Winter cover crop legacy effects on litter decomposition act through litter quality and microbial community changes

In agriculture, winter cover crop (WCC) residues are incorporated into the soil to improve soil quality, as gradual litter decomposition can improve fertility. Decomposition rate is determined by litter quality, local soil abiotic and biotic properties. How these factors are interlinked and influenc...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of applied ecology Vol. 56; no. 1; pp. 132 - 143
Main Authors Barel, Janna M., Kuyper, Thomas W., Paul, Jos, de Boer, Wietse, Cornelissen, Johannes H. C., De Deyn, Gerlinde B.
Format Journal Article
LanguageEnglish
Published Oxford Wiley 01.01.2019
Blackwell Publishing Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In agriculture, winter cover crop (WCC) residues are incorporated into the soil to improve soil quality, as gradual litter decomposition can improve fertility. Decomposition rate is determined by litter quality, local soil abiotic and biotic properties. How these factors are interlinked and influenced by cropping history is, however, unclear. We grew WCC monocultures and mixtures in rotation with main crops Avena sativa (oat) and Cichorium endivia (endive) and tested how crop rotation influences WCC litter quality, abiotic and biotic soil conditions, and litter decomposition rates. To disentangle WCC litter quality effects from WCC soil legacy effects on decomposition, we tested how rotation history influences decomposition of standard substrates and explored the underlying mechanisms. In a common environment (e.g. winter fallow plots), WCC decomposition rate constants (k) correlated negatively with litter C, lignin and, surprisingly, N content, due to strong positive correlations among these traits. Plots with a history of fast‐decomposing WCCs exhibited faster decomposition of their own litters as well as of the standard substrates filter paper and rooibos tea, as compared to winter fallow plots. WCC treatments differentially affected soil microbial biomass, as well as soil organic matter and mineral nitrogen content. WCC‐induced soil changes affected decomposition rates. Depending on the main crop rotation treatment, legacy effects were attributed to biomass input of WCCs and their litter quality or changes in microbial biomass. Synthesis and applications. These results demonstrate that decomposition in cropping systems is influenced directly through crop residues, as well as through crop‐induced changes in soil biotic properties. Rotation history influences decomposition, wherein productive winter cover crops (WCC) with low lignin content decompose fast and stimulate the turnover of both own and newly added residues via their knock‐on effect on the soil microbial community. Thus, WCC have promise for sustainable carbon‐ and nutrient‐cycling management through litter feedbacks. Foreign Language In landbouw worden plantenresten van wintergroenbemesters in de bodem ondergewerkt om bodemkwaliteit te verbeteren. De afbraaksnelheid van groenbemesterstrooisel en het daarbij vrijkomen van voedingsstoffen wordt bepaald door strooiselkwaliteit en lokale abiotische en biotische bodemomstandigheden. Echter is het onduidelijk hoe al deze factoren worden beïnvloed door gewasrotatie. In een veldexperiment werden verschillende winterse groenbemesters verbouwd in monoculturen en mengsels, in rotatie met hoofdgewassen Avena sativa (haver) en Cichorium endivia (andijvie). De invloed van gewasrotatie op de kwaliteit van groenbemesterstrooisel, lokale abiotische en biotische bodemparameters en strooiselafbraaksnelheid werd getest. Om bovendien onderscheid te kunnen maken tussen effecten van strooiselkwaliteit en veranderingen in bodemomstandigheden, werden effecten van gewasrotatie ook getoetst op de afbraak van standaard substraten (filterpapier en rooibosthee). In eenzelfde omgeving, zonder specifieke groenbemestergeschiedenis (voormalig winter braak), waren afbraaksnelheden van groenbemesterstrooisels negatief gecorreleerd met concentraties van koolstof‐ (C), lignine‐, en tegen de verwachtingen in, stikstof‐ (N) in het strooisel. Dit resultaat werd verklaard door de onderlinge positieve correlaties tussen N, C en lignine. In vergelijking met voormalig winter braakvelden, toonden proefvelden met een geschiedenis van snel afbrekende groenbemesters een snellere decompositie van zowel eigen strooisels als ook van de standaard substraten. De verschillende erfeniseffecten op afbraaksnelheid konden worden gerelateerd aan de effecten van de groenbemesters op de bodem microbiële biomassa, bodem organische stof en minerale stikstofgehalten. Afhankelijk van het hoofdgewas, konden de erfeniseffecten worden toegeschreven aan de hoeveelheid plantenresten van de groenbemesters, de kwaliteit hiervan, alsmede aan veranderingen in de microbiële biomassa, maar niet aan veranderde abiotische bodemfactoren. Synthese en toepassing. Deze resultaten tonen aan dat decompositie in landbouwsystemen direct wordt beïnvloed door gewasresten en de bodem erfeniseffecten op biotische bodemomstandigheden. De volgorde van gewassen beïnvloedt afbraak, waarbij productieve groenbemesters met snel afbrekende strooisels de decompositie van nieuw materiaal stimuleren via de microbiële bodemgemeenschap en vrijgekomen stikstof. Winterse groenbemesters zijn daarom veelbelovende middelen om C‐ en N‐kringlopen duurzaam te beheren door middel van strooisel‐feedback. These results demonstrate that decomposition in cropping systems is influenced directly through crop residues, as well as through crop‐induced changes in soil biotic properties. Rotation history influences decomposition, wherein productive winter cover crops (WCC) with low lignin content decompose fast and stimulate the turnover of both own and newly added residues via their knock‐on effect on the soil microbial community. Thus, WCC have promise for sustainable carbon‐ and nutrient‐cycling management through litter feedbacks.
AbstractList In agriculture, winter cover crop (WCC) residues are incorporated into the soil to improve soil quality, as gradual litter decomposition can improve fertility. Decomposition rate is determined by litter quality, local soil abiotic and biotic properties. How these factors are interlinked and influenced by cropping history is, however, unclear.We grew WCC monocultures and mixtures in rotation with main crops Avena sativa (oat) and Cichorium endivia (endive) and tested how crop rotation influences WCC litter quality, abiotic and biotic soil conditions, and litter decomposition rates. To disentangle WCC litter quality effects from WCC soil legacy effects on decomposition, we tested how rotation history influences decomposition of standard substrates and explored the underlying mechanisms.In a common environment (e.g. winter fallow plots), WCC decomposition rate constants (k) correlated negatively with litter C, lignin and, surprisingly, N content, due to strong positive correlations among these traits. Plots with a history of fast‐decomposing WCCs exhibited faster decomposition of their own litters as well as of the standard substrates filter paper and rooibos tea, as compared to winter fallow plots.WCC treatments differentially affected soil microbial biomass, as well as soil organic matter and mineral nitrogen content. WCC‐induced soil changes affected decomposition rates. Depending on the main crop rotation treatment, legacy effects were attributed to biomass input of WCCs and their litter quality or changes in microbial biomass.Synthesis and applications. These results demonstrate that decomposition in cropping systems is influenced directly through crop residues, as well as through crop‐induced changes in soil biotic properties. Rotation history influences decomposition, wherein productive winter cover crops (WCC) with low lignin content decompose fast and stimulate the turnover of both own and newly added residues via their knock‐on effect on the soil microbial community. Thus, WCC have promise for sustainable carbon‐ and nutrient‐cycling management through litter feedbacks.
