The rise, fall and renaissance of microsatellites in eukaryotic genomes

Microsatellites are among the most versatile of genetic markers, being used in an impressive number of biological applications. However, the evolutionary dynamics of these markers remain a source of contention. Almost 20 years after the discovery of these ubiquitous simple sequences, new genomic dat...

Full description

Saved in:
Bibliographic Details
Published inBioEssays Vol. 28; no. 10; pp. 1040 - 1050
Main Authors Buschiazzo, Emmanuel, Gemmell, Neil J.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.10.2006
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Microsatellites are among the most versatile of genetic markers, being used in an impressive number of biological applications. However, the evolutionary dynamics of these markers remain a source of contention. Almost 20 years after the discovery of these ubiquitous simple sequences, new genomic data are clarifying our understanding of the structure, distribution and variability of microsatellites in genomes, especially for the eukaryotes. While these new data provide a great deal of descriptive information about the nature and abundance of microsatellite sequences within eukaryotic genomes, there have been few attempts to synthesise this information to develop a global concept of evolution. This review provides an up‐to‐date account of the mutational processes, biases and constraints believed to be involved in the evolution of microsatellites, particularly with respect to the creation and degeneration of microsatellites, which we assert may be broadly viewed as a life cycle. In addition, we identify areas of contention that require further research and propose some possible directions for future investigation. BioEssays 28: 1040–1050, 2006. © 2006 Wiley Periodicals, Inc.
AbstractList Microsatellites are among the most versatile of genetic markers, being used in an impressive number of biological applications. However, the evolutionary dynamics of these markers remain a source of contention. Almost 20 years after the discovery of these ubiquitous simple sequences, new genomic data are clarifying our understanding of the structure, distribution and variability of microsatellites in genomes, especially for the eukaryotes. While these new data provide a great deal of descriptive information about the nature and abundance of microsatellite sequences within eukaryotic genomes, there have been few attempts to synthesise this information to develop a global concept of evolution. This review provides an up‐to‐date account of the mutational processes, biases and constraints believed to be involved in the evolution of microsatellites, particularly with respect to the creation and degeneration of microsatellites, which we assert may be broadly viewed as a life cycle. In addition, we identify areas of contention that require further research and propose some possible directions for future investigation. BioEssays 28: 1040–1050, 2006. © 2006 Wiley Periodicals, Inc.
Microsatellites are among the most versatile of genetic markers, being used in an impressive number of biological applications. However, the evolutionary dynamics of these markers remain a source of contention. Almost 20 years after the discovery of these ubiquitous simple sequences, new genomic data are clarifying our understanding of the structure, distribution and variability of microsatellites in genomes, especially for the eukaryotes. While these new data provide a great deal of descriptive information about the nature and abundance of microsatellite sequences within eukaryotic genomes, there have been few attempts to synthesise this information to develop a global concept of evolution. This review provides an up-to-date account of the mutational processes, biases and constraints believed to be involved in the evolution of microsatellites, particularly with respect to the creation and degeneration of microsatellites, which we assert may be broadly viewed as a life cycle. In addition, we identify areas of contention that require further research and propose some possible directions for future investigation. BioEssays 28: 1040- 1050, 2006.
Microsatellites are among the most versatile of genetic markers, being used in an impressive number of biological applications. However, the evolutionary dynamics of these markers remain a source of contention. Almost 20 years after the discovery of these ubiquitous simple sequences, new genomic data are clarifying our understanding of the structure, distribution and variability of microsatellites in genomes, especially for the eukaryotes. While these new data provide a great deal of descriptive information about the nature and abundance of microsatellite sequences within eukaryotic genomes, there have been few attempts to synthesise this information to develop a global concept of evolution. This review provides an up-to-date account of the mutational processes, biases and constraints believed to be involved in the evolution of microsatellites, particularly with respect to the creation and degeneration of microsatellites, which we assert may be broadly viewed as a life cycle. In addition, we identify areas of contention that require further research and propose some possible directions for future investigation.
Author Gemmell, Neil J.
Buschiazzo, Emmanuel
Author_xml – sequence: 1
  givenname: Emmanuel
  surname: Buschiazzo
  fullname: Buschiazzo, Emmanuel
  email: ebr26@student.canterbury.ac.nz
  organization: School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
– sequence: 2
  givenname: Neil J.
  surname: Gemmell
  fullname: Gemmell, Neil J.
  organization: School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
BackLink https://www.ncbi.nlm.nih.gov/pubmed/16998838$$D View this record in MEDLINE/PubMed
BookMark eNqFkEtPGzEUha2KCsJj0x-AvOoCdeD6NbaXBdKAhEACqi4tj30DLvOA8URt_n0nTaC7srqb73y65-ySrbZrkZBPDI4ZAD-pEuZjDlLDBzJhirOCGW22yAR4qQrLpd4huzn_BABbcrlNdlhprTHCTMjs_hFpnzJ-oXNf19S3kfbY-pSzbwPSbk6bFPou-wHrOg2YaWopLp58v-yGFOgDtl2DeZ98HPMZDzZ3j3z_Nr0_uyiubmaXZ1-viiBLDkUEiHpuQItgQuABrDSclcFDACljBToqJUEqg7xSFVhVYRVixKi4LlGJPfJ57X3uu5cF5sE1KYfxNd9it8iuNMYaZs27ILNCgAYYwaM1uGqZe5y75z41Yz3HwK32dat93d99R_hwY11UDcZ_6GbQEWBr4FeqcfkflTu9nN69Sot1JuUBf79lfP_kSi20cj-uZ-78Wglh2Lm7FX8ARCuVpg
CitedBy_id crossref_primary_10_3389_fgene_2018_00073
crossref_primary_10_1270_jsbbs_18032
crossref_primary_10_1186_s13104_018_3301_1
crossref_primary_10_1038_s41598_024_60417_8
crossref_primary_10_1371_journal_pone_0164325
crossref_primary_10_1007_s00122_011_1689_2
crossref_primary_10_1007_s10722_022_01493_5
crossref_primary_10_1101_gr_177774_114
crossref_primary_10_1016_j_bse_2015_06_033
crossref_primary_10_1371_journal_pone_0040861
crossref_primary_10_4137_EBO_S420
crossref_primary_10_1093_gbe_evz216
crossref_primary_10_1007_s12033_009_9230_4
crossref_primary_10_1016_j_plaphy_2017_10_019
crossref_primary_10_1007_s10722_022_01399_2
crossref_primary_10_1007_s10753_015_0257_3
crossref_primary_10_1080_10495398_2016_1243551
crossref_primary_10_3390_genes15060728
crossref_primary_10_1002_humu_22542
crossref_primary_10_3923_pjbs_2008_2372_2381
crossref_primary_10_1111_j_1755_0998_2011_03014_x
crossref_primary_10_3389_fgene_2023_1213102
crossref_primary_10_1093_jhered_esr099
crossref_primary_10_1371_journal_ppat_1002282
crossref_primary_10_1071_FP12325
crossref_primary_10_1093_molbev_mss251
crossref_primary_10_1042_BSR20201101
crossref_primary_10_3390_ijms131012533
crossref_primary_10_1371_journal_pone_0030953
crossref_primary_10_1186_s40478_017_0468_y
crossref_primary_10_1093_gbe_evq007
crossref_primary_10_1016_j_funbio_2019_05_005
crossref_primary_10_2144_000113084
crossref_primary_10_2144_000113085
crossref_primary_10_1016_j_cca_2009_03_003
crossref_primary_10_1093_gbe_evae017
crossref_primary_10_1093_gbe_evs133
crossref_primary_10_1016_j_bse_2013_09_019
crossref_primary_10_1080_20548923_2016_1160594
crossref_primary_10_1094_PHYTO_03_15_0066_R
crossref_primary_10_1139_G10_063
crossref_primary_10_1038_s41598_021_87538_8
crossref_primary_10_1007_s10530_022_02874_8
crossref_primary_10_1007_s10592_009_9935_8
crossref_primary_10_1016_j_jarmap_2023_100519
crossref_primary_10_1007_s00239_008_9080_x
crossref_primary_10_1093_dnares_dsab005
crossref_primary_10_1007_s00122_008_0831_2
crossref_primary_10_3390_ijms19040929
crossref_primary_10_1371_journal_pone_0122703
crossref_primary_10_1111_j_1095_8649_2010_02588_x
crossref_primary_10_4236_ojgen_2012_24022
crossref_primary_10_4161_mge_25674
