound Repair Regen 1994; 2: 165-170. – reference: Walter M, Liang S, Ghosh S, Hornsby P, Li R. Interleukin 6 secreted from adipose stromal cells promotes migration and invasion of breast cancer cells. Oncogene 2009; 28: 2745-2755. – reference: Nambu M, Ishihara M, Nakamura S, Mizuno H, Yanagibayashi S, Kanatani Y, et al. Enhanced healing of mitomycin C-treated wounds in rats using inbred adipose tissue-derived stromal cells within an atelocollagen matrix. Wound Repair Regen 2007; 15: 505-510. – reference: Amos PJ, Kapur SK, Stapor PC, Shang H, Bekiranov S, Khurgel M, et al. Human adipose-derived stromal cells accelerate diabetic wound healing: impact of cell formulation and delivery. Tissue Eng Part A 2010; 16: 1595-1606. – reference: Mulder GD, Vande Berg JS. Cellular senescence and matrix metalloproteinase activity in chronic wounds: relevance to debridement and new technologies. J Am Podiatr Med Assoc 2002; 92: 34-37. – reference: Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 2001; 7: 211-228. – reference: Mast BA, Schultz GS. Interactions of cytokines, growth factors, and proteases in acute and chronic wounds. Wound Repair Regen 1996; 4: 411-420. – reference: Parker AM, Katz AJ. Adipose-derived stem cells for the regeneration of damaged tissues. Expert Opinion on Biological Therapy 2006; 6: 567-578. – reference: Gimble JM, Guilak F, Bunnell BA. Clinical and preclinical translation of cell-based therapies using adipose tissue-derived cells. Stem Cell Res Ther 2010; 1: 19. – reference: Bernardo E, Locatelli F, Fibbe WE. Mesenchymal stromal cells. Ann N Y Acad Sci 2009; 1176: 101-117. – reference: Yoshimura K, Sato K, Aoi N, Kurita M, Hirohi T, Harii K. Cell-assisted lipotransfer for cosmetic breast augmentation: supportive use of adipose-derived stem/stromal cells. Aesthetic Plast Surg 2008; 32: 48-55. – reference: Marler JJ, Upton J, Langer R, Vacanti JP. Transplantation of cells in matrices for tissue regeneration. Adv Drug Del Rev 1998; 33: 165-182. – reference: Barcelos LS, Duplaa C, Kränkel N, Graiani G, Invernici G, Katare R, et al. Human CD133+ progenitor cells promote the healing of diabetic ischemic ulcers by paracrine stimulation of angiogenesis and activation of Wnt signaling. Circ Res 2009; 104: 1095-1102. – reference: Cai L, Johnstone BH, Cook TG, Tan J, Fishbein MC, Chen PS, et al. IFATS collection: human adipose tissue-derived stem cells induce angiogenesis and nerve sprouting following myocardial infarction, in conjunction with potent preservation of cardiac function. Stem Cells 2009; 27: 230-237. – reference: Trottier V, Marceau-Fortier G, Germain L, Vincent C, Fradette J. IFATS collection: using human adipose-derived stem/stromal cells for the production of new skin substitutes. Stem Cells 2008; 26: 2713-2723. – reference: Bianco P, Riminucci M, Gronthos S, Robey PG. Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells 2001; 19: 180-192. – reference: Xu F, Gomillion C, Maxson S, Burg KJ. In vitro interaction between mouse breast cancer cells and mouse mesenchymal stem cells during adipocyte differentiation. J Tissue Eng Regen Med 2009; 3: 338-347. – reference: Gohari S, Gambla C, Healey M, Spaulding G, Gordon KB, Swan J, et al. Evaluation of tissue-engineered skin (human skin substitute) and secondary intention healing in the treatment of full thickness wounds after Mohs micrographic or excisional surgery. Dermatol Surg 2002; 28: 1107-1114. – reference: Anderson DJ, Gage FH, Weissman IL. Can stem cells cross lineage boundaries? Nat Med 2001; 7: 393-395. – reference: Puissant B, Barreau C, Bourin P, Clavel C, Corre J, Bousquet C, et al. Immunomodulatory effect of human adipose tissue-derived adult stem cells: comparison with bone marrow mesenchymal stem cells. Br J Haematol 2005; 129: 118-129. – reference: Matoba S, Tatsumi T, Murohara T, Imaizumi T, Katsuda Y, Ito M, et al. Long-term clinical outcome after intramuscular implantation of bone marrow mononuclear cells (Therapeutic Angiogenesis by Cell Transplantation [TACT] trial) in patients with chronic limb ischemia. Am Heart J 2008; 156: 1010-1018. – reference: Beckrich K, Aronovitch SA. Hospital-acquired pressure ulcers: a comparison of costs in medical versus surgical patients. Nurs Econ 1999; 17: 263-271. – reference: Musina R, Bekchanova E, Sukhikh G. Comparison of mesenchymal stem cells obtained from different human tissues. Bull Exp Biol Med 2005; 139: 504-509. – reference: Koenen P, Spanholtz TA, Maegele M, Stürmer E, Brockamp T, Neugebauer E, et al. Acute and chronic wound fluids inversely influence adipose-derived stem cell function: molecular insights into impaired wound healing. Int Wound J 2013 Mar 13 [Epub ahead of print]. – reference: Singer AJ, Dagum AB. Current management of acute cutaneous wounds. N Engl J Med 2008; 359: 1037-1046. – reference: Kim WS, Park BS, Sung JH. The wound-healing and antioxidant effects of adipose-derived stem cells. Expert Opin Biol Ther 2009; 9: 879-887. – reference: Vileikyte L. Diabetic foot ulcers: a quality of life issue. Diabetes Metab Res Rev 2001; 17: 246-249. – reference: Lattari V, Jones LM, Varcelotti JR, Latenser BA, Sherman HF, Barrette RR. The use of a permanent dermal allograft in full-thickness burns of the hand and foot: a report of three cases. J Burn Care Rehabil 1997; 18: 147-155. – reference: Moustakas A, Heldin CH. Signaling networks guiding epithelial-mesenchymal transitions during embryogenesis and cancer progression. Cancer Sci 2007; 98: 1512-1520. – reference: Smith AG. Embryo-derived stem cells: of mice and men. Annu Rev Cell Dev Biol 2001; 17: 435-462. – reference: Gimble JM, Bunnell BA, Chiu ES, Guilak F. Concise review: adipose-derived stromal vascular fraction cells and stem cells: let's not get lost in translation. Stem Cells 2011; 29: 749-754. – reference: Gimble J, Guilak F. Adipose-derived adult stem cells: isolation, characterization, and differentiation potential. Cytotherapy 2003; 5: 362-369. – reference: Schreml S, Szeimies R-M, Prantl L, Landthaler M, Babilas P. Wound healing in the 21st century. J Am Acad Dermatol 2010; 63: 866-881. – reference: Hass R, Kasper C, Bohm S, Jacobs R. Different populations and sources of human mesenchymal stem cells (MSC): a comparison of adult and neonatal tissue-derived MSC. Cell Commun Signal 2011; 9: 12. – reference: Huang SP, Hsu CC, Chang SC, Wang CH, Deng SC, Dai NT, et al. Adipose-derived