Winter cover crop legacy effects on litter decomposition act through litter quality and microbial community changes
In agriculture, winter cover crop (WCC) residues are incorporated into the soil to improve soil quality, as gradual litter decomposition can improve fertility. Decomposition rate is determined by litter quality, local soil abiotic and biotic properties. How these factors are interlinked and influenc...
Saved in:
Published in | The Journal of applied ecology Vol. 56; no. 1; pp. 132 - 143 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Wiley
01.01.2019
Blackwell Publishing Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In agriculture, winter cover crop (WCC) residues are incorporated into the soil to improve soil quality, as gradual litter decomposition can improve fertility. Decomposition rate is determined by litter quality, local soil abiotic and biotic properties. How these factors are interlinked and influenced by cropping history is, however, unclear.
We grew WCC monocultures and mixtures in rotation with main crops Avena sativa (oat) and Cichorium endivia (endive) and tested how crop rotation influences WCC litter quality, abiotic and biotic soil conditions, and litter decomposition rates. To disentangle WCC litter quality effects from WCC soil legacy effects on decomposition, we tested how rotation history influences decomposition of standard substrates and explored the underlying mechanisms.
In a common environment (e.g. winter fallow plots), WCC decomposition rate constants (k) correlated negatively with litter C, lignin and, surprisingly, N content, due to strong positive correlations among these traits. Plots with a history of fast‐decomposing WCCs exhibited faster decomposition of their own litters as well as of the standard substrates filter paper and rooibos tea, as compared to winter fallow plots.
WCC treatments differentially affected soil microbial biomass, as well as soil organic matter and mineral nitrogen content. WCC‐induced soil changes affected decomposition rates. Depending on the main crop rotation treatment, legacy effects were attributed to biomass input of WCCs and their litter quality or changes in microbial biomass.
Synthesis and applications. These results demonstrate that decomposition in cropping systems is influenced directly through crop residues, as well as through crop‐induced changes in soil biotic properties. Rotation history influences decomposition, wherein productive winter cover crops (WCC) with low lignin content decompose fast and stimulate the turnover of both own and newly added residues via their knock‐on effect on the soil microbial community. Thus, WCC have promise for sustainable carbon‐ and nutrient‐cycling management through litter feedbacks.
Foreign Language
In landbouw worden plantenresten van wintergroenbemesters in de bodem ondergewerkt om bodemkwaliteit te verbeteren. De afbraaksnelheid van groenbemesterstrooisel en het daarbij vrijkomen van voedingsstoffen wordt bepaald door strooiselkwaliteit en lokale abiotische en biotische bodemomstandigheden. Echter is het onduidelijk hoe al deze factoren worden beïnvloed door gewasrotatie.
In een veldexperiment werden verschillende winterse groenbemesters verbouwd in monoculturen en mengsels, in rotatie met hoofdgewassen Avena sativa (haver) en Cichorium endivia (andijvie). De invloed van gewasrotatie op de kwaliteit van groenbemesterstrooisel, lokale abiotische en biotische bodemparameters en strooiselafbraaksnelheid werd getest. Om bovendien onderscheid te kunnen maken tussen effecten van strooiselkwaliteit en veranderingen in bodemomstandigheden, werden effecten van gewasrotatie ook getoetst op de afbraak van standaard substraten (filterpapier en rooibosthee).
In eenzelfde omgeving, zonder specifieke groenbemestergeschiedenis (voormalig winter braak), waren afbraaksnelheden van groenbemesterstrooisels negatief gecorreleerd met concentraties van koolstof‐ (C), lignine‐, en tegen de verwachtingen in, stikstof‐ (N) in het strooisel. Dit resultaat werd verklaard door de onderlinge positieve correlaties tussen N, C en lignine. In vergelijking met voormalig winter braakvelden, toonden proefvelden met een geschiedenis van snel afbrekende groenbemesters een snellere decompositie van zowel eigen strooisels als ook van de standaard substraten.
De verschillende erfeniseffecten op afbraaksnelheid konden worden gerelateerd aan de effecten van de groenbemesters op de bodem microbiële biomassa, bodem organische stof en minerale stikstofgehalten. Afhankelijk van het hoofdgewas, konden de erfeniseffecten worden toegeschreven aan de hoeveelheid plantenresten van de groenbemesters, de kwaliteit hiervan, alsmede aan veranderingen in de microbiële biomassa, maar niet aan veranderde abiotische bodemfactoren.
Synthese en toepassing. Deze resultaten tonen aan dat decompositie in landbouwsystemen direct wordt beïnvloed door gewasresten en de bodem erfeniseffecten op biotische bodemomstandigheden. De volgorde van gewassen beïnvloedt afbraak, waarbij productieve groenbemesters met snel afbrekende strooisels de decompositie van nieuw materiaal stimuleren via de microbiële bodemgemeenschap en vrijgekomen stikstof. Winterse groenbemesters zijn daarom veelbelovende middelen om C‐ en N‐kringlopen duurzaam te beheren door middel van strooisel‐feedback.
