The rise, fall and renaissance of microsatellites in eukaryotic genomes
Microsatellites are among the most versatile of genetic markers, being used in an impressive number of biological applications. However, the evolutionary dynamics of these markers remain a source of contention. Almost 20 years after the discovery of these ubiquitous simple sequences, new genomic dat...
Saved in:
Published in | BioEssays Vol. 28; no. 10; pp. 1040 - 1050 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.10.2006
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Microsatellites are among the most versatile of genetic markers, being used in an impressive number of biological applications. However, the evolutionary dynamics of these markers remain a source of contention. Almost 20 years after the discovery of these ubiquitous simple sequences, new genomic data are clarifying our understanding of the structure, distribution and variability of microsatellites in genomes, especially for the eukaryotes. While these new data provide a great deal of descriptive information about the nature and abundance of microsatellite sequences within eukaryotic genomes, there have been few attempts to synthesise this information to develop a global concept of evolution. This review provides an up‐to‐date account of the mutational processes, biases and constraints believed to be involved in the evolution of microsatellites, particularly with respect to the creation and degeneration of microsatellites, which we assert may be broadly viewed as a life cycle. In addition, we identify areas of contention that require further research and propose some possible directions for future investigation. BioEssays 28: 1040–1050, 2006. © 2006 Wiley Periodicals, Inc. |
---|---|
AbstractList | Microsatellites are among the most versatile of genetic markers, being used in an impressive number of biological applications. However, the evolutionary dynamics of these markers remain a source of contention. Almost 20 years after the discovery of these ubiquitous simple sequences, new genomic data are clarifying our understanding of the structure, distribution and variability of microsatellites in genomes, especially for the eukaryotes. While these new data provide a great deal of descriptive information about the nature and abundance of microsatellite sequences within eukaryotic genomes, there have been few attempts to synthesise this information to develop a global concept of evolution. This review provides an up‐to‐date account of the mutational processes, biases and constraints believed to be involved in the evolution of microsatellites, particularly with respect to the creation and degeneration of microsatellites, which we assert may be broadly viewed as a life cycle. In addition, we identify areas of contention that require further research and propose some possible directions for future investigation. BioEssays 28: 1040–1050, 2006. © 2006 Wiley Periodicals, Inc. Microsatellites are among the most versatile of genetic markers, being used in an impressive number of biological applications. However, the evolutionary dynamics of these markers remain a source of contention. Almost 20 years after the discovery of these ubiquitous simple sequences, new genomic data are clarifying our understanding of the structure, distribution and variability of microsatellites in genomes, especially for the eukaryotes. While these new data provide a great deal of descriptive information about the nature and abundance of microsatellite sequences within eukaryotic genomes, there have been few attempts to synthesise this information to develop a global concept of evolution. This review provides an up-to-date account of the mutational processes, biases and constraints believed to be involved in the evolution of microsatellites, particularly with respect to the creation and degeneration of microsatellites, which we assert may be broadly viewed as a life cycle. In addition, we identify areas of contention that require further research and propose some possible directions for future investigation. BioEssays 28: 1040- 1050, 2006. Microsatellites are among the most versatile of genetic markers, being used in an impressive number of biological applications. However, the evolutionary dynamics of these markers remain a source of contention. Almost 20 years after the discovery of these ubiquitous simple sequences, new genomic data are clarifying our understanding of the structure, distribution and variability of microsatellites in genomes, especially for the eukaryotes. While these new data provide a great deal of descriptive information about the nature and abundance of microsatellite sequences within eukaryotic genomes, there have been few attempts to synthesise this information to develop a global concept of evolution. This review provides an up-to-date account of the mutational processes, biases and constraints believed to be involved in the evolution of microsatellites, particularly with respect to the creation and degeneration of microsatellites, which we assert may be broadly viewed as a life cycle. In addition, we identify areas of contention that require further research and propose some possible directions for future investigation. |