stem cells seeded on acellular dermal matrix grafts enhance wound healing in a murine model of a full-thickness defect. Ann Plast Surg 2012; 69: 656-662. – reference: Altman AM, Yan Y, Matthias N, Bai X, Rios C, Mathur AB, et al. IFATS collection: human adipose-derived stem cells seeded on a silk fibroin-chitosan scaffold enhance wound repair in a murine soft tissue injury model. Stem Cells 2009; 27: 250-258. – reference: Compton CC, Hickerson W, Nadire K, Press W. Acceleration of skin regeneration from cultured epithelial autografts by transplantation to homograft dermis. J Burn Care Rehabil 1993; 14: 653-662. – reference: Körbling M, Estrov Z. Adult stem cells for tissue repair-a new therapeutic concept? N Engl J Med 2003; 349: 570-582. – reference: Butler KL, Goverman J, Ma H, Fischman A, Yu Y-M, Bilodeau M, et al. Stem cells and burns: review and therapeutic implications. J Burn Care Res 2010; 31: 874-881. – reference: Amos PJ, Bailey AM, Shang H, Katz AJ, Lawrence MB, Peirce SM. Functional binding of human adipose-derived stromal cells: effects of extraction method and hypoxia pretreatment. Ann Plast Surg 2008; 60: 437-444. – reference: Galiano RD, Tepper OM, Pelo CR, Bhatt KA, Callaghan M, Bastidas N, et al. Topical vascular endothelial growth factor accelerates diabetic wound healing through increased angiogenesis and by mobilizing and recruiting bone marrow-derived cells. Am J Pathol 2004; 164: 1935-1947. – reference: Kawai K, Suzuki S, Tabata Y, Ikada Y, Nishimura Y. Accelerated tissue regeneration through incorporation of basic fibroblast growth factor-impregnated gelatin microspheres into artificial dermis. Biomaterials 2000; 21: 489-499. – reference: Uysal AC, Mizuno H, Tobita M, Ogawa R, Hyakusoku H. The effect of adipose-derived stem cells on ischemia-reperfusion injury: immunohistochemical and ultrastructural evaluation. Plast Reconstr Surg 2009; 124: 804-815. – reference: Cross KJ, Mustoe TA. Growth factors in wound healing. Surg Clin North Am 2003; 83: 531. – reference: Yoshikawa T, Mitsuno H, Nonaka I, Sen Y, Kawanishi K, Inada Y, et al. Wound therapy by marrow mesenchymal cell transplantation. Plast Reconstr Surg 2008; 121: 860-877. – volume: 194 start-page: 413 year: 1981 end-page: 428 article-title: Successful use of a physiologically acceptable artificial skin in the treatment of extensive burn injury publication-title: Ann Surg – volume: 8 start-page: e55640 year: 2013 article-title: Topically delivered adipose derived stem cells show an activated‐fibroblast phenotype and enhance granulation tissue formation in skin wounds publication-title: PLoS ONE – volume: 13 start-page: 1185 year: 2007 end-page: 1195 article-title: Expanded adipose‐derived stem cells suppress mixed lymphocyte reaction by secretion of prostaglandin E2 publication-title: Tissue Eng – volume: 26 start-page: 507 year: 2009 end-page: 523 article-title: Extracellular matrix biomaterials for soft tissue repair publication-title: Clin Podiatr Med Surg – start-page: 812 year: 2006 – volume: 122 start-page: 1352 year: 2008 end-page: 1360 article-title: Proliferation‐promoting effect of platelet‐rich plasma on human adipose‐derived stem cells and human dermal fibroblasts publication-title: Plast Reconstr Surg – volume: 15 start-page: 505 year: 2007 end-page: 510 article-title: Enhanced healing of mitomycin C‐treated wounds in rats using inbred adipose tissue‐derived stromal cells within an atelocollagen matrix publication-title: Wound Repair Regen – volume: 107 start-page: 929 year: 2003 end-page: 934 article-title: Stem cell therapy in perspective publication-title: Circulation – volume: 34 start-page: 1323 year: 2008 end-page: 1326 article-title: Adipose‐derived stem cells and their secretory factors as a promising therapy for skin aging publication-title: Dermatol Surg – volume: 358 start-page: 948 year: 2007 end-page: 953 article-title: Hypoxia enhances proliferation and tissue formation of human mesenchymal stem cells publication-title: Biochem Biophys Res Commun – volume: 28 start-page: 1107 year: 2002 end-page: 1114 article-title: Evaluation of tissue‐engineered skin (human skin substitute) and secondary intention healing in the treatment of full thickness wounds after Mohs micrographic or excisional surgery publication-title: Dermatol Surg – volume: 25 start-page: 750 year: 2007 end-page: 760 article-title: Identification of common pathways mediating differentiation of bone marrow‐and adipose tissue‐derived human mesenchymal stem cells into three mesenchymal lineages publication-title: Stem Cells – volume: 18 start-page: 147 year: 1997 end-page: 155 article-title: The use of a permanent dermal allograft in full‐thickness burns of the hand and foot: a report of three cases publication-title: J Burn Care Rehabil – volume: 32 start-page: 48 year: 2008 end-page: 55 article-title: Cell‐assisted lipotransfer for cosmetic breast augmentation: supportive use of adipose‐derived stem/stromal cells publication-title: Aesthetic Plast Surg – volume: 63 start-page: 866 year: 2010 end-page: 881 article-title: Wound healing in the 21st century publication-title: J Am Acad Dermatol – volume: 4 start-page: 411 year: 1996 end-page: 420 article-title: Interactions of cytokines, growth factors, and proteases in acute and chronic wounds publication-title: Wound Repair Regen – volume: 117 start-page: 35s year: 2006 end-page: 41s article-title: Chronic wound pathogenesis and current treatment strategies: a unifying hypothesis publication-title: Plast Reconstr Surg – volume: 7 start-page: 393 year: 2001 end-page: 395 article-title: Can stem cells cross lineage boundaries? publication-title: Nat Med – volume: 83 start-page: 835 year: 2003 end-page: 870 article-title: Regulation of wound healing by growth factors and cytokines publication-title: Physiol Rev – volume: 349 start-page: 570 year: 2003 end-page: 582 article-title: Adult stem cells for tissue repair—a new therapeutic concept? publication-title: N Engl J Med – start-page: 269 year: 2011 end-page: 291 article-title: The potential of adipose stem cells in regenerative medicine publication-title: Stem Cell Rev Rep – volume: 9 start-page: 283 year: 2004 end-page: 289 article-title: Wound healing: an overview of acute, fibrotic and delayed healing publication-title: Front Biosci – volume: 5 start-page: 362 year: 2003 end-page: 369 article-title: Adipose‐derived