These results demonstrate that decomposition in cropping systems is influenced directly through crop residues, as well as through crop‐induced changes in soil biotic properties. Rotation history influences decomposition, wherein productive winter cover crops (WCC) with low lignin content decompose fast and stimulate the turnover of both own and newly added residues via their knock‐on effect on the soil microbial community. Thus, WCC have promise for sustainable carbon‐ and nutrient‐cycling management through litter feedbacks. |
---|---|
AbstractList | In agriculture, winter cover crop (WCC) residues are incorporated into the soil to improve soil quality, as gradual litter decomposition can improve fertility. Decomposition rate is determined by litter quality, local soil abiotic and biotic properties. How these factors are interlinked and influenced by cropping history is, however, unclear.We grew WCC monocultures and mixtures in rotation with main crops Avena sativa (oat) and Cichorium endivia (endive) and tested how crop rotation influences WCC litter quality, abiotic and biotic soil conditions, and litter decomposition rates. To disentangle WCC litter quality effects from WCC soil legacy effects on decomposition, we tested how rotation history influences decomposition of standard substrates and explored the underlying mechanisms.In a common environment (e.g. winter fallow plots), WCC decomposition rate constants (k) correlated negatively with litter C, lignin and, surprisingly, N content, due to strong positive correlations among these traits. Plots with a history of fast‐decomposing WCCs exhibited faster decomposition of their own litters as well as of the standard substrates filter paper and rooibos tea, as compared to winter fallow plots.WCC treatments differentially affected soil microbial biomass, as well as soil organic matter and mineral nitrogen content. WCC‐induced soil changes affected decomposition rates. Depending on the main crop rotation treatment, legacy effects were attributed to biomass input of WCCs and their litter quality or changes in microbial biomass.Synthesis and applications. These results demonstrate that decomposition in cropping systems is influenced directly through crop residues, as well as through crop‐induced changes in soil biotic properties. Rotation history influences decomposition, wherein productive winter cover crops (WCC) with low lignin content decompose fast and stimulate the turnover of both own and newly added residues via their knock‐on effect on the soil microbial community. Thus, WCC have promise for sustainable carbon‐ and nutrient‐cycling management through litter feedbacks. In agriculture, winter cover crop ( WCC ) residues are incorporated into the soil to improve soil quality, as gradual litter decomposition can improve fertility. Decomposition rate is determined by litter quality, local soil abiotic and biotic properties. How these factors are interlinked and influenced by cropping history is, however, unclear. We grew WCC monocultures and mixtures in rotation with main crops Avena sativa (oat) and Cichorium endivia (endive) and tested how crop rotation influences WCC litter quality, abiotic and biotic soil conditions, and litter decomposition rates. To disentangle WCC litter quality effects from WCC soil legacy effects on decomposition, we tested how rotation history influences decomposition of standard substrates and explored the underlying mechanisms. In a common environment (e.g. winter fallow plots), WCC decomposition rate constants ( k ) correlated negatively with litter C, lignin and, surprisingly, N content, due to strong positive correlations among these traits. Plots with a history of fast‐decomposing WCC s exhibited faster decomposition of their own litters as well as of the standard substrates filter paper and rooibos tea, as compared to winter fallow plots. WCC treatments differentially affected soil microbial biomass, as well as soil organic matter and mineral nitrogen content. WCC ‐induced soil changes affected decomposition rates. Depending on the main crop rotation treatment, legacy effects were attributed to biomass input of WCC s and their litter quality or changes in microbial biomass. Synthesis and applications . These results demonstrate that decomposition in cropping systems is influenced directly through crop residues, as well as through crop‐induced changes in soil biotic properties. Rotation history influences decomposition, wherein productive winter cover crops (WCC) with low lignin content decompose fast and stimulate the turnover of both own and newly added residues via their knock‐on effect on the soil microbial community. Thus, WCC have promise for sustainable carbon‐ and nutrient‐cycling management through litter feedbacks. In landbouw worden plantenresten van wintergroenbemesters in de bodem ondergewerkt om bodemkwaliteit te verbeteren. De afbraaksnelheid van groenbemesterstrooisel en het daarbij vrijkomen van voedingsstoffen wordt bepaald door strooiselkwaliteit en lokale abiotische en biotische bodemomstandigheden. Echter is het onduidelijk hoe al deze factoren worden beïnvloed door gewasrotatie. In een veldexperiment werden verschillende winterse groenbemesters verbouwd in monoculturen en mengsels, in rotatie met hoofdgewassen Avena sativa (haver) en Cichorium endivia (andijvie). De invloed van gewasrotatie op de kwaliteit van groenbemesterstrooisel, lokale abiotische en biotische bodemparameters en strooiselafbraaksnelheid werd getest. Om bovendien onderscheid te kunnen maken tussen effecten van strooiselkwaliteit en veranderingen in bodemomstandigheden, werden effecten van gewasrotatie ook getoetst op de afbraak van standaard substraten (filterpapier en rooibosthee). In eenzelfde omgeving, zonder specifieke groenbemestergeschiedenis (voormalig winter braak), waren afbraaksnelheden van groenbemesterstrooisels negatief gecorreleerd met concentraties van koolstof‐ (C), lignine‐, en tegen de verwachtingen in, stikstof‐ (N) in het strooisel. Dit resultaat werd verklaard door de onderlinge positieve correlaties