In agriculture, winter cover crop ( WCC ) residues are incorporated into the soil to improve soil quality, as gradual litter decomposition can improve fertility. Decomposition rate is determined by litter quality, local soil abiotic and biotic properties. How these factors are interlinked and influenced by cropping history is, however, unclear. We grew WCC monocultures and mixtures in rotation with main crops Avena sativa (oat) and Cichorium endivia (endive) and tested how crop rotation influences WCC litter quality, abiotic and biotic soil conditions, and litter decomposition rates. To disentangle WCC litter quality effects from WCC soil legacy effects on decomposition, we tested how rotation history influences decomposition of standard substrates and explored the underlying mechanisms. In a common environment (e.g. winter fallow plots), WCC decomposition rate constants ( k ) correlated negatively with litter C, lignin and, surprisingly, N content, due to strong positive correlations among these traits. Plots with a history of fast‐decomposing WCC s exhibited faster decomposition of their own litters as well as of the standard substrates filter paper and rooibos tea, as compared to winter fallow plots. WCC treatments differentially affected soil microbial biomass, as well as soil organic matter and mineral nitrogen content. WCC ‐induced soil changes affected decomposition rates. Depending on the main crop rotation treatment, legacy effects were attributed to biomass input of WCC s and their litter quality or changes in microbial biomass. Synthesis and applications . These results demonstrate that decomposition in cropping systems is influenced directly through crop residues, as well as through crop‐induced changes in soil biotic properties. Rotation history influences decomposition, wherein productive winter cover crops (WCC) with low lignin content decompose fast and stimulate the turnover of both own and newly added residues via their knock‐on effect on the soil microbial community. Thus, WCC have promise for sustainable carbon‐ and nutrient‐cycling management through litter feedbacks. In landbouw worden plantenresten van wintergroenbemesters in de bodem ondergewerkt om bodemkwaliteit te verbeteren. De afbraaksnelheid van groenbemesterstrooisel en het daarbij vrijkomen van voedingsstoffen wordt bepaald door strooiselkwaliteit en lokale abiotische en biotische bodemomstandigheden. Echter is het onduidelijk hoe al deze factoren worden beïnvloed door gewasrotatie. In een veldexperiment werden verschillende winterse groenbemesters verbouwd in monoculturen en mengsels, in rotatie met hoofdgewassen Avena sativa (haver) en Cichorium endivia (andijvie). De invloed van gewasrotatie op de kwaliteit van groenbemesterstrooisel, lokale abiotische en biotische bodemparameters en strooiselafbraaksnelheid werd getest. Om bovendien onderscheid te kunnen maken tussen effecten van strooiselkwaliteit en veranderingen in bodemomstandigheden, werden effecten van gewasrotatie ook getoetst op de afbraak van standaard substraten (filterpapier en rooibosthee). In eenzelfde omgeving, zonder specifieke groenbemestergeschiedenis (voormalig winter braak), waren afbraaksnelheden van groenbemesterstrooisels negatief gecorreleerd met concentraties van koolstof‐ (C), lignine‐, en tegen de verwachtingen in, stikstof‐ (N) in het strooisel. Dit resultaat werd verklaard door de onderlinge positieve correlaties tussen N, C en lignine. In vergelijking met voormalig winter braakvelden, toonden proefvelden met een geschiedenis van snel afbrekende groenbemesters een snellere decompositie van zowel eigen strooisels als ook van de standaard substraten. De verschillende erfeniseffecten op afbraaksnelheid konden worden gerelateerd aan de effecten van de groenbemesters op de bodem microbiële biomassa, bodem organische stof en minerale stikstofgehalten. Afhankelijk van het hoofdgewas, konden de erfeniseffecten worden toegeschreven aan de hoeveelheid plantenresten van de groenbemesters, de kwaliteit hiervan, alsmede aan veranderingen in de microbiële biomassa, maar niet aan veranderde abiotische bodemfactoren. Synthese en toepassing . Deze resultaten tonen aan dat decompositie in landbouwsystemen direct wordt beïnvloed door gewasresten en de bodem erfeniseffecten op biotische bodemomstandigheden. De volgorde van gewassen beïnvloedt afbraak, waarbij productieve groenbemesters met snel afbrekende strooisels de decompositie van nieuw materiaal stimuleren via de microbiële bodemgemeenschap en vrijgekomen stikstof. Winterse groenbemesters zijn daarom veelbelovende middelen om C‐ en N‐kringlopen duurzaam te beheren door middel van strooisel‐feedback. These results demonstrate that decomposition in cropping systems is influenced directly through crop residues, as well as through crop‐induced changes in soil biotic properties. Rotation history influences decomposition, wherein productive winter cover crops (WCC) with low lignin content decompose fast and stimulate the turnover of both own and newly added residues via their knock‐on effect on the soil microbial community. Thus, WCC have promise for sustainable carbon‐ and nutrient‐cycling management through litter feedbacks.
1.In agriculture, winter cover crop (WCC) residues are incorporated into the soil to improve soil quality, as gradual litter decomposition can improve fertility. Decomposition rate is determined by litter quality, local soil abiotic and biotic properties. How these factors are interlinked and influenced by cropping history is, however, unclear. 2.We grew WCC monocultures and mixtures in rotation with main crops Avena sativa (oat) and Cichorium endivia (endive) and tested how crop rotation influences WCC litter quality, abiotic and biotic soil conditions, and litter decomposition rates. To disentangle WCC litter quality effects from WCC soil legacy effects on decomposition, we tested how rotation history influences decomposition of standard substrates and explored the underlying mechanisms. 3.In a common environment (e.g. winter fallow plots), WCC decomposition rate constants (k) correlated negatively with litter C, lignin and, surprisingly, N content, due to strong positive correlations among these traits. Plots with a history of fast‐decomposing WCCs exhibited faster decomposition of their own litters as well as of the standard substrates filter paper and rooibos tea, as compared to winter fallow plots. 4.WCC treatments differentially affected soil microbial biomass, as well as soil organic matter and mineral nitrogen content. WCC‐induced soil changes affected decomposition rates. Depending on the main crop rotation treatment, legacy effects were attributed to biomass input of WCCs and their litter quality or changes in microbial biomass. 5.Synthesis and applications. These results demonstrate that decomposition in cropping systems is influenced directly through crop residues, as well as through crop‐induced changes in soil biotic properties. Rotation history influences decomposition, wherein productive winter cover crops with low lignin content decompose fast and stimulate the turnover of both own and newly added residues via their knock‐on effect on the soil microbial community. Thus, winter cover crops have promise for sustainable carbon‐ and nutrient‐cycling management through litter feedbacks.