adult stem cells: isolation, characterization, and differentiation potential publication-title: Cytotherapy – start-page: 304562 year: 2011 article-title: Enhanced healing of diabetic wounds by topical administration of adipose tissue‐derived stromal cells overexpressing stromal‐derived factor‐1: biodistribution and engraftment analysis by bioluminescent imaging publication-title: Stem Cells Int – volume: 3 start-page: 179 year: 2002 end-page: 195 article-title: Management of acute and chronic open wounds: the importance of moist environment in optimal wound healing publication-title: Curr Pharm Biotechnol – volume: 19 start-page: 1413 year: 2010 end-page: 1424 article-title: Cell therapy, a new standard in management of chronic critical limb ischemia and foot ulcer publication-title: Cell Transplant – volume: 87 start-page: 3 year: 2009 end-page: 16 article-title: Emerging hurdles in stem cell therapy for peripheral vascular disease publication-title: J Mol Med (Berl) – volume: 15 start-page: 730 year: 2008 end-page: 738 article-title: Inflammation and tumor microenvironments: defining the migratory itinerary of mesenchymal stem cells publication-title: Gene Ther – volume: 449 start-page: 557 year: 2007 end-page: 563 article-title: Mesenchymal stem cells within tumour stroma promote breast cancer metastasis publication-title: Nature – volume: 4 start-page: 11 year: 2004 end-page: 13 article-title: Advanced treatments for non‐healing chronic wounds publication-title: EWMA J – volume: 23 start-page: 150 year: 2011 end-page: 155 article-title: Effects of human adipose‐derived stem cells on cutaneous wound healing in nude mice publication-title: Ann Dermatol – volume: 83 start-page: 531 year: 2003 article-title: Growth factors in wound healing publication-title: Surg Clin North Am – volume: 189 start-page: 54 year: 2001 end-page: 63 article-title: Surface protein characterization of human adipose tissue‐derived stromal cells publication-title: J Cell Physiol – volume: 28 start-page: 321 year: 2004 end-page: 326 article-title: Aging and wound healing publication-title: World J Surg – volume: 23 start-page: 412 year: 2005 end-page: 423 article-title: Cell surface and transcriptional characterization of human adipose‐derived adherent stromal (hADAS) cells publication-title: Stem Cells – volume: 24 start-page: 150 year: 2006 end-page: 154 article-title: Fat tissue: an underappreciated source of stem cells for biotechnology publication-title: Trends Biotechnol – volume: 17 start-page: 246 year: 2001 end-page: 249 article-title: Diabetic foot ulcers: a quality of life issue publication-title: Diabetes Metab Res Rev – volume: 17 start-page: 263 year: 1999 end-page: 271 article-title: Hospital‐acquired pressure ulcers: a comparison of costs in medical surgical patients publication-title: Nurs Econ – volume: 48 start-page: 15 year: 2007 end-page: 24 article-title: Wound healing effect of adipose‐derived stem cells: a critical role of secretory factors on human dermal fibroblasts publication-title: J Dermatol Sci – volume: 61 start-page: 690 year: 2007 end-page: 694 article-title: Wound therapy with autologous bone marrow stem cells in diabetic patients with ischaemia‐induced tissue ulcers affecting the lower limbs publication-title: Int J Clin Pract – volume: 7 start-page: 1 year: 2009 end-page: 9 article-title: Non‐expanded adipose stromal vascular fraction cell therapy for multiple sclerosis publication-title: J Transl Med – volume: 7 start-page: 211 year: 2001 end-page: 228 article-title: Multilineage cells from human adipose tissue: implications for cell‐based therapies publication-title: Tissue Eng – volume: 3 start-page: 25 year: 2011 article-title: Adipose‐derived stromal cells: their identity and uses in clinical trials, an update publication-title: World J Stem Cells – volume: 284 start-page: 143 year: 1999 end-page: 147 article-title: Multilineage potential of adult human mesenchymal stem cells publication-title: Science – volume: 4 start-page: 195 year: 2008 end-page: 200 article-title: Characterization of a new degradable polymer scaffold for regeneration of the dermis: in vitro and in vivo human studies publication-title: Organogenesis – volume: 26 start-page: 2713 year: 2008 end-page: 2723 article-title: IFATS collection: using human adipose‐derived stem/stromal cells for the production of new skin substitutes publication-title: Stem Cells – volume: 69 start-page: 656 year: 2012 end-page: 662 article-title: Adipose‐derived stem cells seeded on acellular dermal matrix grafts enhance wound healing in a murine model of a full‐thickness defect publication-title: Ann Plast Surg – volume: 124 start-page: 804 year: 2009 end-page: 815 article-title: The effect of adipose‐derived stem cells on ischemia‐reperfusion injury: immunohistochemical and ultrastructural evaluation publication-title: Plast Reconstr Surg – volume: 126 start-page: 663 year: 2006 end-page: 676 article-title: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors publication-title: Cell – volume: 2 start-page: 211 year: 2002 end-page: 218 article-title: Becaplermin: recombinant platelet derived growth factor, a new treatment for healing diabetic foot ulcers publication-title: Expert Opin Biol Ther – volume: 295 start-page: 1009 year: 2002 article-title: Tissue engineering—current challenges and expanding opportunities publication-title: Science – volume: 121 start-page: 860 year: 2008 end-page: 877 article-title: Wound therapy by marrow mesenchymal cell transplantation publication-title: Plast Reconstr Surg – volume: 65 start-page: 3035 year: 2005 end-page: 3039 article-title: Spontaneous human adult stem cell transformation publication-title: Cancer Res – volume: 66 start-page: 98 year: 2012 end-page: 107 article-title: Genetic modification of human adipose‐derived stem cells for promoting wound healing publication-title: J Dermatol Sci – volume: 124 start-page: 1087 year: 2009 end-page: 1097 article-title: Characterization of structure and cellular components of aspirated and excised adipose tissue publication-title: Plast Reconstr Surg – volume: 24 start-page: 1294 year: 2006 end-page: 1301 article-title: Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue publication-title: Stem Cells – volume: 27 start-page: 250 year: 2009 end-page: 258 article-title: IFATS collection: human adipose‐derived stem cells seeded