tussen N, C en lignine. In vergelijking met voormalig winter braakvelden, toonden proefvelden met een geschiedenis van snel afbrekende groenbemesters een snellere decompositie van zowel eigen strooisels als ook van de standaard substraten. De verschillende erfeniseffecten op afbraaksnelheid konden worden gerelateerd aan de effecten van de groenbemesters op de bodem microbiële biomassa, bodem organische stof en minerale stikstofgehalten. Afhankelijk van het hoofdgewas, konden de erfeniseffecten worden toegeschreven aan de hoeveelheid plantenresten van de groenbemesters, de kwaliteit hiervan, alsmede aan veranderingen in de microbiële biomassa, maar niet aan veranderde abiotische bodemfactoren. Synthese en toepassing . Deze resultaten tonen aan dat decompositie in landbouwsystemen direct wordt beïnvloed door gewasresten en de bodem erfeniseffecten op biotische bodemomstandigheden. De volgorde van gewassen beïnvloedt afbraak, waarbij productieve groenbemesters met snel afbrekende strooisels de decompositie van nieuw materiaal stimuleren via de microbiële bodemgemeenschap en vrijgekomen stikstof. Winterse groenbemesters zijn daarom veelbelovende middelen om C‐ en N‐kringlopen duurzaam te beheren door middel van strooisel‐feedback. These results demonstrate that decomposition in cropping systems is influenced directly through crop residues, as well as through crop‐induced changes in soil biotic properties. Rotation history influences decomposition, wherein productive winter cover crops (WCC) with low lignin content decompose fast and stimulate the turnover of both own and newly added residues via their knock‐on effect on the soil microbial community. Thus, WCC have promise for sustainable carbon‐ and nutrient‐cycling management through litter feedbacks. 1.In agriculture, winter cover crop (WCC) residues are incorporated into the soil to improve soil quality, as gradual litter decomposition can improve fertility. Decomposition rate is determined by litter quality, local soil abiotic and biotic properties. How these factors are interlinked and influenced by cropping history is, however, unclear. 2.We grew WCC monocultures and mixtures in rotation with main crops Avena sativa (oat) and Cichorium endivia (endive) and tested how crop rotation influences WCC litter quality, abiotic and biotic soil conditions, and litter decomposition rates. To disentangle WCC litter quality effects from WCC soil legacy effects on decomposition, we tested how rotation history influences decomposition of standard substrates and explored the underlying mechanisms. 3.In a common environment (e.g. winter fallow plots), WCC decomposition rate constants (k) correlated negatively with litter C, lignin and, surprisingly, N content, due to strong positive correlations among these traits. Plots with a history of fast‐decomposing WCCs exhibited faster decomposition of their own litters as well as of the standard substrates filter paper and rooibos tea, as compared to winter fallow plots. 4.WCC treatments differentially affected soil microbial biomass, as well as soil organic matter and mineral nitrogen content. WCC‐induced soil changes affected decomposition rates. Depending on the main crop rotation treatment, legacy effects were attributed to biomass input of WCCs and their litter quality or changes in microbial biomass. 5.Synthesis and applications. These results demonstrate that decomposition in cropping systems is influenced directly through crop residues, as well as through crop‐induced changes in soil biotic properties. Rotation history influences decomposition, wherein productive winter cover crops with low lignin content decompose fast and stimulate the turnover of both own and newly added residues via their knock‐on effect on the soil microbial community. Thus, winter cover crops have promise for sustainable carbon‐ and nutrient‐cycling management through litter feedbacks. In agriculture, winter cover crop (WCC) residues are incorporated into the soil to improve soil quality, as gradual litter decomposition can improve fertility. Decomposition rate is determined by litter quality, local soil abiotic and biotic properties. How these factors are interlinked and influenced by cropping history is, however, unclear. We grew WCC monocultures and mixtures in rotation with main crops Avena sativa (oat) and Cichorium endivia (endive) and tested how crop rotation influences WCC litter quality, abiotic and biotic soil conditions, and litter decomposition rates. To disentangle WCC litter quality effects from WCC soil legacy effects on decomposition, we tested how rotation history influences decomposition of standard substrates and explored the underlying mechanisms. In a common environment (e.g. winter fallow plots), WCC decomposition rate constants (k) correlated negatively with litter C, lignin and, surprisingly, N content, due to strong positive correlations among these traits. Plots with a history of fast‐decomposing WCCs exhibited faster decomposition of their own litters as well as of the standard substrates filter paper and rooibos tea, as compared to winter fallow plots. WCC treatments differentially affected soil microbial biomass, as well as soil organic matter and mineral nitrogen content. WCC‐induced soil changes affected decomposition rates. Depending on the main crop rotation treatment, legacy effects were attributed to biomass input of WCCs and their litter quality or changes in microbial biomass. Synthesis and applications. These results demonstrate that decomposition in cropping systems is influenced directly through crop residues, as well as through crop‐induced changes in soil biotic properties. Rotation history influences decomposition, wherein productive winter cover crops (WCC) with low lignin content decompose fast and stimulate the turnover of both own and newly added residues via their knock‐on effect on the soil microbial community. Thus, WCC have promise for sustainable carbon‐ and nutrient‐cycling management through litter feedbacks. Foreign Language In landbouw worden plantenresten van wintergroenbemesters