In agriculture, winter cover crop (WCC) residues are incorporated into the soil to improve soil quality, as gradual litter decomposition can improve fertility. Decomposition rate is determined by litter quality, local soil abiotic and biotic properties. How these factors are interlinked and influenced by cropping history is, however, unclear. We grew WCC monocultures and mixtures in rotation with main crops Avena sativa (oat) and Cichorium endivia (endive) and tested how crop rotation influences WCC litter quality, abiotic and biotic soil conditions, and litter decomposition rates. To disentangle WCC litter quality effects from WCC soil legacy effects on decomposition, we tested how rotation history influences decomposition of standard substrates and explored the underlying mechanisms. In a common environment (e.g. winter fallow plots), WCC decomposition rate constants (k) correlated negatively with litter C, lignin and, surprisingly, N content, due to strong positive correlations among these traits. Plots with a history of fast‐decomposing WCCs exhibited faster decomposition of their own litters as well as of the standard substrates filter paper and rooibos tea, as compared to winter fallow plots. WCC treatments differentially affected soil microbial biomass, as well as soil organic matter and mineral nitrogen content. WCC‐induced soil changes affected decomposition rates. Depending on the main crop rotation treatment, legacy effects were attributed to biomass input of WCCs and their litter quality or changes in microbial biomass. Synthesis and applications. These results demonstrate that decomposition in cropping systems is influenced directly through crop residues, as well as through crop‐induced changes in soil biotic properties. Rotation history influences decomposition, wherein productive winter cover crops (WCC) with low lignin content decompose fast and stimulate the turnover of both own and newly added residues via their knock‐on effect on the soil microbial community. Thus, WCC have promise for sustainable carbon‐ and nutrient‐cycling management through litter feedbacks. Foreign Language In landbouw worden plantenresten van wintergroenbemesters in de bodem ondergewerkt om bodemkwaliteit te verbeteren. De afbraaksnelheid van groenbemesterstrooisel en het daarbij vrijkomen van voedingsstoffen wordt bepaald door strooiselkwaliteit en lokale abiotische en biotische bodemomstandigheden. Echter is het onduidelijk hoe al deze factoren worden beïnvloed door gewasrotatie. In een veldexperiment werden verschillende winterse groenbemesters verbouwd in monoculturen en mengsels, in rotatie met hoofdgewassen Avena sativa (haver) en Cichorium endivia (andijvie). De invloed van gewasrotatie op de kwaliteit van groenbemesterstrooisel, lokale abiotische en biotische bodemparameters en strooiselafbraaksnelheid werd getest. Om bovendien onderscheid te kunnen maken tussen effecten van strooiselkwaliteit en veranderingen in bodemomstandigheden, werden effecten van gewasrotatie ook getoetst op de afbraak van standaard substraten (filterpapier en rooibosthee). In eenzelfde omgeving, zonder specifieke groenbemestergeschiedenis (voormalig winter braak), waren afbraaksnelheden van groenbemesterstrooisels negatief gecorreleerd met concentraties van koolstof‐ (C), lignine‐, en tegen de verwachtingen in, stikstof‐ (N) in het strooisel. Dit resultaat werd verklaard door de onderlinge positieve correlaties tussen N, C en lignine. In vergelijking met voormalig winter braakvelden, toonden proefvelden met een geschiedenis van snel afbrekende groenbemesters een snellere decompositie van zowel eigen strooisels als ook van de standaard substraten. De verschillende erfeniseffecten op afbraaksnelheid konden worden gerelateerd aan de effecten van de groenbemesters op de bodem microbiële biomassa, bodem organische stof en minerale stikstofgehalten. Afhankelijk van het hoofdgewas, konden de erfeniseffecten worden toegeschreven aan de hoeveelheid plantenresten van de groenbemesters, de kwaliteit hiervan, alsmede aan veranderingen in de microbiële biomassa, maar niet aan veranderde abiotische bodemfactoren. Synthese en toepassing. Deze resultaten tonen aan dat decompositie in landbouwsystemen direct wordt beïnvloed door gewasresten en de bodem erfeniseffecten op biotische bodemomstandigheden. De volgorde van gewassen beïnvloedt afbraak, waarbij productieve groenbemesters met snel afbrekende strooisels de decompositie van nieuw materiaal stimuleren via de microbiële bodemgemeenschap en vrijgekomen stikstof. Winterse groenbemesters zijn daarom veelbelovende middelen om C‐ en N‐kringlopen duurzaam te beheren door middel van strooisel‐feedback. These results demonstrate that decomposition in cropping systems is influenced directly through crop residues, as well as through crop‐induced changes in soil biotic properties. Rotation history influences decomposition, wherein productive winter cover crops (WCC) with low lignin content decompose fast and stimulate the turnover of both own and newly added residues via their knock‐on effect on the soil microbial community. Thus, WCC have promise for sustainable carbon‐ and nutrient‐cycling management through litter feedbacks.
Author Barel, Janna M.
de Boer, Wietse
Cornelissen, Johannes H. C.
Kuyper, Thomas W.
Paul, Jos
De Deyn, Gerlinde B.
Author_xml – sequence: 1
  givenname: Janna M.
  surname: Barel
  fullname: Barel, Janna M.
– sequence: 2
  givenname: Thomas W.
  surname: Kuyper
  fullname: Kuyper, Thomas W.
– sequence: 3
  givenname: Jos
  surname: Paul
  fullname: Paul, Jos
– sequence: 4
  givenname: Wietse
  surname: de Boer
  fullname: de Boer, Wietse
– sequence: 5
  givenname: Johannes H. C.
  surname: Cornelissen
  fullname: Cornelissen, Johannes H. C.
– sequence: 6
  givenname: Gerlinde B.
  surname: De Deyn
  fullname: De Deyn, Gerlinde B.