Author | Gemmell, Neil J. Buschiazzo, Emmanuel |
Author_xml | – sequence: 1 givenname: Emmanuel surname: Buschiazzo fullname: Buschiazzo, Emmanuel email: ebr26@student.canterbury.ac.nz organization: School of Biological Sciences, University of Canterbury, Christchurch, New Zealand – sequence: 2 givenname: Neil J. surname: Gemmell fullname: Gemmell, Neil J. organization: School of Biological Sciences, University of Canterbury, Christchurch, New Zealand |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/16998838$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkEtPGzEUha2KCsJj0x-AvOoCdeD6NbaXBdKAhEACqi4tj30DLvOA8URt_n0nTaC7srqb73y65-ySrbZrkZBPDI4ZAD-pEuZjDlLDBzJhirOCGW22yAR4qQrLpd4huzn_BABbcrlNdlhprTHCTMjs_hFpnzJ-oXNf19S3kfbY-pSzbwPSbk6bFPou-wHrOg2YaWopLp58v-yGFOgDtl2DeZ98HPMZDzZ3j3z_Nr0_uyiubmaXZ1-viiBLDkUEiHpuQItgQuABrDSclcFDACljBToqJUEqg7xSFVhVYRVixKi4LlGJPfJ57X3uu5cF5sE1KYfxNd9it8iuNMYaZs27ILNCgAYYwaM1uGqZe5y75z41Yz3HwK32dat93d99R_hwY11UDcZ_6GbQEWBr4FeqcfkflTu9nN69Sot1JuUBf79lfP_kSi20cj-uZ-78Wglh2Lm7FX8ARCuVpg |
CitedBy_id | crossref_primary_10_3389_fgene_2018_00073 crossref_primary_10_1270_jsbbs_18032 crossref_primary_10_1186_s13104_018_3301_1 crossref_primary_10_1038_s41598_024_60417_8 crossref_primary_10_1371_journal_pone_0164325 crossref_primary_10_1007_s00122_011_1689_2 crossref_primary_10_1007_s10722_022_01493_5 crossref_primary_10_1101_gr_177774_114 crossref_primary_10_1016_j_bse_2015_06_033 crossref_primary_10_1371_journal_pone_0040861 crossref_primary_10_4137_EBO_S420 crossref_primary_10_1093_gbe_evz216 crossref_primary_10_1007_s12033_009_9230_4 crossref_primary_10_1016_j_plaphy_2017_10_019 crossref_primary_10_1007_s10722_022_01399_2 crossref_primary_10_1007_s10753_015_0257_3 crossref_primary_10_1080_10495398_2016_1243551 crossref_primary_10_3390_genes15060728 crossref_primary_10_1002_humu_22542 crossref_primary_10_3923_pjbs_2008_2372_2381 crossref_primary_10_1111_j_1755_0998_2011_03014_x crossref_primary_10_3389_fgene_2023_1213102 crossref_primary_10_1093_jhered_esr099 crossref_primary_10_1371_journal_ppat_1002282 crossref_primary_10_1071_FP12325 crossref_primary_10_1093_molbev_mss251 crossref_primary_10_1042_BSR20201101 crossref_primary_10_3390_ijms131012533 crossref_primary_10_1371_journal_pone_0030953 crossref_primary_10_1186_s40478_017_0468_y crossref_primary_10_1093_gbe_evq007 crossref_primary_10_1016_j_funbio_2019_05_005 crossref_primary_10_2144_000113084 crossref_primary_10_2144_000113085 crossref_primary_10_1016_j_cca_2009_03_003 crossref_primary_10_1093_gbe_evae017 crossref_primary_10_1093_gbe_evs133 crossref_primary_10_1016_j_bse_2013_09_019 crossref_primary_10_1080_20548923_2016_1160594 crossref_primary_10_1094_PHYTO_03_15_0066_R crossref_primary_10_1139_G10_063 crossref_primary_10_1038_s41598_021_87538_8 crossref_primary_10_1007_s10530_022_02874_8 crossref_primary_10_1007_s10592_009_9935_8 crossref_primary_10_1016_j_jarmap_2023_100519 crossref_primary_10_1007_s00239_008_9080_x crossref_primary_10_1093_dnares_dsab005 crossref_primary_10_1007_s00122_008_0831_2 crossref_primary_10_3390_ijms19040929 crossref_primary_10_1371_journal_pone_0122703 crossref_primary_10_1111_j_1095_8649_2010_02588_x crossref_primary_10_4236_ojgen_2012_24022 crossref_primary_10_4161_mge_25674 crossref_primary_10_1093_nar_gkq1198 crossref_primary_10_1186_1471_2164_9_31 crossref_primary_10_1007_s00606_009_0208_2 crossref_primary_10_7717_peerj_4495 crossref_primary_10_1002_ece3_1305 crossref_primary_10_1111_j_1744_7429_2011_00779_x crossref_primary_10_3390_genes10121014 crossref_primary_10_1093_nar_gkx1253 crossref_primary_10_1016_j_theriogenology_2007_03_020 crossref_primary_10_1073_pnas_2116475119 crossref_primary_10_1093_bioinformatics_bts524 crossref_primary_10_1016_j_gene_2011_07_022 crossref_primary_10_1016_j_gene_2015_05_053 crossref_primary_10_1186_s13071_023_05923_w crossref_primary_10_1002_ppul_21097 crossref_primary_10_1007_s00438_016_1219_7 crossref_primary_10_1111_j_1755_0998_2010_02962_x crossref_primary_10_1590_1678_4685_GMB_2016_0027 crossref_primary_10_1111_j_1755_0998_2009_02750_x crossref_primary_10_1093_bioinformatics_btm097 crossref_primary_10_3389_fgene_2015_00345 crossref_primary_10_1371_journal_pgen_1004498 crossref_primary_10_1042_BSR20203868 crossref_primary_10_3390_plants9010010 crossref_primary_10_1094_PHYTO_07_15_0177_R crossref_primary_10_3390_genes11060660 crossref_primary_10_1002_mc_20499 crossref_primary_10_1007_s00239_015_9725_5 crossref_primary_10_1007_s12562_014_0782_2 crossref_primary_10_1186_s13100_020_00206_y crossref_primary_10_3390_molecules23020399 crossref_primary_10_1111_j_1365_294X_2011_05051_x crossref_primary_10_1093_jhered_esw015 crossref_primary_10_1371_journal_pone_0054710 crossref_primary_10_1080_00275514_2023_2186742 crossref_primary_10_1111_j_1755_0998_2011_03027_x crossref_primary_10_1371_journal_pone_0107334 crossref_primary_10_1093_molbev_msn201 