crossref_primary_10_1093_nar_gkq1198
crossref_primary_10_1186_1471_2164_9_31
crossref_primary_10_1007_s00606_009_0208_2
crossref_primary_10_7717_peerj_4495
crossref_primary_10_1002_ece3_1305
crossref_primary_10_1111_j_1744_7429_2011_00779_x
crossref_primary_10_3390_genes10121014
crossref_primary_10_1093_nar_gkx1253
crossref_primary_10_1016_j_theriogenology_2007_03_020
crossref_primary_10_1073_pnas_2116475119
crossref_primary_10_1093_bioinformatics_bts524
crossref_primary_10_1016_j_gene_2011_07_022
crossref_primary_10_1016_j_gene_2015_05_053
crossref_primary_10_1186_s13071_023_05923_w
crossref_primary_10_1002_ppul_21097
crossref_primary_10_1007_s00438_016_1219_7
crossref_primary_10_1111_j_1755_0998_2010_02962_x
crossref_primary_10_1590_1678_4685_GMB_2016_0027
crossref_primary_10_1111_j_1755_0998_2009_02750_x
crossref_primary_10_1093_bioinformatics_btm097
crossref_primary_10_3389_fgene_2015_00345
crossref_primary_10_1371_journal_pgen_1004498
crossref_primary_10_1042_BSR20203868
crossref_primary_10_3390_plants9010010
crossref_primary_10_1094_PHYTO_07_15_0177_R
crossref_primary_10_3390_genes11060660
crossref_primary_10_1002_mc_20499
crossref_primary_10_1007_s00239_015_9725_5
crossref_primary_10_1007_s12562_014_0782_2
crossref_primary_10_1186_s13100_020_00206_y
crossref_primary_10_3390_molecules23020399
crossref_primary_10_1111_j_1365_294X_2011_05051_x
crossref_primary_10_1093_jhered_esw015
crossref_primary_10_1371_journal_pone_0054710
crossref_primary_10_1080_00275514_2023_2186742
crossref_primary_10_1111_j_1755_0998_2011_03027_x
crossref_primary_10_1371_journal_pone_0107334
crossref_primary_10_1093_molbev_msn201
crossref_primary_10_24154_jhs_v16i2_1251
crossref_primary_10_1016_j_ympev_2008_07_021
crossref_primary_10_1038_s41598_017_16430_1
crossref_primary_10_1080_02827581_2019_1623305
crossref_primary_10_1093_nargab_lqab032
crossref_primary_10_1111_jfb_12095
crossref_primary_10_1590_1678_4685_gmb_2020_0301
crossref_primary_10_3389_fpls_2022_860101
crossref_primary_10_3732_ajb_1100394
crossref_primary_10_1186_s12870_020_02626_7
crossref_primary_10_1371_journal_pone_0110856
crossref_primary_10_3390_ijms13078805
crossref_primary_10_1016_j_ecolind_2023_110835
crossref_primary_10_1038_sj_jid_5701088
crossref_primary_10_1016_j_mcp_2016_03_003
crossref_primary_10_1186_1471_2164_11_560
crossref_primary_10_1186_s12864_023_09117_7
crossref_primary_10_1093_nar_gkm1089
crossref_primary_10_1186_s12864_015_2274_x
crossref_primary_10_1371_journal_pone_0113862
crossref_primary_10_1051_medsci_20072389729
crossref_primary_10_1007_s11032_018_0849_3
crossref_primary_10_1534_g3_112_005173
crossref_primary_10_1093_gbe_evq046
crossref_primary_10_1371_journal_pone_0029582
crossref_primary_10_1371_journal_pone_0177553
crossref_primary_10_1002_ajp_22308
crossref_primary_10_1093_gbe_evs050
crossref_primary_10_1111_j_1365_2583_2009_00915_x
crossref_primary_10_1016_j_jas_2009_11_028
crossref_primary_10_1093_molbev_msp192
crossref_primary_10_1093_bioinformatics_btm157
crossref_primary_10_3732_apps_1500025
crossref_primary_10_1071_ZO09038
crossref_primary_10_1534_genetics_108_087882
crossref_primary_10_1016_j_neuron_2020_07_019
crossref_primary_10_1007_s11033_011_0979_8
crossref_primary_10_1111_j_1749_6632_2012_06615_x
crossref_primary_10_1016_j_indcrop_2019_111568
crossref_primary_10_1038_srep26512
crossref_primary_10_1080_10409230801921262
crossref_primary_10_1534_genetics_107_076067
crossref_primary_10_1371_journal_pone_0011006
crossref_primary_10_1007_s12041_017_0756_0
crossref_primary_10_1080_11250000902785314
crossref_primary_10_1016_j_fgb_2015_05_003
crossref_primary_10_1007_s00239_013_9547_2
crossref_primary_10_1007_s13353_011_0058_9
crossref_primary_10_1101_gr_7113408
crossref_primary_10_1002_bies_20589
crossref_primary_10_1007_s10658_021_02214_x
crossref_primary_10_1007_s11105_014_0845_7
crossref_primary_10_3390_ijms14034793
crossref_primary_10_1038_hdy_2009_45
crossref_primary_10_1371_journal_pone_0159825
crossref_primary_10_1101_gr_122937_111
crossref_primary_10_1007_s11032_015_0289_2
crossref_primary_10_1007_s11295_011_0410_6
crossref_primary_10_1111_pbr_12093
crossref_primary_10_1007_s11105_014_0754_9
crossref_primary_10_1016_j_plasmid_2023_102670
crossref_primary_10_1111_j_1365_294X_2010_04523_x
crossref_primary_10_1111_j_1365_294X_2011_05178_x
crossref_primary_10_3389_fmicb_2015_01462
crossref_primary_10_1007_s00122_012_1860_4
crossref_primary_10_1111_j_1529_8817_2011_01075_x
crossref_primary_10_1016_j_yexcr_2020_111969
crossref_primary_10_1093_gbe_evq023
crossref_primary_10_1016_j_gene_2015_09_070
crossref_primary_10_1371_journal_pone_0142602
crossref_primary_10_1007_s13205_022_03402_0
crossref_primary_10_1111_mec_12138
crossref_primary_10_1016_j_molcel_2008_02_022
crossref_primary_10_1186_1756_0500_6_249
crossref_primary_10_3390_insects12100938
crossref_primary_10_1111_j_1752_4571_2012_00275_x
crossref_primary_10_1007_s00438_010_0577_9
crossref_primary_10_1016_j_gene_2007_10_025
crossref_primary_10_1038_s42003_020_1046_6
crossref_primary_10_1021_es502720a
crossref_primary_10_1186_1471_2180_10_213
crossref_primary_10_1590_1519_6984_276380
Cites_doi 10.1093/molbev/msj065
10.1073/pnas.122067599
10.1086/301869
10.1017/S001667230000478X
10.1101/gr.4624306
10.1046/j.1420-9101.2000.00189.x
10.1093/nar/28.14.2831
10.1038/ng822
10.1093/oxfordjournals.molbev.a025964
10.1093/oxfordjournals.molbev.a003753
10.1093/genetics/162.2.813
10.1093/oxfordjournals.molbev.a026015
10.1007/s00239-002-2366-5
10.1093/embo-reports/kvd031
10.1038/ng0197-99
10.1093/genetics/146.2.491
10.1073/pnas.0603313103
10.1101/gr.10.7.967
10.1007/s10709-005-0204-6
10.1073/pnas.93.26.15285
10.1016/S0960-9822(03)00284-7
10.1534/genetics.103.022665
10.1101/gr.9.9.830
10.1098/rspb.1999.0712
10.1093/genetics/152.2.617
10.1534/genetics.104.029322
10.1007/s002390010077
10.1146/annurev.biochem.74.082803.133243
10.1016/S0305-0491(00)00233-9
10.1016/j.tig.2006.03.005
10.1093/oxfordjournals.molbev.a026185
10.1007/s003359900111
10.1073/pnas.95.18.10774
10.1093/nar/15.13.5323
10.1007/s002399910036
10.1128/MCB.17.5.2851
10.1002/humu.10294
10.1534/genetics.104.036855
10.1093/oxfordjournals.molbev.a026138
10.1093/genetics/164.2.781
10.1007/s00122-003-1458-y
10.1073/pnas.93.13.6470
10.1002/elps.200406069
10.1093/oxfordjournals.molbev.a026411
10.1101/gr.10.8.1108
10.1093/nar/27.2.573
10.1073/pnas.0503415102
10.1093/oxfordjournals.molbev.a004186
10.1038/ng0896-391
10.1093/bioinformatics/bth043
10.1006/jmbi.1999.3136
10.1101/gad.332305
10.1093/jhered/esi005
10.1006/geno.1995.1224
10.1093/hmg/9.18.2707
10.1002/humu.10153
10.1128/MCB.20.1.173-180.2000
10.1007/s00239-005-0022-6
10.1016/S0027-5107(01)00282-2
10.1046/j.1365-294X.2002.01576.x
10.1007/PL00006474
10.1093/oxfordjournals.molbev.a026003
10.1093/genetics/155.3.1213
10.1111/j.1439-0469.2004.00275.x
10.1111/j.1095-8312.2005.00425.x
10.1093/oxfordjournals.molbev.a003903
10.1002/humu.20254
10.1038/ng0795-337
10.1016/S1097-2765(02)00575-0
10.1093/hmg/11.6.707
10.1016/j.gene.2004.11.013
10.1093/hmg/9.3.347
10.1093/molbev/msh073
10.1186/1471-2164-7-179
10.1007/s00595-005-3125-1
10.1073/pnas.94.3.1041
10.1038/74249
10.1046/j.1365-294X.2002.01643.x
10.1093/genetics/146.3.769
10.1126/science.1089670
10.1111/j.1439-0426.2004.00629.x
10.1016/j.gde.2003.10.008
10.1016/S0168-9525(98)01577-7
10.1038/381483a0
10.1007/BF00196228
10.1093/molbev/msg056
10.1093/molbev/msg137
10.1093/oxfordjournals.molbev.a026381
10.1093/oxfordjournals.molbev.a003817
10.1017/S0016672399004280
10.1093/nar/gnh098
10.1038/nrg1348
10.1093/nar/21.6.1427
10.1093/genetics/136.1.333
10.1186/gb-2003-4-2-r13
10.1093/molbev/msh108
10.1086/421531
10.1038/74238
10.1046/j.1365-294x.2000.01057.x
10.1111/j.0014-3820.2001.tb00822.x
10.1086/338997
10.1093/nar/23.19.3882
10.1093/hmg/2.8.1123
10.1101/gr.198602
10.1093/molbev/msg228
10.1016/j.ygeno.2005.09.006
10.1093/oxfordjournals.molbev.a003814
10.1016/j.mrfmmm.2003.09.012
10.1093/genetics/148.3.1269
10.1016/S0168-9525(97)01181-5
10.1093/nar/gkg178
10.1073/pnas.96.21.11916
10.1093/oxfordjournals.molbev.a026404
10.1038/nrg1689
10.1016/S0027-5107(03)00006-X
10.1093/hmg/8.13.2567
10.1101/gr.7.5.471
10.1016/j.ygeno.2003.09.001
10.1038/ng0196-13
10.1126/science.1111427
10.1093/hmg/8.6.1061
10.1101/gr.1416703
10.1093/molbev/msg156
10.1038/ng0896-390
10.1093/oxfordjournals.molbev.a025855
10.1093/oxfordjournals.molbev.a025901
ContentType Journal Article
Copyright Copyright © 2006 Wiley Periodicals, Inc.
(c) 2006 Wiley Periodicals, Inc.
Copyright_xml – notice: Copyright © 2006 Wiley Periodicals, Inc.
– notice: (c) 2006 Wiley Periodicals, Inc.