on a silk fibroin‐chitosan scaffold enhance wound repair in a murine soft tissue injury model publication-title: Stem Cells – volume: 27 start-page: 230 year: 2009 end-page: 237 article-title: IFATS collection: human adipose tissue‐derived stem cells induce angiogenesis and nerve sprouting following myocardial infarction, in conjunction with potent preservation of cardiac function publication-title: Stem Cells – volume: 97 start-page: 34 year: 1991 article-title: Transforming growth factor‐beta stimulates wound healing and modulates extracellular matrix gene expression in pig skin: incisional wound model publication-title: J Invest Dermatol – volume: 16 start-page: 1595 year: 2010 end-page: 1606 article-title: Human adipose‐derived stromal cells accelerate diabetic wound healing: impact of cell formulation and delivery publication-title: Tissue Eng Part A – volume: 4 start-page: 573 year: 2003 end-page: 581 article-title: The social and economic burden of venous leg ulcers—focus on the role of micronized purified flavonoid fraction adjuvant therapy publication-title: Am J Clin Dermatol – volume: 24 start-page: 27 year: 2009 end-page: 30 article-title: Treatment of enterocutaneous fistula in Crohn's disease with adipose‐derived stem cells: a comparison of protocols with and without cell expansion publication-title: Int J Colorectal Dis – volume: 104 start-page: 1095 year: 2009 end-page: 1102 article-title: Human CD133+ progenitor cells promote the healing of diabetic ischemic ulcers by paracrine stimulation of angiogenesis and activation of Wnt signaling publication-title: Circ Res – volume: 92 start-page: 26 year: 2011 end-page: 36 article-title: Comparison of bone marrow mesenchymal stem cells with bone marrow‐derived mononuclear cells for treatment of diabetic critical limb ischemia and foot ulcer: a double‐blind, randomized, controlled trial publication-title: Diabetes Res Clin Pract – volume: 60 start-page: 437 year: 2008 end-page: 444 article-title: Functional binding of human adipose‐derived stromal cells: effects of extraction method and hypoxia pretreatment publication-title: Ann Plast Surg – volume: 27 start-page: 2624 year: 2009 end-page: 2635 article-title: Adipose‐derived mesenchymal stem cells ameliorate chronic experimental autoimmune encephalomyelitis publication-title: Stem Cells – volume: 27 start-page: 266 year: 2009 end-page: 274 article-title: IFATS collection: adipose stromal cells adopt a proangiogenic phenotype under the influence of hypoxia publication-title: Stem Cells – volume: 134 start-page: 877 year: 2008 end-page: 886 article-title: Disease‐specific induced pluripotent stem cells publication-title: Cell – volume: 36 start-page: 305 year: 2010 end-page: 321 article-title: Biological background of dermal substitutes publication-title: Burns – start-page: 47 year: 1993 end-page: 54 – volume: 46 start-page: 1575 year: 2008 article-title: Promotive effect of adipose‐derived stem cells on the wound model of human epidermal keratinocytes in vitro publication-title: Wai Ke Za Zhi – volume: 121 start-page: 401 year: 2008 end-page: 410 article-title: Preserved proliferative capacity and multipotency of human adipose‐derived stem cells after long‐term cryopreservation publication-title: Plast Reconstr Surg – volume: 445 start-page: 874 year: 2007 end-page: 880 article-title: Progress and opportunities for tissue‐engineered skin publication-title: Nature – volume: 9 start-page: 12 year: 2011 article-title: Different populations and sources of human mesenchymal stem cells (MSC): a comparison of adult and neonatal tissue‐derived MSC publication-title: Cell Commun Signal – volume: 6 start-page: 567 year: 2006 end-page: 578 article-title: Adipose‐derived stem cells for the regeneration of damaged tissues publication-title: Expert Opinion on Biological Therapy – volume: 32 start-page: 370 year: 2004 end-page: 373 article-title: Autologous stem cells (adipose) and fibrin glue used to treat widespread traumatic calvarial defects: case report publication-title: J Craniomaxillofac Surg – volume: 9 start-page: 1499 year: 2009 end-page: 1508 article-title: Responses of adipose‐derived stem cells during hypoxia: enhanced skin‐regenerative potential publication-title: Expert Opin Biol Ther – volume: 5 start-page: 393 year: 2008 end-page: 404 article-title: Mechanisms of disease: the role of stem cells in the biology and treatment of gliomas publication-title: Nat Clin Pract Oncol – volume: 26 start-page: 1856 year: 2003 end-page: 1861 article-title: Human epidermal growth factor enhances healing of diabetic foot ulcers publication-title: Diabetes Care – year: 1995 – volume: 62 start-page: 317 year: 2009 end-page: 321 article-title: Accelerated wound healing in healing‐impaired db/db mice by autologous adipose tissue‐derived stromal cells combined with atelocollagen matrix publication-title: Ann Plast Surg – volume: 17 start-page: 758 year: 2009 end-page: 766 article-title: Cell‐based therapy for heart disease: a clinically oriented perspective publication-title: Mol Ther – volume: 139 start-page: 504 year: 2005 end-page: 509 article-title: Comparison of mesenchymal stem cells obtained from different human tissues publication-title: Bull Exp Biol Med – volume: 17 start-page: 124 year: 1996 end-page: 136 article-title: Clinical evaluation of an acellular allograft dermal matrix in full‐thickness burns publication-title: J Burn Care Rehabil – volume: 28 start-page: 2745 year: 2009 end-page: 2755 article-title: Interleukin 6 secreted from adipose stromal cells promotes migration and invasion of breast cancer cells publication-title: Oncogene – volume: 262 start-page: 509 year: 2007 end-page: 525 article-title: Immunomodulation by mesenchymal stem cells and clinical experience publication-title: J Intern Med – volume: 4 start-page: 265 year: 2009 end-page: 273 article-title: Adipose‐derived stem/progenitor cells: roles in adipose tissue remodeling and potential use for soft tissue augmentation publication-title: Regen Med – volume: 359 start-page: 1037 year: 2008 end-page: 1046 article-title: Current management of acute cutaneous wounds publication-title: N Engl J Med – volume: 208 start-page: 64 year: 2006 end-page: 76 article-title: Characterization of freshly isolated and cultured cells derived from the fatty and fluid portions of liposuction aspirates publication-title: J Cell