crossref_primary_10_24154_jhs_v16i2_1251 crossref_primary_10_1016_j_ympev_2008_07_021 crossref_primary_10_1038_s41598_017_16430_1 crossref_primary_10_1080_02827581_2019_1623305 crossref_primary_10_1093_nargab_lqab032 crossref_primary_10_1111_jfb_12095 crossref_primary_10_1590_1678_4685_gmb_2020_0301 crossref_primary_10_3389_fpls_2022_860101 crossref_primary_10_3732_ajb_1100394 crossref_primary_10_1186_s12870_020_02626_7 crossref_primary_10_1371_journal_pone_0110856 crossref_primary_10_3390_ijms13078805 crossref_primary_10_1016_j_ecolind_2023_110835 crossref_primary_10_1038_sj_jid_5701088 crossref_primary_10_1016_j_mcp_2016_03_003 crossref_primary_10_1186_1471_2164_11_560 crossref_primary_10_1186_s12864_023_09117_7 crossref_primary_10_1093_nar_gkm1089 crossref_primary_10_1186_s12864_015_2274_x crossref_primary_10_1371_journal_pone_0113862 crossref_primary_10_1051_medsci_20072389729 crossref_primary_10_1007_s11032_018_0849_3 crossref_primary_10_1534_g3_112_005173 crossref_primary_10_1093_gbe_evq046 crossref_primary_10_1371_journal_pone_0029582 crossref_primary_10_1371_journal_pone_0177553 crossref_primary_10_1002_ajp_22308 crossref_primary_10_1093_gbe_evs050 crossref_primary_10_1111_j_1365_2583_2009_00915_x crossref_primary_10_1016_j_jas_2009_11_028 crossref_primary_10_1093_molbev_msp192 crossref_primary_10_1093_bioinformatics_btm157 crossref_primary_10_3732_apps_1500025 crossref_primary_10_1071_ZO09038 crossref_primary_10_1534_genetics_108_087882 crossref_primary_10_1016_j_neuron_2020_07_019 crossref_primary_10_1007_s11033_011_0979_8 crossref_primary_10_1111_j_1749_6632_2012_06615_x crossref_primary_10_1016_j_indcrop_2019_111568 crossref_primary_10_1038_srep26512 crossref_primary_10_1080_10409230801921262 crossref_primary_10_1534_genetics_107_076067 crossref_primary_10_1371_journal_pone_0011006 crossref_primary_10_1007_s12041_017_0756_0 crossref_primary_10_1080_11250000902785314 crossref_primary_10_1016_j_fgb_2015_05_003 crossref_primary_10_1007_s00239_013_9547_2 crossref_primary_10_1007_s13353_011_0058_9 crossref_primary_10_1101_gr_7113408 crossref_primary_10_1002_bies_20589 crossref_primary_10_1007_s10658_021_02214_x crossref_primary_10_1007_s11105_014_0845_7 crossref_primary_10_3390_ijms14034793 crossref_primary_10_1038_hdy_2009_45 crossref_primary_10_1371_journal_pone_0159825 crossref_primary_10_1101_gr_122937_111 crossref_primary_10_1007_s11032_015_0289_2 crossref_primary_10_1007_s11295_011_0410_6 crossref_primary_10_1111_pbr_12093 crossref_primary_10_1007_s11105_014_0754_9 crossref_primary_10_1016_j_plasmid_2023_102670 crossref_primary_10_1111_j_1365_294X_2010_04523_x crossref_primary_10_1111_j_1365_294X_2011_05178_x crossref_primary_10_3389_fmicb_2015_01462 crossref_primary_10_1007_s00122_012_1860_4 crossref_primary_10_1111_j_1529_8817_2011_01075_x crossref_primary_10_1016_j_yexcr_2020_111969 crossref_primary_10_1093_gbe_evq023 crossref_primary_10_1016_j_gene_2015_09_070 crossref_primary_10_1371_journal_pone_0142602 crossref_primary_10_1007_s13205_022_03402_0 crossref_primary_10_1111_mec_12138 crossref_primary_10_1016_j_molcel_2008_02_022 crossref_primary_10_1186_1756_0500_6_249 crossref_primary_10_3390_insects12100938 crossref_primary_10_1111_j_1752_4571_2012_00275_x crossref_primary_10_1007_s00438_010_0577_9 crossref_primary_10_1016_j_gene_2007_10_025 crossref_primary_10_1038_s42003_020_1046_6 crossref_primary_10_1021_es502720a crossref_primary_10_1186_1471_2180_10_213 crossref_primary_10_1590_1519_6984_276380 |
Cites_doi | 10.1093/molbev/msj065 10.1073/pnas.122067599 10.1086/301869 10.1017/S001667230000478X 10.1101/gr.4624306 10.1046/j.1420-9101.2000.00189.x 10.1093/nar/28.14.2831 10.1038/ng822 10.1093/oxfordjournals.molbev.a025964 10.1093/oxfordjournals.molbev.a003753 10.1093/genetics/162.2.813 10.1093/oxfordjournals.molbev.a026015 10.1007/s00239-002-2366-5 10.1093/embo-reports/kvd031 10.1038/ng0197-99 10.1093/genetics/146.2.491 10.1073/pnas.0603313103 10.1101/gr.10.7.967 10.1007/s10709-005-0204-6 10.1073/pnas.93.26.15285 10.1016/S0960-9822(03)00284-7 10.1534/genetics.103.022665 10.1101/gr.9.9.830 10.1098/rspb.1999.0712 10.1093/genetics/152.2.617 10.1534/genetics.104.029322 10.1007/s002390010077 10.1146/annurev.biochem.74.082803.133243 10.1016/S0305-0491(00)00233-9 10.1016/j.tig.2006.03.005 10.1093/oxfordjournals.molbev.a026185 10.1007/s003359900111 10.1073/pnas.95.18.10774 10.1093/nar/15.13.5323 10.1007/s002399910036 10.1128/MCB.17.5.2851 10.1002/humu.10294 10.1534/genetics.104.036855 10.1093/oxfordjournals.molbev.a026138 10.1093/genetics/164.2.781 10.1007/s00122-003-1458-y 10.1073/pnas.93.13.6470 10.1002/elps.200406069 10.1093/oxfordjournals.molbev.a026411 10.1101/gr.10.8.1108 10.1093/nar/27.2.573 10.1073/pnas.0503415102 10.1093/oxfordjournals.molbev.a004186 10.1038/ng0896-391 10.1093/bioinformatics/bth043 10.1006/jmbi.1999.3136 10.1101/gad.332305 10.1093/jhered/esi005 10.1006/geno.1995.1224 10.1093/hmg/9.18.2707 10.1002/humu.10153 10.1128/MCB.20.1.173-180.2000 10.1007/s00239-005-0022-6 10.1016/S0027-5107(01)00282-2 10.1046/j.1365-294X.2002.01576.x 