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
8FD
FR3
P64
RC3
7X8
DOI 10.1002/bies.20470
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Genetics Abstracts
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
CrossRef
Genetics Abstracts
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1521-1878
EndPage 1050
ExternalDocumentID 10_1002_bies_20470
16998838
BIES20470
ark_67375_WNG_DN53381D_R
Genre miscellaneous
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: Royal Society of New Zealand
  funderid: Marsden Fund UOC202
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23N
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACKIV
ACKOT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BQCPF
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KD1
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M56
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RWR
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
UDS
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYB
WYISQ
XG1
XV2
Y6R
YYQ
YZZ
ZGI
ZUP
ZXP
ZY4
ZZTAW
~IA
~KM
~WT
AETEA
CGR
CUY
CVF
ECM
EIF
NPM
AAMNL
AAYXX
ACRPL
ACYXJ
CITATION
8FD
FR3
P64
RC3
7X8
ID FETCH-LOGICAL-c4620-d00d7f8073c8cc2c0948216ca0c044db07d5540458e2b5b095bebcdded5276e53
IEDL.DBID DR2
ISSN 0265-9247
IngestDate Wed Dec 04 00:30:52 EST 2024
Wed Dec 04 14:53:38 EST 2024
Fri Dec 06 02:01:12 EST 2024
Sat Sep 28 07:53:07 EDT 2024
Sat Aug 24 01:17:41 EDT 2024
Wed Oct 30 09:55:37 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License (c) 2006 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4620-d00d7f8073c8cc2c0948216ca0c044db07d5540458e2b5b095bebcdded5276e53
Notes istex:FCD74614F5FEA22B37987800EFA2973CA1D8A97F
ark:/67375/WNG-DN53381D-R
Royal Society of New Zealand - No. Marsden Fund UOC202
ArticleID:BIES20470
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
PMID 16998838
PQID 19330700
PQPubID 23462
PageCount 11
ParticipantIDs proquest_miscellaneous_68898198
proquest_miscellaneous_19330700
crossref_primary_10_1002_bies_20470
pubmed_primary_16998838
wiley_primary_10_1002_bies_20470_BIES20470
istex_primary_ark_67375_WNG_DN53381D_R
PublicationCentury 2000
PublicationDate October 2006
PublicationDateYYYYMMDD 2006-10-01
PublicationDate_xml – month: 10
  year: 2006
  text: October 2006
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle BioEssays
PublicationTitleAlternate Bioessays
PublicationYear 2006
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References Di Rienzo A, Donnelly P, Toomajian C, Sisk B, Hill A, et al. 1998. Heterogeneity of microsatellite mutations within and between loci, and implications for human demographic histories. Genetics 148: 1269-1284.
Zhu Y, Queller DC, Strassmann JE. 2000. A phylogenetic perspective on sequence evolution in microsatellite loci. J Molec Evol 50: 324-338.
Eckert KA, Yan G. 2000. Mutational analyses of dinucleotide and tetranucleotide microsatellites in Escherichia coli: influence of sequence on expansion mutagenesis. Nucleic Acids Res 28: 2831-2838.
Schlötterer C, Ritter R, Harr B, Brem G. 1998. High mutation rate of a long microsatellite allele in Drosophila melanogaster provides evidence for allele-specific mutation rates. Molec Biol Evol 15: 1269-1274.
Petes TD, Greenwell PW, Dominska M. 1997. Stabilization of microsatellite sequences by variant repeats in the yeast Saccharomyces cerevisiae. Genetics 146: 491-498.
Lee JS, Hanford MG, Genova JL, Farber RA. 1999. Relative stabilities of dinucleotide and tetranucleotide repeats in cultured mammalian cells. Human Molec Genetics 8: 2567-2572.
Clark RM, Dalgliesh GL, Endres D, Gomez M, Taylor J, et al. 2004. Expansion of GAA triplet repeats in the human genome: unique origin of the FRDA mutation at the center of an Alu. Genomics 83: 373-383.
Brohede J, Moller AP, Ellegren H. 2004. Individual variation in microsatellite mutation rate in barn swallows. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 545: 73-80.
Ellegren H. 2000. Heterogeneous mutation processes in human microsatellite DNA sequences. Nature Genetics 24: 400-402.
Xu X, Peng M, Fang Z. 2000. The direction of microsatellite mutations is dependent upon allele length. Nature Genetics 24: 396-399.
Kruglyak S, Durrett RT, Schug MD, Aquadro CF. 1998. Equilibrium distributions of microsatellite repeat length resulting from a balance between slippage events and point mutations. Proc Natnl Acad Sci USA 95: 10774-10778.
Chambers GK, MacAvoy ES. 2000. Microsatellites: consensus and controversy. Comp Biochem Physiol B-Biochem & Molec Biol 126: 455-476.
Primmer CR, Ellegren H. 1998. Patterns of molecular evolution in avian microsatellites. Molec Biol Evol 15: 997-1008.
Cooper G, Burroughs NJ, Rand DA, Rubinsztein DC, Amos W. 1999. Markov Chain Monte Carlo analysis of human Y-chromosome microsatellites provides evidence of biased mutation. Proc Natnl Acad of Sciences USA 96: 11916-11921.
Zhang L, Yuan D, Yu S, Li Z, Cao Y, et al. 2004. Preference of simple sequence repeats in coding and non-coding regions of Arabidopsis thaliana. Bioinform 20: 1081-1086.
Rolfsmeier ML, Lahue RS. 2000. Stabilizing effects of interruptions on trinucleotide repeat expansions in Saccharomyces cerevisiae. Molec Cellular Biol 20: 173-180.
Harr B, Schlötterer C. 2000. Long microsatellite alleles in Drosophila melanogaster have a downward mutation bias and short persistence times, which cause their genome-wide underrepresentation. Genetics 155: 1213-1220.
Bagshaw ATM, Pitt JPT, Gemmell NJ. 2006. Association of poly-purine/poly-pyrimidine sequences with meiotic recombination hot spots. BMC Genomics 7: 179.
Robert VJ, Sijen T, van Wolfswinkel J, Plasterk RH. 2005. Chromatin and RNAi factors protect the C. elegans germline against repetitive sequences. Genes & Develop 19: 782-787.
Nadir E, Margalit H, Gallily T, Ben-Sasson SA. 1996. Microsatellite spreading in the human genome: evolutionary mechanisms and structural implications. Proc Natnl Acad of Sci USA 93: 6470-6475.
Marcotte EM, Pellegrini M, Yeates TO, Eisenberg D. 1999. A census of protein repeats. J Molec Biol 293: 151-160.
Harr B, Todorova J, Schlötterer C. 2002. Mismatch repair-driven mutational bias in D. melanogaster. Molec Cell 10: 199-205.
Ross CL, Dyer KA, Erez T, Miller SJ, Jaenike J, et al. 2003. Rapid divergence of microsatellite abundance among species of Drosophila. Molec Biol Evol 20: 1143-1157.
Primmer CR, Raudsepp T, Chowdhary BP, Moller AP, Ellegren H. 1997. Low frequency of microsatellites in the avian genome. Genome Res 7: 471-482.
Brohede J, Ellegren H. 1999. Microsatellite evolution: polarity of substitutions within repeats and neutrality of flanking sequences. Proceedings of the Royal Society of London Series B-Biological Sciences 266: 825-833.
Weetman D, Hauser L, Carvalho GR. 2002. Reconstruction of microsatellite mutation history reveals a strong and consistent deletion bias in invasive clonal snails, Potamopyrgus antipodarum. Genetics 162: 813-822.
Bachtrog D, Agis M, Imhof M, Schlötterer C. 2000. Microsatellite variability differs between dinucleotide repeat motifs - Evidence from Drosophila melanogaster. Molecular Biology and Evolution 17: 1277-1285.
Hammock EAD, Young LJ. 2005. Microsatellite instability generates diversity in brain and sociobehavioral traits. Science 308: 1630-1634.
Sibly RM, Meade A, Boxall N, Wilkinson MJ, Corne DW, et al. 2003. The structure of interrupted human AC microsatellites. Molec Biol Evol 20: 453-459.
Kunkel TA, Erie DA. 2005. DNA mismatch repair. Ann Revi Biochem 74: 681-710.
Nishizawa M, Nishizawa K. 2002. A DNA sequence evolution analysis generalized by simulation and the Markov chain Monte Carlo method implicates strand slippage in a majority of insertions and deletions. J Molec Evol 55: 706-717.
Yoder JA, Walsh CP, Bestor TH. 1997. Cytosine methylation and the ecology of intragenomic parasites. Trends in Genetics 13: 335-340.
Klintschar M, Dauber EM, Ricci U, Cerri N, Immel UD, et al. 2004. Haplotype studies support slippage as the mechanism of germline mutations in short tandem repeats. Electrophoresis 25: 3344-3348.
Sturzeneker R, Bevilacqua RA, Haddad LA, Simpson AJ, Pena SD. 2000. Microsatellite instability in tumors as a model to study the process of microsatellite mutations. Human Molec Genetics 9: 347-352.
Schug MD, Hutter CM, Wetterstrand KA, Gaudette MS, Mackay TF, et al. 1998. The mutation rates of di-, tri- and tetranucleotide repeats in Drosophila melanogaster. Molecular Biology and Evolution 15: 1751-1760.
Vogt P. 1990. Potential genetic functions of tandem repeated DNA sequence blocks in the human genome are based on a highly conserved "chromatin folding code". Human Genetics 84: 301-336.
Benson G. 1999. Tandem Repeats Finder: a program to analyze DNA sequences. Nucleic Acids Res 27: 573-580.
Huang QY, Xu FH, Shen H, Deng HY, Liu YJ, et al. 2002. Mutation patterns at dinucleotide microsatellite loci in humans. Am J Hum Genetics 70: 625-634.
Lai Y, Sun F. 2003. The relationship between microsatellite slippage mutation rate and the number of repeat units. Molec Biol Evol 20: 2123-2131.
Gordon AJ. 1997. Microsatellite birth register. Journal of Molecular Evolution 45: 337-338.
Chakraborty R, Kimmel M, Stivers David N, Davison Leslea J, Deka R. 1997. Relative mutation rates at di-, tri-, and tetranucleotide microsatellite loci. Proc Natnl Acad Sci USA 94: 1041-1046.
Metzgar D, Liu L, Hansen C, Dybvig K, Wills C. 2002. Domain-level differences in microsatellite distribution and content result from different relative rates of insertion and deletion mutations. Gen Res 12: 408-413.
Cruz F, Pérez M, Presa P. 2005. Distribution and abundance of microsatellites in the genome of bivalves. Gene 346: 241-247.
Ellegren H, Smith NG, Webster MT. 2003. Mutation rate variation in the mammalian genome. Current Opinion in Genetics & Develop 13: 562-568.
Sainudiin R, Durrett RT, Aquadro CF, Nielsen R. 2004. Microsatellite mutation models: Insights from a comparison of humans and chimpanzees. Genetics 168: 383-395.
Ustinova J, Achmann R, Cremer S, Mayer F. 2006. Long repeats in a huge genome: microsatellite loci in the grasshopper Chorthippus biguttulus. J Molec Evol 62: 158-167.
Boyer JC, Yamada NA, Roques CN, Hatch SB, Riess K, et al. 2002. Sequence dependent instability of mononucleotide microsatellites in cultured mismatch repair proficient and deficient mammalian cells. Human Molec Genetics 11: 707-713.
Subramanian S, Mishra RK, Singh L. 2003. Genome-wide analysis of microsatellite repeats in humans: their abundance and density in specific genomic regions. Gen Biol 4: R13.
Wierdl M, Dominska M, Petes TD. 1997. Microsatellite instability in yeast: dependence on the length of the microsatellite. Genetics 146: 769-779.