in de bodem ondergewerkt om bodemkwaliteit te verbeteren. De afbraaksnelheid van groenbemesterstrooisel en het daarbij vrijkomen van voedingsstoffen wordt bepaald door strooiselkwaliteit en lokale abiotische en biotische bodemomstandigheden. Echter is het onduidelijk hoe al deze factoren worden beïnvloed door gewasrotatie. In een veldexperiment werden verschillende winterse groenbemesters verbouwd in monoculturen en mengsels, in rotatie met hoofdgewassen Avena sativa (haver) en Cichorium endivia (andijvie). De invloed van gewasrotatie op de kwaliteit van groenbemesterstrooisel, lokale abiotische en biotische bodemparameters en strooiselafbraaksnelheid werd getest. Om bovendien onderscheid te kunnen maken tussen effecten van strooiselkwaliteit en veranderingen in bodemomstandigheden, werden effecten van gewasrotatie ook getoetst op de afbraak van standaard substraten (filterpapier en rooibosthee). In eenzelfde omgeving, zonder specifieke groenbemestergeschiedenis (voormalig winter braak), waren afbraaksnelheden van groenbemesterstrooisels negatief gecorreleerd met concentraties van koolstof‐ (C), lignine‐, en tegen de verwachtingen in, stikstof‐ (N) in het strooisel. Dit resultaat werd verklaard door de onderlinge positieve correlaties tussen N, C en lignine. In vergelijking met voormalig winter braakvelden, toonden proefvelden met een geschiedenis van snel afbrekende groenbemesters een snellere decompositie van zowel eigen strooisels als ook van de standaard substraten. De verschillende erfeniseffecten op afbraaksnelheid konden worden gerelateerd aan de effecten van de groenbemesters op de bodem microbiële biomassa, bodem organische stof en minerale stikstofgehalten. Afhankelijk van het hoofdgewas, konden de erfeniseffecten worden toegeschreven aan de hoeveelheid plantenresten van de groenbemesters, de kwaliteit hiervan, alsmede aan veranderingen in de microbiële biomassa, maar niet aan veranderde abiotische bodemfactoren. Synthese en toepassing. Deze resultaten tonen aan dat decompositie in landbouwsystemen direct wordt beïnvloed door gewasresten en de bodem erfeniseffecten op biotische bodemomstandigheden. De volgorde van gewassen beïnvloedt afbraak, waarbij productieve groenbemesters met snel afbrekende strooisels de decompositie van nieuw materiaal stimuleren via de microbiële bodemgemeenschap en vrijgekomen stikstof. Winterse groenbemesters zijn daarom veelbelovende middelen om C‐ en N‐kringlopen duurzaam te beheren door middel van strooisel‐feedback. These results demonstrate that decomposition in cropping systems is influenced directly through crop residues, as well as through crop‐induced changes in soil biotic properties. Rotation history influences decomposition, wherein productive winter cover crops (WCC) with low lignin content decompose fast and stimulate the turnover of both own and newly added residues via their knock‐on effect on the soil microbial community. Thus, WCC have promise for sustainable carbon‐ and nutrient‐cycling management through litter feedbacks. |
Author | Barel, Janna M. de Boer, Wietse Cornelissen, Johannes H. C. Kuyper, Thomas W. Paul, Jos De Deyn, Gerlinde B. |
Author_xml | – sequence: 1 givenname: Janna M. surname: Barel fullname: Barel, Janna M. – sequence: 2 givenname: Thomas W. surname: Kuyper fullname: Kuyper, Thomas W. – sequence: 3 givenname: Jos surname: Paul fullname: Paul, Jos – sequence: 4 givenname: Wietse surname: de Boer fullname: de Boer, Wietse – sequence: 5 givenname: Johannes H. C. surname: Cornelissen fullname: Cornelissen, Johannes H. C. – sequence: 6 givenname: Gerlinde B. surname: De Deyn fullname: De Deyn, Gerlinde B. |
BookMark | eNqFkU1v3CAQhlGVSNkkPedUyVIvvWzCl7HdWxWlX4rUHlr1iMYYdllhcABntf--uNvkkEs4MGj0PjPDvOfoxAevEboi-JqUc0OYqNdUCH5NGBXkDVo9Z07QCmNK1m2HyRk6T2mHMe5qxlYo_bE-61ip8LjcMUyV0xtQh0obo1VOVfCVs3nRDFqFcQrJZluSoHKVtzHMm-2T4GGG8jpU4IdqtKVYb8GV0uM4-yWvtuA3Ol2iUwMu6bf_4wX6_fnu1-3X9f2PL99uP92vFRdl2qFm0CrWguFGUGDMKKq6pm_10OtGd10tFJCiwsy0qh2UMZwzplgDPe8FZhfo47HuHjba29LaSw9R2SQDWOlsHyEe5H6O0rslTHOfZM0JI3WBPxzhKYaHWacsR5uUdg68DnOSlFKCBSeNKNL3L6S7MEdfviYpERzXDW-aoro5qspeUorayCnacRmAYLk4KBe_5OKX_OdgIeoXhLIZluXnCNa9zu2t04fX2sjvP--euHdHbpdyiM8cb-sWs46wv0JtvTU |
CitedBy_id | crossref_primary_10_1016_j_apsoil_2024_105761 crossref_primary_10_1371_journal_pone_0289352 crossref_primary_10_1016_j_fcr_2020_107736 crossref_primary_10_3389_fsufs_2022_826486 crossref_primary_10_1016_j_ecolind_2020_106405 crossref_primary_10_1016_j_apsoil_2020_103854 crossref_primary_10_1016_j_tplants_2022_05_007 crossref_primary_10_3390_agronomy14092104 crossref_primary_10_1016_j_tplants_2024_04_010 crossref_primary_10_1007_s11104_022_05419_z crossref_primary_10_1016_j_soilbio_2019_107701 crossref_primary_10_3390_land13122246 crossref_primary_10_3389_fagro_2023_1214811 crossref_primary_10_1111_nph_18118 crossref_primary_10_1016_j_scitotenv_2020_138304 crossref_primary_10_3389_fmicb_2023_1323902 crossref_primary_10_1016_j_envres_2024_118518 crossref_primary_10_5194_soil_10_407_2024 crossref_primary_10_1016_j_agee_2022_108052 crossref_primary_10_1016_j_eja_2022_126567 crossref_primary_10_1016_j_soilbio_2023_109080 crossref_primary_10_3390_su132313278 crossref_primary_10_3390_agronomy11091681 crossref_primary_10_1016_j_atech_2024_100621 crossref_primary_10_1007_s11104_021_05104_7 crossref_primary_10_1111_pce_14247 crossref_primary_10_1016_j_dib_2022_108841 crossref_primary_10_1007_s00374_020_01475_8 crossref_primary_10_1016_j_geodrs_2024_e00865 crossref_primary_10_1016_j_heliyon_2024_e29590 crossref_primary_10_3390_agriculture14060898 crossref_primary_10_3390_ijerph19052695 crossref_primary_10_1016_j_apsoil_2023_105160 crossref_primary_10_1016_j_agee_2019_106649 crossref_primary_10_1016_j_fcr_2022_108803 crossref_primary_10_1016_j_soilbio_2020_108115 crossref_primary_10_3390_agriculture10110527 crossref_primary_10_1016_j_scitotenv_2024_174572 crossref_primary_10_1016_j_soilbio_2020_107986 crossref_primary_10_1016_j_agee_2024_109331 crossref_primary_10_1016_j_ecolind_2020_106943 crossref_primary_10_1007_s10021_019_00452_z crossref_primary_10_5194_soil_10_139_2024 crossref_primary_10_3389_fmicb_2024_1353629 crossref_primary_10_48130_FR_2023_0022 crossref_primary_10_1016_j_agee_2022_107908 crossref_primary_10_1017_S1742170521000405 crossref_primary_10_1111_ejss_13427 crossref_primary_10_1016_j_atech_2024_100608 crossref_primary_10_1111_ejss_13582 crossref_primary_10_1007_s10457_024_01044_0 crossref_primary_10_1016_j_geoderma_2024_116984 crossref_primary_10_1016_j_soilbio_2020_107899 crossref_primary_10_1038_s41598_022_11845_x crossref_primary_10_1111_1365_2745_13592 crossref_primary_10_1016_j_apsoil_2021_104099 crossref_primary_10_1093_jambio_lxac051 |