10.1007/PL00006474 10.1093/oxfordjournals.molbev.a026003 10.1093/genetics/155.3.1213 10.1111/j.1439-0469.2004.00275.x 10.1111/j.1095-8312.2005.00425.x 10.1093/oxfordjournals.molbev.a003903 10.1002/humu.20254 10.1038/ng0795-337 10.1016/S1097-2765(02)00575-0 10.1093/hmg/11.6.707 10.1016/j.gene.2004.11.013 10.1093/hmg/9.3.347 10.1093/molbev/msh073 10.1186/1471-2164-7-179 10.1007/s00595-005-3125-1 10.1073/pnas.94.3.1041 10.1038/74249 10.1046/j.1365-294X.2002.01643.x 10.1093/genetics/146.3.769 10.1126/science.1089670 10.1111/j.1439-0426.2004.00629.x 10.1016/j.gde.2003.10.008 10.1016/S0168-9525(98)01577-7 10.1038/381483a0 10.1007/BF00196228 10.1093/molbev/msg056 10.1093/molbev/msg137 10.1093/oxfordjournals.molbev.a026381 10.1093/oxfordjournals.molbev.a003817 10.1017/S0016672399004280 10.1093/nar/gnh098 10.1038/nrg1348 10.1093/nar/21.6.1427 10.1093/genetics/136.1.333 10.1186/gb-2003-4-2-r13 10.1093/molbev/msh108 10.1086/421531 10.1038/74238 10.1046/j.1365-294x.2000.01057.x 10.1111/j.0014-3820.2001.tb00822.x 10.1086/338997 10.1093/nar/23.19.3882 10.1093/hmg/2.8.1123 10.1101/gr.198602 10.1093/molbev/msg228 10.1016/j.ygeno.2005.09.006 10.1093/oxfordjournals.molbev.a003814 10.1016/j.mrfmmm.2003.09.012 10.1093/genetics/148.3.1269 10.1016/S0168-9525(97)01181-5 10.1093/nar/gkg178 10.1073/pnas.96.21.11916 10.1093/oxfordjournals.molbev.a026404 10.1038/nrg1689 10.1016/S0027-5107(03)00006-X 10.1093/hmg/8.13.2567 10.1101/gr.7.5.471 10.1016/j.ygeno.2003.09.001 10.1038/ng0196-13 10.1126/science.1111427 10.1093/hmg/8.6.1061 10.1101/gr.1416703 10.1093/molbev/msg156 10.1038/ng0896-390 10.1093/oxfordjournals.molbev.a025855 10.1093/oxfordjournals.molbev.a025901 |
ContentType | Journal Article |
Copyright | Copyright © 2006 Wiley Periodicals, Inc. (c) 2006 Wiley Periodicals, Inc. |
Copyright_xml | – notice: Copyright © 2006 Wiley Periodicals, Inc. – notice: (c) 2006 Wiley Periodicals, Inc. |
DBID | BSCLL CGR CUY CVF ECM EIF NPM AAYXX CITATION 8FD FR3 P64 RC3 7X8 |
DOI | 10.1002/bies.20470 |
DatabaseName | Istex Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Genetics Abstracts Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef Genetics Abstracts MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1521-1878 |
EndPage | 1050 |
ExternalDocumentID | 10_1002_bies_20470 16998838 BIES20470 ark_67375_WNG_DN53381D_R |
Genre | miscellaneous Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: Royal Society of New Zealand funderid: Marsden Fund UOC202 |
GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23N 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEFU ABEML ABIJN ABJNI ABLJU ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACIWK ACKIV ACKOT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BQCPF BROTX BRXPI BSCLL BY8 C45 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KD1 KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M56 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RWR RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 UDS V2E W8V W99 WBKPD WH7 WIB WIH WIK WJL WNSPC WOHZO WQJ WRC WXSBR WYB WYISQ XG1 XV2 Y6R YYQ YZZ ZGI ZUP ZXP ZY4 ZZTAW ~IA ~KM ~WT AETEA CGR CUY CVF ECM EIF NPM AAMNL AAYXX ACRPL ACYXJ CITATION 8FD FR3 P64 RC3 7X8 |
ID | FETCH-LOGICAL-c4620-d00d7f8073c8cc2c0948216ca0c044db07d5540458e2b5b095bebcdded5276e53 |
IEDL.DBID | DR2 |
ISSN | 0265-9247 |
IngestDate | Wed Dec 04 00:30:52 EST 2024 Wed Dec 04 14:53:38 EST 2024 Fri Dec 06 02:01:12 EST 2024 Sat Sep 28 07:53:07 EDT 2024 Sat Aug 24 01:17:41 EDT 2024 Wed Oct 30 09:55:37 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | (c) 2006 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4620-d00d7f8073c8cc2c0948216ca0c044db07d5540458e2b5b095bebcdded5276e53 |
Notes | istex:FCD74614F5FEA22B37987800EFA2973CA1D8A97F ark:/67375/WNG-DN53381D-R Royal Society of New Zealand - No. Marsden Fund UOC202 ArticleID:BIES20470 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
PMID | 16998838 |
PQID | 19330700 |
PQPubID | 23462 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_68898198 proquest_miscellaneous_19330700 crossref_primary_10_1002_bies_20470 pubmed_primary_16998838 wiley_primary_10_1002_bies_20470_BIES20470 istex_primary_ark_67375_WNG_DN53381D_R |
PublicationCentury | 2000 |
PublicationDate | October 2006 |
PublicationDateYYYYMMDD | 2006-10-01 |
PublicationDate_xml | – month: 10 year: 2006 text: October 2006 |
PublicationDecade | 2000 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: United States |
PublicationTitle | BioEssays |
PublicationTitleAlternate | Bioessays |
PublicationYear | 2006 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company |