Almeida P, Penha-Goncalves C. 2004. Long perfect dinucleotide repeats are typical of vertebrates, show motif preferences and size convergence. Molec Biol Evol 21: 1226-1233.
Li YC, Korol AB, Fahima T, Beiles A, Nevo E. 2002. Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Molec Ecol 11: 2453-2465.
Sia EA, Kokoska RJ, Dominska M, Greenwell P, Petes TD. 1997. Microsatellite instability in yeast: dependence on repeat unit size and DNA mismatch repair genes. Molec Cellular Biol 17: 2851-2858.
Santibáñez-Koref MF, Gangeswaran R, Hancock JM. 2001. A relationship between lengths of microsatellites and nearby substitution rates in mammalian genomes. Molecular Biology and Evolution 18: 2119-2123.
Katti MV, Ranjekar PK, Gupta VS. 2001. Differential distribution of simple sequence repeats in eukaryotic genome sequences. Molec Biol Evol 18: 1161-1167.
Vowles EJ, Amos W. 2006. Quantifying ascertainment bias and species-specific length differences in human and chimpanzee microsatellites using genome sequences. Molec BiolEvol 23: 598-607.
Garza JC, Slatkin M, Freimer NB. 1995. Microsatellite allele frequencies in humans and chimpanzees, with implications for constraints on allele size. Molec Biol Evol 12: 594-603.
Stephan W, Cho S. 1994. Possible role of natural selection in the formation of tandem-repetitive noncoding DNA. Genetics 136: 333-341.
Nevo E, Beharav A, Meyer RC, Hackett CA, Forster BP, et al. 2005. Genomic microsatellite adaptive divergence of wild barley by microclimatic stress in 'Evolution Canyon', Israel. Biol J Linnean Soc 84: 205-224.
Amos W, Sawcer SJ, Feakes RW, Rubinsztein DC. 1996. Microsatellites show mutational bias and heterozygote instability. Nature Genetics 13: 390-391.
Makova KD, Nekrutenko A, Baker
2004; 21
2005; 170
2004; 20
1994; 136
2004; 168
2002; 19
2002; 12
2004; 25
1999; 293
1993; 21
1999; 48
2004; 23
2002; 10
2002; 11
1997; 45
2002; 99
1996; 381
2004; 5
1997; 7
1997; 146
2004; 32
1998; 15
2000; 17
2006; 23
2000; 126
2006; 22
2000; 13
2005; 102
2000; 10
2005; 346
1995; 23
2005; 74
1995; 29
2001; 55
1998; 95
2003; 164
1998; 14
2004; 42
2004; 303
2004; 545
1999; 27
2002; 499
2005; 84
1996; 93
1996; 13
1998; 62
2003; 31
1996; 12
1999
2005; 19
2005; 124
2000; 76
2000; 75
2005; 96
2005; 6
1998; 148
2002; 70
2003; 20
2003; 21
2006; 103
2000; 9
2002; 55
2003; 13
2000; 50
2000; 51
2005; 21
2000; 1
2005; 26
1993; 2
1990; 84
2004; 74
1997; 94
2003; 525
2006; 62
1997; 15
1999; 16
1997; 13
2003; 4
1997; 17
2005; 308
1999; 96
2001; 18
2005; 35
1996; 7
2004; 83
2000; 28
2002; 30
2000; 24
2006; 16
1995; 12
1995; 10
2000; 20
2006; 7
2000; 155
1999; 266
1999; 8
2004; 108
1987; 15
1999; 9
2002; 162
2006; 87
1999; 152
Bioessays. 2006 Dec;28(12):1224
e_1_2_1_119_2
e_1_2_1_111_2
e_1_2_1_81_2
e_1_2_1_115_2
e_1_2_1_66_2
e_1_2_1_43_2
e_1_2_1_62_2
e_1_2_1_85_2
e_1_2_1_24_2
e_1_2_1_47_2
e_1_2_1_28_2
e_1_2_1_107_2
Amos W (e_1_2_1_20_2) 1999
Estoup A (e_1_2_1_15_2) 1999
e_1_2_1_92_2
e_1_2_1_122_2
Garza JC (e_1_2_1_127_2) 1995; 12
e_1_2_1_126_2
e_1_2_1_54_2
e_1_2_1_4_2
e_1_2_1_77_2
e_1_2_1_12_2
e_1_2_1_50_2
e_1_2_1_96_2
e_1_2_1_31_2
e_1_2_1_73_2
e_1_2_1_16_2
e_1_2_1_58_2
e_1_2_1_8_2
e_1_2_1_39_2
e_1_2_1_118_2
e_1_2_1_110_2
e_1_2_1_133_2
e_1_2_1_114_2
e_1_2_1_40_2
e_1_2_1_86_2
e_1_2_1_67_2
e_1_2_1_44_2
e_1_2_1_82_2
e_1_2_1_21_2
e_1_2_1_63_2
e_1_2_1_48_2
e_1_2_1_25_2
e_1_2_1_29_2
e_1_2_1_129_2
e_1_2_1_70_2
e_1_2_1_102_2
e_1_2_1_121_2
e_1_2_1_106_2
e_1_2_1_125_2
e_1_2_1_7_2
e_1_2_1_55_2
e_1_2_1_78_2
e_1_2_1_97_2
e_1_2_1_3_2
e_1_2_1_32_2
e_1_2_1_51_2
e_1_2_1_74_2
e_1_2_1_93_2
e_1_2_1_13_2
e_1_2_1_36_2
e_1_2_1_17_2
e_1_2_1_59_2
Hancock JM (e_1_2_1_2_2) 1999
e_1_2_1_113_2
e_1_2_1_132_2
e_1_2_1_117_2
e_1_2_1_41_2
e_1_2_1_64_2
e_1_2_1_87_2
e_1_2_1_22_2
e_1_2_1_45_2
e_1_2_1_60_2
e_1_2_1_83_2
e_1_2_1_120_2
Weetman D (e_1_2_1_89_2) 2002; 162
e_1_2_1_26_2
e_1_2_1_49_2
e_1_2_1_68_2
e_1_2_1_109_2
e_1_2_1_124_2
e_1_2_1_90_2
e_1_2_1_101_2
Petes TD (e_1_2_1_103_2) 1997; 146
e_1_2_1_128_2
e_1_2_1_105_2
e_1_2_1_6_2
e_1_2_1_75_2
e_1_2_1_56_2
e_1_2_1_98_2
e_1_2_1_33_2
e_1_2_1_131_2
e_1_2_1_10_2
e_1_2_1_52_2
e_1_2_1_94_2
e_1_2_1_37_2
e_1_2_1_14_2
e_1_2_1_79_2
e_1_2_1_18_2
Metzgar D (e_1_2_1_35_2) 2000; 10
e_1_2_1_80_2
e_1_2_1_112_2
e_1_2_1_116_2
e_1_2_1_65_2
e_1_2_1_88_2
e_1_2_1_23_2
e_1_2_1_61_2
Gordon AJ (e_1_2_1_19_2) 1997; 45
e_1_2_1_42_2
e_1_2_1_84_2
e_1_2_1_27_2
e_1_2_1_46_2
e_1_2_1_69_2
e_1_2_1_108_2
e_1_2_1_91_2
e_1_2_1_100_2
e_1_2_1_123_2
e_1_2_1_104_2
e_1_2_1_30_2
e_1_2_1_53_2
e_1_2_1_76_2
e_1_2_1_99_2
e_1_2_1_5_2
e_1_2_1_11_2
e_1_2_1_34_2
e_1_2_1_72_2
e_1_2_1_95_2
e_1_2_1_130_2
Stephan W (e_1_2_1_71_2) 1994; 136
e_1_2_1_38_2
e_1_2_1_57_2
e_1_2_1_9_2
References_xml – volume: 31
  start-page: 974
  year: 2003
  end-page: 980
  article-title: Taq DNA polymerase slippage mutation rates measured by PCR and quasi‐likelihood analysis: (CA/GT)n and (A/T)n microsatellites
  publication-title: Nucleic Acids Res
– volume: 20
  start-page: 453
  year: 2003
  end-page: 459
  article-title: The structure of interrupted human AC microsatellites
  publication-title: Molec Biol Evol
– volume: 17
  start-page: 1210
  year: 2000
  end-page: 1219
  article-title: Distribution and abundance of microsatellites in the yeast genome can be explained by a balance between slippage events and point mutations
  publication-title: Molecular Biology and Evolution
– volume: 15
  start-page: 997
  year: 1998
  end-page: 1008
  article-title: Patterns of molecular evolution in avian microsatellites
  publication-title: Molec Biol Evol
– volume: 15
  start-page: 99
  year: 1997
  end-page: 102
  article-title: Low mutation rates of microsatellite loci in Drosophila melanogaster
  publication-title: Nature Genetics
– volume: 45
  start-page: 337
  year: 1997
  end-page: 338
  article-title: Microsatellite birth register
  publication-title: Journal of Molecular Evolution
– volume: 15
  start-page: 1751
  year: 1998
  end-page: 1760
  article-title: The mutation rates of di‐, tri‐ and tetranucleotide repeats in Drosophila melanogaster
  publication-title: Molecular Biology and Evolution
– start-page: 1
  year: 1999
  end-page: 9
– volume: 108
  start-page: 550
  year: 2004
  end-page: 557
  article-title: Tightly linked di‐ and tri‐nucleotide microsatellites do not evolve in complete independence: evidence from linked (TA)n and (TAA)n microsatellites of chickpea (Cicer arietinum L.)
