Role of adipose-derived stem cells in wound healing

Impaired wound healing remains a challenge to date and causes debilitating effects with tremendous suffering. Recent advances in tissue engineering approaches in the area of cell therapy have provided promising treatment options to meet the challenges of impaired skin wound healing such as diabetic...

Full description

Saved in:
Bibliographic Details
Published inWound repair and regeneration Vol. 22; no. 3; pp. 313 - 325
Main Authors Hassan, Waqar Ul, Greiser, Udo, Wang, Wenxin
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.05.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Impaired wound healing remains a challenge to date and causes debilitating effects with tremendous suffering. Recent advances in tissue engineering approaches in the area of cell therapy have provided promising treatment options to meet the challenges of impaired skin wound healing such as diabetic foot ulcers. Over the last few years, stem cell therapy has emerged as a novel therapeutic approach for various diseases including wound repair and tissue regeneration. Several different types of stem cells have been studied in both preclinical and clinical settings such as bone marrow‐derived stem cells, adipose‐derived stem cells (ASCs), circulating angiogenic cells (e.g., endothelial progenitor cells), human dermal fibroblasts, and keratinocytes for wound healing. Adipose tissue is an abundant source of mesenchymal stem cells, which have shown an improved outcome in wound healing studies. ASCs are pluripotent stem cells with the ability to differentiate into different lineages and to secrete paracrine factors initiating tissue regeneration process. The abundant supply of fat tissue, ease of isolation, extensive proliferative capacities ex vivo, and their ability to secrete pro‐angiogenic growth factors make them an ideal cell type to use in therapies for the treatment of nonhealing wounds. In this review, we look at the pathogenesis of chronic wounds, role of stem cells in wound healing, and more specifically look at the role of ASCs, their mechanism of action and their safety profile in wound repair and tissue regeneration.
AbstractList Impaired wound healing remains a challenge to date and causes debilitating effects with tremendous suffering. Recent advances in tissue engineering approaches in the area of cell therapy have provided promising treatment options to meet the challenges of impaired skin wound healing such as diabetic foot ulcers. Over the last few years, stem cell therapy has emerged as a novel therapeutic approach for various diseases including wound repair and tissue regeneration. Several different types of stem cells have been studied in both preclinical and clinical settings such as bone marrow-derived stem cells, adipose-derived stem cells (ASCs), circulating angiogenic cells (e.g., endothelial progenitor cells), human dermal fibroblasts, and keratinocytes for wound healing. Adipose tissue is an abundant source of mesenchymal stem cells, which have shown an improved outcome in wound healing studies. ASCs are pluripotent stem cells with the ability to differentiate into different lineages and to secrete paracrine factors initiating tissue regeneration process. The abundant supply of fat tissue, ease of isolation, extensive proliferative capacities ex vivo, and their ability to secrete pro-angiogenic growth factors make them an ideal cell type to use in therapies for the treatment of nonhealing wounds. In this review, we look at the pathogenesis of chronic wounds, role of stem cells in wound healing, and more specifically look at the role of ASCs, their mechanism of action and their safety profile in wound repair and tissue regeneration.
Impaired wound healing remains a challenge to date and causes debilitating effects with tremendous suffering. Recent advances in tissue engineering approaches in the area of cell therapy have provided promising treatment options to meet the challenges of impaired skin wound healing such as diabetic foot ulcers. Over the last few years, stem cell therapy has emerged as a novel therapeutic approach for various diseases including wound repair and tissue regeneration. Several different types of stem cells have been studied in both preclinical and clinical settings such as bone marrow-derived stem cells, adipose-derived stem cells (ASCs), circulating angiogenic cells (e.g., endothelial progenitor cells), human dermal fibroblasts, and keratinocytes for wound healing. Adipose tissue is an abundant source of mesenchymal stem cells, which have shown an improved outcome in wound healing studies. ASCs are pluripotent stem cells with the ability to differentiate into different lineages and to secrete paracrine factors initiating tissue regeneration process. The abundant supply of fat tissue, ease of isolation, extensive proliferative capacities ex vivo, and their ability to secrete pro-angiogenic growth factors make them an ideal cell type to use in therapies for the treatment of nonhealing wounds. In this review, we look at the pathogenesis of chronic wounds, role of stem cells in wound healing, and more specifically look at the role of ASCs, their mechanism of action and their safety profile in wound repair and tissue regeneration.Impaired wound healing remains a challenge to date and causes debilitating effects with tremendous suffering. Recent advances in tissue engineering approaches in the area of cell therapy have provided promising treatment options to meet the challenges of impaired skin wound healing such as diabetic foot ulcers. Over the last few years, stem cell therapy has emerged as a novel therapeutic approach for various diseases including wound repair and tissue regeneration. Several different types of stem cells have been studied in both preclinical and clinical settings such as bone marrow-derived stem cells, adipose-derived stem cells (ASCs), circulating angiogenic cells (e.g., endothelial progenitor cells), human dermal fibroblasts, and keratinocytes for wound healing. Adipose tissue is an abundant source of mesenchymal stem cells, which have shown an improved outcome in wound healing studies. ASCs are pluripotent stem cells with the ability to differentiate into different lineages and to secrete paracrine factors initiating tissue regeneration process. The abundant supply of fat tissue, ease of isolation, extensive proliferative capacities ex vivo, and their ability to secrete pro-angiogenic growth factors make them an ideal cell type to use in therapies for the treatment of nonhealing wounds. In this review, we look at the pathogenesis of chronic wounds, role of stem cells in wound healing, and more specifically look at the role of ASCs, their mechanism of action and their safety profile in wound repair and tissue regeneration.
Impaired wound healing remains a challenge to date and causes debilitating effects with tremendous suffering. Recent advances in tissue engineering approaches in the area of cell therapy have provided promising treatment options to meet the challenges of impaired skin wound healing such as diabetic foot ulcers. Over the last few years, stem cell therapy has emerged as a novel therapeutic approach for various diseases including wound repair and tissue regeneration. Several different types of stem cells have been studied in both preclinical and clinical settings such as bone marrow‐derived stem cells, adipose‐derived stem cells ( ASCs ), circulating angiogenic cells (e.g., endothelial progenitor cells), human dermal fibroblasts, and keratinocytes for wound healing. Adipose tissue is an abundant source of mesenchymal stem cells, which have shown an improved outcome in wound healing studies. ASCs are pluripotent stem cells with the ability to differentiate into different lineages and to secrete paracrine factors initiating tissue regeneration process. The abundant supply of fat tissue, ease of isolation, extensive proliferative capacities ex vivo, and their ability to secrete pro‐angiogenic growth factors make them an ideal cell type to use in therapies for the treatment of nonhealing wounds. In this review, we look at the pathogenesis of chronic wounds, role of stem cells in wound healing, and more specifically look at the role of ASCs , their mechanism of action and their safety profile in wound repair and tissue regeneration.
Author Wang, Wenxin
Hassan, Waqar Ul
Greiser, Udo
Author_xml – sequence: 1
  givenname: Waqar Ul
  surname: Hassan
  fullname: Hassan, Waqar Ul
  organization: Charles Institute of Dermatology, School of Medicine and Medical Science, University College Dublin, Belfield, Dublin, Ireland
– sequence: 2
  givenname: Udo
  surname: Greiser
  fullname: Greiser, Udo
  organization: Charles Institute of Dermatology, School of Medicine and Medical Science, University College Dublin, Belfield, Dublin, Ireland
– sequence: 3
  givenname: Wenxin
  surname: Wang
  fullname: Wang, Wenxin
  email: wenxin.wang@ucd.ie
  organization: Charles Institute of Dermatology, School of Medicine and Medical Science, University College Dublin, Belfield, Dublin, Ireland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24844331$$D View this record in MEDLINE/PubMed
BookMark eNqFkctOwzAQRS0EorwW_ADKEhZp_XayRBVQpKpIBVR2lhM7YEjiYieU_j0ppSyQgNnMLM69mrmzD7ZrVxsAjhHso64GC-_7CCNBtsAeYpjGVLCH7W6GXMQoxaIH9kN4hhAylia7oIdpQikhaA-QqStN5IpIaTt3wcTaePtmdBQaU0W5KcsQ2TpauLbW0ZNRpa0fD8FOocpgjr76Abi_vLgbjuLxzdX18Hwc55RjEueQGlgQqI1QHOsCCqWzNIG5zlRCscgIz1nGFOcEaZExnIpUc0Uo12mBCScH4HTtO_futTWhkZUNq5VUbVwbJBIJZBB3h_yPMiwIFjDBHXryhbZZZbSce1spv5SbTDrgbA3k3oXgTfGNIChXecsub_mZd8cOfrC5bVRjXd14Zcu_FAtbmuXv1nI2nW4U8Vphu5-8fyuUf5FcEMHkbHIlx5Nhcns5G8lb8gHGA55D
CitedBy_id crossref_primary_10_1016_j_bbalip_2023_159378
crossref_primary_10_4252_wjsc_v13_i8_1084
crossref_primary_10_1186_s13287_022_02892_2
crossref_primary_10_2174_1871530320999200817172200
crossref_primary_10_1155_2019_7135974
crossref_primary_10_1155_2018_2183736
crossref_primary_10_3390_life13030717
crossref_primary_10_1080_21691401_2018_1439836
crossref_primary_10_1016_j_jcyt_2022_08_005
crossref_primary_10_1038_s41598_024_62693_w
crossref_primary_10_1016_j_medengphy_2016_05_013
crossref_primary_10_4252_wjsc_v16_i1_33
crossref_primary_10_1016_j_wndm_2016_02_004
crossref_primary_10_1007_s13770_024_00644_2
crossref_primary_10_1093_mam_ozaf011
crossref_primary_10_1093_asj_sjz214
crossref_primary_10_1002_lary_26855
crossref_primary_10_1097_SAP_0000000000001355
crossref_primary_10_3390_molecules24234231
crossref_primary_10_54393_pbmj_v5i4_364
crossref_primary_10_1007_s10856_021_06630_7
crossref_primary_10_1097_MD_0000000000011667
crossref_primary_10_1016_j_heliyon_2023_e20201
crossref_primary_10_1093_asj_sjz223
crossref_primary_10_3390_ijms19071897
crossref_primary_10_1016_j_ijpharm_2018_03_032
crossref_primary_10_1111_jocd_14043
crossref_primary_10_1097_PRS_0000000000010767
crossref_primary_10_1080_21655979_2024_2401269
crossref_primary_10_1155_2016_8281235
crossref_primary_10_1111_cpr_12240
crossref_primary_10_1155_2019_4683272
crossref_primary_10_3390_biomedicines10102584
crossref_primary_10_2147_CCID_S298105
crossref_primary_10_2147_DMSO_S286787
crossref_primary_10_3389_fcell_2021_667765
crossref_primary_10_3892_ijmm_2018_4006
crossref_primary_10_3892_mmr_2024_13367
crossref_primary_10_1080_00914037_2022_2090354
crossref_primary_10_1111_wrr_12582
crossref_primary_10_1007_s40778_018_0125_9
crossref_primary_10_1590_s0102_865020190060000005
crossref_primary_10_1093_asjof_ojae072
crossref_primary_10_1111_cpr_13562
crossref_primary_10_5812_archcid_135078
crossref_primary_10_1177_08853282231171681
crossref_primary_10_1016_j_carbpol_2015_05_081
crossref_primary_10_1089_hum_2020_275
crossref_primary_10_1089_ten_teb_2017_0142
crossref_primary_10_1016_j_lfs_2020_118091
crossref_primary_10_1089_ten_tec_2017_0178
crossref_primary_10_1111_iwj_14663
crossref_primary_10_1097_SAP_0000000000003796
crossref_primary_10_3390_ijms18061167
crossref_primary_10_1186_s13062_024_00534_6
crossref_primary_10_1186_s13287_020_02110_x
crossref_primary_10_1007_s12035_019_1570_x
crossref_primary_10_1097_GOX_0000000000002835
crossref_primary_10_5021_ad_2017_29_6_667
crossref_primary_10_1007_s00405_017_4595_7
crossref_primary_10_3390_gels10090547
crossref_primary_10_1590_1678_4162_9461
crossref_primary_10_1002_jcp_28141
crossref_primary_10_1155_2022_2976185
crossref_primary_10_1007_s12015_022_10328_w
crossref_primary_10_1093_asj_sjab231
crossref_primary_10_1111_exd_14561
crossref_primary_10_1007_s13671_022_00357_6
crossref_primary_10_1155_2019_4286213
crossref_primary_10_1016_j_rvsc_2021_01_019
crossref_primary_10_1155_2018_6901983
crossref_primary_10_4252_wjsc_v12_i7_659
crossref_primary_10_1016_j_heliyon_2024_e24554
crossref_primary_10_1111_iwj_12499
crossref_primary_10_1186_s13287_016_0412_2
crossref_primary_10_1155_2021_5595172
crossref_primary_10_1007_s13770_017_0105_7
crossref_primary_10_1155_2019_2745640
crossref_primary_10_1186_s13287_020_01971_6
crossref_primary_10_2174_1574888X18666221216123259
crossref_primary_10_1016_j_mtbio_2025_101678
crossref_primary_10_1177_2041731416671278
crossref_primary_10_1016_j_fsc_2018_06_011
crossref_primary_10_34172_jlms_2024_40
crossref_primary_10_1093_molehr_gaz008
crossref_primary_10_4252_wjsc_v13_i10_1360
crossref_primary_10_3389_fcell_2023_1245872
crossref_primary_10_32604_biocell_2022_019448
crossref_primary_10_1080_08941939_2016_1236856
crossref_primary_10_1097_PRS_0000000000003125
crossref_primary_10_1097_PRS_0000000000005669
crossref_primary_10_1089_wound_2023_0136
crossref_primary_10_1002_jbm_b_34196
crossref_primary_10_5582_irdr_2019_01130
crossref_primary_10_3390_ijms24054956
crossref_primary_10_1016_j_jcms_2024_12_019
crossref_primary_10_1186_s13287_023_03441_1
crossref_primary_10_4103_njms_NJMS_167_20
crossref_primary_10_7717_peerj_2824
crossref_primary_10_1007_s12015_024_10762_y
crossref_primary_10_3390_biomedicines10112902
crossref_primary_10_1016_j_lfs_2022_120563
crossref_primary_10_1093_burnst_tkab021
crossref_primary_10_1080_07388551_2016_1209157
crossref_primary_10_1007_s10856_019_6353_4
crossref_primary_10_1177_0268355516641546
crossref_primary_10_1002_cbf_3609
crossref_primary_10_2147_DMSO_S237294
crossref_primary_10_1186_s13287_023_03389_2
crossref_primary_10_1007_s12565_016_0352_z
crossref_primary_10_3390_polym12122997
crossref_primary_10_1089_ten_teb_2020_0111
crossref_primary_10_1007_s13577_023_00887_6
