Three-dimensional optoacoustic tomography using a conventional ultrasound linear detector array: whole-body tomographic system for small animals
Optoacoustic imaging relies on the detection of ultrasonic waves induced by laser pulse excitations to map optical absorption in biological tissue. A tomographic geometry employing a conventional ultrasound linear detector array for volumetric optoacoustic imaging is reported. The geometry is based...
Saved in:
Published in | Medical physics (Lancaster) Vol. 40; no. 1; p. 013302 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.01.2013
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Abstract | Optoacoustic imaging relies on the detection of ultrasonic waves induced by laser pulse excitations to map optical absorption in biological tissue. A tomographic geometry employing a conventional ultrasound linear detector array for volumetric optoacoustic imaging is reported. The geometry is based on a translate-rotate scanning motion of the detector array, and capitalizes on the geometrical characteristics of the transducer assembly to provide a large solid angular detection aperture. A system for three-dimensional whole-body optoacoustic tomography of small animals is implemented.
The detection geometry was tested using a 128-element linear array (5.0∕7.0 MHz, Acuson L7, Siemens), moved by steps with a rotation∕translation stage assembly. Translation and rotation range of 13.5 mm and 180°, respectively, were implemented. Optoacoustic emissions were induced in tissue-mimicking phantoms and ex vivo mice using a pulsed laser operating in the near-IR spectral range at 760 nm. Volumetric images were formed using a filtered backprojection algorithm.
The resolution of the optoacoustic tomography system was measured to be better than 130 μm in-plane and 330 μm in elevation (full width half maximum), and to be homogenous along a 15 mm diameter cross section due to the translate-rotate scanning geometry. Whole-body volumetric optoacoustic images of mice were performed ex vivo, and imaged organs and blood vessels through the intact abdominal and head regions were correlated to the mouse anatomy.
Overall, the feasibility of three-dimensional and high-resolution whole-body optoacoustic imaging of small animal using a conventional linear array was demonstrated. Furthermore, the scanning geometry may be used for other linear arrays and is therefore expected to be of great interest for optoacoustic tomography at macroscopic and mesoscopic scale. Specifically, conventional detector arrays with higher central frequencies may be investigated. |
---|---|
AbstractList | Optoacoustic imaging relies on the detection of ultrasonic waves induced by laser pulse excitations to map optical absorption in biological tissue. A tomographic geometry employing a conventional ultrasound linear detector array for volumetric optoacoustic imaging is reported. The geometry is based on a translate-rotate scanning motion of the detector array, and capitalizes on the geometrical characteristics of the transducer assembly to provide a large solid angular detection aperture. A system for three-dimensional whole-body optoacoustic tomography of small animals is implemented.
The detection geometry was tested using a 128-element linear array (5.0∕7.0 MHz, Acuson L7, Siemens), moved by steps with a rotation∕translation stage assembly. Translation and rotation range of 13.5 mm and 180°, respectively, were implemented. Optoacoustic emissions were induced in tissue-mimicking phantoms and ex vivo mice using a pulsed laser operating in the near-IR spectral range at 760 nm. Volumetric images were formed using a filtered backprojection algorithm.
The resolution of the optoacoustic tomography system was measured to be better than 130 μm in-plane and 330 μm in elevation (full width half maximum), and to be homogenous along a 15 mm diameter cross section due to the translate-rotate scanning geometry. Whole-body volumetric optoacoustic images of mice were performed ex vivo, and imaged organs and blood vessels through the intact abdominal and head regions were correlated to the mouse anatomy.