  publication-title: Theoret Applied Genetics
– volume: 152
  start-page: 617
  year: 1999
  end-page: 627
  article-title: Evidence for complex mutations at microsatellite loci in Drosophila
  publication-title: Genetics
– volume: 266
  start-page: 825
  year: 1999
  end-page: 833
  article-title: Microsatellite evolution: polarity of substitutions within repeats and neutrality of flanking sequences
  publication-title: Proceedings of the Royal Society of London Series B‐Biological Sciences
– volume: 13
  start-page: 744
  year: 2003
  end-page: 748
  article-title: Evidence for preferential mismatch repair of lagging strand DNA replication errors in yeast
  publication-title: Current Biol
– volume: 18
  start-page: 413
  year: 2001
  end-page: 417
  article-title: A maximum‐likelihood approach to fitting equilibrium models of microsatellite evolution
  publication-title: Molecular Biology and Evolution
– volume: 62
  start-page: 1408
  year: 1998
  end-page: 1415
  article-title: Mutation rate in human microsatellites: influence of the structure and length of the tandem repeat
  publication-title: Am J Human Genetics
– volume: 22
  start-page: 253
  year: 2006
  end-page: 259
  article-title: Simple sequence repeats as advantageous mutators in evolution
  publication-title: Trends in Genetics
– volume: 7
  start-page: 386
  year: 1996
  end-page: 387
  article-title: Microsatellites at a common site in the second ORF of L1 elements in mammalian genomes
  publication-title: Mammalian Genome
– volume: 170
  start-page: 305
  year: 2005
  end-page: 312
  article-title: Mutation rate variation at human dinucleotide microsatellites
  publication-title: Genetics
– volume: 94
  start-page: 1041
  year: 1997
  end-page: 1046
  article-title: Relative mutation rates at di‐, tri‐, and tetranucleotide microsatellite loci
  publication-title: Proc Natnl Acad Sci USA
– volume: 74
  start-page: 1183
  year: 2004
  end-page: 1197
  article-title: A comprehensive survey of human Y‐chromosomal microsatellites
  publication-title: American J of Human Genetics
– volume: 7
  start-page: 179
  year: 2006
  article-title: Association of poly‐purine/poly‐pyrimidine sequences with meiotic recombination hot spots
  publication-title: BMC Genomics
– volume: 16
  start-page: 164
  year: 2006
  end-page: 172
  article-title: Transposon‐free regions in mammalian genomes
  publication-title: Genome Res
– volume: 124
  start-page: 77
  year: 2005
  end-page: 83
  article-title: A high incidence of clustered microsatellite mutations revealed by parent‐offspring analysis in the African freshwater snail, Bulinus forskalii (Gastropoda, Pulmonata)
  publication-title: Genetica
– volume: 146
  start-page: 769
  year: 1997
  end-page: 779
  article-title: Microsatellite instability in yeast: dependence on the length of the microsatellite
  publication-title: Genetics
– volume: 48
  start-page: 313
  year: 1999
  end-page: 316
  article-title: Evolution of microsatellites in the yeast Saccharomyces cerevisiae: role of length and number of repeated units
  publication-title: Journal of Molecular Evolution
– volume: 16
  start-page: 960
  year: 1999
  end-page: 966
  article-title: Size‐dependent mutability and microsatellite constraints
  publication-title: Molec Biol Evol
– volume: 21
  start-page: 1226
  year: 2004
  end-page: 1233
  article-title: Long perfect dinucleotide repeats are typical of vertebrates, show motif preferences and size convergence
  publication-title: Molec Biol Evol
– volume: 93
  start-page: 6470
  year: 1996
  end-page: 6475
  article-title: Microsatellite spreading in the human genome: evolutionary mechanisms and structural implications
  publication-title: Proc Natnl Acad of Sci USA
– volume: 35
  start-page: 1005
  year: 2005
  end-page: 1015
  article-title: Microsatellite instability in gastrointestinal tract cancers: A brief update
  publication-title: Surgery Today
– volume: 162
  start-page: 813
  year: 2002
  end-page: 822
  article-title: Reconstruction of microsatellite mutation history reveals a strong and consistent deletion bias in invasive clonal snails, Potamopyrgus antipodarum
  publication-title: Genetics
– volume: 381
  start-page: 483
  year: 1996
  article-title: The birth of microsatellites
  publication-title: Nature
– volume: 84
  start-page: 301
  year: 1990
  end-page: 336
  article-title: Potential genetic functions of tandem repeated DNA sequence blocks in the human genome are based on a highly conserved “chromatin folding code”
  publication-title: Human Genetics
– volume: 13
  start-page: 335
  year: 1997
  end-page: 340
  article-title: Cytosine methylation and the ecology of intragenomic parasites
  publication-title: Trends in Genetics
– volume: 21
  start-page: 2
  year: 2005
  end-page: 6
  article-title: Complex mutation at a microsatellite locus in sturgeons: Acipenser sinensis, A. schrenckii, A. gueldenstaedtii and A. baerii
  publication-title: J Applied Ichthyology
– volume: 9
  start-page: 2707
  year: 2000
  end-page: 2713
  article-title: Sequence interruptions confer differential stability at microsatellite alleles in mismatch repair‐deficient cells
  publication-title: Hum Molec Genetics
– volume: 32
  start-page: e100
  year: 2004
  article-title: Measurement of DNA mismatch repair activity in live cells
  publication-title: Nucleic Acids Research
– volume: 20
  start-page: 2123
  year: 2003
  end-page: 2131
  article-title: The relationship between microsatellite slippage mutation rate and the number of repeat units
  publication-title: Molec Biol Evol
– volume: 102
  start-page: 8639
  year: 2005
  end-page: 8643
  article-title: Variation in efficiency of DNA mismatch repair at different sites in the yeast genome
  publication-title: Proc Natnl Acad Sci USA
– volume: 545
  start-page: 73
  year: 2004
  end-page: 80
  article-title: Individual variation in microsatellite mutation rate in barn swallows
  publication-title: Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis
– volume: 17
  start-page: 1001
  year: 2000
  end-page: 1009
  article-title: Removal of microsatellite interruptions by DNA replication slippage: phylogenetic evidence from Drosophila
  publication-title: Molec Biol Evolut
– volume: 13
  start-page: 390
  year: 1996
  end-page: 391
  article-title: Microsatellites show mutational bias and heterozygote instability
  publication-title: Nature Genetics
– volume: 1
  start-page: 122
  year: 2000
  end-page: 126
  article-title: Mini‐ and microsatellite expansions: the recombination connection
  publication-title: EMBO Reports
– volume: 13
  start-page: 551
  year: 2000
  end-page: 560
  article-title: Microsatellite mutations in litters of the Australian lizard Egernia stokesii
  publication-title: J Evol Biol
– volume: 8
  start-page: 1061
  year: 1999
  end-page: 1067
  article-title: Cis‐acting modifiers of expanded CAG/CTG triplet repeat expandability: associations with flanking GC content and proximity to CpG islands
  publication-title: Human Molecular Genetics
– volume: 346
  start-page: 241
  year: 2005
  end-page: 247
  article-title: Distribution and abundance of microsatellites in the genome of bivalves
  publication-title: Gene
– volume: 21
  start-page: 991
  year: 2004
  end-page: 1007
  article-title: Microsatellites within genes: structure, function, and evolution
  publication-title: Molecular Biology and Evolution
– volume: 9
  start-page: 1599
  year: 2000
  end-page: 1608
  article-title: Complex mutations in a high proportion of microsatellite loci from the protozoan parasite Plasmodium falciparum
  publication-title: Molec Ecol
– volume: 76
  start-page: 227
  year: 2000
  end-page: 236
  article-title: Insertions, substitutions, and the origin of microsatellites
  publication-title: Genetical Res
– volume: 14
  start-page: 446
  year: 1998
  end-page: 452
  article-title: Sex biases in the mutation rate
  publication-title: Trends in Genetics
– volume: 164
  start-page: 781
  year: 2003
  end-page: 787
  article-title: Likelihood‐based estimation of microsatellite mutation rates
  publication-title: Genetics
– volume: 16
  start-page: 567
  year: 1999
  end-page: 572
  article-title: The death of a microsatellite: a phylogenetic perspective on microsatellite interruptions
  publication-title: Molec Biol Evol
– volume: 18
  start-page: 1161
  year: 2001
  end-page: 1167
  article-title: Differential distribution of simple sequence repeats in eukaryotic genome sequences
  publication-title: Molec Biol Evol
– volume: 6
  start-page: 729
  year: 2005
  end-page: 742
  article-title: Repeat instability: mechanisms of dynamic mutations
  publication-title: Nature Rev Genet
– volume: 18
  start-page: 384
  year: 2001
  end-page: 392
  article-title: Mobile elements and the genesis of microsatellites in dipterans
  publication-title: Molec Biol Evol
– volume: 26
  start-page: 520
  year: 2005
  end-page: 528
  article-title: Mutation rates at Y chromosome specific microsatellites
  publication-title: Human Mutation
– volume: 126
  start-page: 455
  year: 2000
  end-page: 476
  article-title: Microsatellites: consensus and controversy
  publication-title: Comp Biochem Physiol B‐Biochem & Molec Biol
– volume: 29
  start-page: 136