crossref_primary_10_1186_s13287_020_01621_x
crossref_primary_10_2485_jhtb_29_111
crossref_primary_10_1002_med_21789
crossref_primary_10_1002_adhm_201400415
crossref_primary_10_1016_j_jcyt_2016_10_010
crossref_primary_10_3390_jcm8070917
crossref_primary_10_1007_s10616_018_0211_y
crossref_primary_10_4252_wjsc_v16_i3_257
crossref_primary_10_1007_s10561_015_9517_6
crossref_primary_10_1016_j_retram_2020_07_001
crossref_primary_10_1055_s_0041_1723785
crossref_primary_10_3390_medsci11010016
crossref_primary_10_1097_GOX_0000000000001547
crossref_primary_10_1186_s13287_023_03331_6
crossref_primary_10_3233_THC_248028
crossref_primary_10_1515_jim_2017_0102
crossref_primary_10_3390_pharmaceutics15041215
crossref_primary_10_1590_1980_5373_mr_2020_0415
crossref_primary_10_3390_plants10122635
crossref_primary_10_1186_s12967_015_0580_3
crossref_primary_10_3390_ebj2010002
crossref_primary_10_3389_fendo_2022_882469
crossref_primary_10_3390_ijms18010208
crossref_primary_10_1080_21688370_2021_1982364
crossref_primary_10_1111_exd_14248
crossref_primary_10_1002_cbf_3705
crossref_primary_10_1016_j_lfs_2020_118932
crossref_primary_10_1515_jim_2017_0094
crossref_primary_10_1080_13880209_2020_1861029
crossref_primary_10_3390_ijms21113885
crossref_primary_10_1016_j_actbio_2017_07_020
crossref_primary_10_1002_jcp_27922
crossref_primary_10_4252_wjsc_v16_i6_707
crossref_primary_10_1186_s12917_018_1577_y
crossref_primary_10_1007_s13205_021_02958_7
crossref_primary_10_1007_s41745_020_00219_9
crossref_primary_10_1016_j_biopha_2023_116035
crossref_primary_10_1080_21691401_2020_1817057
crossref_primary_10_1097_j_pain_0000000000003092
crossref_primary_10_1111_iwj_13030
crossref_primary_10_1021_acs_biomac_9b01355
crossref_primary_10_1089_ten_tea_2016_0162
crossref_primary_10_1177_1534734615569913
crossref_primary_10_1097_PRS_0000000000010132
crossref_primary_10_1089_ten_tea_2023_0071
crossref_primary_10_1007_s11010_017_3265_9
crossref_primary_10_1055_s_0044_1786185
crossref_primary_10_1038_s41598_019_48657_5
crossref_primary_10_1111_wrr_12600
crossref_primary_10_1155_2017_9142493
crossref_primary_10_1166_jbt_2022_3052
crossref_primary_10_3389_fbioe_2024_1328504
crossref_primary_10_1016_j_ijom_2022_12_004
crossref_primary_10_1517_14712598_2015_1053867
crossref_primary_10_1016_j_ymeth_2019_07_004
crossref_primary_10_1177_15347346241227530
crossref_primary_10_1155_2019_2402916
crossref_primary_10_3390_cells11071198
crossref_primary_10_2217_nnm_2022_0281
crossref_primary_10_1080_2000656X_2020_1767116
crossref_primary_10_1038_s41401_022_00952_0
crossref_primary_10_1021_acsabm_3c00609
crossref_primary_10_24018_ejmed_2021_3_6_1105
crossref_primary_10_1007_s10103_022_03630_z
crossref_primary_10_32628_IJSRST2296160
crossref_primary_10_1016_j_jss_2018_03_068
crossref_primary_10_1007_s00441_018_2879_x
crossref_primary_10_1097_SAP_0000000000003039
crossref_primary_10_3389_fbioe_2015_00206
crossref_primary_10_4252_wjsc_v12_i6_488
crossref_primary_10_3892_ijmm_2017_2886
crossref_primary_10_3390_bioengineering10121378
crossref_primary_10_1007_s00266_020_01615_3
crossref_primary_10_1186_s13287_023_03620_0
crossref_primary_10_1007_s11626_018_0228_8
crossref_primary_10_3390_polym11020209
crossref_primary_10_1016_j_burns_2024_07_037
crossref_primary_10_1186_s13287_018_0887_0
crossref_primary_10_1007_s10735_017_9711_x
crossref_primary_10_1089_neu_2014_3480
crossref_primary_10_1007_s40204_020_00144_1
crossref_primary_10_1177_24730114231207643
crossref_primary_10_1007_s10103_016_1985_9
crossref_primary_10_3390_jfb9010010
crossref_primary_10_3389_fbioe_2021_660145
crossref_primary_10_1172_JCI82788
crossref_primary_10_1007_s11033_019_05112_y
crossref_primary_10_1111_exd_14042
crossref_primary_10_1016_j_jtv_2024_12_014
crossref_primary_10_1007_s10856_020_06433_2
crossref_primary_10_3390_jcm12052052
crossref_primary_10_1016_j_injury_2021_12_007
crossref_primary_10_1016_j_tice_2019_09_007
crossref_primary_10_1007_s10616_020_00369_9
crossref_primary_10_1111_jocd_13321
crossref_primary_10_3390_ijms242417197
crossref_primary_10_1016_j_jss_2021_05_035
crossref_primary_10_1177_15347346231174554
crossref_primary_10_1089_wound_2015_0627
crossref_primary_10_1590_1678_4162_10855
crossref_primary_10_1021_acsami_4c03217
crossref_primary_10_1097_01_ASW_0000547412_54135_b7
crossref_primary_10_1111_acel_14049
crossref_primary_10_1111_dth_14112
crossref_primary_10_1186_s13287_016_0310_7
crossref_primary_10_7759_cureus_30055
crossref_primary_10_1186_s13287_023_03478_2
crossref_primary_10_1016_j_yexcr_2018_07_030
crossref_primary_10_1155_2019_1201927
crossref_primary_10_3390_ijms20081811
crossref_primary_10_1177_15347346211027684
crossref_primary_10_1136_bmjdrc_2019_001033
crossref_primary_10_1007_s12015_023_10640_z
crossref_primary_10_2174_1574888X13666181002161700
crossref_primary_10_1002_jcp_25712
crossref_primary_10_1089_fpsam_2021_0073
crossref_primary_10_2478_abm_2021_0002
crossref_primary_10_1007_s00403_023_02563_z
crossref_primary_10_1021_acsami_7b01397
crossref_primary_10_1080_15476278_2023_2234517
crossref_primary_10_1186_s13287_019_1277_y
crossref_primary_10_1371_journal_pone_0197744
crossref_primary_10_2174_1574888X17666220630162836
crossref_primary_10_1038_s41419_022_04752_6
crossref_primary_10_1016_j_actbio_2018_05_039
crossref_primary_10_2174_1570180819666220801111246
crossref_primary_10_1089_fpsam_2023_0163
crossref_primary_10_1371_journal_pone_0171712
crossref_primary_10_3390_pharmaceutics14061206
crossref_primary_10_1155_2017_4740709
crossref_primary_10_1016_j_anplas_2020_11_002
crossref_primary_10_1155_2017_9289213
crossref_primary_10_4252_wjsc_v16_i6_708
crossref_primary_10_1055_a_1250_7878
crossref_primary_10_1016_j_biocel_2014_10_017
crossref_primary_10_1016_j_jid_2019_03_1149
crossref_primary_10_1007_s10439_015_1508_z
crossref_primary_10_1111_exd_13954
crossref_primary_10_3390_medicina59040706
crossref_primary_10_3390_cells8010056
Cites_doi 10.1111/j.1524-475X.2009.00499.x
10.1016/j.jdermsci.2007.05.018
10.1002/jbm.820280504
10.1371/journal.pone.0055640
10.1097/SAP.0b013e3181723bbe
10.1016/j.jdermsci.2012.02.010
10.1016/j.cell.2006.07.024
10.1111/j.1349-7006.2007.00550.x
10.1097/01.prs.0000293876.10700.b8
10.1097/00004630-199311000-00010
10.1016/j.mehy.2008.10.033
10.1097/01.CCM.0000285991.36698.E2
10.1002/stem.194
10.1097/SAP.0b013e31817f01b6
10.1089/ten.tea.2009.0616
10.1186/1479-5876-7-29
10.1016/S0140-6736(02)09670-8
10.1016/S0002-9440(10)63754-6
10.1634/stemcells.2006-0394
10.1097/PRS.0b013e3181882046
10.1111/j.1524-475X.2007.00258.x
10.1002/jcp.20636
10.4161/org.4.3.6499
10.1007/1-4020-4448-8
10.1038/gt.2008.39
10.1016/S0142-9612(99)00207-0
10.1002/dmrr.216
10.1634/stemcells.2008-0276
10.1080/14653240310003026
10.1111/j.1749-6632.2009.04607.x
10.1634/stemcells.2007-0226
10.1634/stemcells.2004-0021
10.1046/j.1524-475X.1994.20305.x
10.1046/j.1524-475X.1996.40404.x
10.1007/s10517-005-0331-1
10.1634/stemcells.2005-0342
10.1038/mt.2009.40
10.1097/PRS.0b013e3181b17bb4
10.1016/j.cell.2008.07.041
10.1111/j.1742-1241.2007.01303.x
10.1111/j.1365-2141.2005.05409.x
10.2217/17460751.4.2.265
10.1111/j.1524-4725.2008.34283.x
10.7547/87507315-92-1-34
10.1016/S0039-6109(02)00202-5
10.1002/art.10767
10.1016/j.burns.2009.07.012
10.1097/01.prs.0000298322.70032.bc
10.1046/j.1524-4725.2002.02130.x
10.1002/jcp.1138
10.1097/SAP.0b013e318273f909
10.1186/1478-811X-9-12
10.1634/stemcells.2008-0031
10.1038/nature05664
10.1038/nature06188
10.1093/eurheartj/ehi285
10.1038/35102181
10.1016/j.jcms.2004.06.002
10.1002/stem.629
10.1161/CIRCRESAHA.108.176826
10.1038/nbt0188-25
10.1038/sj.clpt.6100301
10.1007/s00384-008-0559-0
10.1517/14712590903307362
10.1016/j.cpm.2009.08.001
10.1101/gad.1653708
10.3727/096368910X514170
10.1002/term.1700
10.1089/ten.2006.0315
10.1016/j.transci.2004.01.004
10.1634/stemcells.2008-0178
10.1111/j.1365-2796.2007.01844.x
10.1517/14712598.6.6.567
10.1097/SAP.0b013e318095a771
10.1007/s00266-007-9019-4
10.1002/term.158
10.1089/107632701300062859
10.1161/CIRCRESAHA.108.192138
10.1517/14712598.2.2.211
10.1634/stemcells.2008-0273
10.1097/PRS.0b013e3181b5a3f1
10.1007/s12015-010-9193-7
10.1126/science.1069210
10.1046/j.1524-475X.1999.00442.x
10.1056/NEJMra022361
10.1097/00004630-199703000-00010
10.1158/0008-5472.CAN-04-4194
10.2165/00128071-200304080-00007
10.1002/jor.1100090504
10.1634/stemcells.19-3-180
10.1097/BCR.0b013e3181f9353a
10.1161/01.CIR.0000121425.42966.F1
10.1016/j.diabres.2010.12.010
10.1186/scrt19
10.1016/S0169-409X(98)00025-8
10.1073/pnas.1115973108
10.1111/iwj.12039
10.1161/01.RES.0000135902.99383.6f
10.1161/01.CIR.0000057525.13182.24
10.1016/j.bbrc.2007.05.054
10.1007/s00403-009-1011-1
10.1097/PRS.0b013e318191be2d
10.1016/j.ahj.2008.06.025
10.1016/j.ijom.2009.01.001
10.1161/ATVBAHA.108.178962
10.2337/diacare.26.6.1856
10.1056/NEJMra0707253
10.4252/wjsc.v3.i4.25
10.1097/00004630-199603000-00006
10.2741/1184
10.1177/0022034509359125
10.1002/art.21212
10.1517/14712590903039684
10.1046/j.1524-4725.2001.00195.x
10.1146/annurev.cellbio.17.1.435
10.1007/s00268-003-7397-6
10.1046/j.1365-4362.1999.00832.x
10.1097/01.prs.0000225431.63010.1b
10.1016/j.tibtech.2006.01.010
10.1016/j.biocel.2003.11.001
10.1097/00000658-198110000-00005
10.1177/1090820X10362730
10.5021/ad.2011.23.2.150
10.1152/physrev.2003.83.3.835
10.1038/86439
10.1182/blood-2009-05-219907
10.1038/onc.2009.130
10.1016/j.jdermsci.2008.08.007
10.1016/j.jaad.2009.10.048
10.2174/1389201023378283
10.1016/S0140-6736(05)67700-8
10.1016/j.clindermatol.2006.12.005
10.1097/01.prs.0000299922.96006.24
10.1016/S0002-9610(02)00813-9
10.3727/096368910X520065
10.1007/s00109-008-0394-3
10.1089/ten.tea.2008.0359
10.1038/ncponc1132
10.1093/eurheartj/ehp568
ContentType Journal Article
Copyright 2014 by the Wound Healing Society
2014 by the Wound Healing Society.
Copyright_xml – notice: 2014 by the Wound Healing Society
– notice: 2014 by the Wound Healing Society.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
8FD
FR3
P64
DOI 10.1111/wrr.12173
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList MEDLINE
MEDLINE - Academic
Engineering Research Database

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 1524-475X
EndPage 325
ExternalDocumentID 24844331
10_1111_wrr_12173
WRR12173
ark_67375_WNG_LNC8SFWH_S
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: Science Foundation Ireland, Principal Investigator Programme
  funderid: 10/IN.1/B2981
GroupedDBID ---
.3N
.GA
.Y3
04C
05W
0R~
10A
123
1OB
1OC
29R
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5HH
5LA
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOF
ACMXC
ACPOU
ACSCC
ACXBN
ACXQS
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOJX
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHEFC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
CYRXZ
D-6
D-7
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EAD
EAP
EAS
EBC
EBD
EBS
ECF
ECT
ECV
EIHBH
EJD
EMB
EMK
EMOBN
ENC
EPT
ESX
EX3
F00
F01
F04
FEDTE
FUBAC
FZ0
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
Q.N
Q11
QB0
Q~Q
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
SV3
TEORI
TUS
UB1
W8V
W99
WBKPD
WH7
WHWMO
WIH
WIJ
WIK
WOHZO
WOW
WQ9
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
XG1
YFH
ZZTAW
~IA
~WT
AAHQN
AAIPD
AAMNL
AANHP
AAYCA
ACRPL
ACUHS
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
7QO
8FD
FR3
P64
ID FETCH-LOGICAL-c4623-c04e0f30de7a62df07adb980cdba8427b36c5b5a6631d7b52979d6a346d9f2363
IEDL.DBID DR2
ISSN 1067-1927
1524-475X
IngestDate Thu Jul 10 21:58:07 EDT 2025
Fri Jul 11 12:27:28 EDT 2025
Wed Feb 19 01:51:51 EST 2025
Thu Apr 24 23:01:22 EDT 2025
Tue Jul 01 03:01:35 EDT 2025
Wed Jan 22 17:04:03 EST 2025
Wed Oct 30 09:49:08 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2014 by the Wound Healing Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4623-c04e0f30de7a62df07adb980cdba8427b36c5b5a6631d7b52979d6a346d9f2363
Notes ArticleID:WRR12173
Science Foundation Ireland, Principal Investigator Programme - No. 10/IN.1/B2981
istex:B569260658C42169EC8C6BDF697B4D88B9223226
ark:/67375/WNG-LNC8SFWH-S
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 24844331
PQID 1527327082
PQPubID 23479
PageCount 13
ParticipantIDs proquest_miscellaneous_1780502433
proquest_miscellaneous_1527327082
pubmed_primary_24844331
crossref_primary_10_1111_wrr_12173
crossref_citationtrail_10_1111_wrr_12173
wiley_primary_10_1111_wrr_12173_WRR12173
istex_primary_ark_67375_WNG_LNC8SFWH_S
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May‐June 2014
PublicationDateYYYYMMDD 2014-05-01
PublicationDate_xml – month: 05
  year: 2014
  text: May‐June 2014
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Wound repair and regeneration
PublicationTitleAlternate Wound Repair Regen
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Gosain A, DiPietro LA. Aging and wound healing. World J Surg 2004; 28: 321-326.
Gimble JM, Bunnell BA, Chiu ES, Guilak F. Concise review: adipose-derived stromal vascular fraction cells and stem cells: let's not get lost in translation. Stem Cells 2011; 29: 749-754.
Mulder GD, Vande Berg JS. Cellular senescence and matrix metalloproteinase activity in chronic wounds: relevance to debridement and new technologies. J Am Podiatr Med Assoc 2002; 92: 34-37.
Falanga V. Wound healing and its impairment in the diabetic foot. Lancet 2005; 366: 1736-1743.
Sakaguchi Y, Sekiya I, Yagishita K, Muneta T. Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthritis Rheum 2005; 52: 2521-2529.
Gonda K, Shigeura T, Sato T, Matsumoto D, Suga H, Inoue K, et al. Preserved proliferative capacity and multipotency of human adipose-derived stem cells after long-term cryopreservation. Plast Reconstr Surg 2008; 121: 401-410.
Butler KL, Goverman J, Ma H, Fischman A, Yu Y-M, Bilodeau M, et al. Stem cells and burns: review and therapeutic implications. J Burn Care Res 2010; 31: 874-881.
Bai X, Yan Y, Song Y-H, Seidensticker M, Rabinovich B, Metzele R, et al. Both cultured and freshly isolated adipose tissue-derived stem cells enhance cardiac function after acute myocardial infarction. Eur Heart J 2010; 31: 489-501.
Bianco P, Robey PG. Stem cells in tissue engineering. Nature 2001; 414: 118-121.
Cui L, Yin S, Liu W, Li N, Zhang W, Cao Y. Expanded adipose-derived stem cells suppress mixed lymphocyte reaction by secretion of prostaglandin E2. Tissue Eng 2007; 13: 1185-1195.
Yoshimura K, Sato K, Aoi N, Kurita M, Hirohi T, Harii K. Cell-assisted lipotransfer for cosmetic breast augmentation: supportive use of adipose-derived stem/stromal cells. Aesthetic Plast Surg 2008; 32: 48-55.