Cites_doi | 10.1017/S0021859614000811 10.1016/j.soilbio.2012.10.005 10.2307/1932179 10.1002/jsfa.6565 10.1111/j.1461-0248.2012.01837.x 10.1016/j.soilbio.2017.01.014 10.1016/j.soilbio.2012.09.027 10.1007/s003740050530 10.1525/9780520407114 10.1016/j.tree.2015.03.015 10.1016/j.soilbio.2010.07.020 10.1111/j.1365-2435.2008.01515.x 10.1111/oik.01374 10.1111/j.1461-0248.2008.01219.x 10.1023/A:1019637807021 10.1111/j.1365-2745.2011.01943.x 10.5194/bg-8-1477-2011 10.1111/j.1365-2435.2008.01389.x 10.1111/1365-2745.12507 10.1016/j.ejsobi.2016.07.002 10.1111/1365-2664.12929 10.1111/2041-210X.12225 10.1023/A:1013318210809 10.1007/BF00418667 10.1016/j.soilbio.2015.11.026 10.1111/j.1365-2745.2009.01539.x 10.1111/j.1365-2435.2011.01913.x 10.1111/1365-2435.12657 10.1002/ecs2.1426 10.1007/BF00384433 10.1016/S0065-2113(02)79005-6 10.1016/j.pedobi.2006.03.004 10.1080/03650340.2017.1308493 10.1007/s00374-015-1031-2 10.1126/science.1134853 10.1111/j.1365-2745.2009.01615.x 10.1016/S0038-0717(01)00137-7 10.1007/s10533-010-9439-0 10.1016/S0038-0717(02)00073-1 10.1111/ele.12453 10.1007/s002489900015 10.1016/j.soilbio.2014.07.027 10.1016/0144-4565(88)90105-9 10.1111/1574-6976.12001 10.1111/nph.12959 10.1016/j.still.2016.04.006 10.1111/2041-210X.12097 |
ContentType | Journal Article |
Copyright | 2018 The Authors 2018 The Authors. published by John Wiley & Sons Ltd on behalf of British Ecological Society Journal of Applied Ecology © 2019 British Ecological Society Wageningen University & Research |
Copyright_xml | – notice: 2018 The Authors – notice: 2018 The Authors. published by John Wiley & Sons Ltd on behalf of British Ecological Society – notice: Journal of Applied Ecology © 2019 British Ecological Society – notice: Wageningen University & Research |
DBID | 24P AAYXX CITATION 7SN 7SS 7T7 7U7 8FD C1K FR3 M7N P64 RC3 7S9 L.6 QVL |
DOI | 10.1111/1365-2664.13261 |
DatabaseName | Wiley Online Library Open Access CrossRef Ecology Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic NARCIS:Publications |
DatabaseTitle | CrossRef Entomology Abstracts Genetics Abstracts Technology Research Database Toxicology Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Engineering Research Database Ecology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Entomology Abstracts AGRICOLA CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture Biology |
EISSN | 1365-2664 |
EndPage | 143 |
ExternalDocumentID | oai_library_wur_nl_wurpubs_541315 10_1111_1365_2664_13261 JPE13261 48580391 |
Genre | article |
GrantInformation_xml | – fundername: NWO‐ALW VIDI funderid: 864.11003 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1OC 29J 2AX 2WC 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHKG AAHQN AAISJ AAKGQ AAMMB AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABEML ABJNI ABPLY ABPPZ ABPVW ABTLG ACAHQ ACCZN ACFBH ACGFS ACNCT ACPOU ACPRK ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADMHG ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUPB AEUYR AEYWJ AFAZZ AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ANHSF ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CBGCD CS3 CUYZI D-E D-F DCZOG DEVKO DPXWK DR2 DRFUL DRSTM DU5 E3Z EBS ECGQY EJD F00 F01 F04 F5P G-S G.N GODZA H.T H.X HGLYW HZI HZ~ IHE IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K ROL RX1 SA0 SUPJJ UB1 W8V W99 WBKPD WH7 WIH WIK WIN WNSPC WOHZO WQJ WXSBR WYISQ XG1 YQT ZZTAW ~02 ~IA ~KM ~WT .Y3 24P 31~ 42X 53G AAHHS AAYJJ ABEFU ABTAH ABXSQ ACCFJ ACHIC ADULT ADZOD AEEZP AEQDE AEUQT AFPWT AHXOZ AI. AILXY AIWBW AJBDE AQVQM AS~ CAG COF DOOOF EQZMY ESX GTFYD HF~ HGD HQ2 HTVGU JSODD LW6 VH1 VOH WHG WRC XIH YYP ZY4 AAYXX ABSQW AGUYK CITATION 7SN 7SS 7T7 7U7 8FD C1K FR3 M7N P64 RC3 7S9 L.6 08R ABHUG ABPTK ABWRO ACXME ADAWD ADDAD ADZLD AESBF AFVGU AGJLS AIRJO CWIXF DWIUU IPNFZ PQEST QVL UMP |
ID | FETCH-LOGICAL-c4621-d53a8c38af4f62a33fc2c97b8edbe7e9956ca1d5303f8c8dcff4433c37ab4b603 |
IEDL.DBID | DR2 |
ISSN | 0021-8901 |
IngestDate | Thu Oct 13 09:31:50 EDT 2022 Fri Jul 11 18:27:44 EDT 2025 Fri Jul 25 19:40:31 EDT 2025 Thu Apr 24 22:59:50 EDT 2025 Tue Jul 01 01:20:57 EDT 2025 Wed Jan 22 16:45:43 EST 2025 Thu Jul 03 21:34:21 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4621-d53a8c38af4f62a33fc2c97b8edbe7e9956ca1d5303f8c8dcff4433c37ab4b603 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5380-2993 0000-0001-8520-8289 0000-0002-3896-4943 0000-0003-4823-6912 0000-0002-2346-1585 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2664.13261 |
PQID | 2164057477 |
PQPubID | 37791 |
PageCount | 12 |
ParticipantIDs | wageningen_narcis_oai_library_wur_nl_wurpubs_541315 proquest_miscellaneous_2221064176 proquest_journals_2164057477 crossref_primary_10_1111_1365_2664_13261 crossref_citationtrail_10_1111_1365_2664_13261 wiley_primary_10_1111_1365_2664_13261_JPE13261 jstor_primary_48580391 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190101 January 2019 2019-01-00 2019 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – month: 1 year: 2019 text: 20190101 day: 1 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | The Journal of applied ecology |
PublicationYear | 2019 |
Publisher | Wiley Blackwell Publishing Ltd |
Publisher_xml | – name: Wiley – name: Blackwell Publishing Ltd |