Physiol – volume: 60 start-page: 538 year: 2008 end-page: 544 article-title: Regional anatomic and age effects on cell function of human adipose‐derived stem cells publication-title: Ann Plast Surg – volume: 53 start-page: 96 year: 2009 end-page: 102 article-title: Antiwrinkle effect of adipose‐derived stem cell: activation of dermal fibroblast by secretory factors publication-title: J Dermatol Sci – volume: 30 start-page: 78 year: 2010 end-page: 81 article-title: Cell‐assisted lipotransfer publication-title: Aesthet Surg J – volume: 89 start-page: 219 year: 2010 end-page: 229 article-title: Factors affecting wound healing publication-title: J Dent Res – volume: 27 start-page: 611 year: 2001 end-page: 621 article-title: Current approaches to venous ulcers and compression publication-title: Dermatol Surg – volume: 1 start-page: 19 year: 2010 article-title: Clinical and preclinical translation of cell‐based therapies using adipose tissue‐derived cells publication-title: Stem Cell Res Ther – volume: 38 start-page: 808 year: 1999 end-page: 817 article-title: Current therapies for wound healing: electrical stimulation, biological therapeutics, and the potential for gene therapy publication-title: Int J Dermatol – volume: 22 start-page: 1276 year: 2008 end-page: 1312 article-title: Role of platelet‐derived growth factors in physiology and medicine publication-title: Genes Dev – volume: 26 start-page: 1903 year: 2005 end-page: 1909 article-title: Therapeutical potential of blood‐derived progenitor cells in patients with peripheral arterial occlusive disease and critical limb ischaemia publication-title: Eur Heart J – volume: 31 start-page: 874 year: 2010 end-page: 881 article-title: Stem cells and burns: review and therapeutic implications publication-title: J Burn Care Res – volume: 29 start-page: 503 year: 2009 end-page: 510 article-title: Cell therapy based on adipose tissue‐derived stromal cells promotes physiological and pathological wound healing publication-title: Arterioscler Thromb Vasc Biol – volume: 98 start-page: 1512 year: 2007 end-page: 1520 article-title: Signaling networks guiding epithelial–mesenchymal transitions during embryogenesis and cancer progression publication-title: Cancer Sci – volume: 414 start-page: 118 year: 2001 end-page: 121 article-title: Stem cells in tissue engineering publication-title: Nature – volume: 48 start-page: 418 year: 2003 end-page: 429 article-title: Cartilage‐like gene expression in differentiated human stem cell spheroids: a comparison of bone marrow‐derived and adipose tissue‐derived stromal cells publication-title: Arthritis Rheum – volume: 103 start-page: 1204 year: 2008 end-page: 1219 article-title: Paracrine mechanisms in adult stem cell signaling and therapy publication-title: Circ Res – volume: 33 start-page: 165 year: 1998 end-page: 182 article-title: Transplantation of cells in matrices for tissue regeneration publication-title: Adv Drug Del Rev – volume: 38 start-page: 201 year: 2009 end-page: 209 article-title: Novel maxillary reconstruction with ectopic bone formation by GMP adipose stem cells publication-title: Int J Oral Maxillofac Surg – volume: 92 start-page: 34 year: 2002 end-page: 37 article-title: Cellular senescence and matrix metalloproteinase activity in chronic wounds: relevance to debridement and new technologies publication-title: J Am Podiatr Med Assoc – volume: 51 start-page: 5 year: 2009 end-page: 11 article-title: [Characteristics of human lipoaspirate‐isolated mesenchymal stromal cells cultivated under a lower oxygen tension] publication-title: Tsitologiia – volume: 109 start-page: 1292 year: 2004 end-page: 1298 article-title: Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells publication-title: Circulation – volume: 123 start-page: 56S issue: 2 Suppl. year: 2009 end-page: 64S article-title: Adipose stromal cells and platelet‐rich plasma therapies synergistically increase revascularization during wound healing publication-title: Plast Reconstr Surg – volume: 129 start-page: 118 year: 2005 end-page: 129 article-title: Immunomodulatory effect of human adipose tissue‐derived adult stem cells: comparison with bone marrow mesenchymal stem cells publication-title: Br J Haematol – volume: 302 start-page: 419 year: 2010 end-page: 428 article-title: Protease and pro‐inflammatory cytokine concentrations are elevated in chronic compared to acute wounds and can be modulated by collagen type I in vitro publication-title: Arch Dermatol Res – volume: 14 start-page: 653 year: 1993 end-page: 662 article-title: Acceleration of skin regeneration from cultured epithelial autografts by transplantation to homograft dermis publication-title: J Burn Care Rehabil – volume: 31 start-page: 489 year: 2010 end-page: 501 article-title: Both cultured and freshly isolated adipose tissue‐derived stem cells enhance cardiac function after acute myocardial infarction publication-title: Eur Heart J – volume: 7 start-page: 442 year: 1999 end-page: 452 article-title: Analysis of the acute and chronic wound environments: the role of proteases and their inhibitors publication-title: Wound Repair Regen – volume: 25 start-page: 2648 year: 2007 end-page: 2659 article-title: Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis publication-title: Stem Cells – volume: 9 start-page: 879 year: 2009 end-page: 887 article-title: The wound‐healing and antioxidant effects of adipose‐derived stem cells publication-title: Expert Opin Biol Ther – volume: 30 start-page: 145 year: 2004 end-page: 151 article-title: Platelet gel for healing cutaneous chronic wounds publication-title: Transfus Apher Sci – volume: 136 start-page: 1235 year: 1990 article-title: PDGF and FGF stimulate wound healing in the genetically diabetic mouse publication-title: Am J Pathol – volume: 366 start-page: 1736 year: 2005 end-page: 1743 article-title: Wound healing and its impairment in the diabetic foot publication-title: Lancet – volume: 360 start-page: 427 year: 2002 end-page: 435 article-title: Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone‐marrow cells: a pilot study and a randomised controlled trial publication-title: Lancet – start-page: 457 year: 2002 article-title: Embryonic stem cells in tissue engineering publication-title: Methods Tissue Eng – volume: 115 start-page: 1549 year: 2010 end-page: 1553 article-title: Clinical‐grade production of human mesenchymal