Trottier V, Marceau-Fortier G, Germain L, Vincent C, Fradette J. IFATS collection: using human adipose-derived stem/stromal cells for the production of new skin substitutes. Stem Cells 2008; 26: 2713-2723.
Lee EY, Xia Y, Kim WS, Kim MH, Kim TH, Kim KJ, et al. Hypoxia-enhanced wound-healing function of adipose-derived stem cells: increase in stem cell proliferation and up-regulation of VEGF and bFGF. Wound Repair Regen 2009; 17: 540-547.
Parker AM, Katz AJ. Adipose-derived stem cells for the regeneration of damaged tissues. Expert Opinion on Biological Therapy 2006; 6: 567-578.
Gimble J, Guilak F. Adipose-derived adult stem cells: isolation, characterization, and differentiation potential. Cytotherapy 2003; 5: 362-369.
Cornwell KG, Landsman A, James KS. Extracellular matrix biomaterials for soft tissue repair. Clin Podiatr Med Surg 2009; 26: 507-523.
Tarte K, Gaillard J, Lataillade J-J, Fouillard L, Becker M, Mossafa H, et al. Clinical-grade production of human mesenchymal stromal cells: occurrence of aneuploidy without transformation. Blood 2010; 115: 1549-1553.
Cai L, Johnstone BH, Cook TG, Tan J, Fishbein MC, Chen PS, et al. IFATS collection: human adipose tissue-derived stem cells induce angiogenesis and nerve sprouting following myocardial infarction, in conjunction with potent preservation of cardiac function. Stem Cells 2009; 27: 230-237.
Mustoe TA, O'Shaughnessy K, Kloeters O. Chronic wound pathogenesis and current treatment strategies: a unifying hypothesis. Plast Reconstr Surg 2006; 117: 35s-41s.
MacNeil S. Progress and opportunities for tissue-engineered skin. Nature 2007; 445: 874-880.
Sun G, Zhang X, Shen Y-I, Sebastian R, Dickinson LE, Fox-Talbot K, et al. Dextran hydrogel scaffolds enhance angiogenic responses and promote complete skin regeneration during burn wound healing. Proc Natl Acad Sci 2011; 108: 20976-20981.
Kakudo N, Minakata T, Mitsui T, Kushida S, Notodihardjo FZ, Kusumoto K. Proliferation-promoting effect of platelet-rich plasma on human adipose-derived stem cells and human dermal fibroblasts. Plast Reconstr Surg 2008; 122: 1352-1360.
Rehman J, Traktuev D, Li J, Merfeld-Clauss S, Temm-Grove CJ, Bovenkerk JE, et al. Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation 2004; 109: 1292-1298.
Marler JJ, Upton J, Langer R, Vacanti JP. Transplantation of cells in matrices for tissue regeneration. Adv Drug Del Rev 1998; 33: 165-182.
Katz AJ, Tholpady A, Tholpady SS, Shang H, Ogle RC. Cell surface and transcriptional characterization of human adipose-derived adherent stromal (hADAS) cells. Stem Cells 2005; 23: 412-423.
Altman AM, Yan Y, Matthias N, Bai X, Rios C, Mathur AB, et al. IFATS collection: human adipose-derived stem cells seeded on a silk fibroin-chitosan scaffold enhance wound repair in a murine soft tissue injury model. Stem Cells 2009; 27: 250-258.
Van Brunt J, Klausner A. Growth factors speed wound healing. Nat Biotechnol 1988; 6: 25-30.
Nambu M, Kishimoto S, Nakamura S, Mizuno H, Yanagibayashi S, Yamamoto N, et al. Accelerated wound healing in healing-impaired db/db mice by autologous adipose tissue-derived stromal cells combined with atelocollagen matrix. Ann Plast Surg 2009; 62: 317-321.
Huang SP, Hsu CC, Chang SC, Wang CH, Deng SC, Dai NT, et al. Adipose-derived stem cells seeded on acellular dermal matrix grafts enhance wound healing in a murine model of a full-thickness defect. Ann Plast Surg 2012; 69: 656-662.
Chung HM, Won CH, Sung JH. Responses of adipose-derived stem cells during hypoxia: enhanced skin-regenerative potential. Expert Opin Biol Ther 2009; 9: 1499-1508.
Spaeth E, Klopp A, Dembinski J, Andreeff M, Marini F. Inflammation and tumor microenvironments: defining the migratory itinerary of mesenchymal stem cells. Gene Ther 2008; 15: 730-738.
Liu TM, Martina M, Hutmacher DW, Hui JHP, Lee EH, Lim B. Identification of common pathways mediating differentiation of bone marrow-and adipose tissue-derived human mesenchymal stem cells into three mesenchymal lineages. Stem Cells 2007; 25: 750-760.
Kim W-S, Park B-S, Sung J-H, Yang J-M, Park S-B, Kwak S-J, et al. Wound healing effect of adipose-derived stem cells: a critical role of secretory factors on human dermal fibroblasts. J Dermatol Sci 2007; 48: 15-24.
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126: 663-676.
Buravkova LB, Grinakovskaia OS, Andreeva EP, Zhambalova AP, Kozionova MP. [Characteristics of human lipoaspirate-isolated mesenchymal stromal cells cultivated under a lower oxygen tension]. Tsitologiia 2009; 51: 5-11.
Lattari V, Jones LM, Varcelotti JR, Latenser BA, Sherman HF, Barrette RR. The use of a permanent dermal allograft in full-thickness burns of the hand and foot: a report of three cases. J Burn Care Rehabil 1997; 18: 147-155.
Aranguren XL, Verfaillie CM, Luttun A. Emerging hurdles in stem cell therapy for peripheral vascular disease. J Mol Med (Berl) 2009; 87: 3-16.
Lendeckel S, Jödicke A, Christophis P, Heidinger K, Wolff J, Fraser JK, et al. Autologous stem cells (adipose) and fibrin glue used to treat widespread traumatic calvarial defects: case report. J Craniomaxillofac Surg 2004; 32: 370-373.
Musina R, Bekchanova E, Sukhikh G. Comparison of mesenchymal stem cells obtained from different human tissues. Bull Exp Biol Med 2005; 139: 504-509.
Kern S, Eichler H, Stoeve J, Kluter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 2006; 24: 1294-1301.
Falanga V. Advanced treatments for non-healing chronic wounds. EWMA J 2004; 4: 11-13.
Lindroos B, Suuronen R, Miettinen S. The potential of adipose stem cells in regenerative medicine. Stem Cell Rev Rep 2011; 269-291.
Rubio D, Garcia-Castro J, Martin MC, de la Fuente R, Cigudosa JC, Lloyd AC, et al. Spontaneous human adult stem cell transformation. Cancer Res 2005; 65: 3035-3039.
Lu D, Chen B, Liang Z, Deng W, Jiang Y, Li S, et al. Comparison of bone marrow mesenchymal stem cells with bone marrow-derived mononuclear cells for treatment of diabetic critical limb ischemia and foot ulcer: a double-blind, randomized, controlled trial. Diabetes Res Clin Pract 2011; 92: 26-36.
Singer AJ, Dagum AB. Current management of acute cutaneous wounds. N Engl J Med 2008; 359: 1037-1046.
Atiyeh BS, Ioannovich J, Al-Amm CA, El-Musa KA. Management of acute and chronic open wounds: the importance of moist environment in optimal wound healing. Curr Pharm Biotechnol 2002; 3: 179-195.
Lazarus GS, Cooper DM, Knighton DR, Percoraro RE, Rodeheaver G, Robson MC. Definitions and guidelines for assessment of wounds and evaluation of healing. Wound Repair Regen 1994; 2: 165-170.
Levenberg S, Khademhosseini A, Langer R. Embryonic stem cells in tissue engineering. Methods Tissue Eng 2002; 457.
Uysal AC, Mizuno H, Tobita M, Ogawa R, Hyakusoku H. The effect of adipose-derived stem cells on ischemia-reperfusion injury: immunohistochemical and ultrastructural evaluation. Plast Reconstr Surg 2009; 124: 804-815.
Park I-H, Arora N, Huo H, Maherali N, Ahfeldt T, Shimamura A, et al. Disease-specific induced pluripotent stem cells. Cell 2008; 134: 877-886.
Gnecchi M, Zhang Z, Ni A, Dzau VJ. Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res 2008; 103: 1204-1219.
Gohari S, Gambla C, Healey M, Spaulding G, Gordon KB, Swan J, et al. Evaluation of tissue-engineered skin (human skin substitute) and secondary intention healing in the treatment of full thickness wounds after Mohs micrographic or excisional surgery. Dermatol Surg 2002; 28: 1107-1114.
Ebrahimian TG, Pouzoulet F, Squiban C, Buard V, André M, Cousin B, et al. Cell therapy based on adipose tissue-derived stromal cells promotes physiological and pathological wound healing. Arterioscler Thromb Vasc Biol 2009; 29: 503-510.
Gronthos S, Franklin DM, Leddy HA, Robey PG, Storms RW, Gimble JM. Surface protein characterization of human adipose tissue-derived stromal cells. J Cell Physiol 2001; 189: 54-63.
Dietrich J, Imitola J, Kesari S. Mechanisms of disease: the role of stem cells in the biology and treatment of gliomas. Nat Clin Pract Oncol 2008; 5: 393-
2004; 164
2010; 16
2009; 87
2010; 19
2004; 28
1991; 97
2004; 9
2004; 4
2008; 34
1999; 284
2005; 65
2008; 32
2008; 103
2013; 8
2004; 32
2004; 30
2006; 208
2010; 1
2006; 24
2004; 36
2006; 27
2010; 115
2008; 26
2003; 48
2009; 123
2008; 359
2009; 124
2002; 92
2007; 61
2008; 22
2010; 30
2009; 15
2001; 414
2009; 17
2007; 445
2010; 31
1996; 17
2009; 62
2007; 449
2010; 36
2002; 2
2002; 3
1995
2001; 27
1993
2008; 122
2011; 3
2007; 98
2008; 121
2006; 117
2007; 13
2007; 15
2011; 9
2003; 349
2003; 107
2009; 72
2002; 360
2005; 366
1999; 38
2011; 92
2005; 129
2003; 26
2008; 46
2007; 82
2008; 134
2009; 1176
2009; 104
2001; 189
2010; 302
2007; 262
2005; 139
2008; 5
2008; 4
1994; 28
2005; 26
2007; 35
2010; 63
2005; 23
1981; 194
2002; 183
2009; 51
1990; 136
2009; 53
1999; 17
2001; 19
2011; 20
1997; 18
2003; 4
2003; 5
2011; 23
2001; 17
2012; 69
1996; 4
2008; 156
2006; 126
2003; 83
2008; 60
2011; 29
2012; 66
2007; 25
2009; 24
2011
2002; 295
2000; 21
2008; 15
2006; 6
2006
2002
2004; 109
1999; 7
2009; 27
2009; 26
2009; 29
2009; 28
2010; 89
1993; 14
2002; 28
2004; 95
2011; 108
2007; 358
2001; 7
1988; 6
2005; 52
2009; 9
2009; 7
2013
2009; 4
2009; 3
1994; 2
2009; 38
1998; 33
2007; 48
e_1_2_15_108_1
e_1_2_15_104_1
e_1_2_15_127_1
Vojtassak J (e_1_2_15_63_1) 2006; 27
e_1_2_15_42_1
e_1_2_15_88_1
e_1_2_15_69_1
e_1_2_15_3_1
e_1_2_15_134_1
e_1_2_15_80_1
e_1_2_15_27_1
e_1_2_15_61_1
e_1_2_15_111_1
e_1_2_15_130_1
e_1_2_15_46_1
e_1_2_15_84_1
e_1_2_15_65_1
Yuan F (e_1_2_15_95_1) 2008; 46
e_1_2_15_7_1
e_1_2_15_116_1
e_1_2_15_139_1
Di Rocco G (e_1_2_15_113_1) 2011
e_1_2_15_31_1
e_1_2_15_77_1
e_1_2_15_58_1
e_1_2_15_100_1
e_1_2_15_123_1
e_1_2_15_146_1
e_1_2_15_39_1
e_1_2_15_16_1
e_1_2_15_50_1
e_1_2_15_92_1
e_1_2_15_142_1
e_1_2_15_35_1
e_1_2_15_73_1
e_1_2_15_12_1
e_1_2_15_54_1
e_1_2_15_96_1
Falanga V (e_1_2_15_98_1) 1993
e_1_2_15_109_1
e_1_2_15_128_1
e_1_2_15_105_1
e_1_2_15_147_1
e_1_2_15_20_1
e_1_2_15_43_1
e_1_2_15_66_1
e_1_2_15_89_1
e_1_2_15_28_1
e_1_2_15_81_1
e_1_2_15_112_1
e_1_2_15_135_1
Falanga V (e_1_2_15_13_1) 2004; 4
e_1_2_15_24_1
e_1_2_15_47_1
e_1_2_15_62_1
e_1_2_15_85_1
e_1_2_15_131_1
e_1_2_15_150_1
e_1_2_15_6_1
e_1_2_15_117_1
e_1_2_15_136_1
Beckrich K (e_1_2_15_11_1) 1999; 17
Buravkova LB (e_1_2_15_124_1) 2009; 51
e_1_2_15_32_1
e_1_2_15_55_1
e_1_2_15_78_1
e_1_2_15_59_1
e_1_2_15_17_1
e_1_2_15_70_1
e_1_2_15_93_1
e_1_2_15_101_1
e_1_2_15_143_1
e_1_2_15_36_1
e_1_2_15_51_1
e_1_2_15_74_1
e_1_2_15_97_1
e_1_2_15_120_1
e_1_2_15_129_1
e_1_2_15_106_1
e_1_2_15_125_1
e_1_2_15_148_1
e_1_2_15_21_1
Levenberg S (e_1_2_15_23_1) 2002
e_1_2_15_67_1
e_1_2_15_40_1
Williams PL (e_1_2_15_2_1) 1995
e_1_2_15_29_1
e_1_2_15_132_1
e_1_2_15_48_1
e_1_2_15_82_1
e_1_2_15_25_1
e_1_2_15_151_1
e_1_2_15_44_1
e_1_2_15_86_1
e_1_2_15_9_1
e_1_2_15_118_1
e_1_2_15_90_1
e_1_2_15_5_1
e_1_2_15_114_1
e_1_2_15_137_1
e_1_2_15_10_1
e_1_2_15_56_1
e_1_2_15_79_1
e_1_2_15_18_1
e_1_2_15_94_1
e_1_2_15_121_1
e_1_2_15_144_1
e_1_2_15_37_1
e_1_2_15_71_1
e_1_2_15_14_1
e_1_2_15_52_1
e_1_2_15_140_1
e_1_2_15_33_1
e_1_2_15_75_1
e_1_2_15_107_1
e_1_2_15_149_1
e_1_2_15_19_1
e_1_2_15_126_1
e_1_2_15_41_1
e_1_2_15_68_1
Quaglino D (e_1_2_15_102_1) 1991; 97
Greenhalgh D (e_1_2_15_103_1) 1990; 136
e_1_2_15_110_1
e_1_2_15_26_1
e_1_2_15_49_1
e_1_2_15_60_1
e_1_2_15_83_1
e_1_2_15_133_1
e_1_2_15_152_1
e_1_2_15_22_1
e_1_2_15_45_1
e_1_2_15_64_1
e_1_2_15_87_1
e_1_2_15_8_1
e_1_2_15_119_1
e_1_2_15_138_1
e_1_2_15_4_1
e_1_2_15_115_1
e_1_2_15_30_1
e_1_2_15_57_1
e_1_2_15_99_1
e_1_2_15_145_1
e_1_2_15_15_1
e_1_2_15_38_1
e_1_2_15_72_1
e_1_2_15_91_1
e_1_2_15_122_1
e_1_2_15_141_1
e_1_2_15_34_1
e_1_2_15_53_1
e_1_2_15_76_1
References_xml – reference: Kern S, Eichler H, Stoeve J, Kluter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 2006; 24: 1294-1301.
– reference: Kakudo N, Minakata T, Mitsui T, Kushida S, Notodihardjo FZ, Kusumoto K. Proliferation-promoting effect of platelet-rich plasma on human adipose-derived stem cells and human dermal fibroblasts. Plast Reconstr Surg 2008; 122: 1352-1360.
– reference: Riordan NH, Ichim TE, Min W-P, Wang H, Solano F, Lara F, et al. Non-expanded adipose stromal vascular fraction cell therapy for multiple sclerosis. J Transl Med 2009; 7: 1-9.