Overall, the feasibility of three-dimensional and high-resolution whole-body optoacoustic imaging of small animal using a conventional linear array was demonstrated. Furthermore, the scanning geometry may be used for other linear arrays and is therefore expected to be of great interest for optoacoustic tomography at macroscopic and mesoscopic scale. Specifically, conventional detector arrays with higher central frequencies may be investigated. |
Author | Gateau, Jerome Ntziachristos, Vasilis Dima, Alexander Caballero, Miguel Angel Araque |
Author_xml | – sequence: 1 givenname: Jerome surname: Gateau fullname: Gateau, Jerome email: jerome.gateau@gmail.com organization: Technische Universität München and Helmholtz Zentrum München, Ingoldstädter Landstraße 1, Neuherberg, Germany. jerome.gateau@gmail.com – sequence: 2 givenname: Miguel Angel Araque surname: Caballero fullname: Caballero, Miguel Angel Araque – sequence: 3 givenname: Alexander surname: Dima fullname: Dima, Alexander – sequence: 4 givenname: Vasilis surname: Ntziachristos fullname: Ntziachristos, Vasilis |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23298121$$D View this record in MEDLINE/PubMed |
BookMark | eNpFkM1KxDAUhYMozo8ufAHJC3RMbtOmdSeDfzDgZlwPN-2dmUqblCRV-hY-soVR5Cy-zeG73LNg59ZZYuxGipWUsriTK6W1gBLO2ByUThMFopyxRQgfQog8zcQlm0EKZSFBztn39uiJkrrpyIbGWWy566PDyg0hNhWPrnMHj_1x5ENo7IEjr5z9JBtP5aGNHoMbbM3bxhJ6XlOkKjrP0Xsc7_nX0bWUGFeP_7JJHMYQqeP7qRg6bFuOtpkYrtjFfgJd_3LJ3p8et-uXZPP2_Lp-2CSVygGSnErMUyAzJVWmrI1SGqWePkRVlAoqjTqDtKiN0LogA5iVolRIe5NqyGDJbk_efjAd1bveT-f9uPubBn4ACPhoqQ |
CitedBy_id | crossref_primary_10_1038_s41551_019_0377_4 crossref_primary_10_1117_1_JBO_21_7_076007 crossref_primary_10_3390_s22145130 crossref_primary_10_1142_S1793545818500153 crossref_primary_10_1364_BOE_6_003134 crossref_primary_10_1364_OL_41_000127 crossref_primary_10_1177_0161734615584312 crossref_primary_10_1364_OL_40_004643 crossref_primary_10_1088_1361_6463_abc37d crossref_primary_10_1158_0008_5472_CAN_14_2522 crossref_primary_10_1364_BOE_517423 crossref_primary_10_3390_photonics10080904 crossref_primary_10_1007_s11227_016_1820_x crossref_primary_10_1038_s41598_018_31430_5 crossref_primary_10_1038_s41596_023_00834_7 crossref_primary_10_1177_0161734615591163 crossref_primary_10_1364_OL_38_004671 crossref_primary_10_1038_s41377_020_0295_y crossref_primary_10_1109_TUFFC_2022_3220999 crossref_primary_10_1109_TUFFC_2017_2661238 crossref_primary_10_1016_j_pacs_2016_10_001 crossref_primary_10_3390_app11020493 crossref_primary_10_1002_lpor_201300204 crossref_primary_10_1021_acsami_1c17661 crossref_primary_10_1364_PRJ_418591 crossref_primary_10_1117_1_JBO_22_7_076017 crossref_primary_10_1002_jbio_201400021 crossref_primary_10_1118_1_4915532 crossref_primary_10_1039_C6CS00765A crossref_primary_10_1038_lsa_2016_247 crossref_primary_10_1088_1361_6633_abdab9 crossref_primary_10_1002_mds3_10018 crossref_primary_10_1016_j_tibtech_2016_02_001 crossref_primary_10_1016_j_pacs_2021_100291 crossref_primary_10_1109_TUFFC_2014_006786 crossref_primary_10_1117_1_JBO_20_5_056004 crossref_primary_10_1007_s00117_015_0024_3 crossref_primary_10_1016_j_pacs_2018_04_002 crossref_primary_10_1038_s41467_024_48393_z crossref_primary_10_3390_metabo12050382 crossref_primary_10_1109_TMI_2013_2286546 crossref_primary_10_1117_1_JBO_21_1_016002 crossref_primary_10_1364_OPTICA_3_001153 crossref_primary_10_1109_TMI_2017_2706200 crossref_primary_10_1016_j_pacs_2023_100480 crossref_primary_10_1364_BOE_5_002856 crossref_primary_10_1109_TMI_2013_2289930 crossref_primary_10_1142_S1793545820300037 crossref_primary_10_1109_TUFFC_2018_2792903 crossref_primary_10_1063_5_0172936 crossref_primary_10_1364_BOE_384548 crossref_primary_10_1016_j_ultrasmedbio_2016_06_028 crossref_primary_10_1364_OE_24_012755 crossref_primary_10_3788_CJL231336 crossref_primary_10_1038_s44172_022_00030_7 crossref_primary_10_1002_lpor_202200846 crossref_primary_10_1186_s40580_023_00377_3 crossref_primary_10_1038_s41598_020_64966_6 crossref_primary_10_1007_s13534_022_00224_0 crossref_primary_10_1109_TBME_2013_2283507 crossref_primary_10_1118_1_4846055 crossref_primary_10_1002_jbio_201600151 crossref_primary_10_1088_1054_660X_24_8_085608 crossref_primary_10_1109_TUFFC_2015_007058 crossref_primary_10_1117_1_JBO_25_11_116010 crossref_primary_10_1364_BOE_7_001957 |