stromal cells: occurrence of aneuploidy without transformation publication-title: Blood – volume: 121 start-page: 50 year: 2008 end-page: 58 article-title: Improved viability of random pattern skin flaps through the use of adipose‐derived stem cells publication-title: Plast Reconstr Surg – volume: 95 start-page: 9 year: 2004 end-page: 20 article-title: Mesenchymal stem cells and their potential as cardiac therapeutics publication-title: Circ Res – volume: 25 start-page: 19 year: 2007 end-page: 25 article-title: Impaired wound healing publication-title: Clin Dermatol – volume: 52 start-page: 2521 year: 2005 end-page: 2529 article-title: Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source publication-title: Arthritis Rheum – volume: 28 start-page: 545 year: 1994 end-page: 552 article-title: Biocompatibility of a biodegradable matrix used as a skin substitute: an in vivo evaluation publication-title: J Biomed Mat Res – volume: 35 start-page: 2615 year: 2007 end-page: 2623 article-title: Longitudinal assessment of Integra in primary burn management: a randomized pediatric clinical trial publication-title: Crit Care Med – volume: 156 start-page: 1010 year: 2008 end-page: 1018 article-title: Long‐term clinical outcome after intramuscular implantation of bone marrow mononuclear cells (Therapeutic Angiogenesis by Cell Transplantation [TACT] trial) in patients with chronic limb ischemia publication-title: Am Heart J – volume: 15 start-page: 2039 year: 2009 end-page: 2050 article-title: Adipose stromal cells stimulate angiogenesis via promoting progenitor cell differentiation, secretion of angiogenic factors, and enhancing vessel maturation publication-title: Tissue Eng Part A – volume: 17 start-page: 435 year: 2001 end-page: 462 article-title: Embryo‐derived stem cells: of mice and men publication-title: Annu Rev Cell Dev Biol – volume: 108 start-page: 20976 year: 2011 end-page: 20981 article-title: Dextran hydrogel scaffolds enhance angiogenic responses and promote complete skin regeneration during burn wound healing publication-title: Proc Natl Acad Sci – volume: 6 start-page: 25 year: 1988 end-page: 30 article-title: Growth factors speed wound healing publication-title: Nat Biotechnol – year: 2013 article-title: Local delivery of allogeneic bone marrow and adipose tissue‐derived mesenchymal stromal cells for cutaneous wound healing in a porcine model publication-title: J Tissue Eng Regen Med – volume: 2 start-page: 165 year: 1994 end-page: 170 article-title: Definitions and guidelines for assessment of wounds and evaluation of healing publication-title: Wound Repair Regen – year: 2013 article-title: Acute and chronic wound fluids inversely influence adipose‐derived stem cell function: molecular insights into impaired wound healing publication-title: Int Wound J – volume: 1176 start-page: 101 year: 2009 end-page: 117 article-title: Mesenchymal stromal cells publication-title: Ann N Y Acad Sci – volume: 20 start-page: 205 year: 2011 end-page: 216 article-title: Locally administered adipose‐derived stem cells accelerate wound healing through differentiation and vasculogenesis publication-title: Cell Transplant – volume: 3 start-page: 338 year: 2009 end-page: 347 article-title: In vitro interaction between mouse breast cancer cells and mouse mesenchymal stem cells during adipocyte differentiation publication-title: J Tissue Eng Regen Med – volume: 164 start-page: 1935 year: 2004 end-page: 1947 article-title: Topical vascular endothelial growth factor accelerates diabetic wound healing through increased angiogenesis and by mobilizing and recruiting bone marrow‐derived cells publication-title: Am J Pathol – volume: 19 start-page: 180 year: 2001 end-page: 192 article-title: Bone marrow stromal stem cells: nature, biology, and potential applications publication-title: Stem Cells – volume: 36 start-page: 568 year: 2004 end-page: 584 article-title: Mesenchymal stem cells: clinical applications and biological characterization publication-title: Int J Biochem Cell Biol – volume: 21 start-page: 489 year: 2000 end-page: 499 article-title: Accelerated tissue regeneration through incorporation of basic fibroblast growth factor‐impregnated gelatin microspheres into artificial dermis publication-title: Biomaterials – volume: 17 start-page: 540 year: 2009 end-page: 547 article-title: Hypoxia‐enhanced wound‐healing function of adipose‐derived stem cells: increase in stem cell proliferation and up‐regulation of VEGF and bFGF publication-title: Wound Repair Regen – volume: 82 start-page: 252 year: 2007 end-page: 264 article-title: Stem cells: a revolution in therapeutics—recent advances in stem cell biology and their therapeutic applications in regenerative medicine and cancer therapies publication-title: Clin Pharmacol Therap – volume: 29 start-page: 749 year: 2011 end-page: 754 article-title: Concise review: adipose‐derived stromal vascular fraction cells and stem cells: let's not get lost in translation publication-title: Stem Cells – volume: 183 start-page: 445 year: 2002 end-page: 456 article-title: Principles and practices for treatment of cutaneous wounds with cultured skin substitutes publication-title: Am J Surg – volume: 72 start-page: 679 year: 2009 end-page: 682 article-title: Local delivery of adipose‐derived stem cells via acellular dermal matrix as a scaffold: a new promising strategy to accelerate wound healing publication-title: Med Hypotheses – volume: 27 start-page: 134 issue: Suppl. 