BookMark eNqFkU1v3CAQhlGVSNkkPedUyVIvvWzCl7HdWxWlX4rUHlr1iMYYdllhcABntf--uNvkkEs4MGj0PjPDvOfoxAevEboi-JqUc0OYqNdUCH5NGBXkDVo9Z07QCmNK1m2HyRk6T2mHMe5qxlYo_bE-61ip8LjcMUyV0xtQh0obo1VOVfCVs3nRDFqFcQrJZluSoHKVtzHMm-2T4GGG8jpU4IdqtKVYb8GV0uM4-yWvtuA3Ol2iUwMu6bf_4wX6_fnu1-3X9f2PL99uP92vFRdl2qFm0CrWguFGUGDMKKq6pm_10OtGd10tFJCiwsy0qh2UMZwzplgDPe8FZhfo47HuHjba29LaSw9R2SQDWOlsHyEe5H6O0rslTHOfZM0JI3WBPxzhKYaHWacsR5uUdg68DnOSlFKCBSeNKNL3L6S7MEdfviYpERzXDW-aoro5qspeUorayCnacRmAYLk4KBe_5OKX_OdgIeoXhLIZluXnCNa9zu2t04fX2sjvP--euHdHbpdyiM8cb-sWs46wv0JtvTU
CitedBy_id crossref_primary_10_1016_j_apsoil_2024_105761
crossref_primary_10_1371_journal_pone_0289352
crossref_primary_10_1016_j_fcr_2020_107736
crossref_primary_10_3389_fsufs_2022_826486
crossref_primary_10_1016_j_ecolind_2020_106405
crossref_primary_10_1016_j_apsoil_2020_103854
crossref_primary_10_1016_j_tplants_2022_05_007
crossref_primary_10_3390_agronomy14092104
crossref_primary_10_1016_j_tplants_2024_04_010
crossref_primary_10_1007_s11104_022_05419_z
crossref_primary_10_1016_j_soilbio_2019_107701
crossref_primary_10_3390_land13122246
crossref_primary_10_3389_fagro_2023_1214811
crossref_primary_10_1111_nph_18118
crossref_primary_10_1016_j_scitotenv_2020_138304
crossref_primary_10_3389_fmicb_2023_1323902
crossref_primary_10_1016_j_envres_2024_118518
crossref_primary_10_5194_soil_10_407_2024
crossref_primary_10_1016_j_agee_2022_108052
crossref_primary_10_1016_j_eja_2022_126567
crossref_primary_10_1016_j_soilbio_2023_109080
crossref_primary_10_3390_su132313278
crossref_primary_10_3390_agronomy11091681
crossref_primary_10_1016_j_atech_2024_100621
crossref_primary_10_1007_s11104_021_05104_7
crossref_primary_10_1111_pce_14247
crossref_primary_10_1016_j_dib_2022_108841
crossref_primary_10_1007_s00374_020_01475_8
crossref_primary_10_1016_j_geodrs_2024_e00865
crossref_primary_10_1016_j_heliyon_2024_e29590
crossref_primary_10_3390_agriculture14060898
crossref_primary_10_3390_ijerph19052695
crossref_primary_10_1016_j_apsoil_2023_105160
crossref_primary_10_1016_j_agee_2019_106649
crossref_primary_10_1016_j_fcr_2022_108803
crossref_primary_10_1016_j_soilbio_2020_108115
crossref_primary_10_3390_agriculture10110527
crossref_primary_10_1016_j_scitotenv_2024_174572
crossref_primary_10_1016_j_soilbio_2020_107986
crossref_primary_10_1016_j_agee_2024_109331
crossref_primary_10_1016_j_ecolind_2020_106943
crossref_primary_10_1007_s10021_019_00452_z
crossref_primary_10_5194_soil_10_139_2024
crossref_primary_10_3389_fmicb_2024_1353629
crossref_primary_10_48130_FR_2023_0022
crossref_primary_10_1016_j_agee_2022_107908
crossref_primary_10_1017_S1742170521000405
crossref_primary_10_1111_ejss_13427
crossref_primary_10_1016_j_atech_2024_100608
crossref_primary_10_1111_ejss_13582
crossref_primary_10_1007_s10457_024_01044_0
crossref_primary_10_1016_j_geoderma_2024_116984
crossref_primary_10_1016_j_soilbio_2020_107899
crossref_primary_10_1038_s41598_022_11845_x
crossref_primary_10_1111_1365_2745_13592
crossref_primary_10_1016_j_apsoil_2021_104099
crossref_primary_10_1093_jambio_lxac051
Cites_doi 10.1017/S0021859614000811
10.1016/j.soilbio.2012.10.005
10.2307/1932179
10.1002/jsfa.6565
10.1111/j.1461-0248.2012.01837.x
10.1016/j.soilbio.2017.01.014
10.1016/j.soilbio.2012.09.027
10.1007/s003740050530
10.1525/9780520407114
10.1016/j.tree.2015.03.015
10.1016/j.soilbio.2010.07.020
10.1111/j.1365-2435.2008.01515.x
10.1111/oik.01374
10.1111/j.1461-0248.2008.01219.x
10.1023/A:1019637807021
10.1111/j.1365-2745.2011.01943.x
10.5194/bg-8-1477-2011
10.1111/j.1365-2435.2008.01389.x
10.1111/1365-2745.12507
10.1016/j.ejsobi.2016.07.002
10.1111/1365-2664.12929
10.1111/2041-210X.12225
10.1023/A:1013318210809
10.1007/BF00418667
10.1016/j.soilbio.2015.11.026
10.1111/j.1365-2745.2009.01539.x
10.1111/j.1365-2435.2011.01913.x
10.1111/1365-2435.12657
10.1002/ecs2.1426
10.1007/BF00384433
10.1016/S0065-2113(02)79005-6
10.1016/j.pedobi.2006.03.004
10.1080/03650340.2017.1308493
10.1007/s00374-015-1031-2
10.1126/science.1134853
10.1111/j.1365-2745.2009.01615.x
10.1016/S0038-0717(01)00137-7
10.1007/s10533-010-9439-0
10.1016/S0038-0717(02)00073-1
10.1111/ele.12453
10.1007/s002489900015
10.1016/j.soilbio.2014.07.027
10.1016/0144-4565(88)90105-9
10.1111/1574-6976.12001
10.1111/nph.12959
10.1016/j.still.2016.04.006
10.1111/2041-210X.12097
ContentType Journal Article
Copyright 2018 The Authors
2018 The Authors. published by John Wiley & Sons Ltd on behalf of British Ecological Society
Journal of Applied Ecology © 2019 British Ecological Society
Wageningen University & Research
Copyright_xml – notice: 2018 The Authors
– notice: 2018 The Authors. published by John Wiley & Sons Ltd on behalf of British Ecological Society
– notice: Journal of Applied Ecology © 2019 British Ecological Society
– notice: Wageningen University & Research
DBID 24P
AAYXX
CITATION
7SN
7SS
7T7
7U7
8FD
C1K
FR3
M7N
P64
RC3
7S9
L.6
QVL
DOI 10.1111/1365-2664.13261
DatabaseName Wiley Online Library Open Access
CrossRef
Ecology Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
NARCIS:Publications
DatabaseTitle CrossRef
Entomology Abstracts
Genetics Abstracts
Technology Research Database
Toxicology Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Engineering Research Database
Ecology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Entomology Abstracts
AGRICOLA
CrossRef


Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Biology
EISSN 1365-2664
EndPage 143
ExternalDocumentID oai_library_wur_nl_wurpubs_541315
10_1111_1365_2664_13261
JPE13261
48580391
Genre article
GrantInformation_xml – fundername: NWO‐ALW VIDI
  funderid: 864.11003
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1OC
29J
2AX
2WC
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHKG
AAHQN
AAISJ
AAKGQ
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABEML
ABJNI
ABPLY
ABPPZ
ABPVW
ABTLG
ACAHQ
ACCZN
ACFBH
ACGFS
ACNCT
ACPOU
ACPRK
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMHG
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUPB
AEUYR
AEYWJ
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ANHSF
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CBGCD
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EBS
ECGQY
EJD
F00
F01
F04
F5P
G-S
G.N
GODZA
H.T
H.X
HGLYW
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
SA0
SUPJJ
UB1
W8V
W99
WBKPD
WH7
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
YQT
ZZTAW
~02
~IA
~KM
~WT
.Y3
24P
31~
42X
53G
AAHHS
AAYJJ
ABEFU
ABTAH
ABXSQ
ACCFJ
ACHIC
ADULT
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AHXOZ
AI.