References | Di Rienzo A, Donnelly P, Toomajian C, Sisk B, Hill A, et al. 1998. Heterogeneity of microsatellite mutations within and between loci, and implications for human demographic histories. Genetics 148: 1269-1284. Zhu Y, Queller DC, Strassmann JE. 2000. A phylogenetic perspective on sequence evolution in microsatellite loci. J Molec Evol 50: 324-338. Eckert KA, Yan G. 2000. Mutational analyses of dinucleotide and tetranucleotide microsatellites in Escherichia coli: influence of sequence on expansion mutagenesis. Nucleic Acids Res 28: 2831-2838. Schlötterer C, Ritter R, Harr B, Brem G. 1998. High mutation rate of a long microsatellite allele in Drosophila melanogaster provides evidence for allele-specific mutation rates. Molec Biol Evol 15: 1269-1274. Petes TD, Greenwell PW, Dominska M. 1997. Stabilization of microsatellite sequences by variant repeats in the yeast Saccharomyces cerevisiae. Genetics 146: 491-498. Lee JS, Hanford MG, Genova JL, Farber RA. 1999. Relative stabilities of dinucleotide and tetranucleotide repeats in cultured mammalian cells. Human Molec Genetics 8: 2567-2572. Clark RM, Dalgliesh GL, Endres D, Gomez M, Taylor J, et al. 2004. Expansion of GAA triplet repeats in the human genome: unique origin of the FRDA mutation at the center of an Alu. Genomics 83: 373-383. Brohede J, Moller AP, Ellegren H. 2004. Individual variation in microsatellite mutation rate in barn swallows. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 545: 73-80. Ellegren H. 2000. Heterogeneous mutation processes in human microsatellite DNA sequences. Nature Genetics 24: 400-402. Xu X, Peng M, Fang Z. 2000. The direction of microsatellite mutations is dependent upon allele length. Nature Genetics 24: 396-399. Kruglyak S, Durrett RT, Schug MD, Aquadro CF. 1998. Equilibrium distributions of microsatellite repeat length resulting from a balance between slippage events and point mutations. Proc Natnl Acad Sci USA 95: 10774-10778. Chambers GK, MacAvoy ES. 2000. Microsatellites: consensus and controversy. Comp Biochem Physiol B-Biochem & Molec Biol 126: 455-476. Primmer CR, Ellegren H. 1998. Patterns of molecular evolution in avian microsatellites. Molec Biol Evol 15: 997-1008. Cooper G, Burroughs NJ, Rand DA, Rubinsztein DC, Amos W. 1999. Markov Chain Monte Carlo analysis of human Y-chromosome microsatellites provides evidence of biased mutation. Proc Natnl Acad of Sciences USA 96: 11916-11921. Zhang L, Yuan D, Yu S, Li Z, Cao Y, et al. 2004. Preference of simple sequence repeats in coding and non-coding regions of Arabidopsis thaliana. Bioinform 20: 1081-1086. Rolfsmeier ML, Lahue RS. 2000. Stabilizing effects of interruptions on trinucleotide repeat expansions in Saccharomyces cerevisiae. Molec Cellular Biol 20: 173-180. Harr B, Schlötterer C. 2000. Long microsatellite alleles in Drosophila melanogaster have a downward mutation bias and short persistence times, which cause their genome-wide underrepresentation. Genetics 155: 1213-1220. Bagshaw ATM, Pitt JPT, Gemmell NJ. 2006. Association of poly-purine/poly-pyrimidine sequences with meiotic recombination hot spots. BMC Genomics 7: 179. Robert VJ, Sijen T, van Wolfswinkel J, Plasterk RH. 2005. Chromatin and RNAi factors protect the C. elegans germline against repetitive sequences. Genes & Develop 19: 782-787. Nadir E, Margalit H, Gallily T, Ben-Sasson SA. 1996. Microsatellite spreading in the human genome: evolutionary mechanisms and structural implications. Proc Natnl Acad of Sci USA 93: 6470-6475. Marcotte EM, Pellegrini M, Yeates TO, Eisenberg D. 1999. A census of protein repeats. J Molec Biol 293: 151-160. Harr B, Todorova J, Schlötterer C. 2002. Mismatch repair-driven mutational bias in D. melanogaster. Molec Cell 10: 199-205. Ross CL, Dyer KA, Erez T, Miller SJ, Jaenike J, et al. 2003. Rapid divergence of microsatellite abundance among species of Drosophila. Molec Biol Evol 20: 1143-1157. Primmer CR, Raudsepp T, Chowdhary BP, Moller AP, Ellegren H. 1997. Low frequency of microsatellites in the avian genome. Genome Res 7: 471-482. Brohede J, Ellegren H. 1999. Microsatellite evolution: polarity of substitutions within repeats and neutrality of flanking sequences. Proceedings of the Royal Society of London Series B-Biological Sciences 266: 825-833. Weetman D, Hauser L, Carvalho GR. 2002. Reconstruction of microsatellite mutation history reveals a strong and consistent deletion bias in invasive clonal snails, Potamopyrgus antipodarum. Genetics 162: 813-822. Bachtrog D, Agis M, Imhof M, Schlötterer C. 2000. Microsatellite variability differs between dinucleotide repeat motifs - Evidence from Drosophila melanogaster. Molecular Biology and Evolution 17: 1277-1285. Hammock EAD, Young LJ. 2005. Microsatellite instability generates diversity in brain and sociobehavioral traits. Science 308: 1630-1634. Sibly RM, Meade A, Boxall N, Wilkinson MJ, Corne DW, et al. 2003. The structure of interrupted human AC microsatellites. Molec Biol Evol 20: 453-459. Kunkel TA, Erie DA. 2005. DNA mismatch repair. Ann Revi Biochem 74: 681-710. Nishizawa M, Nishizawa K. 2002. A DNA sequence evolution analysis generalized by simulation and the Markov chain Monte Carlo method implicates strand slippage in a majority of insertions and deletions. J Molec Evol 55: 706-717. Yoder JA, Walsh CP, Bestor TH. 1997. Cytosine methylation and the ecology of intragenomic parasites. Trends in Genetics 13: 335-340. Klintschar M, Dauber EM, Ricci U, Cerri N, Immel UD, et al. 2004. Haplotype