2 year: 2006 end-page: 137 article-title: Autologous bio‐graft and mesenchymal stem cells in treatment of the diabetic foot publication-title: Neuro Endocrinol Lett – ident: e_1_2_15_121_1 doi: 10.1111/j.1524-475X.2009.00499.x – ident: e_1_2_15_70_1 doi: 10.1016/j.jdermsci.2007.05.018 – ident: e_1_2_15_53_1 doi: 10.1002/jbm.820280504 – ident: e_1_2_15_73_1 doi: 10.1371/journal.pone.0055640 – ident: e_1_2_15_68_1 doi: 10.1097/SAP.0b013e3181723bbe – ident: e_1_2_15_117_1 doi: 10.1016/j.jdermsci.2012.02.010 – ident: e_1_2_15_25_1 doi: 10.1016/j.cell.2006.07.024 – ident: e_1_2_15_145_1 doi: 10.1111/j.1349-7006.2007.00550.x – ident: e_1_2_15_109_1 doi: 10.1097/01.prs.0000293876.10700.b8 – volume: 4 start-page: 11 year: 2004 ident: e_1_2_15_13_1 article-title: Advanced treatments for non‐healing chronic wounds publication-title: EWMA J – ident: e_1_2_15_45_1 doi: 10.1097/00004630-199311000-00010 – ident: e_1_2_15_72_1 doi: 10.1016/j.mehy.2008.10.033 – ident: e_1_2_15_54_1 doi: 10.1097/01.CCM.0000285991.36698.E2 – ident: e_1_2_15_144_1 doi: 10.1002/stem.194 – ident: e_1_2_15_104_1 doi: 10.1097/SAP.0b013e31817f01b6 – ident: e_1_2_15_110_1 doi: 10.1089/ten.tea.2009.0616 – ident: e_1_2_15_88_1 doi: 10.1186/1479-5876-7-29 – ident: e_1_2_15_140_1 doi: 10.1016/S0140-6736(02)09670-8 – ident: e_1_2_15_100_1 doi: 10.1016/S0002-9440(10)63754-6 – ident: e_1_2_15_33_1 doi: 10.1634/stemcells.2006-0394 – ident: e_1_2_15_66_1 doi: 10.1097/PRS.0b013e3181882046 – ident: e_1_2_15_108_1 doi: 10.1111/j.1524-475X.2007.00258.x – ident: e_1_2_15_84_1 doi: 10.1002/jcp.20636 – ident: e_1_2_15_43_1 doi: 10.4161/org.4.3.6499 – ident: e_1_2_15_40_1 doi: 10.1007/1-4020-4448-8 – ident: e_1_2_15_148_1 doi: 10.1038/gt.2008.39 – ident: e_1_2_15_48_1 doi: 10.1016/S0142-9612(99)00207-0 – ident: e_1_2_15_5_1 doi: 10.1002/dmrr.216 – ident: e_1_2_15_127_1 doi: 10.1634/stemcells.2008-0276 – ident: e_1_2_15_93_1 doi: 10.1080/14653240310003026 – volume: 51 start-page: 5 year: 2009 ident: e_1_2_15_124_1 article-title: [Characteristics of human lipoaspirate‐isolated mesenchymal stromal cells cultivated under a lower oxygen tension] publication-title: Tsitologiia – ident: e_1_2_15_82_1 doi: 10.1111/j.1749-6632.2009.04607.x – ident: e_1_2_15_120_1 doi: 10.1634/stemcells.2007-0226 – start-page: 457 year: 2002 ident: e_1_2_15_23_1 article-title: Embryonic stem cells in tissue engineering publication-title: Methods Tissue Eng – ident: e_1_2_15_31_1 doi: 10.1634/stemcells.2004-0021 – ident: e_1_2_15_4_1 doi: 10.1046/j.1524-475X.1994.20305.x – ident: e_1_2_15_134_1 doi: 10.1046/j.1524-475X.1996.40404.x – ident: e_1_2_15_28_1 doi: 10.1007/s10517-005-0331-1 – ident: e_1_2_15_94_1 doi: 10.1634/stemcells.2005-0342 – ident: e_1_2_15_139_1 doi: 10.1038/mt.2009.40 – ident: e_1_2_15_112_1 doi: 10.1097/PRS.0b013e3181b17bb4 – ident: e_1_2_15_26_1 doi: 10.1016/j.cell.2008.07.041 – ident: e_1_2_15_59_1 doi: 10.1111/j.1742-1241.2007.01303.x – ident: e_1_2_15_75_1 doi: 10.1111/j.1365-2141.2005.05409.x – ident: e_1_2_15_81_1 doi: 10.2217/17460751.4.2.265 – ident: e_1_2_15_96_1 doi: 10.1111/j.1524-4725.2008.34283.x – volume: 97 start-page: 34 year: 1991 ident: e_1_2_15_102_1 article-title: Transforming growth factor‐beta stimulates wound healing and modulates extracellular matrix gene expression in pig skin: incisional wound model publication-title: J Invest Dermatol – ident: e_1_2_15_38_1 doi: 10.7547/87507315-92-1-34 – ident: e_1_2_15_99_1 doi: 10.1016/S0039-6109(02)00202-5 – ident: e_1_2_15_32_1 doi: 10.1002/art.10767 – ident: e_1_2_15_71_1 doi: 10.1016/j.burns.2009.07.012 – ident: e_1_2_15_64_1 doi: 10.1097/01.prs.0000298322.70032.bc – ident: e_1_2_15_50_1 doi: 10.1046/j.1524-4725.2002.02130.x – ident: e_1_2_15_27_1 doi: 10.1002/jcp.1138 – volume: 17 start-page: 263 year: 1999 ident: e_1_2_15_11_1 article-title: Hospital‐acquired pressure ulcers: a comparison of costs in medical versus surgical patients publication-title: Nurs Econ – ident: e_1_2_15_116_1 doi: 10.1097/SAP.0b013e318273f909 – ident: e_1_2_15_80_1 doi: 10.1186/1478-811X-9-12 – ident: e_1_2_15_122_1 doi: 10.1634/stemcells.2008-0031 – ident: e_1_2_15_44_1 doi: 10.1038/nature05664 – ident: e_1_2_15_146_1 doi: 10.1038/nature06188 – ident: e_1_2_15_56_1 doi: 10.1093/eurheartj/ehi285 – ident: e_1_2_15_21_1 doi: 10.1038/35102181 – ident: e_1_2_15_138_1 doi: 10.1016/j.jcms.2004.06.002 – ident: e_1_2_15_92_1 doi: 10.1002/stem.629 – ident: e_1_2_15_76_1 doi: 10.1161/CIRCRESAHA.108.176826 – ident: e_1_2_15_97_1 doi: 10.1038/nbt0188-25 – ident: e_1_2_15_14_1 doi: 10.1038/sj.clpt.6100301 – ident: e_1_2_15_90_1 doi: 10.1007/s00384-008-0559-0 – ident: e_1_2_15_65_1 doi: 10.1517/14712590903307362 – ident: e_1_2_15_49_1 doi: 10.1016/j.cpm.2009.08.001 – ident: e_1_2_15_149_1 doi: 10.1101/gad.1653708 – ident: e_1_2_15_57_1 doi: 10.3727/096368910X514170 – ident: e_1_2_15_60_1 doi: 10.1002/term.1700 – ident: e_1_2_15_74_1 doi: 10.1089/ten.2006.0315 – ident: e_1_2_15_6_1 doi: 10.1016/j.transci.2004.01.004 – ident: e_1_2_15_105_1 doi: 10.1634/stemcells.2008-0178 – ident: e_1_2_15_143_1 doi: 10.1111/j.1365-2796.2007.01844.x – ident: e_1_2_15_18_1 doi: 10.1517/14712598.6.6.567 – ident: e_1_2_15_126_1 doi: 10.1097/SAP.0b013e318095a771 – volume: 136 start-page: 1235 year: 1990 ident: e_1_2_15_103_1 article-title: PDGF and FGF stimulate wound healing in the genetically diabetic mouse publication-title: Am J Pathol – ident: e_1_2_15_87_1 doi: 10.1007/s00266-007-9019-4 – ident: e_1_2_15_151_1 doi: 10.1002/term.158 – ident: e_1_2_15_67_1 doi: 10.1089/107632701300062859 – ident: e_1_2_15_58_1 doi: 10.1161/CIRCRESAHA.108.192138 – ident: e_1_2_15_118_1 doi: 10.1517/14712598.2.2.211 – ident: e_1_2_15_78_1 doi: 10.1634/stemcells.2008-0273 – ident: e_1_2_15_85_1 doi: 10.1097/PRS.0b013e3181b5a3f1 – ident: e_1_2_15_83_1 doi: 10.1007/s12015-010-9193-7 – ident: e_1_2_15_17_1 doi: 10.1126/science.1069210 – ident: e_1_2_15_133_1 doi: 10.1046/j.1524-475X.1999.00442.x – ident: e_1_2_15_15_1 doi: 10.1056/NEJMra022361 – ident: e_1_2_15_51_1 doi: 10.1097/00004630-199703000-00010 – ident: e_1_2_15_129_1 doi: 10.1158/0008-5472.CAN-04-4194 – ident: e_1_2_15_7_1 doi: 10.2165/00128071-200304080-00007 – ident: e_1_2_15_30_1 doi: 10.1002/jor.1100090504 – ident: e_1_2_15_20_1 doi: 10.1634/stemcells.19-3-180 – ident: e_1_2_15_131_1 doi: 10.1097/BCR.0b013e3181f9353a – ident: e_1_2_15_79_1 doi: 10.1161/01.CIR.0000121425.42966.F1 – ident: e_1_2_15_55_1 doi: 10.1016/j.diabres.2010.12.010 – ident: e_1_2_15_91_1 doi: 10.1186/scrt19 – ident: e_1_2_15_42_1 doi: 10.1016/S0169-409X(98)00025-8 – ident: e_1_2_15_47_1 doi: 10.1073/pnas.1115973108 – ident: e_1_2_15_136_1 doi: 10.1111/iwj.12039 – ident: e_1_2_15_22_1 doi: 10.1161/01.RES.0000135902.99383.6f – ident: e_1_2_15_16_1 doi: 10.1161/01.CIR.0000057525.13182.24 – ident: e_1_2_15_125_1 doi: 10.1016/j.bbrc.2007.05.054 – ident: e_1_2_15_135_1 doi: 10.1007/s00403-009-1011-1 – ident: e_1_2_15_106_1 doi: 10.1097/PRS.0b013e318191be2d – ident: e_1_2_15_141_1 doi: 10.1016/j.ahj.2008.06.025 – ident: e_1_2_15_142_1 doi: 10.1016/j.ijom.2009.01.001 – ident: e_1_2_15_111_1 doi: 10.1161/ATVBAHA.108.178962 – ident: e_1_2_15_119_1 doi: 10.2337/diacare.26.6.1856 – ident: e_1_2_15_41_1 doi: 10.1056/NEJMra0707253 – ident: e_1_2_15_86_1 doi: 10.4252/wjsc.v3.i4.25 – ident: e_1_2_15_52_1 doi: 10.1097/00004630-199603000-00006 – ident: e_1_2_15_39_1 doi: 10.2741/1184 – ident: e_1_2_15_36_1 doi: 10.1177/0022034509359125 – start-page: 47 volume-title: New Trends in Dermatologic Surgery year: 1993 ident: e_1_2_15_98_1 – ident: e_1_2_15_29_1 doi: 10.1002/art.21212 – ident: e_1_2_15_123_1 doi: 10.1517/14712590903039684 – ident: e_1_2_15_10_1 doi: 10.1046/j.1524-4725.2001.00195.x – ident: e_1_2_15_24_1 doi: 10.1146/annurev.cellbio.17.1.435 – ident: e_1_2_15_35_1 doi: 10.1007/s00268-003-7397-6 – ident: e_1_2_15_8_1 doi: 10.1046/j.1365-4362.1999.00832.x – ident: e_1_2_15_9_1 doi: 10.1097/01.prs.0000225431.63010.1b – ident: e_1_2_15_34_1 doi: 10.1016/j.tibtech.2006.01.010 – volume-title: Gray's anatomy international student edition year: 1995 ident: e_1_2_15_2_1 – ident: e_1_2_15_19_1 doi: 10.1016/j.biocel.2003.11.001 – ident: e_1_2_15_46_1 doi: 10.1097/00000658-198110000-00005 – ident: e_1_2_15_152_1 doi: 10.1177/1090820X10362730 – ident: e_1_2_15_115_1 doi: 10.5021/ad.2011.23.2.150 – ident: e_1_2_15_101_1 doi: 10.1152/physrev.2003.83.3.835 – ident: e_1_2_15_69_1 doi: 10.1038/86439 – ident: e_1_2_15_137_1 doi: 10.1182/blood-2009-05-219907 – start-page: 304562 year: 2011 ident: e_1_2_15_113_1 article-title: Enhanced healing of diabetic wounds by topical administration of adipose tissue‐derived stromal cells overexpressing stromal‐derived factor‐1: biodistribution and engraftment analysis by bioluminescent imaging publication-title: Stem Cells Int – ident: e_1_2_15_150_1 doi: 10.1038/onc.2009.130 – volume: 46 start-page: 1575 year: 2008 ident: e_1_2_15_95_1 article-title: Promotive effect of adipose‐derived stem cells on the wound model of human epidermal keratinocytes in vitro publication-title: Wai Ke Za Zhi – ident: e_1_2_15_107_1 doi: 10.1016/j.jdermsci.2008.08.007 – ident: e_1_2_15_130_1 doi: 10.1016/j.jaad.2009.10.048 – ident: e_1_2_15_3_1 doi: 10.2174/1389201023378283 – ident: e_1_2_15_132_1 doi: 10.1016/S0140-6736(05)67700-8 – ident: e_1_2_15_37_1 doi: 10.1016/j.clindermatol.2006.12.005 – ident: e_1_2_15_62_1 doi: 10.1097/01.prs.0000299922.96006.24 – volume: 27 start-page: 134 issue: 2 year: 2006 ident: e_1_2_15_63_1 article-title: Autologous bio‐graft and mesenchymal stem cells in treatment of the diabetic foot publication-title: Neuro Endocrinol Lett – ident: e_1_2_15_12_1 doi: 10.1016/S0002-9610(02)00813-9 – ident: e_1_2_15_114_1 doi: 10.3727/096368910X520065 – ident: e_1_2_15_61_1 doi: 10.1007/s00109-008-0394-3 – ident: e_1_2_15_77_1 doi: 10.1161/ATVBAHA.108.178962 – ident: e_1_2_15_128_1 doi: 10.1089/ten.tea.2008.0359 – ident: e_1_2_15_147_1 doi: 10.1038/ncponc1132 – ident: e_1_2_15_89_1 doi: 10.1093/eurheartj/ehp568 |
SSID | ssj0005598 |
Score | 2.535 |
SecondaryResourceType | review_article |
Snippet | Impaired wound healing remains a challenge to date and causes debilitating effects with tremendous suffering. Recent advances in tissue engineering approaches... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 313 |
SubjectTerms | Adipocytes - metabolism Adipose Tissue - pathology Chronic Disease Humans Pluripotent Stem Cells - immunology Pluripotent Stem Cells - transplantation Regeneration Skin - immunology Skin - pathology Stem Cell Transplantation Tissue Engineering Wound Healing - immunology Wounds and Injuries - immunology Wounds and Injuries - pathology Wounds and Injuries - therapy |
Title | Role of adipose-derived stem cells in wound healing |
URI | https://api.istex.fr/ark:/67375/WNG-LNC8SFWH-S/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fwrr.12173 https://www.ncbi.nlm.nih.gov/pubmed/24844331 https://www.proquest.com/docview/1527327082 https://www.proquest.com/docview/1780502433 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELZW7YULBQFlW6gMQhWXVFn_JuLUXVhWiO5h22p7QLLs2JaqVkm1P23FiUfgGXkSPM4msKgg1FsOE9kznvF8ccbfIPTGUxdAP5eJ8MLFo5tEUycSS4izqScm93DB-WgsRqfs0xk_66B3zV2Ymh-iPXCDyIj7NQS4NvPfgvxmNgNqBAlMn1CrBYBo8os6CojH45_OsBEEFCNXrEJQxdO-uZaLNsGst3cBzXXcGhPPcAt9aaZc15tcHCwX5qD4-geb4z11eoQergApPqw96DHquPIJ4pPq0uHKY23Pr6q5-_Htuw2ueu0sBuJnDMf9c3xe4hvoyoQBbYYU-BSdDj-cDEbJqsFCUrAAe5IiZS71NLVOakGsT6W2Js_SwhqdMSINFQU3XAdU0rPScJLL3ApNmbC5J1TQZ2ijrEr3HGHCC6p7mlGWOSYMNz1L8oCWMh6cxOuii942plbFin0cmmBcquYrJOiuou5d9LoVvaopN-4S2o_r1Uro2QXUqEmupuOP6vN4kB0PpyN13EWvmgVVIXLAPrp01XKuoKEvJTJgoH_IQMsHIG0MA27X3tCOSFjG4L5ZUC2u6d8nq6aTSXzY-X_RXfQgYDNW11a-QBuL2dK9DPhnYfbQ5mH_fX-4Fx3-J0RCAfY |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKe4ALbVWgC7S4CCEuqbJ-JhIXVHVZYLuHbavtBVl2bEtVq6TaB6048RP4jfwSPM4mfaggxC2HieyxZ-zP4_E3CL3x1AXQz2UivHAxdJNo6kRiCXE29cTkHh44HwxF_5h9PuEnS-h98xam5odoA27gGXG9BgeHgPQNL7-cTIAbQdIHaAUqescD1eiaPAqox-NdZ1gKAo6RC14hyONpf721G63AwF7dBzVvI9e49fRW0dem03XGydnufGZ2i-93-Bz_V6s19HiBSfGH2ojW0ZIrNxAfVecOVx5re3pRTd2vHz9tsNZvzmLgfsYQ8Z_i0xJfQmEmDIAz7IJP0HFv_2ivnyxqLCQFC8gnKVLmUk9T66QWxPpUamvyLC2s0Rkj0lBRcMN1ACZdKw0nucyt0JQJm3tCBX2KlsuqdJsIE15Q3dWMsswxYbjpWpIHwJTxYCdeFx30rhlrVSwIyKEOxrlqDiJBdxV176DXrehFzbpxn9DbOGGthJ6cQZqa5Go8_KgGw73ssDfuq8MO2mlmVAXngfHRpavmUwU1fSmRAQb9RQaqPgBvY2jwWW0ObYuEZQyenAXV4qT-ubNqPBrFj-f_LvoKPewfHQzU4NPwywv0KEA1VqdavkTLs8ncbQU4NDPb0ep_AzchBJ8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKKyEu0IrXtpQahBCXVFk_E_WE2m4XKCu0pdoekCw7tqWqVbLaB0U99Sf0N_JL8DibQFFBiFsOE9kznvF8ccbfIPTKUxdAP5eJ8MLFo5tEUycSS4izqScm93DB-eNA9I_Z-xN-soR2mrswNT9Ee-AGkRH3awjwsfW_BPnFZALUCJLeQStMpBm49N7wJ3cUMI_HX51hJwgwRi5ohaCMp331RjJaAbt-uw1p3gSuMfP0HqAvzZzrgpOz7fnMbBeXv9E5_qdSq-j-ApHit7ULraElVz5EfFidO1x5rO3puJq671fXNvjqV2cxMD9jOO-f4tMSX0BbJgxwM-TAR-i4t_95t58sOiwkBQu4JylS5lJPU-ukFsT6VGpr8iwtrNEZI9JQUXDDdYAlXSsNJ7nMrdCUCZt7QgV9jJbLqnRPESa8oLqrGWWZY8Jw07UkD3Ap48FLvC466E1jalUs6MehC8a5aj5Dgu4q6t5BL1vRcc25cZvQ67herYSenEGRmuRqNDhQh4Pd7Kg36qujDnrRLKgKoQP20aWr5lMFHX0pkQEE_UUGej4Aa2MY8EntDe2IhGUMLpwF1eKa_nmyajQcxof1fxfdQnc_7fXU4bvBhw10L-A0VtdZPkPLs8ncbQYsNDPPo8__AEXFA1c |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Role+of+adipose%E2%80%90derived+stem+cells+in+wound+healing&rft.jtitle=Wound+repair+and+regeneration&rft.au=Hassan%2C+Waqar+Ul&rft.au=Greiser%2C+Udo&rft.au=Wang%2C+Wenxin&rft.date=2014-05-01&rft.issn=1067-1927&rft.eissn=1524-475X&rft.volume=22&rft.issue=3&rft.spage=313&rft.epage=325&rft_id=info:doi/10.1111%2Fwrr.12173&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_wrr_12173 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1067-1927&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1067-1927&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1067-1927&client=summon |