– reference: Griffith LG, Naughton G. Tissue engineering-current challenges and expanding opportunities. Science 2002; 295: 1009.
– reference: Liu TM, Martina M, Hutmacher DW, Hui JHP, Lee EH, Lim B. Identification of common pathways mediating differentiation of bone marrow-and adipose tissue-derived human mesenchymal stem cells into three mesenchymal lineages. Stem Cells 2007; 25: 750-760.
– reference: Werner S, Grose R. Regulation of wound healing by growth factors and cytokines. Physiol Rev 2003; 83: 835-870.
– reference: Atiyeh BS, Ioannovich J, Al-Amm CA, El-Musa KA. Management of acute and chronic open wounds: the importance of moist environment in optimal wound healing. Curr Pharm Biotechnol 2002; 3: 179-195.
– reference: Branski LK, Herndon DN, Pereira C, Mlcak RP, Celis MM, Lee JO, et al. Longitudinal assessment of Integra in primary burn management: a randomized pediatric clinical trial. Crit Care Med 2007; 35: 2615-2623.
– reference: Falanga V. Advanced treatments for non-healing chronic wounds. EWMA J 2004; 4: 11-13.
– reference: Andrae J, Gallini R, Betsholtz C. Role of platelet-derived growth factors in physiology and medicine. Genes Dev 2008; 22: 1276-1312.
– reference: Gosain A, DiPietro LA. Aging and wound healing. World J Surg 2004; 28: 321-326.
– reference: Cornwell KG, Landsman A, James KS. Extracellular matrix biomaterials for soft tissue repair. Clin Podiatr Med Surg 2009; 26: 507-523.
– reference: Kim W-S, Park B-S, Sung J-H, Yang J-M, Park S-B, Kwak S-J, et al. Wound healing effect of adipose-derived stem cells: a critical role of secretory factors on human dermal fibroblasts. J Dermatol Sci 2007; 48: 15-24.
– reference: Song SH, Lee MO, Lee JS, Jeong HC, Kim HG, Kim WS, et al. Genetic modification of human adipose-derived stem cells for promoting wound healing. J Dermatol Sci 2012; 66: 98-107.
– reference: Kim WS, Park BS, Park SH, Kim HK, Sung JH. Antiwrinkle effect of adipose-derived stem cell: activation of dermal fibroblast by secretory factors. J Dermatol Sci 2009; 53: 96-102.
– reference: Sterodimas A, de Faria J, Nicaretta B, Papadopoulos O, Papalambros E, Illouz YG. Cell-assisted lipotransfer. Aesthet Surg J 2010; 30: 78-81.
– reference: Nambu M, Kishimoto S, Nakamura S, Mizuno H, Yanagibayashi S, Yamamoto N, et al. Accelerated wound healing in healing-impaired db/db mice by autologous adipose tissue-derived stromal cells combined with atelocollagen matrix. Ann Plast Surg 2009; 62: 317-321.
– reference: Tateishi-Yuyama E, Matsubara H, Murohara T, Ikeda U, Shintani S, Masaki H, et al. Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. Lancet 2002; 360: 427-435.
– reference: Strauer BE, Kornowski R. Stem cell therapy in perspective. Circulation 2003; 107: 929-934.
– reference: Lee EY, Xia Y, Kim WS, Kim MH, Kim TH, Kim KJ, et al. Hypoxia-enhanced wound-healing function of adipose-derived stem cells: increase in stem cell proliferation and up-regulation of VEGF and bFGF. Wound Repair Regen 2009; 17: 540-547.
– reference: Nie C, Yang D, Morris SF. Local delivery of adipose-derived stem cells via acellular dermal matrix as a scaffold: a new promising strategy to accelerate wound healing. Med Hypotheses 2009; 72: 679-682.
– reference: Winter A, Breit S, Parsch D, Benz K, Steck E, Hauner H, et al. Cartilage-like gene expression in differentiated human stem cell spheroids: a comparison of bone marrow-derived and adipose tissue-derived stromal cells. Arthritis Rheum 2003; 48: 418-429.
– reference: Cui L, Yin S, Liu W, Li N, Zhang W, Cao Y. Expanded adipose-derived stem cells suppress mixed lymphocyte reaction by secretion of prostaglandin E2. Tissue Eng 2007; 13: 1185-1195.
– reference: Gnecchi M, Zhang Z, Ni A, Dzau VJ. Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res 2008; 103: 1204-1219.
– reference: Yoshimura K, Suga H, Eto H. Adipose-derived stem/progenitor cells: roles in adipose tissue remodeling and potential use for soft tissue augmentation. Regen Med 2009; 4: 265-273.
– reference: Burke JF, Yannas IV, Quinby WC Jr, Bondoc CC, Jung WK. Successful use of a physiologically acceptable artificial skin in the treatment of extensive burn injury. Ann Surg 1981; 194: 413-428.
– reference: Grayson WL, Zhao F, Bunnell B, Ma T. Hypoxia enhances proliferation and tissue formation of human mesenchymal stem cells. Biochem Biophys Res Commun 2007; 358: 948-953.
– reference: Falanga V. Wound healing and its impairment in the diabetic foot. Lancet 2005; 366: 1736-1743.
– reference: Mimeault M, Hauke R, Batra S. Stem cells: a revolution in therapeutics-recent advances in stem cell biology and their therapeutic applications in regenerative medicine and cancer therapies. Clin Pharmacol Therap 2007; 82: 252-264.
– reference: Diegelmann RF, Evans MC. Wound healing: an overview of acute, fibrotic and delayed healing. Front Biosci 2004; 9: 283-289.
– reference: Mesimäki K, Lindroos B, Tőrnwall J, Mauno J, Lindqvist C, Kontio R, et al. Novel maxillary reconstruction with ectopic bone formation by GMP adipose stem cells. Int J Oral Maxillofac Surg 2009; 38: 201-209.
– reference: Tarte K, Gaillard J, Lataillade J-J, Fouillard L, Becker M, Mossafa H, et al. Clinical-grade production of human mesenchymal stromal cells: occurrence of aneuploidy without transformation. Blood 2010; 115: 1549-1553.
– reference: Garcia-Olmo D, Herreros D, Pascual M, Pascual I, De-La-Quintana P, Trebol J, et al. Treatment of enterocutaneous fistula in Crohn's disease with adipose-derived stem cells: a comparison of protocols with and without cell expansion. Int J Colorectal Dis 2009; 24: 27-30.
– reference: Wiegand C, Schönfelder U, Abel M, Ruth P, Kaatz M, Hipler U-C. Protease and pro-inflammatory cytokine concentrations are elevated in chronic compared to acute wounds and can be modulated by collagen type I in vitro. Arch Dermatol Res 2010; 302: 419-428.
– reference: Guo S, DiPietro LA. Factors affecting wound healing. J Dent Res 2010; 89: 219-229.
– reference: Thangarajah H, Vial IN, Chang E, El-Ftesi S, Januszyk M, Chang EI, et al. IFATS collection: adipose stromal cells adopt a proangiogenic phenotype under the influence of hypoxia. Stem Cells 2009; 27: 266-274.
– reference: Sakaguchi Y, Sekiya I, Yagishita K, Muneta T. Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthritis Rheum 2005; 52: 2521-2529.
– reference: Katz AJ, Tholpady A, Tholpady SS, Shang H, Ogle RC. Cell surface and transcriptional characterization of human adipose-derived adherent stromal (hADAS) cells. Stem Cells 2005; 23: 412-423.
– reference: Pittenger MF, Martin BJ. Mesenchymal stem cells and their potential as cardiac therapeutics. Circ Res 2004; 95: 9-20.
– reference: Menke NB, Ward KR, Witten TM, Bonchev DG, Diegelmann RF. Impaired wound healing. Clin Dermatol 2007; 25: 19-25.
– reference: Sun G, Zhang X, Shen Y-I, Sebastian R, Dickinson LE, Fox-Talbot K, et al. Dextran hydrogel scaffolds enhance angiogenic responses and promote complete skin regeneration during burn wound healing. Proc Natl Acad Sci 2011; 108: 20976-20981.
– reference: Fraser JK, Wulur I, Alfonso Z, Hedrick MH. Fat tissue: an underappreciated source of stem cells for biotechnology. Trends Biotechnol 2006; 24: 150-154.
– reference: Ebrahimian T, Pouzoulet F, Squiban C, Buard V, André M, Cousin B, et al. Cell therapy based on adipose tissue-derived stromal cells promotes physiological and pathological wound healing. Arterioscler Thromb Vasc Biol 2009; 29: 503-510.
– reference: Williams PL, Bannister LH, Berry MM, Collins P, Dyson M, Dussek JE. Gray's anatomy international student edition, 38th ed. Oxford: Churchill Livingstone, 1995.
– reference: Crovetti G, Martinelli G, Issi M, Barone M, Guizzardi M, Campanati B, et al. Platelet gel for healing cutaneous chronic wounds. Transfus Apher Sci 2004; 30: 145-151.
– reference: Boyce ST, Warden GD. Principles and practices for treatment of cutaneous wounds with cultured skin substitutes. Am J Surg 2002; 183: 445-456.
– reference: van der Veen VC, van der Wal M, van Leeuwen MC, Ulrich MM, Middelkoop E. Biological background of dermal substitutes. Burns 2010; 36: 305-321.
– reference: Mustoe TA, O'Shaughnessy K, Kloeters O. Chronic wound pathogenesis and current treatment strategies: a unifying hypothesis. Plast Reconstr Surg 2006; 117: 35s-41s.
– reference: MacNeil S. Progress and opportunities for tissue-engineered skin. Nature 2007; 445: 874-880.
– reference: Van Brunt J, Klausner A. Growth factors speed wound healing. Nat Biotechnol 1988; 6: 25-30.
– reference: Le Blanc K, Ringdén O. Immunomodulation by mesenchymal stem cells and clinical experience. J Intern Med 2007; 262: 509-525.
– reference: Kirana S, Stratmann B, Lammers D, Negrean M, Stirban A, Minartz P, et al. Wound therapy with autologous bone marrow stem cells in diabetic patients with ischaemia-induced tissue ulcers affecting the lower limbs. Int J Clin Pract 2007; 61: 690-694.
– reference: Rubio D, Garcia-Castro J, Martin MC, de la Fuente R, Cigudosa JC, Lloyd AC, et al. Spontaneous human adult stem cell transformation. Cancer Res 2005; 65: 3035-3039.
– reference: Spaeth E, Klopp A, Dembinski J, Andreeff M, Marini F. Inflammation and tumor microenvironments: defining the migratory itinerary of mesenchymal stem cells. Gene Ther 2008; 15: 730-738.
– reference: Barry FP, Murphy JM. Mesenchymal stem cells: clinical applications and biological characterization. Int J Biochem Cell Biol 2004; 36: 568-584.
– reference: Simka M, Majewski E. The social and economic burden of venous leg ulcers-focus on the role of micronized purified flavonoid fraction adjuvant therapy. Am J Clin Dermatol 2003; 4: 573-581.
– reference: Hanson SE, Kleinbeck KR, Cantu D, Kim J, Bentz ML, Faucher LD, et al. Local delivery of allogeneic bone marrow and adipose tissue-derived mesenchymal stromal cells for cutaneous wound healing in a porcine model. J Tissue Eng Regen Med 2013 Feb 18 [Epub ahead of print].
– reference: Lendeckel S, Jödicke A, Christophis P, Heidinger K, Wolff J, Fraser JK, et al. Autologous stem cells (adipose) and fibrin glue used to treat widespread traumatic calvarial defects: case report. J Craniomaxillofac Surg 2004; 32: 370-373.
– reference: Di Rocco G, Gentile A, Antonini A, Ceradini F, Wu JC, Capogrossi MC, et al. (2011) Enhanced healing of diabetic wounds by topical administration of adipose tissue-derived stromal cells overexpressing stromal-derived factor-1: biodistribution and engraftment analysis by bioluminescent imaging. Stem Cells Int 2010 Dec 26: 304562.
– reference: Nie C, Yang D, Xu J, Si Z, Jin X, Zhang J. Locally administered adipose-derived stem cells accelerate wound healing through differentiation and vasculogenesis. Cell Transplant 2011; 20: 205-216.
– reference: Nagai MK, Embil JM. Becaplermin: recombinant platelet derived growth factor, a new treatment for healing diabetic foot ulcers. Expert Opin Biol Ther 2002; 2: 211-218.
– reference: Yoshimura K, Shigeura T, Matsumoto D, Sato T, Takaki Y, Aiba-Kojima E, et al. Characterization of freshly isolated and cultured cells derived from the fatty and fluid portions of liposuction aspirates. J Cell Physiol 2006; 208: 64-76.
– reference: Chung HM, Won CH, Sung JH. Responses of adipose-derived stem cells during hypoxia: enhanced skin-regenerative potential. Expert Opin Biol Ther 2009; 9: 1499-1508.
– reference: Wu Y, Chen L, Scott PG, Tredget EE. Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells 2007; 25: 2648-2659.
– reference: Gronthos S, Franklin DM, Leddy HA, Robey PG, Storms RW, Gimble JM. Surface protein characterization of human adipose tissue-derived stromal cells. J Cell Physiol 2001; 189: 54-63.
– reference: Gonda K, Shigeura T, Sato T, Matsumoto D, Suga H, Inoue K, et al. Preserved proliferative capacity and multipotency of human adipose-derived stem cells after long-term cryopreservation. Plast Reconstr Surg 2008; 121: 401-410.
– reference: Lu F, Mizuno H, Uysal CA, Cai X, Ogawa R, Hyakusoku H. Improved viability of random pattern skin flaps through the use of adipose-derived stem cells. Plast Reconstr Surg 2008; 121: 50-58.
– reference: Procházka V, Gumulec J, Jaluvka F, Salounová D, Jonszta T, Czerny D, et al. Cell therapy, a new standard in management of chronic critical limb ischemia and foot ulcer. Cell Transplant 2010; 19: 1413-1424.
– reference: Braddock M, Campbell CJ, Zuder D. Current therapies for wound healing: electrical stimulation, biological therapeutics, and the potential for gene therapy. Int J Dermatol 1999; 38: 808-817.
– reference: Lindroos B, Suuronen R, Miettinen S. The potential of adipose stem cells in regenerative medicine. Stem Cell Rev Rep 2011; 269-291.
– reference: Schipper BM, Marra KG, Zhang W, Donnenberg AD, Rubin JP. Regional anatomic and age effects on cell function of human adipose-derived stem cells. Ann Plast Surg 2008; 60: 538-544.
– reference: Greenhalgh D, Sprugel K, Murray M, Ross R. PDGF and FGF stimulate wound healing in the genetically diabetic mouse. Am J Pathol 1990; 136: 1235.
– reference: Dietrich J, Imitola J, Kesari S. Mechanisms of disease: the role of stem cells in the biology and treatment of gliomas. Nat Clin Pract Oncol 2008; 5: 393-404.
– reference: Levenberg S, Khademhosseini A, Langer R. Embryonic stem cells in tissue engineering. Methods Tissue Eng 2002; 457.
– reference: Lenk K, Adams V, Lurz P, Erbs S, Linke A, Gielen S, et al. Therapeutical potential of blood-derived progenitor cells in patients with peripheral arterial occlusive disease and critical limb ischaemia. Eur Heart J 2005; 26: 1903-1909.
– reference: Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284: 143-147.
– reference: Aranguren XL, Verfaillie CM, Luttun A. Emerging hurdles in stem cell therapy for peripheral vascular disease. J Mol Med (Berl) 2009; 87: 3-16.
– reference: Constantin G, Marconi S, Rossi B, Angiari S, Calderan L, Anghileri E, et al. Adipose-derived mesenchymal stem cells ameliorate chronic experimental autoimmune encephalomyelitis. Stem Cells 2009; 27: 2624-2635.
– reference: Bianco P, Robey PG. Stem cells in tissue engineering. Nature 2001; 414: 118-121.
– reference: Mathieu D. Handbook of hyperbaric medicine. New York: Springer, 2006: 812.
– reference: Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126: 663-676.
– reference: Beumer GJ, van Blitterswijk CA, Ponec M. Biocompatibility of a biodegradable matrix used as a skin substitute: an in vivo evaluation. J Biomed Mat Res 1994; 28: 545-552.
– reference: Park B-S, Jang KA, Sung J-H, Park J-S, Kwon YH, Kim KJ, et al. Adipose-derived stem cells and their secretory factors as a promising therapy for skin aging. Dermatol Surg 2008; 34: 1323-1326.