  year: 1995
  end-page: 144
  article-title: Alu repeats: a source for the genesis of primate microsatellites
  publication-title: Genomics
– volume: 12
  start-page: 408
  year: 2002
  end-page: 413
  article-title: Domain‐level differences in microsatellite distribution and content result from different relative rates of insertion and deletion mutations
  publication-title: Gen Res
– volume: 13
  start-page: 2242
  year: 2003
  end-page: 2251
  article-title: Two distinct modes of microsatellite mutation processes: evidence from the complete genomic sequences of nine species
  publication-title: Genome Res
– volume: 303
  start-page: 1626
  year: 2004
  end-page: 1632
  article-title: Mobile elements: drivers of genome evolution
  publication-title: Science
– volume: 148
  start-page: 1269
  year: 1998
  end-page: 1284
  article-title: Heterogeneity of microsatellite mutations within and between loci, and implications for human demographic histories
  publication-title: Genetics
– volume: 24
  start-page: 400
  year: 2000
  end-page: 402
  article-title: Heterogeneous mutation processes in human microsatellite DNA sequences
  publication-title: Nature Genetics
– volume: 10
  start-page: 1108
  year: 2000
  end-page: 1114
  article-title: GT repeats are associated with recombination on human chromosome 22
  publication-title: Genome Res
– volume: 96
  start-page: 40
  year: 2005
  end-page: 51
  article-title: Distribution properties of polymononucleotide repeats in molluscan genomes
  publication-title: J Heredity
– volume: 70
  start-page: 625
  year: 2002
  end-page: 634
  article-title: Mutation patterns at dinucleotide microsatellite loci in humans
  publication-title: Am J Hum Genetics
– volume: 2
  start-page: 1123
  year: 1993
  end-page: 1128
  article-title: Mutation of human short tandem repeats
  publication-title: Hum Molec Genetics
– volume: 27
  start-page: 573
  year: 1999
  end-page: 580
  article-title: Tandem Repeats Finder: a program to analyze DNA sequences
  publication-title: Nucleic Acids Res
– volume: 10
  start-page: 967
  year: 2000
  end-page: 981
  article-title: Microsatellites in different eukaryotic genomes: survey and analysis
  publication-title: Gen Res
– volume: 20
  start-page: 1081
  year: 2004
  end-page: 1086
  article-title: Preference of simple sequence repeats in coding and non‐coding regions of Arabidopsis thaliana
  publication-title: Bioinform
– volume: 99
  start-page: 8748
  year: 2002
  end-page: 8753
  article-title: Microsatellite evolution inferred from human‐chimpanzee genomic sequence alignments
  publication-title: Proc Natnl Acad Sci USA
– volume: 12
  start-page: 13
  year: 1996
  end-page: 14
  article-title: Microsatellites are subject to directional evolution
  publication-title: Nature Genetics
– volume: 21
  start-page: 71
  year: 2003
  end-page: 79
  article-title: The mutational spectrum of human autosomal tetranucleotide microsatellites
  publication-title: Human Mutation
– volume: 93
  start-page: 15285
  year: 1996
  end-page: 15288
  article-title: . Mutation rate varies among alleles at a microsatellite locus: phylogenetic evidence
  publication-title: Proc Natnl Acad Sci USA
– volume: 11
  start-page: 2453
  year: 2002
  end-page: 2465
  article-title: Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review
  publication-title: Molec Ecol
– volume: 55
  start-page: 1717
  year: 2001
  end-page: 1733
  article-title: Microsatellite evolution in vertebrates: Inference from AC dinucleotide repeats
  publication-title: Evolution
– volume: 9
  start-page: 830
  year: 1999
  end-page: 838
  article-title: Compound Microsatellite Repeats: Practical and Theoretical Features
  publication-title: Genome Res
– volume: 84
  start-page: 205
  year: 2005
  end-page: 224
  article-title: Genomic microsatellite adaptive divergence of wild barley by microclimatic stress in ‘Evolution Canyon’, Israel
  publication-title: Biol J Linnean Soc
– volume: 42
  start-page: 215
  year: 2004
  end-page: 223
  article-title: Allelic variation, fragment length analyses and population genetic models: a case study on Drosophila microsatellites
  publication-title: J Zoological Systematics
– volume: 293
  start-page: 151
  year: 1999
  end-page: 160
  article-title: A census of protein repeats
  publication-title: J Molec Biol
– volume: 19
  start-page: 782
  year: 2005
  end-page: 787
  article-title: Chromatin and RNAi factors protect the C. elegans germline against repetitive sequences
  publication-title: Genes & Develop
– volume: 10
  start-page: 72
  year: 2000
  end-page: 80
  article-title: Selection against frameshift mutations limits microsatellite expansion in coding DNA
  publication-title: Genome Research
– volume: 136
  start-page: 333
  year: 1994
  end-page: 341
  article-title: Possible role of natural selection in the formation of tandem‐repetitive noncoding DNA
  publication-title: Genetics
– volume: 525
  start-page: 93
  year: 2003
  end-page: 101
  article-title: Extremely complex pattern of microsatellite mutation in the germline of wheat exposed to the post‐Chernobyl radioactive contamination
  publication-title: Mutation Res
– volume: 75
  start-page: 167
  year: 2000
  end-page: 177
  article-title: Bayesian estimation of range for microsatellite loci
  publication-title: Genetical Res
– volume: 18
  start-page: 2119
  year: 2001
  end-page: 2123
  article-title: A relationship between lengths of microsatellites and nearby substitution rates in mammalian genomes
  publication-title: Molecular Biology and Evolution
– volume: 20
  start-page: 1143
  year: 2003
  end-page: 1157
  article-title: Rapid divergence of microsatellite abundance among species of Drosophila
  publication-title: Molec Biol Evol
– start-page: 60
  year: 1999
  end-page: 79
– volume: 74
  start-page: 681
  year: 2005
  end-page: 710
  article-title: DNA mismatch repair
  publication-title: Ann Revi Biochem
– volume: 5
  start-page: 435
  year: 2004
  end-page: 445
  article-title: Microsatellites: Simple sequences with complex evolution
  publication-title: Nature Reviews Genetics
– volume: 20
  start-page: 1480
  year: 2003
  end-page: 1483
  article-title: Directional evolution for microsatellite size in maize
  publication-title: Molecular Biology and Evolution
– volume: 103
  start-page: 8780
  year: 2006
  end-page: 8785
  article-title: Cellular inhibitors of long interspersed element 1 and Alu retrotransposition
  publication-title: Proc Natnl Acad of Sci USA
– volume: 30
  start-page: 194
  year: 2002
  end-page: 200
  article-title: Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes
  publication-title: Nature Genetics
– volume: 87
  start-page: 57
  year: 2006
  end-page: 67
  article-title: Expansion of GAA trinucleotide repeats in mammals
  publication-title: Genomics
– volume: 308
  start-page: 1630
  year: 2005
  end-page: 1634
  article-title: Microsatellite instability generates diversity in brain and sociobehavioral traits
  publication-title: Science
– volume: 15
  start-page: 1269
  year: 1998
  end-page: 1274
  article-title: High mutation rate of a long microsatellite allele in Drosophila melanogaster provides evidence for allele‐specific mutation rates
  publication-title: Molec Biol Evol
– volume: 13
  start-page: 391
  year: 1996
  end-page: 393
  article-title: Directional evolution in germline microsatellite mutations
  publication-title: Nature Genetics
– volume: 15
  start-page: 1047
  year: 1998
  end-page: 1054
  article-title: Unraveling the processes of microsatellite evolution through analysis of germ line mutations in barn swallows Hirundo rustica
  publication-title: Molec Biol Evol
– volume: 7
  start-page: 471
  year: 1997
  end-page: 482
  article-title: Low frequency of microsatellites in the avian genome
  publication-title: Genome Res
– volume: 499
  start-page: 213
  year: 2002
  end-page: 225
  article-title: Relative rates of insertion and deletion mutations in dinucleotide repeats of various lengths in mismatch repair proficient mouse and mismatch repair deficient human cells
  publication-title: Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis
– start-page: 49
  year: 1999
  end-page: 65
– volume: 95
  start-page: 10774
  year: 1998
  end-page: 10778
  article-title: Equilibrium distributions of microsatellite repeat length resulting from a balance between slippage events and point mutations
  publication-title: Proc Natnl Acad Sci USA
– volume: 23
  start-page: 117
  year: 2004
  end-page: 124
  article-title: Y‐chromosomal microsatellite mutation rates: differences in mutation rate between and within loci
  publication-title: Human Mutation
– volume: 55
  start-page: 706
  year: 2002
  end-page: 717
  article-title: A DNA sequence evolution analysis generalized by simulation and the Markov chain Monte Carlo method implicates strand slippage in a majority of insertions and deletions
  publication-title: J Molec Evol
– volume: 50
  start-page: 324
  year: 2000
  end-page: 338
  article-title: A phylogenetic perspective on sequence evolution in microsatellite loci
  publication-title: J Molec Evol
– volume: 168
  start-page: 1231
  year: 2004
  end-page: 1248