References | 2010; 98 2013; 4 1963; 44 2015; 30 2010; 101 2016; 76 2016; 30 2016; 104 2012; 15 1979 2014; 204 2001; 61 2014; 5 2009; 97 2013; 57 2008; 22 2014; 95 1996; 22 2009; 23 2017; 63 2006; 50 2015; 18 2015; 51 2015; 124 2010 1999; 29 2002; 34 1988; 17 2003; 79 2016; 94 2008; 11 2012b; 26 2011; 8 2016; 161 2017; 109 2016; 7 2010; 42 2013; 37 2007; 315 1997; 33 2002; 242 2015; 153 2018 2016 1994; 17 2001; 33 2012a; 100 2018; 55 2014; 78 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_12_1 e_1_2_9_33_1 Barel J. M. (e_1_2_9_6_1) 2018 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_45_1 Zuur A. F. (e_1_2_9_53_1) 2010 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_4_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_7_1 e_1_2_9_5_1 Swift M. J. (e_1_2_9_44_1) 1979 e_1_2_9_3_1 R Core Team (e_1_2_9_35_1) 2016 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 55 start-page: 299 year: 2018 end-page: 310 article-title: Legacy effects of diversity in space and time driven by winter cover crop biomass and nitrogen concentration publication-title: Journal of Applied Ecology – volume: 153 start-page: 1174 year: 2015 end-page: 1185 article-title: Quantitative characterization of five cover crop species publication-title: The Journal of Agricultural Science – volume: 124 start-page: 187 year: 2015 end-page: 195 article-title: Litter quality and environmental controls of home‐field advantage effects on litter decomposition publication-title: Oikos – year: 1979 – volume: 5 start-page: 944 year: 2014 end-page: 946 article-title: Extension of Nakagawa & Schielzeth's R2GLMM to random slopes models publication-title: Methods in Ecology and Evolution – volume: 57 start-page: 311 year: 2013 end-page: 319 article-title: Litter chemistry changes more rapidly when decomposed at home but converges during decomposition–transformation publication-title: Soil Biology and Biochemistry – volume: 17 start-page: 21 year: 1994 end-page: 26 article-title: Mineralization of 14C‐labelled unripe straw in soil with and without rape ( L.) publication-title: Biology and Fertility of Soils – volume: 22 start-page: 59 year: 1996 end-page: 65 article-title: The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil publication-title: Biology and Fertility of Soils – volume: 161 start-page: 95 year: 2016 end-page: 105 article-title: Winter cover crops in soybean monoculture: Effects on soil organic carbon and its fractions publication-title: Soil and Tillage Research – volume: 23 start-page: 627 year: 2009 end-page: 636 article-title: Litter quality is in the eye of the beholder: Initial decomposition rates as a function of inoculum characteristics publication-title: Functional Ecology – volume: 94 start-page: 88 year: 2016 end-page: 93 article-title: Legume presence reduces the decomposition rate of non‐legume roots publication-title: Soil Biology and Biochemistry – volume: 101 start-page: 133 year: 2010 end-page: 149 article-title: Litter decomposition: What controls it and how can we alter it to sequester more carbon in forest soils? publication-title: Biogeochemistry – volume: 104 start-page: 229 year: 2016 end-page: 238 article-title: Understanding the dominant controls on litter decomposition publication-title: Journal of Ecology – volume: 315 start-page: 361 year: 2007 end-page: 364 article-title: Global‐scale similarities in nitrogen release patterns during long‐term decomposition publication-title: Science – volume: 76 start-page: 74 year: 2016 end-page: 82 article-title: Effect of cover crops on microbial community structure and related enzyme activities and macronutrient availability publication-title: European Journal of Soil Biology – volume: 44 start-page: 322 year: 1963 end-page: 331 article-title: Energy storage and the balance of producers and decomposers in ecological systems publication-title: Ecology – volume: 79 start-page: 227 year: 2003 end-page: 302 article-title: Catch crops and green manures as biological tools in nitrogen management in temperate zones publication-title: Advances in Agronomy – volume: 97 start-page: 901 year: 2009 end-page: 912 article-title: Soil biota accelerate decomposition in high‐elevation forests by specializing in the breakdown of litter produced by the plant species above them publication-title: Journal of Ecology – volume: 51 start-page: 913 year: 2015 end-page: 922 article-title: Effects of GM potato Modena on soil microbial activity and litter decomposition fall within the range of effects found for two conventional cultivars publication-title: Biology and Fertility of Soils – volume: 61 start-page: 63 year: 2001 end-page: 75 article-title: Management of organic matter in the tropics: Translating theory into practice publication-title: Nutrient Cycling in Agroecosystems – volume: 204 start-page: 307 year: 2014 end-page: 314 article-title: There's no place like home? An exploration of the mechanisms behind plant litter–decomposer affinity in terrestrial ecosystems publication-title: New Phytologist – volume: 109 start-page: 188 year: 2017 end-page: 204 article-title: Cover cropping frequency is the main driver of soil microbial changes during six years of organic vegetable production publication-title: Soil Biology and Biochemistry – volume: 18 start-page: 761 year: 2015 end-page: 771 article-title: Crop rotational diversity enhances belowground communities and functions in an agroecosystem publication-title: Ecology Letters – volume: 26 start-page: 56 year: 2012b end-page: 65 article-title: A plant economics spectrum of litter decomposability publication-title: Functional Ecology – volume: 242 start-page: 83 year: 2002 end-page: 92 article-title: Litter quality in a north European transect versus carbon storage potential publication-title: Plant and Soil – year: 2018 article-title: Data from: Winter cover crop legacy effects on litter decomposition act through litter quality and microbial community changes publication-title: Dryad Digital Repository – volume: 11 start-page: 1065 year: 2008 end-page: 1071 article-title: Plant species traits are the predominant control on litter decomposition rates within biomes worldwide publication-title: Ecology Letters – volume: 22 start-page: 547 year: 2008 end-page: 555 article-title: Functional diversity affects decomposition processes in experimental grasslands publication-title: Functional