studies support slippage as the mechanism of germline mutations in short tandem repeats. Electrophoresis 25: 3344-3348. Sturzeneker R, Bevilacqua RA, Haddad LA, Simpson AJ, Pena SD. 2000. Microsatellite instability in tumors as a model to study the process of microsatellite mutations. Human Molec Genetics 9: 347-352. Schug MD, Hutter CM, Wetterstrand KA, Gaudette MS, Mackay TF, et al. 1998. The mutation rates of di-, tri- and tetranucleotide repeats in Drosophila melanogaster. Molecular Biology and Evolution 15: 1751-1760. Vogt P. 1990. Potential genetic functions of tandem repeated DNA sequence blocks in the human genome are based on a highly conserved "chromatin folding code". Human Genetics 84: 301-336. Benson G. 1999. Tandem Repeats Finder: a program to analyze DNA sequences. Nucleic Acids Res 27: 573-580. Huang QY, Xu FH, Shen H, Deng HY, Liu YJ, et al. 2002. Mutation patterns at dinucleotide microsatellite loci in humans. Am J Hum Genetics 70: 625-634. Lai Y, Sun F. 2003. The relationship between microsatellite slippage mutation rate and the number of repeat units. Molec Biol Evol 20: 2123-2131. Gordon AJ. 1997. Microsatellite birth register. Journal of Molecular Evolution 45: 337-338. Chakraborty R, Kimmel M, Stivers David N, Davison Leslea J, Deka R. 1997. Relative mutation rates at di-, tri-, and tetranucleotide microsatellite loci. Proc Natnl Acad Sci USA 94: 1041-1046. Metzgar D, Liu L, Hansen C, Dybvig K, Wills C. 2002. Domain-level differences in microsatellite distribution and content result from different relative rates of insertion and deletion mutations. Gen Res 12: 408-413. Cruz F, Pérez M, Presa P. 2005. Distribution and abundance of microsatellites in the genome of bivalves. Gene 346: 241-247. Ellegren H, Smith NG, Webster MT. 2003. Mutation rate variation in the mammalian genome. Current Opinion in Genetics & Develop 13: 562-568. Sainudiin R, Durrett RT, Aquadro CF, Nielsen R. 2004. Microsatellite mutation models: Insights from a comparison of humans and chimpanzees. Genetics 168: 383-395. Ustinova J, Achmann R, Cremer S, Mayer F. 2006. Long repeats in a huge genome: microsatellite loci in the grasshopper Chorthippus biguttulus. J Molec Evol 62: 158-167. Boyer JC, Yamada NA, Roques CN, Hatch SB, Riess K, et al. 2002. Sequence dependent instability of mononucleotide microsatellites in cultured mismatch repair proficient and deficient mammalian cells. Human Molec Genetics 11: 707-713. Subramanian S, Mishra RK, Singh L. 2003. Genome-wide analysis of microsatellite repeats in humans: their abundance and density in specific genomic regions. Gen Biol 4: R13. Wierdl M, Dominska M, Petes TD. 1997. Microsatellite instability in yeast: dependence on the length of the microsatellite. Genetics 146: 769-779. Almeida P, Penha-Goncalves C. 2004. Long perfect dinucleotide repeats are typical of vertebrates, show motif preferences and size convergence. Molec Biol Evol 21: 1226-1233. Li YC, Korol AB, Fahima T, Beiles A, Nevo E. 2002. Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Molec Ecol 11: 2453-2465. Sia EA, Kokoska RJ, Dominska M, Greenwell P, Petes TD. 1997. Microsatellite instability in yeast: dependence on repeat unit size and DNA mismatch repair genes. Molec Cellular Biol 17: 2851-2858. Santibáñez-Koref MF, Gangeswaran R, Hancock JM. 2001. A relationship between lengths of microsatellites and nearby substitution rates in mammalian genomes. Molecular Biology and Evolution 18: 2119-2123. Katti MV, Ranjekar PK, Gupta VS. 2001. Differential distribution of simple sequence repeats in eukaryotic genome sequences. Molec Biol Evol 18: 1161-1167. Vowles EJ, Amos W. 2006. Quantifying ascertainment bias and species-specific length differences in human and chimpanzee microsatellites using genome sequences. Molec BiolEvol 23: 598-607. Garza JC, Slatkin M, Freimer NB. 1995. Microsatellite allele frequencies in humans and chimpanzees, with implications for constraints on allele size. Molec Biol Evol 12: 594-603. Stephan W, Cho S. 1994. Possible role of natural selection in the formation of tandem-repetitive noncoding DNA. Genetics 136: 333-341. Nevo E, Beharav A, Meyer RC, Hackett CA, Forster BP, et al. 2005. Genomic microsatellite adaptive divergence of wild barley by microclimatic stress in 'Evolution Canyon', Israel. Biol J Linnean Soc 84: 205-224. Amos W, Sawcer SJ, Feakes RW, Rubinsztein DC. 1996. Microsatellites show mutational bias and heterozygote instability. Nature Genetics 13: 390-391. Makova KD, Nekrutenko A, Baker 2004; 21 2005; 170 2004; 20 1994; 136 2004; 168 2002; 19 2002; 12 2004; 25 1999; 293 1993; 21 1999; 48 2004; 23 2002; 10 2002; 11 1997; 45 2002; 99 1996; 381 2004; 5 1997; 7 1997; 146 2004; 32 1998; 15 2000; 17 2006; 23 2000; 126 2006; 22 2000; 13 2005; 102 2000; 10 2005; 346 1995; 23 2005; 74 1995; 29 2001; 55 1998; 95 2003; 164 1998; 14 2004; 42 2004; 303 2004; 545 1999; 27 2002; 499 2005; 84 1996; 93 1996; 13 1998; 62 2003; 31 1996; 12 1999 2005; 19 2005; 124 2000; 76 2000; 75 2005; 96 2005; 6 1998; 148 2002; 70 2003; 20 2003; 21 2006; 103 2000; 9 2002; 55 2003; 13 2000; 50 2000; 51 2005; 21 2000; 1 2005; 26 1993; 2 1990; 84 2004; 74 1997; 94 2003; 525 2006; 62 1997; 15 1999; 16 1997; 13 2003; 4 1997; 17 2005; 308 1999; 96 2001; 18 2005; 35 1996; 7 2004; 83 2000; 28 2002; 30 2000; 24 2006; 16 1995; 12 1995; 10 2000; 20 2006; 7 2000; 155 1999; 266 1999; 8 2004; 108 1987; 15 1999; 9 2002; 162 2006; 87 1999; 152 Bioessays. 