– reference: Lu D, Chen B, Liang Z, Deng W, Jiang Y, Li S, et al. Comparison of bone marrow mesenchymal stem cells with bone marrow-derived mononuclear cells for treatment of diabetic critical limb ischemia and foot ulcer: a double-blind, randomized, controlled trial. Diabetes Res Clin Pract 2011; 92: 26-36.
– reference: Trengove NJ, Stacey MC, Macauley S, Bennett N, Gibson J, Burslem F, et al. Analysis of the acute and chronic wound environments: the role of proteases and their inhibitors. Wound Repair Regen 1999; 7: 442-452.
– reference: Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW, et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 2007; 449: 557-563.
– reference: Casteilla L, Planat-Benard V, Laharrague P, Cousin B. Adipose-derived stromal cells: their identity and uses in clinical trials, an update. World J Stem Cells 2011; 3: 25.
– reference: Ebrahimian TG, Pouzoulet F, Squiban C, Buard V, André M, Cousin B, et al. Cell therapy based on adipose tissue-derived stromal cells promotes physiological and pathological wound healing. Arterioscler Thromb Vasc Biol 2009; 29: 503-510.
– reference: Menasche P. Cell-based therapy for heart disease: a clinically oriented perspective. Mol Ther 2009; 17: 758-766.
– reference: Bai X, Yan Y, Song Y-H, Seidensticker M, Rabinovich B, Metzele R, et al. Both cultured and freshly isolated adipose tissue-derived stem cells enhance cardiac function after acute myocardial infarction. Eur Heart J 2010; 31: 489-501.
– reference: Quaglino D Jr, Nanney L, Ditesheim J, Davidson J. Transforming growth factor-beta stimulates wound healing and modulates extracellular matrix gene expression in pig skin: incisional wound model. J Invest Dermatol 1991; 97: 34.
– reference: Vojtassak J, Danisovic L, Kubes M. Autologous bio-graft and mesenchymal stem cells in treatment of the diabetic foot. Neuro Endocrinol Lett 2006; 27 (Suppl. 2): 134-137.
– reference: Yuan F, Lei YH, Fu XB, Sheng ZY, Cai S, Sun TZ. Promotive effect of adipose-derived stem cells on the wound model of human epidermal keratinocytes in vitro. Wai Ke Za Zhi 2008; 46: 1575.
– reference: Lee SH, Lee JH, Cho KH. Effects of human adipose-derived stem cells on cutaneous wound healing in nude mice. Ann Dermatol 2011; 23: 150-155.
– reference: Tsang MW, Wong WK, Hung CS, Lai KM, Tang W, Cheung EY, et al. Human epidermal growth factor enhances healing of diabetic foot ulcers. Diabetes Care 2003; 26: 1856-1861.
– reference: Park I-H, Arora N, Huo H, Maherali N, Ahfeldt T, Shimamura A, et al. Disease-specific induced pluripotent stem cells. Cell 2008; 134: 877-886.
– reference: Huss FR, Nyman E, Gustafson C-J, Gisselfält K, Liljensten E, Kratz G. Characterization of a new degradable polymer scaffold for regeneration of the dermis: in vitro and in vivo human studies. Organogenesis 2008; 4: 195-200.
– reference: Rubina K, Kalinina N, Efimenko A, Lopatina T, Melikhova V, Tsokolaeva Z, et al. Adipose stromal cells stimulate angiogenesis via promoting progenitor cell differentiation, secretion of angiogenic factors, and enhancing vessel maturation. Tissue Eng Part A 2009; 15: 2039-2050.
– reference: Eto H, Suga H, Matsumoto D, Inoue K, Aoi N, Kato H, et al. Characterization of structure and cellular components of aspirated and excised adipose tissue. Plast Reconstr Surg 2009; 124: 1087-1097.
– reference: Blanton MW, Hadad I, Johnstone BH, Mund JA, Rogers PI, Eppley BL, et al. Adipose stromal cells and platelet-rich plasma therapies synergistically increase revascularization during wound healing. Plast Reconstr Surg 2009; 123 (2 Suppl.): 56S-64S.
– reference: Buravkova LB, Grinakovskaia OS, Andreeva EP, Zhambalova AP, Kozionova MP. [Characteristics of human lipoaspirate-isolated mesenchymal stromal cells cultivated under a lower oxygen tension]. Tsitologiia 2009; 51: 5-11.
– reference: Rehman J, Traktuev D, Li J, Merfeld-Clauss S, Temm-Grove CJ, Bovenkerk JE, et al. Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation 2004; 109: 1292-1298.
– reference: Hong SJ, Jia S-X, Xie P, Xu W, Leung KP, Mustoe TA, et al. Topically delivered adipose derived stem cells show an activated-fibroblast phenotype and enhance granulation tissue formation in skin wounds. PLoS ONE 2013; 8: e55640.
– reference: Phillips TJ. Current approaches to venous ulcers and compression. Dermatol Surg 2001; 27: 611-621.
– reference: Wainwright D, Madden M, Luterman A, Hunt J, Monafo W, Heimbach D, et al. Clinical evaluation of an acellular allograft dermal matrix in full-thickness burns. J Burn Care Rehabil 1996; 17: 124-136.
– reference: Lazarus GS, Cooper DM, Knighton DR, Percoraro RE, Rodeheaver G, Robson MC. Definitions and guidelines for assessment of wounds and evaluation of healing. Wound Repair Regen 1994; 2: 165-170.
– reference: Walter M, Liang S, Ghosh S, Hornsby P, Li R. Interleukin 6 secreted from adipose stromal cells promotes migration and invasion of breast cancer cells. Oncogene 2009; 28: 2745-2755.
– reference: Nambu M, Ishihara M, Nakamura S, Mizuno H, Yanagibayashi S, Kanatani Y, et al. Enhanced healing of mitomycin C-treated wounds in rats using inbred adipose tissue-derived stromal cells within an atelocollagen matrix. Wound Repair Regen 2007; 15: 505-510.
– reference: Amos PJ, Kapur SK, Stapor PC, Shang H, Bekiranov S, Khurgel M, et al. Human adipose-derived stromal cells accelerate diabetic wound healing: impact of cell formulation and delivery. Tissue Eng Part A 2010; 16: 1595-1606.
– reference: Mulder GD, Vande Berg JS. Cellular senescence and matrix metalloproteinase activity in chronic wounds: relevance to debridement and new technologies. J Am Podiatr Med Assoc 2002; 92: 34-37.
– reference: Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 2001; 7: 211-228.
– reference: Mast BA, Schultz GS. Interactions of cytokines, growth factors, and proteases in acute and chronic wounds. Wound Repair Regen 1996; 4: 411-420.
– reference: Parker AM, Katz AJ. Adipose-derived stem cells for the regeneration of damaged tissues. Expert Opinion on Biological Therapy 2006; 6: 567-578.
– reference: Gimble JM, Guilak F, Bunnell BA. Clinical and preclinical translation of cell-based therapies using adipose tissue-derived cells. Stem Cell Res Ther 2010; 1: 19.
– reference: Bernardo E, Locatelli F, Fibbe WE. Mesenchymal stromal cells. Ann N Y Acad Sci 2009; 1176: 101-117.
– reference: Yoshimura K, Sato K, Aoi N, Kurita M, Hirohi T, Harii K. Cell-assisted lipotransfer for cosmetic breast augmentation: supportive use of adipose-derived stem/stromal cells. Aesthetic Plast Surg 2008; 32: 48-55.
– reference: Marler JJ, Upton J, Langer R, Vacanti JP. Transplantation of cells in matrices for tissue regeneration. Adv Drug Del Rev 1998; 33: 165-182.
– reference: Barcelos LS, Duplaa C, Kränkel N, Graiani G, Invernici G, Katare R, et al. Human CD133+ progenitor cells promote the healing of diabetic ischemic ulcers by paracrine stimulation of angiogenesis and activation of Wnt signaling. Circ Res 2009; 104: 1095-1102.
– reference: Cai L, Johnstone BH, Cook TG, Tan J, Fishbein MC, Chen PS, et al. IFATS collection: human adipose tissue-derived stem cells induce angiogenesis and nerve sprouting following myocardial infarction, in conjunction with potent preservation of cardiac function. Stem Cells 2009; 27: 230-237.
– reference: Trottier V, Marceau-Fortier G, Germain L, Vincent C, Fradette J. IFATS collection: using human adipose-derived stem/stromal cells for the production of new skin substitutes. Stem Cells 2008; 26: 2713-2723.
– reference: Bianco P, Riminucci M, Gronthos S, Robey PG. Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells 2001; 19: 180-192.
– reference: Xu F, Gomillion C, Maxson S, Burg KJ. In vitro interaction between mouse breast cancer cells and mouse mesenchymal stem cells during adipocyte differentiation. J Tissue Eng Regen Med 2009; 3: 338-347.
– reference: Gohari S, Gambla C, Healey M, Spaulding G, Gordon KB, Swan J, et al. Evaluation of tissue-engineered skin (human skin substitute) and secondary intention healing in the treatment of full thickness wounds after Mohs micrographic or excisional surgery. Dermatol Surg 2002; 28: 1107-1114.
– reference: Anderson DJ, Gage FH, Weissman IL. Can stem cells cross lineage boundaries? Nat Med 2001; 7: 393-395.
– reference: Puissant B, Barreau C, Bourin P, Clavel C, Corre J, Bousquet C, et al. Immunomodulatory effect of human adipose tissue-derived adult stem cells: comparison with bone marrow mesenchymal stem cells. Br J Haematol 2005; 129: 118-129.
– reference: Matoba S, Tatsumi T, Murohara T, Imaizumi T, Katsuda Y, Ito M, et al. Long-term clinical outcome after intramuscular implantation of bone marrow mononuclear cells (Therapeutic Angiogenesis by Cell Transplantation [TACT] trial) in patients with chronic limb ischemia. Am Heart J 2008; 156: 1010-1018.
– reference: Beckrich K, Aronovitch SA. Hospital-acquired pressure ulcers: a comparison of costs in medical versus surgical patients. Nurs Econ 1999; 17: 263-271.
– reference: Musina R, Bekchanova E, Sukhikh G. Comparison of mesenchymal stem cells obtained from different human tissues. Bull Exp Biol Med 2005; 139: 504-509.
– reference: Koenen P, Spanholtz TA, Maegele M, Stürmer E, Brockamp T, Neugebauer E, et al. Acute and chronic wound fluids inversely influence adipose-derived stem cell function: molecular insights into impaired wound healing. Int Wound J 2013 Mar 13 [Epub ahead of print].
– reference: Singer AJ, Dagum AB. Current management of acute cutaneous wounds. N Engl J Med 2008; 359: 1037-1046.
– reference: Kim WS, Park BS, Sung JH. The wound-healing and antioxidant effects of adipose-derived stem cells. Expert Opin Biol Ther 2009; 9: 879-887.
– reference: Vileikyte L. Diabetic foot ulcers: a quality of life issue. Diabetes Metab Res Rev 2001; 17: 246-249.
– reference: Lattari V, Jones LM, Varcelotti JR, Latenser BA, Sherman HF, Barrette RR. The use of a permanent dermal allograft in full-thickness burns of the hand and foot: a report of three cases. J Burn Care Rehabil 1997; 18: 147-155.
– reference: Moustakas A, Heldin CH. Signaling networks guiding epithelial-mesenchymal transitions during embryogenesis and cancer progression. Cancer Sci 2007; 98: 1512-1520.
– reference: Smith AG. Embryo-derived stem cells: of mice and men. Annu Rev Cell Dev Biol 2001; 17: 435-462.
– reference: Gimble JM, Bunnell BA, Chiu ES, Guilak F. Concise review: adipose-derived stromal vascular fraction cells and stem cells: let's not get lost in translation. Stem Cells 2011; 29: 749-754.
– reference: Gimble J, Guilak F. Adipose-derived adult stem cells: isolation, characterization, and differentiation potential. Cytotherapy 2003; 5: 362-369.
– reference: Schreml S, Szeimies R-M, Prantl L, Landthaler M, Babilas P. Wound healing in the 21st century. J Am Acad Dermatol 2010; 63: 866-881.
– reference: Hass R, Kasper C, Bohm S, Jacobs R. Different populations and sources of human mesenchymal stem cells (MSC): a comparison of adult and neonatal tissue-derived MSC. Cell Commun Signal 2011; 9: 12.
– reference: Huang SP, Hsu CC, Chang SC, Wang CH, Deng SC, Dai NT, et al. Adipose-derived stem cells seeded on acellular dermal matrix grafts enhance wound healing in a murine model of a full-thickness defect. Ann Plast Surg 2012; 69: 656-662.
– reference: Altman AM, Yan Y, Matthias N, Bai X, Rios C, Mathur AB, et al. IFATS collection: human adipose-derived stem cells seeded on a silk fibroin-chitosan scaffold enhance wound repair in a murine soft tissue injury model. Stem Cells 2009; 27: 250-258.
– reference: Compton CC, Hickerson W, Nadire K, Press W. Acceleration of skin regeneration from cultured epithelial autografts by transplantation to homograft dermis. J Burn Care Rehabil 1993; 14: 653-662.
– reference: Körbling M, Estrov Z. Adult stem cells for tissue repair-a new therapeutic concept? N Engl J Med 2003; 349: 570-582.
– reference: Butler KL, Goverman J, Ma H, Fischman A, Yu Y-M, Bilodeau M, et al. Stem cells and burns: review and therapeutic implications. J Burn Care Res 2010; 31: 874-881.
– reference: Amos PJ, Bailey AM, Shang H, Katz AJ, Lawrence MB, Peirce SM. Functional binding of human adipose-derived stromal cells: effects of extraction method and hypoxia pretreatment. Ann Plast Surg 2008; 60: 437-444.
– reference: Galiano RD, Tepper OM, Pelo CR, Bhatt KA, Callaghan M, Bastidas N, et al. Topical vascular endothelial growth factor accelerates diabetic wound healing through increased angiogenesis and by mobilizing and recruiting bone marrow-derived cells. Am J Pathol 2004; 164: 1935-1947.
– reference: Kawai K, Suzuki S, Tabata Y, Ikada Y, Nishimura Y. Accelerated tissue regeneration through incorporation of basic fibroblast growth factor-impregnated gelatin microspheres into artificial dermis. Biomaterials 2000; 21: 489-499.
– reference: Uysal AC, Mizuno H, Tobita M, Ogawa R, Hyakusoku H. The effect of adipose-derived stem cells on ischemia-reperfusion injury: immunohistochemical and ultrastructural evaluation. Plast Reconstr Surg 2009; 124: 804-815.
– reference: Cross KJ, Mustoe TA. Growth factors in wound healing. Surg Clin North Am 2003; 83: 531.
– reference: Yoshikawa T, Mitsuno H, Nonaka I, Sen Y, Kawanishi K, Inada Y, et al. Wound therapy by marrow mesenchymal cell transplantation. Plast Reconstr Surg 2008; 121: 860-877.