AILXY
AIWBW
AJBDE
AQVQM
AS~
CAG
COF
DOOOF
EQZMY
ESX
GTFYD
HF~
HGD
HQ2
HTVGU
JSODD
LW6
VH1
VOH
WHG
WRC
XIH
YYP
ZY4
AAYXX
ABSQW
AGUYK
CITATION
7SN
7SS
7T7
7U7
8FD
C1K
FR3
M7N
P64
RC3
7S9
L.6
08R
ABHUG
ABPTK
ABWRO
ACXME
ADAWD
ADDAD
ADZLD
AESBF
AFVGU
AGJLS
AIRJO
CWIXF
DWIUU
IPNFZ
PQEST
QVL
UMP
ID FETCH-LOGICAL-c4621-d53a8c38af4f62a33fc2c97b8edbe7e9956ca1d5303f8c8dcff4433c37ab4b603
IEDL.DBID DR2
ISSN 0021-8901
IngestDate Thu Oct 13 09:31:50 EDT 2022
Fri Jul 11 18:27:44 EDT 2025
Fri Jul 25 19:40:31 EDT 2025
Thu Apr 24 22:59:50 EDT 2025
Tue Jul 01 01:20:57 EDT 2025
Wed Jan 22 16:45:43 EST 2025
Thu Jul 03 21:34:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4621-d53a8c38af4f62a33fc2c97b8edbe7e9956ca1d5303f8c8dcff4433c37ab4b603
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5380-2993
0000-0001-8520-8289
0000-0002-3896-4943
0000-0003-4823-6912
0000-0002-2346-1585
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2664.13261
PQID 2164057477
PQPubID 37791
PageCount 12
ParticipantIDs wageningen_narcis_oai_library_wur_nl_wurpubs_541315
proquest_miscellaneous_2221064176
proquest_journals_2164057477
crossref_primary_10_1111_1365_2664_13261
crossref_citationtrail_10_1111_1365_2664_13261
wiley_primary_10_1111_1365_2664_13261_JPE13261
jstor_primary_48580391
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190101
January 2019
2019-01-00
2019
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 1
  year: 2019
  text: 20190101
  day: 1
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle The Journal of applied ecology
PublicationYear 2019
Publisher Wiley
Blackwell Publishing Ltd
Publisher_xml – name: Wiley
– name: Blackwell Publishing Ltd
References 2010; 98
2013; 4
1963; 44
2015; 30
2010; 101
2016; 76
2016; 30
2016; 104
2012; 15
1979
2014; 204
2001; 61
2014; 5
2009; 97
2013; 57
2008; 22
2014; 95
1996; 22
2009; 23
2017; 63
2006; 50
2015; 18
2015; 51
2015; 124
2010
1999; 29
2002; 34
1988; 17
2003; 79
2016; 94
2008; 11
2012b; 26
2011; 8
2016; 161
2017; 109
2016; 7
2010; 42
2013; 37
2007; 315
1997; 33
2002; 242
2015; 153
2018
2016
1994; 17
2001; 33
2012a; 100
2018; 55
2014; 78
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_12_1
e_1_2_9_33_1
Barel J. M. (e_1_2_9_6_1) 2018
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
Zuur A. F. (e_1_2_9_53_1) 2010
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_4_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_7_1
e_1_2_9_5_1
Swift M. J. (e_1_2_9_44_1) 1979
e_1_2_9_3_1
R Core Team (e_1_2_9_35_1) 2016
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 55
  start-page: 299
  year: 2018
  end-page: 310
  article-title: Legacy effects of diversity in space and time driven by winter cover crop biomass and nitrogen concentration
  publication-title: Journal of Applied Ecology
– volume: 153
  start-page: 1174
  year: 2015
  end-page: 1185
  article-title: Quantitative characterization of five cover crop species
  publication-title: The Journal of Agricultural Science
– volume: 124
  start-page: 187
  year: 2015
  end-page: 195
  article-title: Litter quality and environmental controls of home‐field advantage effects on litter decomposition
  publication-title: Oikos
– year: 1979
– volume: 5
  start-page: 944
  year: 2014
  end-page: 946
  article-title: Extension of Nakagawa & Schielzeth's R2GLMM to random slopes models
  publication-title: Methods in Ecology and Evolution
– volume: 57
  start-page: 311
  year: 2013
  end-page: 319
  article-title: Litter chemistry changes more rapidly when decomposed at home but converges during decomposition–transformation
  publication-title: Soil Biology and Biochemistry
– volume: 17
  start-page: 21
  year: 1994
  end-page: 26
  article-title: Mineralization of 14C‐labelled unripe straw in soil with and without rape ( L.)
  publication-title: Biology and Fertility of Soils
– volume: 22
  start-page: 59
  year: 1996
  end-page: 65
  article-title: The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil
  publication-title: Biology and Fertility of Soils
– volume: 161
  start-page: 95
  year: 2016
  end-page: 105
  article-title: Winter cover crops in soybean monoculture: Effects on soil organic carbon and its fractions
  publication-title: Soil and Tillage Research
– volume: 23
  start-page: 627
  year: 2009
  end-page: 636
  article-title: Litter quality is in the eye of the beholder: Initial decomposition rates as a function of inoculum characteristics
  publication-title: Functional Ecology
– volume: 94
  start-page: 88
  year: 2016
  end-page: 93
  article-title: Legume presence reduces the decomposition rate of non‐legume roots
  publication-title: Soil Biology and Biochemistry
– volume: 101
  start-page: 133
  year: 2010
  end-page: 149
  article-title: Litter decomposition: What controls it and how can we alter it to sequester more carbon in forest soils?