2006 Dec;28(12):1224 e_1_2_1_119_2 e_1_2_1_111_2 e_1_2_1_81_2 e_1_2_1_115_2 e_1_2_1_66_2 e_1_2_1_43_2 e_1_2_1_62_2 e_1_2_1_85_2 e_1_2_1_24_2 e_1_2_1_47_2 e_1_2_1_28_2 e_1_2_1_107_2 Amos W (e_1_2_1_20_2) 1999 Estoup A (e_1_2_1_15_2) 1999 e_1_2_1_92_2 e_1_2_1_122_2 Garza JC (e_1_2_1_127_2) 1995; 12 e_1_2_1_126_2 e_1_2_1_54_2 e_1_2_1_4_2 e_1_2_1_77_2 e_1_2_1_12_2 e_1_2_1_50_2 e_1_2_1_96_2 e_1_2_1_31_2 e_1_2_1_73_2 e_1_2_1_16_2 e_1_2_1_58_2 e_1_2_1_8_2 e_1_2_1_39_2 e_1_2_1_118_2 e_1_2_1_110_2 e_1_2_1_133_2 e_1_2_1_114_2 e_1_2_1_40_2 e_1_2_1_86_2 e_1_2_1_67_2 e_1_2_1_44_2 e_1_2_1_82_2 e_1_2_1_21_2 e_1_2_1_63_2 e_1_2_1_48_2 e_1_2_1_25_2 e_1_2_1_29_2 e_1_2_1_129_2 e_1_2_1_70_2 e_1_2_1_102_2 e_1_2_1_121_2 e_1_2_1_106_2 e_1_2_1_125_2 e_1_2_1_7_2 e_1_2_1_55_2 e_1_2_1_78_2 e_1_2_1_97_2 e_1_2_1_3_2 e_1_2_1_32_2 e_1_2_1_51_2 e_1_2_1_74_2 e_1_2_1_93_2 e_1_2_1_13_2 e_1_2_1_36_2 e_1_2_1_17_2 e_1_2_1_59_2 Hancock JM (e_1_2_1_2_2) 1999 e_1_2_1_113_2 e_1_2_1_132_2 e_1_2_1_117_2 e_1_2_1_41_2 e_1_2_1_64_2 e_1_2_1_87_2 e_1_2_1_22_2 e_1_2_1_45_2 e_1_2_1_60_2 e_1_2_1_83_2 e_1_2_1_120_2 Weetman D (e_1_2_1_89_2) 2002; 162 e_1_2_1_26_2 e_1_2_1_49_2 e_1_2_1_68_2 e_1_2_1_109_2 e_1_2_1_124_2 e_1_2_1_90_2 e_1_2_1_101_2 Petes TD (e_1_2_1_103_2) 1997; 146 e_1_2_1_128_2 e_1_2_1_105_2 e_1_2_1_6_2 e_1_2_1_75_2 e_1_2_1_56_2 e_1_2_1_98_2 e_1_2_1_33_2 e_1_2_1_131_2 e_1_2_1_10_2 e_1_2_1_52_2 e_1_2_1_94_2 e_1_2_1_37_2 e_1_2_1_14_2 e_1_2_1_79_2 e_1_2_1_18_2 Metzgar D (e_1_2_1_35_2) 2000; 10 e_1_2_1_80_2 e_1_2_1_112_2 e_1_2_1_116_2 e_1_2_1_65_2 e_1_2_1_88_2 e_1_2_1_23_2 e_1_2_1_61_2 Gordon AJ (e_1_2_1_19_2) 1997; 45 e_1_2_1_42_2 e_1_2_1_84_2 e_1_2_1_27_2 e_1_2_1_46_2 e_1_2_1_69_2 e_1_2_1_108_2 e_1_2_1_91_2 e_1_2_1_100_2 e_1_2_1_123_2 e_1_2_1_104_2 e_1_2_1_30_2 e_1_2_1_53_2 e_1_2_1_76_2 e_1_2_1_99_2 e_1_2_1_5_2 e_1_2_1_11_2 e_1_2_1_34_2 e_1_2_1_72_2 e_1_2_1_95_2 e_1_2_1_130_2 Stephan W (e_1_2_1_71_2) 1994; 136 e_1_2_1_38_2 e_1_2_1_57_2 e_1_2_1_9_2 |
References_xml | – volume: 31 start-page: 974 year: 2003 end-page: 980 article-title: Taq DNA polymerase slippage mutation rates measured by PCR and quasi‐likelihood analysis: (CA/GT)n and (A/T)n microsatellites publication-title: Nucleic Acids Res – volume: 20 start-page: 453 year: 2003 end-page: 459 article-title: The structure of interrupted human AC microsatellites publication-title: Molec Biol Evol – volume: 17 start-page: 1210 year: 2000 end-page: 1219 article-title: Distribution and abundance of microsatellites in the yeast genome can be explained by a balance between slippage events and point mutations publication-title: Molecular Biology and Evolution – volume: 15 start-page: 997 year: 1998 end-page: 1008 article-title: Patterns of molecular evolution in avian microsatellites publication-title: Molec Biol Evol – volume: 15 start-page: 99 year: 1997 end-page: 102 article-title: Low mutation rates of microsatellite loci in Drosophila melanogaster publication-title: Nature Genetics – volume: 45 start-page: 337 year: 1997 end-page: 338 article-title: Microsatellite birth register publication-title: Journal of Molecular Evolution – volume: 15 start-page: 1751 year: 1998 end-page: 1760 article-title: The mutation rates of di‐, tri‐ and tetranucleotide repeats in Drosophila melanogaster publication-title: Molecular Biology and Evolution – start-page: 1 year: 1999 end-page: 9 – volume: 108 start-page: 550 year: 2004 end-page: 557 article-title: Tightly linked di‐ and tri‐nucleotide microsatellites do not evolve in complete independence: evidence from linked (TA)n and (TAA)n microsatellites of chickpea (Cicer arietinum L.) publication-title: Theoret Applied Genetics – volume: 152 start-page: 617 year: 1999 end-page: 627 article-title: Evidence for complex mutations at microsatellite loci in Drosophila publication-title: Genetics – volume: 266 start-page: 825 year: 1999 end-page: 833 article-title: Microsatellite evolution: polarity of substitutions within repeats and neutrality of flanking sequences publication-title: Proceedings of the Royal Society of London Series B‐Biological Sciences – volume: 13 start-page: 744 year: 2003 end-page: 748 article-title: Evidence for preferential mismatch repair of lagging strand DNA replication errors in yeast publication-title: Current Biol – volume: 18 start-page: 413 year: 2001 end-page: 417 article-title: A maximum‐likelihood approach to fitting equilibrium models of microsatellite evolution publication-title: Molecular Biology and Evolution – volume: 62 start-page: 1408 year: 1998 end-page: 1415 article-title: Mutation rate in human microsatellites: influence of the structure and length of the tandem repeat publication-title: Am J Human Genetics – volume: 