– volume: 194
  start-page: 413
  year: 1981
  end-page: 428
  article-title: Successful use of a physiologically acceptable artificial skin in the treatment of extensive burn injury
  publication-title: Ann Surg
– volume: 8
  start-page: e55640
  year: 2013
  article-title: Topically delivered adipose derived stem cells show an activated‐fibroblast phenotype and enhance granulation tissue formation in skin wounds
  publication-title: PLoS ONE
– volume: 13
  start-page: 1185
  year: 2007
  end-page: 1195
  article-title: Expanded adipose‐derived stem cells suppress mixed lymphocyte reaction by secretion of prostaglandin E2
  publication-title: Tissue Eng
– volume: 26
  start-page: 507
  year: 2009
  end-page: 523
  article-title: Extracellular matrix biomaterials for soft tissue repair
  publication-title: Clin Podiatr Med Surg
– start-page: 812
  year: 2006
– volume: 122
  start-page: 1352
  year: 2008
  end-page: 1360
  article-title: Proliferation‐promoting effect of platelet‐rich plasma on human adipose‐derived stem cells and human dermal fibroblasts
  publication-title: Plast Reconstr Surg
– volume: 15
  start-page: 505
  year: 2007
  end-page: 510
  article-title: Enhanced healing of mitomycin C‐treated wounds in rats using inbred adipose tissue‐derived stromal cells within an atelocollagen matrix
  publication-title: Wound Repair Regen
– volume: 107
  start-page: 929
  year: 2003
  end-page: 934
  article-title: Stem cell therapy in perspective
  publication-title: Circulation
– volume: 34
  start-page: 1323
  year: 2008
  end-page: 1326
  article-title: Adipose‐derived stem cells and their secretory factors as a promising therapy for skin aging
  publication-title: Dermatol Surg
– volume: 358
  start-page: 948
  year: 2007
  end-page: 953
  article-title: Hypoxia enhances proliferation and tissue formation of human mesenchymal stem cells
  publication-title: Biochem Biophys Res Commun
– volume: 28
  start-page: 1107
  year: 2002
  end-page: 1114
  article-title: Evaluation of tissue‐engineered skin (human skin substitute) and secondary intention healing in the treatment of full thickness wounds after Mohs micrographic or excisional surgery
  publication-title: Dermatol Surg
– volume: 25
  start-page: 750
  year: 2007
  end-page: 760
  article-title: Identification of common pathways mediating differentiation of bone marrow‐and adipose tissue‐derived human mesenchymal stem cells into three mesenchymal lineages
  publication-title: Stem Cells
– volume: 18
  start-page: 147
  year: 1997
  end-page: 155
  article-title: The use of a permanent dermal allograft in full‐thickness burns of the hand and foot: a report of three cases
  publication-title: J Burn Care Rehabil
– volume: 32
  start-page: 48
  year: 2008
  end-page: 55
  article-title: Cell‐assisted lipotransfer for cosmetic breast augmentation: supportive use of adipose‐derived stem/stromal cells
  publication-title: Aesthetic Plast Surg
– volume: 63
  start-page: 866
  year: 2010
  end-page: 881
  article-title: Wound healing in the 21st century
  publication-title: J Am Acad Dermatol
– volume: 4
  start-page: 411
  year: 1996
  end-page: 420
  article-title: Interactions of cytokines, growth factors, and proteases in acute and chronic wounds
  publication-title: Wound Repair Regen
– volume: 117
  start-page: 35s
  year: 2006
  end-page: 41s
  article-title: Chronic wound pathogenesis and current treatment strategies: a unifying hypothesis
  publication-title: Plast Reconstr Surg
– volume: 7
  start-page: 393
  year: 2001
  end-page: 395
  article-title: Can stem cells cross lineage boundaries?
  publication-title: Nat Med
– volume: 83
  start-page: 835
  year: 2003
  end-page: 870
  article-title: Regulation of wound healing by growth factors and cytokines
  publication-title: Physiol Rev
– volume: 349
  start-page: 570
  year: 2003
  end-page: 582
  article-title: Adult stem cells for tissue repair—a new therapeutic concept?
  publication-title: N Engl J Med
– start-page: 269
  year: 2011
  end-page: 291
  article-title: The potential of adipose stem cells in regenerative medicine
  publication-title: Stem Cell Rev Rep
– volume: 9
  start-page: 283
  year: 2004
  end-page: 289
  article-title: Wound healing: an overview of acute, fibrotic and delayed healing
  publication-title: Front Biosci
– volume: 5
  start-page: 362
  year: 2003
  end-page: 369
  article-title: Adipose‐derived adult stem cells: isolation, characterization, and differentiation potential
  publication-title: Cytotherapy
– start-page: 304562
  year: 2011
  article-title: Enhanced healing of diabetic wounds by topical administration of adipose tissue‐derived stromal cells overexpressing stromal‐derived factor‐1: biodistribution and engraftment analysis by bioluminescent imaging
  publication-title: Stem Cells Int
– volume: 3
  start-page: 179
  year: 2002
  end-page: 195
  article-title: Management of acute and chronic open wounds: the importance of moist environment in optimal wound healing
  publication-title: Curr Pharm Biotechnol
– volume: 19
  start-page: 1413
  year: 2010
  end-page: 1424
  article-title: Cell therapy, a new standard in management of chronic critical limb ischemia and foot ulcer
  publication-title: Cell Transplant
– volume: 87
  start-page: 3
  year: 2009
  end-page: 16
  article-title: Emerging hurdles in stem cell therapy for peripheral vascular disease
  publication-title: J Mol Med (Berl)
– volume: 15
  start-page: 730
  year: 2008
  end-page: 738
  article-title: Inflammation and tumor microenvironments: defining the migratory itinerary of mesenchymal stem cells
  publication-title: Gene Ther
– volume: 449
  start-page: 557
  year: 2007
  end-page: 563
  article-title: Mesenchymal stem cells within tumour stroma promote breast cancer metastasis
  publication-title: Nature
– volume: 4
  start-page: 11
  year: 2004
  end-page: 13
  article-title: Advanced treatments for non‐healing chronic wounds
  publication-title: EWMA J
– volume: 23
  start-page: 150
  year: 2011
  end-page: 155
  article-title: Effects of human adipose‐derived stem cells on cutaneous wound healing in nude mice
  publication-title: Ann Dermatol
– volume: 83
  start-page: 531
  year: 2003
  article-title: Growth factors in wound healing
  publication-title: Surg Clin North Am
– volume: 189
  start-page: 54
  year: 2001
  end-page: 63
  article-title: Surface protein characterization of human adipose tissue‐derived stromal cells
  publication-title: J Cell Physiol
– volume: 28
  start-page: 321
  year: 2004
  end-page: 326
  article-title: Aging and wound healing
  publication-title: World J Surg
– volume: 23
  start-page: 412
  year: 2005
  end-page: 423
  article-title: Cell surface and transcriptional characterization of human adipose‐derived adherent stromal (hADAS) cells
  publication-title: Stem Cells
– volume: 24
  start-page: 150
  year: 2006
  end-page: 154
  article-title: Fat tissue: an underappreciated source of stem cells for biotechnology
  publication-title: Trends Biotechnol
– volume: 17
  start-page: 246
  year: 2001
  end-page: 249
  article-title: Diabetic foot ulcers: a quality of life issue
  publication-title: Diabetes Metab Res Rev
– volume: 17
  start-page: 263
  year: 1999
  end-page: 271
  article-title: Hospital‐acquired pressure ulcers: a comparison of costs in medical surgical patients
  publication-title: Nurs Econ
– volume: 48
  start-page: 15
  year: 2007
  end-page: 24
  article-title: Wound healing effect of adipose‐derived stem cells: a critical role of secretory factors on human dermal fibroblasts
  publication-title: J Dermatol Sci
– volume: 61
  start-page: 690
  year: 2007
  end-page: 694
  article-title: Wound therapy with autologous bone marrow stem cells in diabetic patients with ischaemia‐induced tissue ulcers affecting the lower limbs
  publication-title: Int J Clin Pract
– volume: 7
  start-page: 1
  year: 2009
  end-page: 9
  article-title: Non‐expanded adipose stromal vascular fraction cell therapy for multiple sclerosis
  publication-title: J Transl Med
– volume: 7
  start-page: 211
  year: 2001
  end-page: 228
  article-title: Multilineage cells from human adipose tissue: implications for cell‐based therapies
  publication-title: Tissue Eng
– volume: 3
  start-page: 25
  year: 2011
  article-title: Adipose‐derived stromal cells: their identity and uses in clinical trials, an update
  publication-title: World J Stem Cells
– volume: 284
  start-page: 143
  year: 1999
  end-page: 147
  article-title: Multilineage potential of adult human mesenchymal stem cells
  publication-title: Science
– volume: 4
  start-page: 195
  year: 2008
  end-page: 200
  article-title: Characterization of a new degradable polymer scaffold for regeneration of the dermis: in vitro and in vivo human studies
  publication-title: Organogenesis
– volume: 26
  start-page: 2713
  year: 2008
  end-page: 2723
  article-title: IFATS collection: using human adipose‐derived stem/stromal cells for the production of new skin substitutes
  publication-title: Stem Cells
– volume: 69
  start-page: 656
  year: 2012
  end-page: 662
  article-title: Adipose‐derived stem cells seeded on acellular dermal matrix grafts enhance wound healing in a murine model of a full‐thickness defect
  publication-title: Ann Plast Surg
– volume: 124
  start-page: 804
  year: 2009
  end-page: 815
  article-title: The effect of adipose‐derived stem cells on ischemia‐reperfusion injury: immunohistochemical and ultrastructural evaluation
  publication-title: Plast Reconstr Surg
– volume: 126
  start-page: 663
  year: 2006
  end-page: 676
  article-title: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors
  publication-title: Cell
– volume: 2
  start-page: 211
  year: 2002
  end-page: 218
  article-title: Becaplermin: recombinant platelet derived growth factor, a new treatment for healing diabetic foot ulcers
  publication-title: Expert Opin Biol Ther
– volume: 295
  start-page: 1009
  year: 2002
  article-title: Tissue engineering—current challenges and expanding opportunities
  publication-title: Science
– volume: 121
  start-page: 860
  year: 2008
  end-page: 877
  article-title: Wound therapy by marrow mesenchymal cell transplantation
  publication-title: Plast Reconstr Surg
– volume: 65
  start-page: 3035
  year: 2005
  end-page: 3039
  article-title: Spontaneous human adult stem cell transformation
  publication-title: Cancer Res
– volume: 66
  start-page: 98
  year: 2012
  end-page: 107
  article-title: Genetic modification of human adipose‐derived stem cells for promoting wound healing
  publication-title: J Dermatol Sci
– volume: 124
  start-page: 1087
  year: 2009
  end-page: 1097
  article-title: Characterization of structure and cellular components of aspirated and excised adipose tissue
  publication-title: Plast Reconstr Surg
– volume: 24
  start-page: 1294
  year: 2006
  end-page: 1301
  article-title: Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue
  publication-title: Stem Cells
– volume: 27
  start-page: 250
  year: 2009
  end-page: 258
  article-title: IFATS collection: human adipose‐derived stem cells seeded on a silk fibroin‐chitosan scaffold enhance wound repair in a murine soft tissue injury model
  publication-title: Stem Cells
– volume: 27
  start-page: 230
  year: 2009
  end-page: 237
  article-title: IFATS collection: human adipose tissue‐derived stem cells induce angiogenesis and nerve sprouting following myocardial infarction, in conjunction with potent preservation of cardiac function
  publication-title: Stem Cells
– volume: 97
  start-page: 34
  year: 1991
  article-title: Transforming growth factor‐beta stimulates wound healing and modulates extracellular matrix gene expression in pig skin: incisional wound model
  publication-title: J Invest Dermatol
– volume: 16
  start-page: 1595
  year: 2010
  end-page: 1606
  article-title: Human adipose‐derived stromal cells accelerate diabetic wound healing: impact of cell formulation and delivery
  publication-title: Tissue Eng Part A
– volume: 4
  start-page: 573
  year: 2003
  end-page: 581
  article-title: The social and economic burden of venous leg ulcers—focus on the role of micronized purified flavonoid fraction adjuvant therapy
  publication-title: Am J Clin Dermatol
– volume: 24
  start-page: 27
  year: 2009
  end-page: 30
  article-title: Treatment of enterocutaneous fistula in Crohn's disease with adipose‐derived stem cells: a comparison of protocols with and without cell expansion
  publication-title: Int J Colorectal Dis
– volume: 104
  start-page: 1095
  year: 2009
  end-page: 1102
  article-title: Human CD133+ progenitor cells promote the healing of diabetic ischemic ulcers by paracrine stimulation of angiogenesis and activation of Wnt signaling
  publication-title: Circ Res
– volume: 92
  start-page: 26
  year: 2011
  end-page: 36
  article-title: Comparison of bone marrow mesenchymal stem cells with bone marrow‐derived mononuclear cells for treatment of diabetic critical limb ischemia and foot ulcer: a double‐blind, randomized, controlled trial
  publication-title: Diabetes Res Clin Pract
– volume: 60
  start-page: 437
  year: 2008
  end-page: 444
  article-title: Functional binding of human adipose‐derived stromal cells: effects of extraction method and hypoxia pretreatment
  publication-title: Ann Plast Surg
– volume: 27
  start-page: 2624
  year: 2009
  end-page: 2635
  article-title: Adipose‐derived mesenchymal stem cells ameliorate chronic experimental autoimmune encephalomyelitis
  publication-title: Stem Cells
– volume: 27
  start-page: 266
  year: 2009
  end-page: 274
  article-title: IFATS collection: adipose stromal cells adopt a proangiogenic phenotype under the influence of hypoxia
  publication-title: Stem Cells
– volume: 134
  start-page: 877
  year: 2008
  end-page: 886
  article-title: Disease‐specific induced pluripotent stem cells
  publication-title: Cell
– volume: 36
  start-page: 305
  year: 2010
  end-page: 321
  article-title: Biological background of dermal substitutes
  publication-title: Burns
– start-page: 47
  year: 1993
  end-page: 54
– volume: 46
  start-page: 1575
  year: 2008
  article-title: Promotive effect of adipose‐derived stem cells on the wound model of human epidermal keratinocytes in vitro
  publication-title: Wai Ke Za Zhi
– volume: 121
  start-page: 401
  year: 2008
  end-page: 410
  article-title: Preserved proliferative capacity and multipotency of human adipose‐derived stem cells after long‐term cryopreservation
  publication-title: Plast Reconstr Surg
– volume: 445
  start-page: 874
  year: 2007
  end-page: 880
  article-title: Progress and opportunities for tissue‐engineered skin
  publication-title: Nature
– volume: 9
  start-page: 12
  year: 2011
  article-title: Different populations and sources of human mesenchymal stem cells (MSC): a comparison of adult and neonatal tissue‐derived MSC
  publication-title: Cell Commun Signal
– volume: 6
  start-page: 567
  year: 2006
  end-page: 578
  article-title: Adipose‐derived stem cells for the regeneration of damaged tissues
  publication-title: Expert Opinion on Biological Therapy
– volume: 32
  start-page: 370
  year: 2004
  end-page: 373
  article-title: Autologous stem cells (adipose) and fibrin glue used to treat widespread traumatic calvarial defects: case report
  publication-title: J Craniomaxillofac Surg
– volume: 9
  start-page: 1499
  year: 2009
  end-page: 1508
  article-title: Responses of adipose‐derived stem cells during hypoxia: enhanced skin‐regenerative potential
  publication-title: Expert Opin Biol Ther
– volume: 5
  start-page: 393
  year: 2008
  end-page: 404
  article-title: Mechanisms of disease: the role of stem cells in the biology and treatment of gliomas
  publication-title: Nat Clin Pract Oncol
– volume: 26
  start-page: 1856
  year: 2003
  end-page: 1861
  article-title: Human epidermal growth factor enhances healing of diabetic foot ulcers
  publication-title: Diabetes Care
– year: 1995
– volume: 62
  start-page: 317
  year: 2009
  end-page: 321
  article-title: Accelerated wound healing in healing‐impaired db/db mice by autologous adipose tissue‐derived stromal cells combined with atelocollagen matrix
  publication-title: Ann Plast Surg
– volume: 17
  start-page: 758
  year: 2009
  end-page: 766
  article-title: Cell‐based therapy for heart disease: a clinically oriented perspective
  publication-title: Mol Ther
– volume: 139
  start-page: 504
  year: 2005
  end-page: 509
  article-title: Comparison of mesenchymal stem cells obtained from different human tissues
  publication-title: Bull Exp Biol Med
– volume: 17
  start-page: 124
  year: 1996
  end-page: 136
  article-title: Clinical evaluation of an acellular allograft dermal matrix in full‐thickness burns
  publication-title: J Burn Care Rehabil
– volume: 28
  start-page: 2745
  year: 2009
  end-page: 2755
  article-title: Interleukin 6 secreted from adipose stromal cells promotes migration and invasion of breast cancer cells
  publication-title: Oncogene
– volume: 262
  start-page: 509
  year: 2007
  end-page: 525
  article-title: Immunomodulation by mesenchymal stem cells and clinical experience
  publication-title: J Intern Med
– volume: 4
  start-page: 265
  year: 2009
  end-page: 273
  article-title: Adipose‐derived stem/progenitor cells: roles in adipose tissue remodeling and potential use for soft tissue augmentation
  publication-title: Regen Med
– volume: 359
  start-page: 1037
  year: 2008
  end-page: 1046
  article-title: Current management of acute cutaneous wounds
  publication-title: N Engl J Med
– volume: 208
  start-page: 64
  year: 2006
  end-page: 76
  article-title: Characterization of freshly isolated and cultured cells derived from the fatty and fluid portions of liposuction aspirates
  publication-title: J Cell Physiol
– volume: 60
  start-page: 538
  year: 2008
  end-page: 544
  article-title: Regional anatomic and age effects on cell function of human adipose‐derived stem cells
  publication-title: Ann Plast Surg
– volume: 53
  start-page: 96
  year: 2009
  end-page: 102
  article-title: Antiwrinkle effect of adipose‐derived stem cell: activation of dermal fibroblast by secretory factors
  publication-title: J Dermatol Sci
– volume: 30
  start-page: 78
  year: 2010
  end-page: 81
  article-title: Cell‐assisted lipotransfer
  publication-title: Aesthet Surg J
– volume: 89
  start-page: 219
  year: 2010
  end-page: 229
  article-title: Factors affecting wound healing
  publication-title: J Dent Res
– volume: 27
  start-page: 611
  year: 2001
  end-page: 621
  article-title: Current approaches to venous ulcers and compression
  publication-title: Dermatol Surg
– volume: 1
  start-page: 19
  year: 2010
  article-title: Clinical and preclinical translation of cell‐based therapies using adipose tissue‐derived cells
  publication-title: Stem Cell Res Ther
– volume: 38
  start-page: 808
  year: 1999
  end-page: 817
  article-title: Current therapies for wound healing: electrical stimulation, biological therapeutics, and the potential for gene therapy
  publication-title: Int J Dermatol
– volume: 22
  start-page: 1276
  year: 2008
  end-page: 1312
  article-title: Role of platelet‐derived growth factors in physiology and medicine
  publication-title: Genes Dev
– volume: 26
  start-page: 1903
  year: 2005
  end-page: 1909
  article-title: Therapeutical potential of blood‐derived progenitor cells in patients with peripheral arterial occlusive disease and critical limb ischaemia
  publication-title: Eur Heart J
– volume: 31
  start-page: 874
  year: 2010
  end-page: 881
  article-title: Stem cells and burns: review and therapeutic implications
  publication-title: J Burn Care Res
– volume: 29
  start-page: 503
  year: 2009
  end-page: 510
  article-title: Cell therapy based on adipose tissue‐derived stromal cells promotes physiological and pathological wound healing
  publication-title: Arterioscler Thromb Vasc Biol
– volume: 98
  start-page: 1512
  year: 2007
  end-page: 1520
  article-title: Signaling networks guiding epithelial–mesenchymal transitions during embryogenesis and cancer progression
  publication-title: Cancer Sci
– volume: 414
  start-page: 118
  year: 2001
  end-page: 121
  article-title: Stem cells in tissue engineering
  publication-title: Nature
– volume: 48
  start-page: 418
  year: 2003
  end-page: 429
  article-title: Cartilage‐like gene expression in differentiated human stem cell spheroids: a comparison of bone marrow‐derived and adipose tissue‐derived stromal cells
  publication-title: Arthritis Rheum
– volume: 103
  start-page: 1204
  year: 2008
  end-page: 1219
  article-title: Paracrine mechanisms in adult stem cell signaling and therapy
  publication-title: Circ Res
– volume: 33
  start-page: 165
  year: 1998
  end-page: 182
  article-title: Transplantation of cells in matrices for tissue regeneration
  publication-title: Adv Drug Del Rev
– volume: 38
  start-page: 201
  year: 2009
  end-page: 209
  article-title: Novel maxillary reconstruction with ectopic bone formation by GMP adipose stem cells
  publication-title: Int J Oral Maxillofac Surg
– volume: 92
  start-page: 34
  year: 2002
  end-page: 37
  article-title: Cellular senescence and matrix metalloproteinase activity in chronic wounds: relevance to debridement and new technologies
  publication-title: J Am Podiatr Med Assoc
– volume: 51
  start-page: 5
  year: 2009
  end-page: 11
  article-title: [Characteristics of human lipoaspirate‐isolated mesenchymal stromal cells cultivated under a lower oxygen tension]
  publication-title: Tsitologiia
– volume: 109
  start-page: 1292
  year: 2004
  end-page: 1298
  article-title: Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells
  publication-title: Circulation
– volume: 123
  start-page: 56S
  issue: 2 Suppl.