  publication-title: Biogeochemistry
– volume: 104
  start-page: 229
  year: 2016
  end-page: 238
  article-title: Understanding the dominant controls on litter decomposition
  publication-title: Journal of Ecology
– volume: 315
  start-page: 361
  year: 2007
  end-page: 364
  article-title: Global‐scale similarities in nitrogen release patterns during long‐term decomposition
  publication-title: Science
– volume: 76
  start-page: 74
  year: 2016
  end-page: 82
  article-title: Effect of cover crops on microbial community structure and related enzyme activities and macronutrient availability
  publication-title: European Journal of Soil Biology
– volume: 44
  start-page: 322
  year: 1963
  end-page: 331
  article-title: Energy storage and the balance of producers and decomposers in ecological systems
  publication-title: Ecology
– volume: 79
  start-page: 227
  year: 2003
  end-page: 302
  article-title: Catch crops and green manures as biological tools in nitrogen management in temperate zones
  publication-title: Advances in Agronomy
– volume: 97
  start-page: 901
  year: 2009
  end-page: 912
  article-title: Soil biota accelerate decomposition in high‐elevation forests by specializing in the breakdown of litter produced by the plant species above them
  publication-title: Journal of Ecology
– volume: 51
  start-page: 913
  year: 2015
  end-page: 922
  article-title: Effects of GM potato Modena on soil microbial activity and litter decomposition fall within the range of effects found for two conventional cultivars
  publication-title: Biology and Fertility of Soils
– volume: 61
  start-page: 63
  year: 2001
  end-page: 75
  article-title: Management of organic matter in the tropics: Translating theory into practice
  publication-title: Nutrient Cycling in Agroecosystems
– volume: 204
  start-page: 307
  year: 2014
  end-page: 314
  article-title: There's no place like home? An exploration of the mechanisms behind plant litter–decomposer affinity in terrestrial ecosystems
  publication-title: New Phytologist
– volume: 109
  start-page: 188
  year: 2017
  end-page: 204
  article-title: Cover cropping frequency is the main driver of soil microbial changes during six years of organic vegetable production
  publication-title: Soil Biology and Biochemistry
– volume: 18
  start-page: 761
  year: 2015
  end-page: 771
  article-title: Crop rotational diversity enhances belowground communities and functions in an agroecosystem
  publication-title: Ecology Letters
– volume: 26
  start-page: 56
  year: 2012b
  end-page: 65
  article-title: A plant economics spectrum of litter decomposability
  publication-title: Functional Ecology
– volume: 242
  start-page: 83
  year: 2002
  end-page: 92
  article-title: Litter quality in a north European transect versus carbon storage potential
  publication-title: Plant and Soil
– year: 2018
  article-title: Data from: Winter cover crop legacy effects on litter decomposition act through litter quality and microbial community changes
  publication-title: Dryad Digital Repository
– volume: 11
  start-page: 1065
  year: 2008
  end-page: 1071
  article-title: Plant species traits are the predominant control on litter decomposition rates within biomes worldwide
  publication-title: Ecology Letters
– volume: 22
  start-page: 547
  year: 2008
  end-page: 555
  article-title: Functional diversity affects decomposition processes in experimental grasslands
  publication-title: Functional Ecology
– volume: 42
  start-page: 1898
  year: 2010
  end-page: 1910
  article-title: The fat that matters: Soil food web analysis using fatty acids and their carbon stable isotope signature
  publication-title: Soil Biology and Biochemistry
– volume: 30
  start-page: 357
  year: 2015
  end-page: 363
  article-title: Plant species effects on nutrient cycling: Revisiting litter feedbacks
  publication-title: Trends in Ecology and Evolution
– year: 2016
– volume: 34
  start-page: 1299
  year: 2002
  end-page: 1307
  article-title: Soil microbial community structure in relation to vegetation management on former agricultural land
  publication-title: Soil Biology and Biochemistry
– volume: 15
  start-page: 1180
  year: 2012
  end-page: 1188
  article-title: The origin of litter chemical complexity during decomposition
  publication-title: Ecology Letters
– year: 2010
– volume: 57
  start-page: 320
  year: 2013
  end-page: 326
  article-title: Home field advantage of cattle manure decomposition affects the apparent nitrogen recovery in production grasslands
  publication-title: Soil Biology and Biochemistry
– volume: 8
  start-page: 1477
  year: 2011
  end-page: 1486
  article-title: The effect of resource history on the functioning of soil microbial communities is maintained across time
  publication-title: Biogeosciences
– volume: 29
  start-page: 92
  year: 1999
  end-page: 97
  article-title: Fungal presence in paired cultivated and uncultivated soils in central Iowa, USA
  publication-title: Biology and Fertility of Soils
– volume: 30
  start-page: 1109
  year: 2016
  end-page: 1121
  article-title: Where, when and how plant‐soil feedback matters in a changing world
  publication-title: Functional Ecology
– volume: 78
  start-page: 243
  year: 2014
  end-page: 254
  article-title: Crop rotation complexity regulates the decomposition of high and low quality residues
  publication-title: Soil Biology and Biochemistry
– volume: 17
  start-page: 215
  year: 1988
  end-page: 238
  article-title: Chemical composition of herbaceous grass and legume species grown for maximum biomass production
  publication-title: Biomass
– volume: 63
  start-page: 1864
  year: 2017
  end-page: 1874