ContentType | Journal Article |
DBID | CGR CUY CVF ECM EIF NPM |
DOI | 10.1118/1.4770292 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Medicine Physics |
EISSN | 2473-4209 |
ExternalDocumentID | 23298121 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --Z -DZ .GJ 0R~ 1OB 1OC 29M 2WC 33P 36B 3O- 4.4 476 53G 5GY 5RE 5VS AAHHS AANLZ AAQQT AASGY AAXRX AAZKR ABCUV ABEFU ABFTF ABJNI ABLJU ABQWH ABTAH ABXGK ACAHQ ACBEA ACCFJ ACCZN ACGFO ACGFS ACGOF ACPOU ACXBN ACXQS ADBBV ADBTR ADKYN ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AHBTC AIACR AIAGR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ASPBG BFHJK C45 CGR CS3 CUY CVF DCZOG DRFUL DRMAN DRSTM DU5 EBD EBS ECM EIF EJD EMB EMOBN F5P G8K HDBZQ HGLYW I-F KBYEO LATKE LEEKS LOXES LUTES LYRES MEWTI NPM O9- OVD P2P P2W PALCI PHY RJQFR RNS ROL SAMSI SUPJJ SV3 TEORI TN5 TWZ USG WOHZO WXSBR XJT ZGI ZVN ZXP ZY4 ZZTAW |
ID | FETCH-LOGICAL-c4622-6e9a632ebebe34b9db447a17063a48942c7a75238db0778eb2a59094aefb37252 |
IngestDate | Sat Sep 28 07:52:27 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4622-6e9a632ebebe34b9db447a17063a48942c7a75238db0778eb2a59094aefb37252 |
OpenAccessLink | https://hal.science/hal-00878254 |
PMID | 23298121 |
ParticipantIDs | pubmed_primary_23298121 |
PublicationCentury | 2000 |
PublicationDate | January 2013 |
PublicationDateYYYYMMDD | 2013-01-01 |
PublicationDate_xml | – month: 01 year: 2013 text: January 2013 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Medical physics (Lancaster) |
PublicationTitleAlternate | Med Phys |
PublicationYear | 2013 |
SSID | ssj0006350 |
Score | 2.4352415 |
Snippet | Optoacoustic imaging relies on the detection of ultrasonic waves induced by laser pulse excitations to map optical absorption in biological tissue. A... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 013302 |
SubjectTerms | Abdomen Animals Head Imaging, Three-Dimensional - instrumentation Mice Photoacoustic Techniques - instrumentation Tomography - instrumentation Ultrasonics - instrumentation |
Title | Three-dimensional optoacoustic tomography using a conventional ultrasound linear detector array: whole-body tomographic system for small animals |
URI | https://www.ncbi.nlm.nih.gov/pubmed/23298121 |
Volume | 40 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELa2IBAXBAXKWz5wi1wSx4nX3CoEqpC24tBKvVXjxEaRug9lEyH6K_hv_CHGdjaPUsTjkl3Fu96s59NkMp75PkLe4C3dIHY4KxORMZFzzXQKMUu04UVSCjn38m2Lk_z4THw6z85nsx-jqqW20YfF1Y19Jf9jVTyHdnVdsv9g2X5SPIHv0b54RAvj8S9tXBvDSkfQH8g1ovWmWaOP8xJdGFYuO0LqqPUpAZgWmbeXTQ1bp6sUuWATnFZ447P4EdQ1eC6or04_l-l1-W2YDqcOBNC-RnG7dLvbsKrwdTuOdXd7QCF54rO7ruMaghZIn4Bw-TtoQ6VNz53gd0W003kJfTiL6ktrEEyuBDc6qiGUiocQHH940qrT57ebqwqKQJ4QNN9hW11Wk0SHE53oEx3GO0QuZMoEj9XYeweypwlKgyvGGVLfzH3TXcJ1PiSHQsqYq8lncGU3Sw8XDDUVRj_Jn0evEXbvhvbInpw7NZETl0DqggOM7-KO4Aqv4m1_DY6UuvvetQccH-icPiD3uycUehTg9pDMzGqf3F10NRj75M7nYM9H5Psv-KNj_NEBf9TjjwId448O-KMBf3SHP-rx944O6KMj9NGAPoroox59tEPfY3L28cPp-2PWKXywAt0CZ7lRkKccHYk2qdCq1EJIcIxOKYi5EryQIDOMKksdSzk3mkOmYiXAWJ1KnvEn5NZqvTJPCS2TnCfWFkKaUhQxKKsLC1bbwjpOS_GMHIRVvdgEGpeL3Xo__-3IC3JvAOJLctviPzGvMAht9Gtv1p_fc5EK |
link.rule.ids | 780 |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Three-dimensional+optoacoustic+tomography+using+a+conventional+ultrasound+linear+detector+array%3A+whole-body+tomographic+system+for+small+animals&rft.jtitle=Medical+physics+%28Lancaster%29&rft.au=Gateau%2C+Jerome&rft.au=Caballero%2C+Miguel+Angel+Araque&rft.au=Dima%2C+Alexander&rft.au=Ntziachristos%2C+Vasilis&rft.date=2013-01-01&rft.eissn=2473-4209&rft.volume=40&rft.issue=1&rft.spage=013302&rft_id=info:doi/10.1118%2F1.4770292&rft_id=info%3Apmid%2F23298121&rft_id=info%3Apmid%2F23298121&rft.externalDocID=23298121 |