  year: 2009
  end-page: 64S
  article-title: Adipose stromal cells and platelet‐rich plasma therapies synergistically increase revascularization during wound healing
  publication-title: Plast Reconstr Surg
– volume: 129
  start-page: 118
  year: 2005
  end-page: 129
  article-title: Immunomodulatory effect of human adipose tissue‐derived adult stem cells: comparison with bone marrow mesenchymal stem cells
  publication-title: Br J Haematol
– volume: 302
  start-page: 419
  year: 2010
  end-page: 428
  article-title: Protease and pro‐inflammatory cytokine concentrations are elevated in chronic compared to acute wounds and can be modulated by collagen type I in vitro
  publication-title: Arch Dermatol Res
– volume: 14
  start-page: 653
  year: 1993
  end-page: 662
  article-title: Acceleration of skin regeneration from cultured epithelial autografts by transplantation to homograft dermis
  publication-title: J Burn Care Rehabil
– volume: 31
  start-page: 489
  year: 2010
  end-page: 501
  article-title: Both cultured and freshly isolated adipose tissue‐derived stem cells enhance cardiac function after acute myocardial infarction
  publication-title: Eur Heart J
– volume: 7
  start-page: 442
  year: 1999
  end-page: 452
  article-title: Analysis of the acute and chronic wound environments: the role of proteases and their inhibitors
  publication-title: Wound Repair Regen
– volume: 25
  start-page: 2648
  year: 2007
  end-page: 2659
  article-title: Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis
  publication-title: Stem Cells
– volume: 9
  start-page: 879
  year: 2009
  end-page: 887
  article-title: The wound‐healing and antioxidant effects of adipose‐derived stem cells
  publication-title: Expert Opin Biol Ther
– volume: 30
  start-page: 145
  year: 2004
  end-page: 151
  article-title: Platelet gel for healing cutaneous chronic wounds
  publication-title: Transfus Apher Sci
– volume: 136
  start-page: 1235
  year: 1990
  article-title: PDGF and FGF stimulate wound healing in the genetically diabetic mouse
  publication-title: Am J Pathol
– volume: 366
  start-page: 1736
  year: 2005
  end-page: 1743
  article-title: Wound healing and its impairment in the diabetic foot
  publication-title: Lancet
– volume: 360
  start-page: 427
  year: 2002
  end-page: 435
  article-title: Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone‐marrow cells: a pilot study and a randomised controlled trial
  publication-title: Lancet
– start-page: 457
  year: 2002
  article-title: Embryonic stem cells in tissue engineering
  publication-title: Methods Tissue Eng
– volume: 115
  start-page: 1549
  year: 2010
  end-page: 1553
  article-title: Clinical‐grade production of human mesenchymal stromal cells: occurrence of aneuploidy without transformation
  publication-title: Blood
– volume: 121
  start-page: 50
  year: 2008
  end-page: 58
  article-title: Improved viability of random pattern skin flaps through the use of adipose‐derived stem cells
  publication-title: Plast Reconstr Surg
– volume: 95
  start-page: 9
  year: 2004
  end-page: 20
  article-title: Mesenchymal stem cells and their potential as cardiac therapeutics
  publication-title: Circ Res
– volume: 25
  start-page: 19
  year: 2007
  end-page: 25
  article-title: Impaired wound healing
  publication-title: Clin Dermatol
– volume: 52
  start-page: 2521
  year: 2005
  end-page: 2529
  article-title: Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source
  publication-title: Arthritis Rheum
– volume: 28
  start-page: 545
  year: 1994
  end-page: 552
  article-title: Biocompatibility of a biodegradable matrix used as a skin substitute: an in vivo evaluation
  publication-title: J Biomed Mat Res
– volume: 35
  start-page: 2615
  year: 2007
  end-page: 2623
  article-title: Longitudinal assessment of Integra in primary burn management: a randomized pediatric clinical trial
  publication-title: Crit Care Med
– volume: 156
  start-page: 1010
  year: 2008
  end-page: 1018
  article-title: Long‐term clinical outcome after intramuscular implantation of bone marrow mononuclear cells (Therapeutic Angiogenesis by Cell Transplantation [TACT] trial) in patients with chronic limb ischemia
  publication-title: Am Heart J
– volume: 15
  start-page: 2039
  year: 2009
  end-page: 2050
  article-title: Adipose stromal cells stimulate angiogenesis via promoting progenitor cell differentiation, secretion of angiogenic factors, and enhancing vessel maturation
  publication-title: Tissue Eng Part A
– volume: 17
  start-page: 435
  year: 2001
  end-page: 462
  article-title: Embryo‐derived stem cells: of mice and men
  publication-title: Annu Rev Cell Dev Biol
– volume: 108
  start-page: 20976
  year: 2011
  end-page: 20981
  article-title: Dextran hydrogel scaffolds enhance angiogenic responses and promote complete skin regeneration during burn wound healing
  publication-title: Proc Natl Acad Sci
– volume: 6
  start-page: 25
  year: 1988
  end-page: 30
  article-title: Growth factors speed wound healing
  publication-title: Nat Biotechnol
– year: 2013
  article-title: Local delivery of allogeneic bone marrow and adipose tissue‐derived mesenchymal stromal cells for cutaneous wound healing in a porcine model
  publication-title: J Tissue Eng Regen Med
– volume: 2
  start-page: 165
  year: 1994
  end-page: 170
  article-title: Definitions and guidelines for assessment of wounds and evaluation of healing
  publication-title: Wound Repair Regen
– year: 2013
  article-title: Acute and chronic wound fluids inversely influence adipose‐derived stem cell function: molecular insights into impaired wound healing
  publication-title: Int Wound J
– volume: 1176
  start-page: 101
  year: 2009
  end-page: 117
  article-title: Mesenchymal stromal cells
  publication-title: Ann N Y Acad Sci
– volume: 20
  start-page: 205
  year: 2011
  end-page: 216
  article-title: Locally administered adipose‐derived stem cells accelerate wound healing through differentiation and vasculogenesis
  publication-title: Cell Transplant
– volume: 3
  start-page: 338
  year: 2009
  end-page: 347
  article-title: In vitro interaction between mouse breast cancer cells and mouse mesenchymal stem cells during adipocyte differentiation
  publication-title: J Tissue Eng Regen Med
– volume: 164
  start-page: 1935
  year: 2004
  end-page: 1947
  article-title: Topical vascular endothelial growth factor accelerates diabetic wound healing through increased angiogenesis and by mobilizing and recruiting bone marrow‐derived cells
  publication-title: Am J Pathol
– volume: 19
  start-page: 180
  year: 2001
  end-page: 192
  article-title: Bone marrow stromal stem cells: nature, biology, and potential applications
  publication-title: Stem Cells
– volume: 36
  start-page: 568
  year: 2004
  end-page: 584
  article-title: Mesenchymal stem cells: clinical applications and biological characterization
  publication-title: Int J Biochem Cell Biol
– volume: 21
  start-page: 489
  year: 2000
  end-page: 499
  article-title: Accelerated tissue regeneration through incorporation of basic fibroblast growth factor‐impregnated gelatin microspheres into artificial dermis
  publication-title: Biomaterials
– volume: 17
  start-page: 540
  year: 2009
  end-page: 547
  article-title: Hypoxia‐enhanced wound‐healing function of adipose‐derived stem cells: increase in stem cell proliferation and up‐regulation of VEGF and bFGF
  publication-title: Wound Repair Regen
– volume: 82
  start-page: 252
  year: 2007
  end-page: 264
  article-title: Stem cells: a revolution in therapeutics—recent advances in stem cell biology and their therapeutic applications in regenerative medicine and cancer therapies
  publication-title: Clin Pharmacol Therap
– volume: 29
  start-page: 749
  year: 2011
  end-page: 754
  article-title: Concise review: adipose‐derived stromal vascular fraction cells and stem cells: let's not get lost in translation
  publication-title: Stem Cells
– volume: 183
  start-page: 445
  year: 2002
  end-page: 456
  article-title: Principles and practices for treatment of cutaneous wounds with cultured skin substitutes
  publication-title: Am J Surg
– volume: 72
  start-page: 679
  year: 2009
  end-page: 682
  article-title: Local delivery of adipose‐derived stem cells via acellular dermal matrix as a scaffold: a new promising strategy to accelerate wound healing
  publication-title: Med Hypotheses
– volume: 27
  start-page: 134
  issue: Suppl. 2
  year: 2006
  end-page: 137
  article-title: Autologous bio‐graft and mesenchymal stem cells in treatment of the diabetic foot
  publication-title: Neuro Endocrinol Lett
– ident: e_1_2_15_121_1
  doi: 10.1111/j.1524-475X.2009.00499.x
– ident: e_1_2_15_70_1
  doi: 10.1016/j.jdermsci.2007.05.018
– ident: e_1_2_15_53_1
  doi: 10.1002/jbm.820280504
– ident: e_1_2_15_73_1
  doi: 10.1371/journal.pone.0055640
– ident: e_1_2_15_68_1
  doi: 10.1097/SAP.0b013e3181723bbe
– ident: e_1_2_15_117_1
  doi: 10.1016/j.jdermsci.2012.02.010
– ident: e_1_2_15_25_1
  doi: 10.1016/j.cell.2006.07.024
– ident: e_1_2_15_145_1
  doi: 10.1111/j.1349-7006.2007.00550.x
– ident: e_1_2_15_109_1
  doi: 10.1097/01.prs.0000293876.10700.b8
– volume: 4
  start-page: 11
  year: 2004
  ident: e_1_2_15_13_1
  article-title: Advanced treatments for non‐healing chronic wounds
  publication-title: EWMA J
– ident: e_1_2_15_45_1
  doi: 10.1097/00004630-199311000-00010
– ident: e_1_2_15_72_1
  doi: 10.1016/j.mehy.2008.10.033
– ident: e_1_2_15_54_1
  doi: 10.1097/01.CCM.0000285991.36698.E2
– ident: e_1_2_15_144_1
  doi: 10.1002/stem.194
– ident: e_1_2_15_104_1
  doi: 10.1097/SAP.0b013e31817f01b6
– ident: e_1_2_15_110_1
  doi: 10.1089/ten.tea.2009.0616
– ident: e_1_2_15_88_1
  doi: 10.1186/1479-5876-7-29
– ident: e_1_2_15_140_1
  doi: 10.1016/S0140-6736(02)09670-8
– ident: e_1_2_15_100_1
  doi: 10.1016/S0002-9440(10)63754-6
– ident: e_1_2_15_33_1
  doi: 10.1634/stemcells.2006-0394
– ident: e_1_2_15_66_1
  doi: 10.1097/PRS.0b013e3181882046
– ident: e_1_2_15_108_1
  doi: 10.1111/j.1524-475X.2007.00258.x
– ident: e_1_2_15_84_1
  doi: 10.1002/jcp.20636
– ident: e_1_2_15_43_1
  doi: 10.4161/org.4.3.6499
– ident: e_1_2_15_40_1
  doi: 10.1007/1-4020-4448-8
– ident: e_1_2_15_148_1
  doi: 10.1038/gt.2008.39
– ident: e_1_2_15_48_1
  doi: 10.1016/S0142-9612(99)00207-0
– ident: e_1_2_15_5_1
  doi: 10.1002/dmrr.216
– ident: e_1_2_15_127_1
  doi: 10.1634/stemcells.2008-0276
– ident: e_1_2_15_93_1
  doi: 10.1080/14653240310003026
– volume: 51
  start-page: 5
  year: 2009
  ident: e_1_2_15_124_1
  article-title: [Characteristics of human lipoaspirate‐isolated mesenchymal stromal cells cultivated under a lower oxygen tension]
  publication-title: Tsitologiia
– ident: e_1_2_15_82_1
  doi: 10.1111/j.1749-6632.2009.04607.x
– ident: e_1_2_15_120_1
  doi: 10.1634/stemcells.2007-0226
– start-page: 457
  year: 2002
  ident: e_1_2_15_23_1
  article-title: Embryonic stem cells in tissue engineering
  publication-title: Methods Tissue Eng
– ident: e_1_2_15_31_1
  doi: 10.1634/stemcells.2004-0021
– ident: e_1_2_15_4_1
  doi: 10.1046/j.1524-475X.1994.20305.x
– ident: e_1_2_15_134_1
  doi: 10.1046/j.1524-475X.1996.40404.x
– ident: e_1_2_15_28_1
  doi: 10.1007/s10517-005-0331-1
– ident: e_1_2_15_94_1
  doi: 10.1634/stemcells.2005-0342