  article-title: Changes in soil pH and phosphorus availability during decomposition of cover crop residues
  publication-title: Archives of Agronomy and Soil Science
– volume: 37
  start-page: 477
  year: 2013
  end-page: 494
  article-title: A thready affair: Linking fungal diversity and community dynamics to terrestrial decomposition processes
  publication-title: FEMS Microbiology Reviews
– volume: 33
  start-page: 134
  year: 1997
  end-page: 143
  article-title: Microbial dynamics associated with multiphasic decomposition of 14C‐labeled cellulose in soil
  publication-title: Microbial Ecology
– volume: 33
  start-page: 2011
  year: 2001
  end-page: 2018
  article-title: Estimation of fungal growth rates in soil using 14C‐acetate incorporation into ergosterol
  publication-title: Soil Biology and Biochemistry
– volume: 4
  start-page: 1070
  year: 2013
  end-page: 1075
  article-title: Tea Bag Index: A novel approach to collect uniform decomposition data across ecosystems
  publication-title: Methods in Ecology and Evolution
– volume: 7
  start-page: e01426
  year: 2016
  article-title: Eleven years of crop diversification alters decomposition dynamics of litter mixtures incubated with soil
  publication-title: Ecosphere
– volume: 95
  start-page: 447
  year: 2014
  end-page: 454
  article-title: Accounting for soil biotic effects on soil health and crop productivity in the design of crop rotations
  publication-title: Journal of the Science of Food and Agriculture
– volume: 50
  start-page: 293
  year: 2006
  end-page: 300
  article-title: Evaluation of a simple, non‐alkaline extraction protocol to quantify soil ergosterol
  publication-title: Pedobiologia
– volume: 100
  start-page: 619
  year: 2012a
  end-page: 630
  article-title: Multiple mechanisms for trait effects on litter decomposition: Moving beyond home‐field advantage with a new hypothesis
  publication-title: Journal of Ecology
– volume: 98
  start-page: 362
  year: 2010
  end-page: 373
  article-title: Evidence of the ‘plant economics spectrum’ in a subarctic flora
  publication-title: Journal of Ecology
– ident: e_1_2_9_36_1
  doi: 10.1017/S0021859614000811
– ident: e_1_2_9_37_1
  doi: 10.1016/j.soilbio.2012.10.005
– ident: e_1_2_9_30_1
  doi: 10.2307/1932179
– ident: e_1_2_9_15_1
  doi: 10.1002/jsfa.6565
– ident: e_1_2_9_52_1
  doi: 10.1111/j.1461-0248.2012.01837.x
– ident: e_1_2_9_10_1
  doi: 10.1016/j.soilbio.2017.01.014
– ident: e_1_2_9_51_1
  doi: 10.1016/j.soilbio.2012.09.027
– ident: e_1_2_9_42_1
  doi: 10.1007/s003740050530
– volume-title: Decomposition in terrestrial ecosystems
  year: 1979
  ident: e_1_2_9_44_1
  doi: 10.1525/9780520407114
– ident: e_1_2_9_22_1
  doi: 10.1016/j.tree.2015.03.015
– ident: e_1_2_9_39_1
  doi: 10.1016/j.soilbio.2010.07.020
– ident: e_1_2_9_43_1
  doi: 10.1111/j.1365-2435.2008.01515.x
– ident: e_1_2_9_49_1
  doi: 10.1111/oik.01374
– ident: e_1_2_9_14_1
  doi: 10.1111/j.1461-0248.2008.01219.x
– year: 2018
  ident: e_1_2_9_6_1
  article-title: Data from: Winter cover crop legacy effects on litter decomposition act through litter quality and microbial community changes
  publication-title: Dryad Digital Repository
– ident: e_1_2_9_8_1
  doi: 10.1023/A:1019637807021
– ident: e_1_2_9_33_1
– ident: e_1_2_9_17_1
  doi: 10.1111/j.1365-2745.2011.01943.x
– ident: e_1_2_9_25_1
  doi: 10.5194/bg-8-1477-2011
– ident: e_1_2_9_41_1
  doi: 10.1111/j.1365-2435.2008.01389.x
– ident: e_1_2_9_9_1
  doi: 10.1111/1365-2745.12507
– ident: e_1_2_9_12_1
  doi: 10.1016/j.ejsobi.2016.07.002
– ident: e_1_2_9_5_1
  doi: 10.1111/1365-2664.12929
– ident: e_1_2_9_24_1
  doi: 10.1111/2041-210X.12225
– ident: e_1_2_9_31_1
  doi: 10.1023/A:1013318210809
– ident: e_1_2_9_7_1
  doi: 10.1007/BF00418667
– ident: e_1_2_9_40_1
  doi: 10.1016/j.soilbio.2015.11.026
– ident: e_1_2_9_3_1
  doi: 10.1111/j.1365-2745.2009.01539.x
– volume-title: R: A language and environment for statistical computing
  year: 2016
  ident: e_1_2_9_35_1
– ident: e_1_2_9_18_1
  doi: 10.1111/j.1365-2435.2011.01913.x
– ident: e_1_2_9_47_1
  doi: 10.1111/1365-2435.12657
– ident: e_1_2_9_28_1
  doi: 10.1002/ecs2.1426
– ident: e_1_2_9_20_1
  doi: 10.1007/BF00384433
– ident: e_1_2_9_45_1
  doi: 10.1016/S0065-2113(02)79005-6
– ident: e_1_2_9_38_1
  doi: 10.1016/j.pedobi.2006.03.004
– ident: e_1_2_9_48_1
  doi: 10.1080/03650340.2017.1308493
– ident: e_1_2_9_11_1
  doi: 10.1007/s00374-015-1031-2
– ident: e_1_2_9_32_1
  doi: 10.1126/science.1134853
– ident: e_1_2_9_19_1
  doi: 10.1111/j.1365-2745.2009.01615.x
– ident: e_1_2_9_4_1
  doi: 10.1016/S0038-0717(01)00137-7
– ident: e_1_2_9_34_1
  doi: 10.1007/s10533-010-9439-0
– ident: e_1_2_9_21_1
  doi: 10.1016/S0038-0717(02)00073-1
– ident: e_1_2_9_46_1
  doi: 10.1111/ele.12453
– ident: e_1_2_9_23_1
  doi: 10.1007/s002489900015
– ident: e_1_2_9_27_1
  doi: 10.1016/j.soilbio.2014.07.027
– ident: e_1_2_9_13_1
  doi: 10.1016/0144-4565(88)90105-9
– volume-title: Mixed effects models and extensions in ecology with R
  year: 2010
  ident: e_1_2_9_53_1
– ident: e_1_2_9_50_1
  doi: 10.1111/1574-6976.12001
– ident: e_1_2_9_2_1
  doi: 10.1111/nph.12959
– ident: e_1_2_9_16_1
  doi: 10.1016/j.still.2016.04.006
– ident: e_1_2_9_26_1
  doi: 10.1111/2041-210X.12097
– ident: e_1_2_9_29_1
SSID ssj0009533
Score 2.5071473
Snippet In agriculture, winter cover crop (WCC) residues are incorporated into the soil to improve soil quality, as gradual litter decomposition can improve fertility....
In agriculture, winter cover crop ( WCC ) residues are incorporated into the soil to improve soil quality, as gradual litter decomposition can improve...
1.In agriculture, winter cover crop (WCC) residues are incorporated into the soil to improve soil quality, as gradual litter decomposition can improve...