  article-title: Mutation and evolution of microsatellite loci in Neurospora
  publication-title: Genetics
– volume: 13
  start-page: 562
  year: 2003
  end-page: 568
  article-title: Mutation rate variation in the mammalian genome
  publication-title: Current Opinion in Genetics & Develop
– volume: 17
  start-page: 2851
  year: 1997
  end-page: 2858
  article-title: Microsatellite instability in yeast: dependence on repeat unit size and DNA mismatch repair genes
  publication-title: Molec Cellular Biol
– volume: 19
  start-page: 1251
  year: 2002
  end-page: 1260
  article-title: Rate and pattern of mutation at microsatellite loci in maize
  publication-title: Molecular Biology and Evolution
– volume: 9
  start-page: 347
  year: 2000
  end-page: 352
  article-title: Microsatellite instability in tumors as a model to study the process of microsatellite mutations
  publication-title: Human Molec Genetics
– volume: 21
  start-page: 1427
  year: 1993
  end-page: 1431
  article-title: Characterization of (GT)n and (CT)n microsatellites in two insect species: Apis mellifera and Bombus terrestris
  publication-title: Nucleic Acids Res
– volume: 168
  start-page: 383
  year: 2004
  end-page: 395
  article-title: Microsatellite mutation models: Insights from a comparison of humans and chimpanzees
  publication-title: Genetics
– volume: 15
  start-page: 5323
  year: 1987
  end-page: 5338
  article-title: High frequencies of short frameshifts in poly‐CA/TG tandem repeats borne by bacteriophage M13 in Escherichia coli K‐12
  publication-title: Nucleic Acids Res
– volume: 11
  start-page: 1591
  year: 2002
  end-page: 1604
  article-title: Homoplasy and mutation model at microsatellite loci and their consequences for population genetics analysis
  publication-title: Molec Ecol
– volume: 25
  start-page: 3344
  year: 2004
  end-page: 3348
  article-title: Haplotype studies support slippage as the mechanism of germline mutations in short tandem repeats
  publication-title: Electrophoresis
– volume: 17
  start-page: 1277
  year: 2000
  end-page: 1285
  article-title: Microsatellite variability differs between dinucleotide repeat motifs ‐ Evidence from Drosophila melanogaster
  publication-title: Molecular Biology and Evolution
– volume: 4
  start-page: R13
  year: 2003
  article-title: Genome‐wide analysis of microsatellite repeats in humans: their abundance and density in specific genomic regions
  publication-title: Gen Biol
– volume: 8
  start-page: 2567
  year: 1999
  end-page: 2572
  article-title: Relative stabilities of dinucleotide and tetranucleotide repeats in cultured mammalian cells
  publication-title: Human Molec Genetics
– volume: 83
  start-page: 373
  year: 2004
  end-page: 383
  article-title: Expansion of GAA triplet repeats in the human genome: unique origin of the FRDA mutation at the center of an Alu
  publication-title: Genomics
– volume: 96
  start-page: 11916
  year: 1999
  end-page: 11921
  article-title: Markov Chain Monte Carlo analysis of human Y‐chromosome microsatellites provides evidence of biased mutation
  publication-title: Proc Natnl Acad of Sciences USA
– volume: 20
  start-page: 173
  year: 2000
  end-page: 180
  article-title: Stabilizing effects of interruptions on trinucleotide repeat expansions in Saccharomyces cerevisiae
  publication-title: Molec Cellular Biol
– volume: 15
  start-page: 613
  year: 1998
  end-page: 615
  article-title: A threshold size for microsatellite expansion
  publication-title: Molecular Biology and Evolution
– volume: 146
  start-page: 491
  year: 1997
  end-page: 498
  article-title: Stabilization of microsatellite sequences by variant repeats in the yeast Saccharomyces cerevisiae
  publication-title: Genetics
– volume: 24
  start-page: 396
  year: 2000
  end-page: 399
  article-title: The direction of microsatellite mutations is dependent upon allele length
  publication-title: Nature Genetics
– volume: 10
  start-page: 199
  year: 2002
  end-page: 205
  article-title: Mismatch repair‐driven mutational bias in D. melanogaster
  publication-title: Molec Cell
– volume: 10
  start-page: 337
  year: 1995
  end-page: 343
  article-title: Microsatellite evolution ‐ evidence for directionality and variation in rate between species
  publication-title: Nature Genetics
– volume: 11
  start-page: 707
  year: 2002
  end-page: 713
  article-title: Sequence dependent instability of mononucleotide microsatellites in cultured mismatch repair proficient and deficient mammalian cells
  publication-title: Human Molec Genetics
– volume: 23
  start-page: 3882
  year: 1995
  end-page: 3886
  article-title: Microsatellite variation in North American populations of Drosophila melanogaster
  publication-title: Nucleic Acids Res
– volume: 62
  start-page: 158
  year: 2006
  end-page: 167
  article-title: Long repeats in a huge genome: microsatellite loci in the grasshopper Chorthippus biguttulus
  publication-title: J Molec Evol
– volume: 28
  start-page: 2831
  year: 2000
  end-page: 2838
  article-title: Mutational analyses of dinucleotide and tetranucleotide microsatellites in Escherichia coli: influence of sequence on expansion mutagenesis
  publication-title: Nucleic Acids Res
– volume: 51
  start-page: 166
  year: 2000
  end-page: 172
  article-title: Evolution of microsatellite alleles in four species of mice (genus Apodemus)
  publication-title: J Molec Evol
– volume: 12
  start-page: 594
  year: 1995
  end-page: 603
  article-title: Microsatellite allele frequencies in humans and chimpanzees, with implications for constraints on allele size
  publication-title: Molec Biol Evol
– volume: 155
  start-page: 1213
  year: 2000
  end-page: 1220
  article-title: Long microsatellite alleles in Drosophila melanogaster have a downward mutation bias and short persistence times, which cause their genome‐wide underrepresentation
  publication-title: Genetics
– volume: 23
  start-page: 598
  year: 2006
  end-page: 607
  article-title: Quantifying ascertainment bias and species‐specific length differences in human and chimpanzee microsatellites using genome sequences
  publication-title: Molec BiolEvol
– ident: e_1_2_1_61_2
  doi: 10.1093/molbev/msj065
– volume: 10
  start-page: 72
  year: 2000
  ident: e_1_2_1_35_2
  article-title: Selection against frameshift mutations limits microsatellite expansion in coding DNA
  publication-title: Genome Research
  contributor:
    fullname: Metzgar D
– start-page: 60
  volume-title: Microsatellites ‐ Evolution and Applications
  year: 1999
  ident: e_1_2_1_20_2
  contributor:
    fullname: Amos W
– ident: e_1_2_1_59_2
  doi: 10.1073/pnas.122067599
– volume: 12
  start-page: 594
  year: 1995
  ident: e_1_2_1_127_2
  article-title: Microsatellite allele frequencies in humans and chimpanzees, with implications for constraints on allele size
  publication-title: Molec Biol Evol
  contributor:
    fullname: Garza JC
– ident: e_1_2_1_66_2
  doi: 10.1086/301869
– ident: e_1_2_1_24_2
  doi: 10.1017/S001667230000478X
– ident: e_1_2_1_39_2
  doi: 10.1101/gr.4624306
– ident: e_1_2_1_67_2
  doi: 10.1046/j.1420-9101.2000.00189.x
– ident: e_1_2_1_95_2
  doi: 10.1093/nar/28.14.2831
– ident: e_1_2_1_34_2
  doi: 10.1038/ng822
– ident: e_1_2_1_40_2
  doi: 10.1093/oxfordjournals.molbev.a025964
– ident: e_1_2_1_26_2
  doi: 10.1093/oxfordjournals.molbev.a003753
– volume: 162
  start-page: 813
  year: 2002
  ident: e_1_2_1_89_2
  article-title: Reconstruction of microsatellite mutation history reveals a strong and consistent deletion bias in invasive clonal snails, Potamopyrgus antipodarum
  publication-title: Genetics
  doi: 10.1093/genetics/162.2.813
  contributor:
    fullname: Weetman D
– ident: e_1_2_1_46_2
  doi: 10.1093/oxfordjournals.molbev.a026015
– ident: e_1_2_1_23_2
  doi: 10.1007/s00239-002-2366-5
– ident: e_1_2_1_70_2
  doi: 10.1093/embo-reports/kvd031
– ident: e_1_2_1_48_2
  doi: 10.1038/ng0197-99
– volume: 146
  start-page: 491
  year: 1997
  ident: e_1_2_1_103_2
  article-title: Stabilization of microsatellite sequences by variant repeats in the yeast Saccharomyces cerevisiae
  publication-title: Genetics
  doi: 10.1093/genetics/146.2.491
  contributor:
    fullname: Petes TD
– ident: e_1_2_1_37_2
  doi: 10.1073/pnas.0603313103
– ident: e_1_2_1_3_2
  doi: 10.1101/gr.10.7.967
– ident: e_1_2_1_68_2
  doi: 10.1007/s10709-005-0204-6
– ident: e_1_2_1_78_2
  doi: 10.1073/pnas.93.26.15285
– ident: e_1_2_1_88_2
  doi: 10.1016/S0960-9822(03)00284-7
– ident: e_1_2_1_14_2
  doi: 10.1534/genetics.103.022665
– ident: e_1_2_1_99_2
  doi: 10.1101/gr.9.9.830
– ident: e_1_2_1_100_2
  doi: 10.1098/rspb.1999.0712
– ident: e_1_2_1_54_2
  doi: 10.1093/genetics/152.2.617
– ident: e_1_2_1_74_2
  doi: 10.1534/genetics.104.029322
– ident: e_1_2_1_56_2
  doi: 10.1007/s002390010077
– ident: e_1_2_1_123_2
  doi: 10.1146/annurev.biochem.74.082803.133243
– ident: e_1_2_1_13_2
  doi: 10.1016/S0305-0491(00)00233-9
– ident: e_1_2_1_10_2
  doi: 10.1016/j.tig.2006.03.005
– ident: e_1_2_1_17_2
  doi: 10.1093/oxfordjournals.molbev.a026185
– ident: e_1_2_1_31_2
  doi: 10.1007/s003359900111
– ident: e_1_2_1_92_2
  doi: 10.1073/pnas.95.18.10774
– ident: e_1_2_1_63_2
  doi: 10.1093/nar/15.13.5323
– ident: e_1_2_1_85_2
  doi: 10.1007/s002399910036
– ident: e_1_2_1_87_2
  doi: 10.1128/MCB.17.5.2851