– ident: e_1_2_15_139_1
  doi: 10.1038/mt.2009.40
– ident: e_1_2_15_112_1
  doi: 10.1097/PRS.0b013e3181b17bb4
– ident: e_1_2_15_26_1
  doi: 10.1016/j.cell.2008.07.041
– ident: e_1_2_15_59_1
  doi: 10.1111/j.1742-1241.2007.01303.x
– ident: e_1_2_15_75_1
  doi: 10.1111/j.1365-2141.2005.05409.x
– ident: e_1_2_15_81_1
  doi: 10.2217/17460751.4.2.265
– ident: e_1_2_15_96_1
  doi: 10.1111/j.1524-4725.2008.34283.x
– volume: 97
  start-page: 34
  year: 1991
  ident: e_1_2_15_102_1
  article-title: Transforming growth factor‐beta stimulates wound healing and modulates extracellular matrix gene expression in pig skin: incisional wound model
  publication-title: J Invest Dermatol
– ident: e_1_2_15_38_1
  doi: 10.7547/87507315-92-1-34
– ident: e_1_2_15_99_1
  doi: 10.1016/S0039-6109(02)00202-5
– ident: e_1_2_15_32_1
  doi: 10.1002/art.10767
– ident: e_1_2_15_71_1
  doi: 10.1016/j.burns.2009.07.012
– ident: e_1_2_15_64_1
  doi: 10.1097/01.prs.0000298322.70032.bc
– ident: e_1_2_15_50_1
  doi: 10.1046/j.1524-4725.2002.02130.x
– ident: e_1_2_15_27_1
  doi: 10.1002/jcp.1138
– volume: 17
  start-page: 263
  year: 1999
  ident: e_1_2_15_11_1
  article-title: Hospital‐acquired pressure ulcers: a comparison of costs in medical versus surgical patients
  publication-title: Nurs Econ
– ident: e_1_2_15_116_1
  doi: 10.1097/SAP.0b013e318273f909
– ident: e_1_2_15_80_1
  doi: 10.1186/1478-811X-9-12
– ident: e_1_2_15_122_1
  doi: 10.1634/stemcells.2008-0031
– ident: e_1_2_15_44_1
  doi: 10.1038/nature05664
– ident: e_1_2_15_146_1
  doi: 10.1038/nature06188
– ident: e_1_2_15_56_1
  doi: 10.1093/eurheartj/ehi285
– ident: e_1_2_15_21_1
  doi: 10.1038/35102181
– ident: e_1_2_15_138_1
  doi: 10.1016/j.jcms.2004.06.002
– ident: e_1_2_15_92_1
  doi: 10.1002/stem.629
– ident: e_1_2_15_76_1
  doi: 10.1161/CIRCRESAHA.108.176826
– ident: e_1_2_15_97_1
  doi: 10.1038/nbt0188-25
– ident: e_1_2_15_14_1
  doi: 10.1038/sj.clpt.6100301
– ident: e_1_2_15_90_1
  doi: 10.1007/s00384-008-0559-0
– ident: e_1_2_15_65_1
  doi: 10.1517/14712590903307362
– ident: e_1_2_15_49_1
  doi: 10.1016/j.cpm.2009.08.001
– ident: e_1_2_15_149_1
  doi: 10.1101/gad.1653708
– ident: e_1_2_15_57_1
  doi: 10.3727/096368910X514170
– ident: e_1_2_15_60_1
  doi: 10.1002/term.1700
– ident: e_1_2_15_74_1
  doi: 10.1089/ten.2006.0315
– ident: e_1_2_15_6_1
  doi: 10.1016/j.transci.2004.01.004
– ident: e_1_2_15_105_1
  doi: 10.1634/stemcells.2008-0178
– ident: e_1_2_15_143_1
  doi: 10.1111/j.1365-2796.2007.01844.x
– ident: e_1_2_15_18_1
  doi: 10.1517/14712598.6.6.567
– ident: e_1_2_15_126_1
  doi: 10.1097/SAP.0b013e318095a771
– volume: 136
  start-page: 1235
  year: 1990
  ident: e_1_2_15_103_1
  article-title: PDGF and FGF stimulate wound healing in the genetically diabetic mouse
  publication-title: Am J Pathol
– ident: e_1_2_15_87_1
  doi: 10.1007/s00266-007-9019-4
– ident: e_1_2_15_151_1
  doi: 10.1002/term.158
– ident: e_1_2_15_67_1
  doi: 10.1089/107632701300062859
– ident: e_1_2_15_58_1
  doi: 10.1161/CIRCRESAHA.108.192138
– ident: e_1_2_15_118_1
  doi: 10.1517/14712598.2.2.211
– ident: e_1_2_15_78_1
  doi: 10.1634/stemcells.2008-0273
– ident: e_1_2_15_85_1
  doi: 10.1097/PRS.0b013e3181b5a3f1
– ident: e_1_2_15_83_1
  doi: 10.1007/s12015-010-9193-7
– ident: e_1_2_15_17_1
  doi: 10.1126/science.1069210
– ident: e_1_2_15_133_1
  doi: 10.1046/j.1524-475X.1999.00442.x
– ident: e_1_2_15_15_1
  doi: 10.1056/NEJMra022361
– ident: e_1_2_15_51_1
  doi: 10.1097/00004630-199703000-00010
– ident: e_1_2_15_129_1
  doi: 10.1158/0008-5472.CAN-04-4194
– ident: e_1_2_15_7_1
  doi: 10.2165/00128071-200304080-00007
– ident: e_1_2_15_30_1
  doi: 10.1002/jor.1100090504
– ident: e_1_2_15_20_1
  doi: 10.1634/stemcells.19-3-180
– ident: e_1_2_15_131_1
  doi: 10.1097/BCR.0b013e3181f9353a
– ident: e_1_2_15_79_1
  doi: 10.1161/01.CIR.0000121425.42966.F1
– ident: e_1_2_15_55_1
  doi: 10.1016/j.diabres.2010.12.010
– ident: e_1_2_15_91_1
  doi: 10.1186/scrt19
– ident: e_1_2_15_42_1
  doi: 10.1016/S0169-409X(98)00025-8
– ident: e_1_2_15_47_1
  doi: 10.1073/pnas.1115973108
– ident: e_1_2_15_136_1
  doi: 10.1111/iwj.12039
– ident: e_1_2_15_22_1
  doi: 10.1161/01.RES.0000135902.99383.6f
– ident: e_1_2_15_16_1
  doi: 10.1161/01.CIR.0000057525.13182.24
– ident: e_1_2_15_125_1
  doi: 10.1016/j.bbrc.2007.05.054
– ident: e_1_2_15_135_1
  doi: 10.1007/s00403-009-1011-1
– ident: e_1_2_15_106_1
  doi: 10.1097/PRS.0b013e318191be2d
– ident: e_1_2_15_141_1
  doi: 10.1016/j.ahj.2008.06.025
– ident: e_1_2_15_142_1
  doi: 10.1016/j.ijom.2009.01.001
– ident: e_1_2_15_111_1
  doi: 10.1161/ATVBAHA.108.178962
– ident: e_1_2_15_119_1
  doi: 10.2337/diacare.26.6.1856
– ident: e_1_2_15_41_1
  doi: 10.1056/NEJMra0707253
– ident: e_1_2_15_86_1
  doi: 10.4252/wjsc.v3.i4.25
– ident: e_1_2_15_52_1
  doi: 10.1097/00004630-199603000-00006
– ident: e_1_2_15_39_1
  doi: 10.2741/1184
– ident: e_1_2_15_36_1
  doi: 10.1177/0022034509359125
– start-page: 47
  volume-title: New Trends in Dermatologic Surgery
  year: 1993
  ident: e_1_2_15_98_1
– ident: e_1_2_15_29_1
  doi: 10.1002/art.21212
– ident: e_1_2_15_123_1
  doi: 10.1517/14712590903039684
– ident: e_1_2_15_10_1
  doi: 10.1046/j.1524-4725.2001.00195.x
– ident: e_1_2_15_24_1
  doi: 10.1146/annurev.cellbio.17.1.435
– ident: e_1_2_15_35_1
  doi: 10.1007/s00268-003-7397-6
– ident: e_1_2_15_8_1
  doi: 10.1046/j.1365-4362.1999.00832.x
– ident: e_1_2_15_9_1
  doi: 10.1097/01.prs.0000225431.63010.1b
– ident: e_1_2_15_34_1
  doi: 10.1016/j.tibtech.2006.01.010
– volume-title: Gray's anatomy international student edition
  year: 1995
  ident: e_1_2_15_2_1
– ident: e_1_2_15_19_1
  doi: 10.1016/j.biocel.2003.11.001
– ident: e_1_2_15_46_1
  doi: 10.1097/00000658-198110000-00005
– ident: e_1_2_15_152_1
  doi: 10.1177/1090820X10362730
– ident: e_1_2_15_115_1
  doi: 10.5021/ad.2011.23.2.150
– ident: e_1_2_15_101_1
  doi: 10.1152/physrev.2003.83.3.835
– ident: e_1_2_15_69_1
  doi: 10.1038/86439
– ident: e_1_2_15_137_1
  doi: 10.1182/blood-2009-05-219907
– start-page: 304562
  year: 2011
  ident: e_1_2_15_113_1
  article-title: Enhanced healing of diabetic wounds by topical administration of adipose tissue‐derived stromal cells overexpressing stromal‐derived factor‐1: biodistribution and engraftment analysis by bioluminescent imaging
  publication-title: Stem Cells Int
– ident: e_1_2_15_150_1
  doi: 10.1038/onc.2009.130
– volume: 46
  start-page: 1575
  year: 2008
  ident: e_1_2_15_95_1
  article-title: Promotive effect of adipose‐derived stem cells on the wound model of human epidermal keratinocytes in vitro
  publication-title: Wai Ke Za Zhi
– ident: e_1_2_15_107_1
  doi: 10.1016/j.jdermsci.2008.08.007
– ident: e_1_2_15_130_1
  doi: 10.1016/j.jaad.2009.10.048
– ident: e_1_2_15_3_1
  doi: 10.2174/1389201023378283
– ident: e_1_2_15_132_1
  doi: 10.1016/S0140-6736(05)67700-8
– ident: e_1_2_15_37_1
  doi: 10.1016/j.clindermatol.2006.12.005
– ident: e_1_2_15_62_1
  doi: 10.1097/01.prs.0000299922.96006.24
– volume: 27
  start-page: 134
  issue: 2
  year: 2006
  ident: e_1_2_15_63_1
  article-title: Autologous bio‐graft and mesenchymal stem cells in treatment of the diabetic foot
  publication-title: Neuro Endocrinol Lett
– ident: e_1_2_15_12_1
  doi: 10.1016/S0002-9610(02)00813-9
– ident: e_1_2_15_114_1
  doi: 10.3727/096368910X520065
– ident: e_1_2_15_61_1
  doi: 10.1007/s00109-008-0394-3
– ident: e_1_2_15_77_1
  doi: 10.1161/ATVBAHA.108.178962
– ident: e_1_2_15_128_1
  doi: 10.1089/ten.tea.2008.0359
– ident: e_1_2_15_147_1
  doi: 10.1038/ncponc1132
– ident: e_1_2_15_89_1
  doi: 10.1093/eurheartj/ehp568
SSID ssj0005598
Score 2.535
SecondaryResourceType review_article
Snippet Impaired wound healing remains a challenge to date and causes debilitating effects with tremendous suffering. Recent advances in tissue engineering approaches...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 313
SubjectTerms Adipocytes - metabolism
Adipose Tissue - pathology
Chronic Disease
Humans
Pluripotent Stem Cells - immunology
Pluripotent Stem Cells - transplantation
Regeneration
Skin - immunology
Skin - pathology
Stem Cell Transplantation
Tissue Engineering
Wound Healing - immunology
Wounds and Injuries - immunology
Wounds and Injuries - pathology
Wounds and Injuries - therapy
Title Role of adipose-derived stem cells in wound healing
URI https://api.istex.fr/ark:/67375/WNG-LNC8SFWH-S/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fwrr.12173
https://www.ncbi.nlm.nih.gov/pubmed/24844331
https://www.proquest.com/docview/1527327082
https://www.proquest.com/docview/1780502433
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELZW7YULBQFlW6gMQhWXVFn_JuLUXVhWiO5h22p7QLLs2JaqVkm1P23FiUfgGXkSPM4msKgg1FsOE9kznvF8ccbfIPTGUxdAP5eJ8MLFo5tEUycSS4izqScm93DB-WgsRqfs0xk_66B3zV2Ymh-iPXCDyIj7NQS4NvPfgvxmNgNqBAlMn1CrBYBo8os6CojH45_OsBEEFCNXrEJQxdO-uZaLNsGst3cBzXXcGhPPcAt9aaZc15tcHCwX5qD4-geb4z11eoQergApPqw96DHquPIJ4pPq0uHKY23Pr6q5-_Htuw2ueu0sBuJnDMf9c3xe4hvoyoQBbYYU-BSdDj-cDEbJqsFCUrAAe5IiZS71NLVOakGsT6W2Js_SwhqdMSINFQU3XAdU0rPScJLL3ApNmbC5J1TQZ2ijrEr3HGHCC6p7mlGWOSYMNz1L8oCWMh6cxOuii942plbFin0cmmBcquYrJOiuou5d9LoVvaopN-4S2o_r1Uro2QXUqEmupuOP6vN4kB0PpyN13EWvmgVVIXLAPrp01XKuoKEvJTJgoH_IQMsHIG0MA27X3tCOSFjG4L5ZUC2u6d8nq6aTSXzY-X_RXfQgYDNW11a-QBuL2dK9DPhnYfbQ5mH_fX-4Fx3-J0RCAfY
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKe4ALbVWgC7S4CCEuqbJ-JhIXVHVZYLuHbavtBVl2bEtVq6TaB6048RP4jfwSPM4mfaggxC2HieyxZ-zP4_E3CL3x1AXQz2UivHAxdJNo6kRiCXE29cTkHh44HwxF_5h9PuEnS-h98xam5odoA27gGXG9BgeHgPQNL7-cTIAbQdIHaAUqescD1eiaPAqox-NdZ1gKAo6RC14hyONpf721G63AwF7dBzVvI9e49fRW0dem03XGydnufGZ2i-93-Bz_V6s19HiBSfGH2ojW0ZIrNxAfVecOVx5re3pRTd2vHz9tsNZvzmLgfsYQ8Z_i0xJfQmEmDIAz7IJP0HFv_2ivnyxqLCQFC8gnKVLmUk9T66QWxPpUamvyLC2s0Rkj0lBRcMN1ACZdKw0nucyt0JQJm3tCBX2KlsuqdJsIE15Q3dWMsswxYbjpWpIHwJTxYCdeFx30rhlrVSwIyKEOxrlqDiJBdxV176DXrehFzbpxn9DbOGGthJ6cQZqa5Go8_KgGw73ssDfuq8MO2mlmVAXngfHRpavmUwU1fSmRAQb9RQaqPgBvY2jwWW0ObYuEZQyenAXV4qT-ubNqPBrFj-f_LvoKPewfHQzU4NPwywv0KEA1VqdavkTLs8ncbQU4NDPb0ep_AzchBJ8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKKyEu0IrXtpQahBCXVFk_E_WE2m4XKCu0pdoekCw7tqWqVbLaB0U99Sf0N_JL8DibQFFBiFsOE9kznvF8ccbfIPTKUxdAP5eJ8MLFo5tEUycSS4izqScm93DB-eNA9I_Z-xN-soR2mrswNT9Ee-AGkRH3awjwsfW_BPnFZALUCJLeQStMpBm49N7wJ3cUMI_HX51hJwgwRi5ohaCMp331RjJaAbt-uw1p3gSuMfP0HqAvzZzrgpOz7fnMbBeXv9E5_qdSq-j-ApHit7ULraElVz5EfFidO1x5rO3puJq671fXNvjqV2cxMD9jOO-f4tMSX0BbJgxwM-TAR-i4t_95t58sOiwkBQu4JylS5lJPU-ukFsT6VGpr8iwtrNEZI9JQUXDDdYAlXSsNJ7nMrdCUCZt7QgV9jJbLqnRPESa8oLqrGWWZY8Jw07UkD3Ap48FLvC466E1jalUs6MehC8a5aj5Dgu4q6t5BL1vRcc25cZvQ67herYSenEGRmuRqNDhQh4Pd7Kg36qujDnrRLKgKoQP20aWr5lMFHX0pkQEE_UUGej4Aa2MY8EntDe2IhGUMLpwF1eKa_nmyajQcxof1fxfdQnc_7fXU4bvBhw10L-A0VtdZPkPLs8ncbQYsNDPPo8__AEXFA1c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Role+of+adipose%E2%80%90derived+stem+cells+in+wound+healing&rft.jtitle=Wound+repair+and+regeneration&rft.au=Hassan%2C+Waqar+Ul&rft.au=Greiser%2C+Udo&rft.au=Wang%2C+Wenxin&rft.date=2014-05-01&rft.issn=1067-1927&rft.eissn=1524-475X&rft.volume=22&rft.issue=3&rft.spage=313&rft.epage=325&rft_id=info:doi/10.1111%2Fwrr.12173&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_wrr_12173
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1067-1927&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1067-1927&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1067-1927&client=summon