Ecology – volume: 42 start-page: 1898 year: 2010 end-page: 1910 article-title: The fat that matters: Soil food web analysis using fatty acids and their carbon stable isotope signature publication-title: Soil Biology and Biochemistry – volume: 30 start-page: 357 year: 2015 end-page: 363 article-title: Plant species effects on nutrient cycling: Revisiting litter feedbacks publication-title: Trends in Ecology and Evolution – year: 2016 – volume: 34 start-page: 1299 year: 2002 end-page: 1307 article-title: Soil microbial community structure in relation to vegetation management on former agricultural land publication-title: Soil Biology and Biochemistry – volume: 15 start-page: 1180 year: 2012 end-page: 1188 article-title: The origin of litter chemical complexity during decomposition publication-title: Ecology Letters – year: 2010 – volume: 57 start-page: 320 year: 2013 end-page: 326 article-title: Home field advantage of cattle manure decomposition affects the apparent nitrogen recovery in production grasslands publication-title: Soil Biology and Biochemistry – volume: 8 start-page: 1477 year: 2011 end-page: 1486 article-title: The effect of resource history on the functioning of soil microbial communities is maintained across time publication-title: Biogeosciences – volume: 29 start-page: 92 year: 1999 end-page: 97 article-title: Fungal presence in paired cultivated and uncultivated soils in central Iowa, USA publication-title: Biology and Fertility of Soils – volume: 30 start-page: 1109 year: 2016 end-page: 1121 article-title: Where, when and how plant‐soil feedback matters in a changing world publication-title: Functional Ecology – volume: 78 start-page: 243 year: 2014 end-page: 254 article-title: Crop rotation complexity regulates the decomposition of high and low quality residues publication-title: Soil Biology and Biochemistry – volume: 17 start-page: 215 year: 1988 end-page: 238 article-title: Chemical composition of herbaceous grass and legume species grown for maximum biomass production publication-title: Biomass – volume: 63 start-page: 1864 year: 2017 end-page: 1874 article-title: Changes in soil pH and phosphorus availability during decomposition of cover crop residues publication-title: Archives of Agronomy and Soil Science – volume: 37 start-page: 477 year: 2013 end-page: 494 article-title: A thready affair: Linking fungal diversity and community dynamics to terrestrial decomposition processes publication-title: FEMS Microbiology Reviews – volume: 33 start-page: 134 year: 1997 end-page: 143 article-title: Microbial dynamics associated with multiphasic decomposition of 14C‐labeled cellulose in soil publication-title: Microbial Ecology – volume: 33 start-page: 2011 year: 2001 end-page: 2018 article-title: Estimation of fungal growth rates in soil using 14C‐acetate incorporation into ergosterol publication-title: Soil Biology and Biochemistry – volume: 4 start-page: 1070 year: 2013 end-page: 1075 article-title: Tea Bag Index: A novel approach to collect uniform decomposition data across ecosystems publication-title: Methods in Ecology and Evolution – volume: 7 start-page: e01426 year: 2016 article-title: Eleven years of crop diversification alters decomposition dynamics of litter mixtures incubated with soil publication-title: Ecosphere – volume: 95 start-page: 447 year: 2014 end-page: 454 article-title: Accounting for soil biotic effects on soil health and crop productivity in the design of crop rotations publication-title: Journal of the Science of Food and Agriculture – volume: 50 start-page: 293 year: 2006 end-page: 300 article-title: Evaluation of a simple, non‐alkaline extraction protocol to quantify soil ergosterol publication-title: Pedobiologia – volume: 100 start-page: 619 year: 2012a end-page: 630 article-title: Multiple mechanisms for trait effects on litter decomposition: Moving beyond home‐field advantage with a new hypothesis publication-title: Journal of Ecology – volume: 98 start-page: 362 year: 2010 end-page: 373 article-title: Evidence of the ‘plant economics spectrum’ in a subarctic flora publication-title: Journal of Ecology – ident: e_1_2_9_36_1 doi: 10.1017/S0021859614000811 – ident: e_1_2_9_37_1 doi: 10.1016/j.soilbio.2012.10.005 – ident: e_1_2_9_30_1 doi: 10.2307/1932179 – ident: e_1_2_9_15_1 doi: 10.1002/jsfa.6565 – ident: e_1_2_9_52_1 doi: 10.1111/j.1461-0248.2012.01837.x – ident: e_1_2_9_10_1 doi: 10.1016/j.soilbio.2017.01.014 – ident: e_1_2_9_51_1 doi: 10.1016/j.soilbio.2012.09.027 – ident: e_1_2_9_42_1 doi: 10.1007/s003740050530 – volume-title: Decomposition in terrestrial ecosystems year: 1979 ident: e_1_2_9_44_1 doi: 10.1525/9780520407114 – ident: e_1_2_9_22_1 doi: 10.1016/j.tree.2015.03.015 – ident: e_1_2_9_39_1 doi: 10.1016/j.soilbio.2010.07.020 – ident: e_1_2_9_43_1 doi: 10.1111/j.1365-2435.2008.01515.x – ident: e_1_2_9_49_1 doi: 10.1111/oik.01374 – ident: e_1_2_9_14_1 doi: 10.1111/j.1461-0248.2008.01219.x – year: 2018 ident: e_1_2_9_6_1 article-title: Data from: Winter cover crop legacy effects on litter decomposition act through litter quality and microbial community changes publication-title: Dryad Digital Repository – ident: e_1_2_9_8_1 doi: 10.1023/A:1019637807021 – ident: e_1_2_9_33_1 – ident: e_1_2_9_17_1 doi: 10.1111/j.1365-2745.2011.01943.x – ident: e_1_2_9_25_1 doi: 10.5194/bg-8-1477-2011 – ident: e_1_2_9_41_1 doi: 10.1111/j.1365-2435.2008.01389.x – ident: e_1_2_9_9_1 doi: 10.1111/1365-2745.12507 – ident: e_1_2_9_12_1 doi: 10.1016/j.ejsobi.2016.07.002 – ident: e_1_2_9_5_1 doi: 10.1111/1365-2664.12929 – ident: e_1_2_9_24_1 doi: 10.1111/2041-210X.12225 – ident: e_1_2_9_31_1 doi: 10.1023/A:1013318210809 – ident: e_1_2_9_7_1 doi: 10.1007/BF00418667 – ident: e_1_2_9_40_1 doi: 10.1016/j.soilbio.2015.11.026 – ident: e_1_2_9_3_1 doi: 10.1111/j.1365-2745.2009.01539.x – volume-title: R: A language and environment for statistical computing year: 2016 ident: e_1_2_9_35_1 – ident: e_1_2_9_18_1 doi: 10.1111/j.1365-2435.2011.01913.x – ident: e_1_2_9_47_1 doi: 10.1111/1365-2435.12657 – ident: e_1_2_9_28_1 doi: 10.1002/ecs2.1426 – ident: e_1_2_9_20_1 doi: 