– ident: e_1_2_1_117_2
  doi: 10.1002/humu.10294
– ident: e_1_2_1_97_2
  doi: 10.1534/genetics.104.036855
– volume: 45
  start-page: 337
  year: 1997
  ident: e_1_2_1_19_2
  article-title: Microsatellite birth register
  publication-title: Journal of Molecular Evolution
  contributor:
    fullname: Gordon AJ
– ident: e_1_2_1_18_2
  doi: 10.1093/oxfordjournals.molbev.a026138
– ident: e_1_2_1_81_2
  doi: 10.1093/genetics/164.2.781
– ident: e_1_2_1_107_2
  doi: 10.1007/s00122-003-1458-y
– ident: e_1_2_1_28_2
  doi: 10.1073/pnas.93.13.6470
– ident: e_1_2_1_72_2
  doi: 10.1002/elps.200406069
– ident: e_1_2_1_96_2
  doi: 10.1093/oxfordjournals.molbev.a026411
– ident: e_1_2_1_114_2
  doi: 10.1101/gr.10.8.1108
– ident: e_1_2_1_112_2
  doi: 10.1093/nar/27.2.573
– ident: e_1_2_1_110_2
  doi: 10.1073/pnas.0503415102
– ident: e_1_2_1_51_2
  doi: 10.1093/oxfordjournals.molbev.a004186
– ident: e_1_2_1_47_2
  doi: 10.1038/ng0896-391
– ident: e_1_2_1_8_2
  doi: 10.1093/bioinformatics/bth043
– ident: e_1_2_1_122_2
  doi: 10.1006/jmbi.1999.3136
– ident: e_1_2_1_36_2
  doi: 10.1101/gad.332305
– ident: e_1_2_1_42_2
  doi: 10.1093/jhered/esi005
– ident: e_1_2_1_29_2
  doi: 10.1006/geno.1995.1224
– ident: e_1_2_1_106_2
  doi: 10.1093/hmg/9.18.2707
– ident: e_1_2_1_80_2
  doi: 10.1002/humu.10153
– ident: e_1_2_1_104_2
  doi: 10.1128/MCB.20.1.173-180.2000
– ident: e_1_2_1_126_2
  doi: 10.1007/s00239-005-0022-6
– ident: e_1_2_1_133_2
  doi: 10.1016/S0027-5107(01)00282-2
– ident: e_1_2_1_131_2
  doi: 10.1046/j.1365-294X.2002.01576.x
– ident: e_1_2_1_41_2
  doi: 10.1007/PL00006474
– ident: e_1_2_1_77_2
  doi: 10.1093/oxfordjournals.molbev.a026003
– ident: e_1_2_1_132_2
  doi: 10.1093/genetics/155.3.1213
– ident: e_1_2_1_76_2
  doi: 10.1111/j.1439-0469.2004.00275.x
– ident: e_1_2_1_121_2
  doi: 10.1111/j.1095-8312.2005.00425.x
– ident: e_1_2_1_4_2
  doi: 10.1093/oxfordjournals.molbev.a003903
– ident: e_1_2_1_49_2
  doi: 10.1002/humu.20254
– ident: e_1_2_1_82_2
  doi: 10.1038/ng0795-337
– ident: e_1_2_1_124_2
  doi: 10.1016/S1097-2765(02)00575-0
– ident: e_1_2_1_94_2
  doi: 10.1093/hmg/11.6.707
– ident: e_1_2_1_9_2
  doi: 10.1016/j.gene.2004.11.013
– ident: e_1_2_1_90_2
  doi: 10.1093/hmg/9.3.347
– ident: e_1_2_1_109_2
  doi: 10.1093/molbev/msh073
– ident: e_1_2_1_115_2
  doi: 10.1186/1471-2164-7-179
– ident: e_1_2_1_119_2
  doi: 10.1007/s00595-005-3125-1
– ident: e_1_2_1_91_2
  doi: 10.1073/pnas.94.3.1041
– ident: e_1_2_1_55_2
  doi: 10.1038/74249
– ident: e_1_2_1_5_2
  doi: 10.1046/j.1365-294X.2002.01643.x
– ident: e_1_2_1_73_2
  doi: 10.1093/genetics/146.3.769
– ident: e_1_2_1_27_2
  doi: 10.1126/science.1089670
– ident: e_1_2_1_60_2
  doi: 10.1111/j.1439-0426.2004.00629.x
– ident: e_1_2_1_25_2
  doi: 10.1016/j.gde.2003.10.008
– ident: e_1_2_1_116_2
  doi: 10.1016/S0168-9525(98)01577-7
– ident: e_1_2_1_16_2
  doi: 10.1038/381483a0
– ident: e_1_2_1_113_2
  doi: 10.1007/BF00196228
– ident: e_1_2_1_102_2
  doi: 10.1093/molbev/msg056
– ident: e_1_2_1_111_2
  doi: 10.1093/molbev/msg137
– ident: e_1_2_1_101_2
  doi: 10.1093/oxfordjournals.molbev.a026381
– ident: e_1_2_1_43_2
  doi: 10.1093/oxfordjournals.molbev.a003817
– ident: e_1_2_1_128_2
  doi: 10.1017/S0016672399004280
– ident: e_1_2_1_125_2
  doi: 10.1093/nar/gnh098
– ident: e_1_2_1_62_2
  doi: 10.1038/nrg1348
– ident: e_1_2_1_129_2
  doi: 10.1093/nar/21.6.1427
– volume: 136
  start-page: 333
  year: 1994
  ident: e_1_2_1_71_2
  article-title: Possible role of natural selection in the formation of tandem‐repetitive noncoding DNA
  publication-title: Genetics
  doi: 10.1093/genetics/136.1.333
  contributor:
    fullname: Stephan W
– ident: e_1_2_1_7_2
  doi: 10.1186/gb-2003-4-2-r13
– ident: e_1_2_1_98_2
  doi: 10.1093/molbev/msh108
– ident: e_1_2_1_32_2
  doi: 10.1086/421531
– ident: e_1_2_1_79_2
  doi: 10.1038/74238
– ident: e_1_2_1_57_2
  doi: 10.1046/j.1365-294x.2000.01057.x
– ident: e_1_2_1_58_2
  doi: 10.1111/j.0014-3820.2001.tb00822.x
– ident: e_1_2_1_69_2
  doi: 10.1086/338997
– ident: e_1_2_1_105_2
  doi: 10.1093/nar/23.19.3882
– ident: e_1_2_1_64_2
  doi: 10.1093/hmg/2.8.1123
– ident: e_1_2_1_6_2
  doi: 10.1101/gr.198602
– ident: e_1_2_1_45_2
  doi: 10.1093/molbev/msg228
– ident: e_1_2_1_130_2
  doi: 10.1016/j.ygeno.2005.09.006
– ident: e_1_2_1_21_2
  doi: 10.1093/oxfordjournals.molbev.a003814
– ident: e_1_2_1_118_2
  doi: 10.1016/j.mrfmmm.2003.09.012
– ident: e_1_2_1_53_2
  doi: 10.1093/genetics/148.3.1269
– ident: e_1_2_1_38_2
  doi: 10.1016/S0168-9525(97)01181-5
– ident: e_1_2_1_44_2
  doi: 10.1093/nar/gkg178
– ident: e_1_2_1_84_2
  doi: 10.1073/pnas.96.21.11916
– ident: e_1_2_1_50_2
  doi: 10.1093/oxfordjournals.molbev.a026404
– ident: e_1_2_1_11_2
  doi: 10.1038/nrg1689
– ident: e_1_2_1_120_2
  doi: 10.1016/S0027-5107(03)00006-X
– start-page: 49
  volume-title: Microsatellites ‐ Evolution and Applications
  year: 1999
  ident: e_1_2_1_15_2
  contributor:
    fullname: Estoup A
– ident: e_1_2_1_93_2
  doi: 10.1093/hmg/8.13.2567
– ident: e_1_2_1_33_2
  doi: 10.1101/gr.7.5.471
– start-page: 1
  volume-title: Microsatellites ‐ Evolution and Applications
  year: 1999
  ident: e_1_2_1_2_2
  contributor:
    fullname: Hancock JM
– ident: e_1_2_1_30_2
  doi: 10.1016/j.ygeno.2003.09.001
– ident: e_1_2_1_83_2
  doi: 10.1038/ng0196-13
– ident: e_1_2_1_12_2
  doi: 10.1126/science.1111427
– ident: e_1_2_1_108_2
  doi: 10.1093/hmg/8.6.1061
– ident: e_1_2_1_22_2
  doi: 10.1101/gr.1416703
– ident: e_1_2_1_86_2
  doi: 10.1093/molbev/msg156
– ident: e_1_2_1_65_2
  doi: 10.1038/ng0896-390
– ident: e_1_2_1_52_2
  doi: 10.1093/oxfordjournals.molbev.a025855
– ident: e_1_2_1_75_2
  doi: 10.1093/oxfordjournals.molbev.a025901
SSID ssj0009624
Score 2.369669
SecondaryResourceType review_article
Snippet Microsatellites are among the most versatile of genetic markers, being used in an impressive number of biological applications. However, the evolutionary...
SourceID proquest
crossref
pubmed
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 1040
SubjectTerms Animals
Base Sequence
Eukaryotic Cells
Evolution, Molecular
Genome
Humans
Microsatellite Repeats
Models, Genetic
Mutation
Selection, Genetic
Title The rise, fall and renaissance of microsatellites in eukaryotic genomes
URI https://api.istex.fr/ark:/67375/WNG-DN53381D-R/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbies.20470
https://www.ncbi.nlm.nih.gov/pubmed/16998838
https://search.proquest.com/docview/19330700
https://search.proquest.com/docview/68898198
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB5EEbz4fqzPgOJBrJt2kyaCF3V9ILgHUfQiIUlTkNWu7APUX-8kdXdRVNBboUmZZiaTbyaTLwBbCXVcZ8ZFuBaYiCFkjgz3ReNCOEGNsXnqDzhfNtLzG3Zxx-9G4KB_Fqbkhxgk3PzMCP7aT3BtOtUhaajxkWRCmfABe1wTvp6vfjXkjtpPw422GGPwCIMMMeAmTarDrp9WozE_sC_fQc3PyDUsPadTcN8Xuqw4ae71umbPvn3hc_zvX03D5AcmJYelEc3AiCtmYby8pfJ1Ds7QlAj6ArdLcv34SHSRkbYrNKrMmwxp5eTJl_V1dGD3ROxKHgriek2UooWfJJ4H9sl15uHm9OT6-Dz6uH8hsqg0GmWUZiKX6ASstDaxGAnKJE6tppYylhkqMgQjfqfVJYYbBGvGGYv-MuOJSB2vLcBo0SrcEhCba5PKWpwjoGAuZxL7SMsdMxh-SssqsNnXg3ouaTZUSaicKD8kKgxJBbaDigZNdLvpC9MEV7eNM1VvIHaVcV1dVWCjr0OF08XvgejCtXodFfsEjqD05xaplPsIk2QFFkvlDwVKMTaVNXyzE1T4i6TqCMF8eFr-S-MVmAgpnlAsuAqj3XbPrSHo6Zr1YNzvm3f7kw
link.rule.ids 314,780,784,1375,27924,27925,46294,46718
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFLdQKwSXMWBshUEtMXFACzipHbvHjQKF0R4Q1bhZtuNIUyFF_ZDY_nrec0orEEyCW6TYkeP34d97fv6ZkG8J88Jk1kewFtiIA2SOrMCicSm9ZNa6PMUDzp1u2u7x82txPa3NwbMwJT_ELOGGlhH8NRo4JqQP56yhFkPJhHEJEXsV7D3Giq7W5Zw9qpmGO20hyhARhBlyxk6aHM77PlmPqji19y-BzafYNSw-JyvlDaujwFmINSf9g8nYHrh_zxgd3_1fH8mHKSylP0o9WiULvlgji-VFlX_XySloEwV34L_T3NzcUFNkdOgLA1JDraGDnN5iZd_IBIJPgK_0T0H9pA_DGMAnKVLB3vrRJ9I7Ob46akfTKxgiB3JjUcZYJnMFfsAp5xIHwaBK4tQZ5hjnmWUyAzyCm60-scICXrPeOnCZmUhk6kVjg1SKQeG_EOpyY1PViHPAFNznXEEf5YTnFiJQ5XiN7D4KQt-VTBu65FRONE6JDlNSI3tBRrMmZtjH2jQp9O_uqW51Ab6quKUva6T-KEQNFoPbIKbwg8lIx5jDkYy93iJVqglISdXI51L68wGlEJ6qBrzZDzL8z0j1T8Dz4WnzLY3rZKl91bnQF2fdX1tkOWR8Qu3gV1IZDyd-GzDQ2O4ETX8AYjT_tA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED-hIiZeGGx8dANqadMe0FLc1I5diRegK91XNVVU6wuybMeRpkKK-iEBfz1nh7bqtCFtb5FiJ5e78_l39uVngPcxdVynxkU4F5iIIWSODPdF40I4QY2xWeJ_cP7eSdo99qXP-ytwMvsXpuCHmC-4-ZER4rUf4LdpdrwgDTU-k4wpE5iwr-JLGp45v9ldkEc1knCkLSYZPMIsQ8zJSePjRd-l6WjVa_buT1hzGbqGuaf1Eq5mUhclJ4PqdGKq9uE3Qsf__axN2HgCpeS08KItWHH5K1grjqm8fw0X6EsEg4H7SDJ9fU10npKRyzXazPsMGWbkxtf1jXWg90TwSn7lxE0HKMUQH0k8EeyNG29Dr_Xp8rwdPR3AEFlUKI1SSlORSYwCVlobW0wFZVxLrKaWMpYaKlJEI36r1cWGG0RrxhmLATPlsUgcr-9AKR_mbg-IzbRJZL2WIaJgLmMS-0jLHTOYf0rLyvBuZgd1W_BsqIJROVZeJSqopAwfgonmTfRo4CvTBFc_Oxeq2UHwKmtN1S1DZWZDhePFb4Lo3A2nY1XzKziC0r-3SKRsIE6SZdgtjL8QKMHkVNbxzlEw4TOSqjNE8-Hqzb80rsCLH82W-va58_UtrIflnlA4uA-lyWjqDhAATcxh8PNHZgD-Yw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+rise%2C+fall+and+renaissance+of+microsatellites+in+eukaryotic+genomes&rft.jtitle=BioEssays&rft.au=Buschiazzo%2C+Emmanuel&rft.au=Gemmell%2C+Neil+J.&rft.date=2006-10-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=0265-9247&rft.eissn=1521-1878&rft.volume=28&rft.issue=10&rft.spage=1040&rft.epage=1050&rft_id=info:doi/10.1002%2Fbies.20470&rft.externalDBID=10.1002%252Fbies.20470&rft.externalDocID=BIES20470
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0265-9247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0265-9247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0265-9247&client=summon