SourceID wageningen
proquest
crossref
wiley
jstor
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 132
SubjectTerms Agricultural practices
Aspalathus linearis
Avena sativa
Biomass
Bodembiologie
Bodembiologie en biologische bodemkwaliteit
Carbon cycle
carbon cycling
Chair Soil Biology and Biological Soil Quality
Cichorium endivia
Communities
Correlation
Cover crops
Crop residues
Crop rotation
Cropping sequence
Cropping systems
Crops
Decomposition
endive
fallow
Fertility
Filter paper
Foreign languages
Leerstoelgroep Bodembiologie en biologische Bodemkwaliteit
legacy effects
Lignin
lignin content
Litter
microbial biomass
microbial communities
microbial community composition
Microbiomes
Microorganisms
Monoculture
Nitrogen
nitrogen content
nitrogen cycling
Nutrient cycles
oats
Organic matter
Organic soils
PE&RC
Quality
Rate constants
RESEARCH ARTICLE
Residues
soil
Soil Biology
Soil Biology and Biological Soil Quality
Soil conditions
Soil fertility
Soil improvement
Soil microorganisms
Soil organic matter
Soil properties
Soil quality
Soils
standardised substrates
Substrates
Tea
Winter
winter cover crop
Title Winter cover crop legacy effects on litter decomposition act through litter quality and microbial community changes
URI https://www.jstor.org/stable/48580391
https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2664.13261
https://www.proquest.com/docview/2164057477
https://www.proquest.com/docview/2221064176
http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F541315
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3faxQxEA5aEOqDP6rF1Voi-ODLHbebbDb7WKSl9EGKWPQtJJNsEc89ub2jnH-9M0n27BVExKc79iawyc0k3-x-8w1jb2dOQumtnEhfY4LibIkh1bYTi-C89MKrzke1zw_q_EpefKlHNiHVwiR9iO0DN4qMuF9TgFs33AryzM9ScooJVUyA6ArBoo_VLdnd1EyeiAgaj74s7kNcnjvjd86lRE3cAZ37NxjffSx42sWx8SA6e8zcOIXEP_k2Xa_cFH7eUXf8rzk-YY8yTOUnya-esnuhP2APT66XWaojHLAHqY3l5hkbPpPoxJID0UE59QTj83BtYcMzW4Qveo5wn2x8IBJ7ZopxCyueOwWNBqnKc8Nt7_n3r1EmCm8EUh0LXk-VysNzdnV2-un9-SQ3c5iAVLj6vhZWg9C2k52qrBAdVNA2TgfvQhOowBZsiVYz0WnQHrpOSiFANNZJp2bikO31iz68YBwhIm47Ta20tBKCajsQgNDH-84JP4OCTce_0kBWOqeGG3MzZjy0robW1cR1Ldi77YAfSeTjz6aH0Te2dlLXmlT2C3Y0OovJ28BgKkxGERDLpinYm-3PGMD0Vsb2YbFGmwqzbiXLRhVM_HYy01MvqcGQ_Hd2FXOzXpp-Th8Yq4OpEYCUNc42utDf7txcXJ7GLy__dcArto8wsU0Pno7Y3mq5Dq8Riq3cMbtfycvjGHO_ADm0KqY
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELbQEGI88GMwLbCBkXjgpVUTO07yOKFNZYwJoU3szXLOzoToUtS0mspfz53tdO0khBBPrdpLFbt39nfOd98x9m5US0itkQNpc0xQapNiSFXVwCA4T62wqrFe7fNMjS_kyWV-uVYLE_QhVgduFBl-vaYApwPptSiPBC0lh5hRUQZ0n_p6-7Tqa7YmvBvayRMVocTNL8r7EJvnzg9s7EyBnLgBO7dvMMJbX_K0iWT9VnT8hEE_iMBA-TFczOsh_Lqj7_h_o3zKHkekyg-Daz1j91y7wx4dXs2iWofbYQ9CJ8vlc9Z9I92JGQdihHJqC8Yn7srAkkfCCJ-2HBE_2VhHPPZIFuMG5jw2C-oNQqHnkpvW8uvvXikKbwRCKQt-HoqVuxfs4vjo_MN4EPs5DEAqnH6bC1OCKE0jG5UZIRrIoCrq0tnaFY5qbMGkaDUSTQmlhaaRUggQhallrUZil22109btMY4oEVeeIlelNBKcqhoQgOjH2qYWdgQJG_b_pYYodk49Nya6T3poXjXNq_bzmrD3qwt-Bp2PP5vueudY2ckyL0loP2H7vbfouBJ0OsN8FDGxLIqEvV19jTFMD2ZM66YLtMkw8VYyLVTCxK2X6ZbaSXWaFMCjr-ibxUy3E3rBcO10jhgkzXG03of-duf65MuRf_PyXy94wx6Ozz-f6tOPZ59esW1EjVU4h9pnW_PZwh0gMpvXr33o_QbIsy3q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELbQEGh74MdgIjDASDzw0iqJHcd5nNiqMdA0ISZ4s_wrE6KkU9Nq6v567mynrJMQQjy1ai5V7NzZ3yXffUfI29xwWzjNR9xVkKAYXUBINc1IAzgvHHOidUHt81Qcn_OTb9XAJsRamKgPsX7ghpER1msM8EvX3gjyxM8SfAwJFSZAd7nIJTr24efyhu5u7CaPTAQJe19S90Eyz60_2NiYIjdxA3VuX0GAd6HiaRPIhp1o8pCYYQyRgPJjvFyYsb2-Je_4X4N8RB4knEoPomM9Jnd8t0t2Di7mSavD75J7sY_l6gnpv6LqxJxa5INSbApGp_5C2xVNdBE66yjgfbRxHlnsiSpGtV3Q1CpoMIhlniuqO0d_fg86UXAhNhaywO-xVLl_Ss4nR1_eH49SN4eR5QJm31VMS8ukbnkrSs1Ya0vb1EZ6Z3ztscLW6gKsctZKK51tW84Zs6zWhhuRsz2y1c06_4xQwIiw7tSVkFxz60XTWmYB-zjXGuZym5HxcCuVTVLn2HFjqoaUB-dV4byqMK8Zebc-4TKqfPzZdC_4xtqOy0qizH5G9gdnUWkd6FUJ2SggYl7XGXmzPgwRjK9ldOdnS7ApIe0WvKhFRthvJ1MdNpPqFep_J1dRV8u56qb4AcHaqwoQSFHBaIML_e3K1cnZUfjy_F9PeE3unx1O1KcPpx9fkG2AjE18CLVPthbzpX8JsGxhXoXA-wUzXyyi
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Winter+cover+crop+legacy+effects+on+litter+decomposition+act+through+litter+quality+and+microbial+community+changes&rft.jtitle=The+Journal+of+applied+ecology&rft.au=Barel%2C+Janna+M&rft.au=Kuyper%2C+Thomas+W&rft.au=Paul%2C+Jos&rft.au=Boer%2C+Wietse%2C+de&rft.date=2019&rft.issn=0021-8901&rft.eissn=1365-2664&rft.volume=56&rft.issue=1&rft_id=info:doi/10.1111%2F1365-2664.13261&rft.externalDBID=public&rft.externalDocID=oai_library_wur_nl_wurpubs_541315
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8901&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8901&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8901&client=summon