10.1007/BF00384433 – ident: e_1_2_9_45_1 doi: 10.1016/S0065-2113(02)79005-6 – ident: e_1_2_9_38_1 doi: 10.1016/j.pedobi.2006.03.004 – ident: e_1_2_9_48_1 doi: 10.1080/03650340.2017.1308493 – ident: e_1_2_9_11_1 doi: 10.1007/s00374-015-1031-2 – ident: e_1_2_9_32_1 doi: 10.1126/science.1134853 – ident: e_1_2_9_19_1 doi: 10.1111/j.1365-2745.2009.01615.x – ident: e_1_2_9_4_1 doi: 10.1016/S0038-0717(01)00137-7 – ident: e_1_2_9_34_1 doi: 10.1007/s10533-010-9439-0 – ident: e_1_2_9_21_1 doi: 10.1016/S0038-0717(02)00073-1 – ident: e_1_2_9_46_1 doi: 10.1111/ele.12453 – ident: e_1_2_9_23_1 doi: 10.1007/s002489900015 – ident: e_1_2_9_27_1 doi: 10.1016/j.soilbio.2014.07.027 – ident: e_1_2_9_13_1 doi: 10.1016/0144-4565(88)90105-9 – volume-title: Mixed effects models and extensions in ecology with R year: 2010 ident: e_1_2_9_53_1 – ident: e_1_2_9_50_1 doi: 10.1111/1574-6976.12001 – ident: e_1_2_9_2_1 doi: 10.1111/nph.12959 – ident: e_1_2_9_16_1 doi: 10.1016/j.still.2016.04.006 – ident: e_1_2_9_26_1 doi: 10.1111/2041-210X.12097 – ident: e_1_2_9_29_1 |
SSID | ssj0009533 |
Score | 2.5071473 |
Snippet | In agriculture, winter cover crop (WCC) residues are incorporated into the soil to improve soil quality, as gradual litter decomposition can improve fertility.... In agriculture, winter cover crop ( WCC ) residues are incorporated into the soil to improve soil quality, as gradual litter decomposition can improve... 1.In agriculture, winter cover crop (WCC) residues are incorporated into the soil to improve soil quality, as gradual litter decomposition can improve... |
SourceID | wageningen proquest crossref wiley jstor |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 132 |
SubjectTerms | Agricultural practices Aspalathus linearis Avena sativa Biomass Bodembiologie Bodembiologie en biologische bodemkwaliteit Carbon cycle carbon cycling Chair Soil Biology and Biological Soil Quality Cichorium endivia Communities Correlation Cover crops Crop residues Crop rotation Cropping sequence Cropping systems Crops Decomposition endive fallow Fertility Filter paper Foreign languages Leerstoelgroep Bodembiologie en biologische Bodemkwaliteit legacy effects Lignin lignin content Litter microbial biomass microbial communities microbial community composition Microbiomes Microorganisms Monoculture Nitrogen nitrogen content nitrogen cycling Nutrient cycles oats Organic matter Organic soils PE&RC Quality Rate constants RESEARCH ARTICLE Residues soil Soil Biology Soil Biology and Biological Soil Quality Soil conditions Soil fertility Soil improvement Soil microorganisms Soil organic matter Soil properties Soil quality Soils standardised substrates Substrates Tea Winter winter cover crop |
Title | Winter cover crop legacy effects on litter decomposition act through litter quality and microbial community changes |
URI | https://www.jstor.org/stable/48580391 https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2664.13261 https://www.proquest.com/docview/2164057477 https://www.proquest.com/docview/2221064176 http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F541315 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3faxQxEA5aEOqDP6rF1Voi-ODLHbebbDb7WKSl9EGKWPQtJJNsEc89ub2jnH-9M0n27BVExKc79iawyc0k3-x-8w1jb2dOQumtnEhfY4LibIkh1bYTi-C89MKrzke1zw_q_EpefKlHNiHVwiR9iO0DN4qMuF9TgFs33AryzM9ScooJVUyA6ArBoo_VLdnd1EyeiAgaj74s7kNcnjvjd86lRE3cAZ37NxjffSx42sWx8SA6e8zcOIXEP_k2Xa_cFH7eUXf8rzk-YY8yTOUnya-esnuhP2APT66XWaojHLAHqY3l5hkbPpPoxJID0UE59QTj83BtYcMzW4Qveo5wn2x8IBJ7ZopxCyueOwWNBqnKc8Nt7_n3r1EmCm8EUh0LXk-VysNzdnV2-un9-SQ3c5iAVLj6vhZWg9C2k52qrBAdVNA2TgfvQhOowBZsiVYz0WnQHrpOSiFANNZJp2bikO31iz68YBwhIm47Ta20tBKCajsQgNDH-84JP4OCTce_0kBWOqeGG3MzZjy0robW1cR1Ldi77YAfSeTjz6aH0Te2dlLXmlT2C3Y0OovJ28BgKkxGERDLpinYm-3PGMD0Vsb2YbFGmwqzbiXLRhVM_HYy01MvqcGQ_Hd2FXOzXpp-Th8Yq4OpEYCUNc42utDf7txcXJ7GLy__dcArto8wsU0Pno7Y3mq5Dq8Riq3cMbtfycvjGHO_ADm0KqY |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELbQEGI88GMwLbCBkXjgpVUTO07yOKFNZYwJoU3szXLOzoToUtS0mspfz53tdO0khBBPrdpLFbt39nfOd98x9m5US0itkQNpc0xQapNiSFXVwCA4T62wqrFe7fNMjS_kyWV-uVYLE_QhVgduFBl-vaYApwPptSiPBC0lh5hRUQZ0n_p6-7Tqa7YmvBvayRMVocTNL8r7EJvnzg9s7EyBnLgBO7dvMMJbX_K0iWT9VnT8hEE_iMBA-TFczOsh_Lqj7_h_o3zKHkekyg-Daz1j91y7wx4dXs2iWofbYQ9CJ8vlc9Z9I92JGQdihHJqC8Yn7srAkkfCCJ-2HBE_2VhHPPZIFuMG5jw2C-oNQqHnkpvW8uvvXikKbwRCKQt-HoqVuxfs4vjo_MN4EPs5DEAqnH6bC1OCKE0jG5UZIRrIoCrq0tnaFY5qbMGkaDUSTQmlhaaRUggQhallrUZil22109btMY4oEVeeIlelNBKcqhoQgOjH2qYWdgQJG_b_pYYodk49Nya6T3poXjXNq_bzmrD3qwt-Bp2PP5vueudY2ckyL0loP2H7vbfouBJ0OsN8FDGxLIqEvV19jTFMD2ZM66YLtMkw8VYyLVTCxK2X6ZbaSXWaFMCjr-ibxUy3E3rBcO10jhgkzXG03of-duf65MuRf_PyXy94wx6Ozz-f6tOPZ59esW1EjVU4h9pnW_PZwh0gMpvXr33o_QbIsy3q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELbQEGh74MdgIjDASDzw0iqJHcd5nNiqMdA0ISZ4s_wrE6KkU9Nq6v567mynrJMQQjy1ai5V7NzZ3yXffUfI29xwWzjNR9xVkKAYXUBINc1IAzgvHHOidUHt81Qcn_OTb9XAJsRamKgPsX7ghpER1msM8EvX3gjyxM8SfAwJFSZAd7nIJTr24efyhu5u7CaPTAQJe19S90Eyz60_2NiYIjdxA3VuX0GAd6HiaRPIhp1o8pCYYQyRgPJjvFyYsb2-Je_4X4N8RB4knEoPomM9Jnd8t0t2Di7mSavD75J7sY_l6gnpv6LqxJxa5INSbApGp_5C2xVNdBE66yjgfbRxHlnsiSpGtV3Q1CpoMIhlniuqO0d_fg86UXAhNhaywO-xVLl_Ss4nR1_eH49SN4eR5QJm31VMS8ukbnkrSs1Ya0vb1EZ6Z3ztscLW6gKsctZKK51tW84Zs6zWhhuRsz2y1c06_4xQwIiw7tSVkFxz60XTWmYB-zjXGuZym5HxcCuVTVLn2HFjqoaUB-dV4byqMK8Zebc-4TKqfPzZdC_4xtqOy0qizH5G9gdnUWkd6FUJ2SggYl7XGXmzPgwRjK9ldOdnS7ApIe0WvKhFRthvJ1MdNpPqFep_J1dRV8u56qb4AcHaqwoQSFHBaIML_e3K1cnZUfjy_F9PeE3unx1O1KcPpx9fkG2AjE18CLVPthbzpX8JsGxhXoXA-wUzXyyi |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Winter+cover+crop+legacy+effects+on+litter+decomposition+act+through+litter+quality+and+microbial+community+changes&rft.jtitle=The+Journal+of+applied+ecology&rft.au=Barel%2C+Janna+M&rft.au=Kuyper%2C+Thomas+W&rft.au=Paul%2C+Jos&rft.au=Boer%2C+Wietse%2C+de&rft.date=2019&rft.issn=0021-8901&rft.eissn=1365-2664&rft.volume=56&rft.issue=1&rft_id=info:doi/10.1111%2F1365-2664.13261&rft.externalDBID=public&rft.externalDocID=oai_library_wur_nl_wurpubs_541315 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8901&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8901&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8901&client=summon |