22 start-page: 253 year: 2006 end-page: 259 article-title: Simple sequence repeats as advantageous mutators in evolution publication-title: Trends in Genetics – volume: 7 start-page: 386 year: 1996 end-page: 387 article-title: Microsatellites at a common site in the second ORF of L1 elements in mammalian genomes publication-title: Mammalian Genome – volume: 170 start-page: 305 year: 2005 end-page: 312 article-title: Mutation rate variation at human dinucleotide microsatellites publication-title: Genetics – volume: 94 start-page: 1041 year: 1997 end-page: 1046 article-title: Relative mutation rates at di‐, tri‐, and tetranucleotide microsatellite loci publication-title: Proc Natnl Acad Sci USA – volume: 74 start-page: 1183 year: 2004 end-page: 1197 article-title: A comprehensive survey of human Y‐chromosomal microsatellites publication-title: American J of Human Genetics – volume: 7 start-page: 179 year: 2006 article-title: Association of poly‐purine/poly‐pyrimidine sequences with meiotic recombination hot spots publication-title: BMC Genomics – volume: 16 start-page: 164 year: 2006 end-page: 172 article-title: Transposon‐free regions in mammalian genomes publication-title: Genome Res – volume: 124 start-page: 77 year: 2005 end-page: 83 article-title: A high incidence of clustered microsatellite mutations revealed by parent‐offspring analysis in the African freshwater snail, Bulinus forskalii (Gastropoda, Pulmonata) publication-title: Genetica – volume: 146 start-page: 769 year: 1997 end-page: 779 article-title: Microsatellite instability in yeast: dependence on the length of the microsatellite publication-title: Genetics – volume: 48 start-page: 313 year: 1999 end-page: 316 article-title: Evolution of microsatellites in the yeast Saccharomyces cerevisiae: role of length and number of repeated units publication-title: Journal of Molecular Evolution – volume: 16 start-page: 960 year: 1999 end-page: 966 article-title: Size‐dependent mutability and microsatellite constraints publication-title: Molec Biol Evol – volume: 21 start-page: 1226 year: 2004 end-page: 1233 article-title: Long perfect dinucleotide repeats are typical of vertebrates, show motif preferences and size convergence publication-title: Molec Biol Evol – volume: 93 start-page: 6470 year: 1996 end-page: 6475 article-title: Microsatellite spreading in the human genome: evolutionary mechanisms and structural implications publication-title: Proc Natnl Acad of Sci USA – volume: 35 start-page: 1005 year: 2005 end-page: 1015 article-title: Microsatellite instability in gastrointestinal tract cancers: A brief update publication-title: Surgery Today – volume: 162 start-page: 813 year: 2002 end-page: 822 article-title: Reconstruction of microsatellite mutation history reveals a strong and consistent deletion bias in invasive clonal snails, Potamopyrgus antipodarum publication-title: Genetics – volume: 381 start-page: 483 year: 1996 article-title: The birth of microsatellites publication-title: Nature – volume: 84 start-page: 301 year: 1990 end-page: 336 article-title: Potential genetic functions of tandem repeated DNA sequence blocks in the human genome are based on a highly conserved “chromatin folding code” publication-title: Human Genetics – volume: 13 start-page: 335 year: 1997 end-page: 340 article-title: Cytosine methylation and the ecology of intragenomic parasites publication-title: Trends in Genetics – volume: 21 start-page: 2 year: 2005 end-page: 6 article-title: Complex mutation at a microsatellite locus in sturgeons: Acipenser sinensis, A. schrenckii, A. gueldenstaedtii and A. baerii publication-title: J Applied Ichthyology – volume: 9 start-page: 2707 year: 2000 end-page: 2713 article-title: Sequence interruptions confer differential stability at microsatellite alleles in mismatch repair‐deficient cells publication-title: Hum Molec Genetics – volume: 32 start-page: e100 year: 2004 article-title: Measurement of DNA mismatch repair activity in live cells publication-title: Nucleic Acids Research – volume: 20 start-page: 2123 year: 2003 end-page: 2131 article-title: The relationship between microsatellite slippage mutation rate and the number of repeat units publication-title: Molec Biol Evol – volume: 102 start-page: 8639 year: 2005 end-page: 8643 article-title: Variation in efficiency of DNA mismatch repair at different sites in the yeast genome publication-title: Proc Natnl Acad Sci USA – volume: 545 start-page: 73 year: 2004 end-page: 80 article-title: Individual variation in microsatellite mutation rate in barn swallows publication-title: Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis – volume: 17 start-page: 1001 year: 2000 end-page: 1009 article-title: Removal of microsatellite interruptions by DNA replication slippage: phylogenetic evidence from Drosophila publication-title: Molec Biol Evolut – volume: 13 start-page: 390 year: 1996 end-page: 391 article-title: Microsatellites show mutational bias and heterozygote instability publication-title: Nature Genetics – volume: 1 start-page: 122 year: 2000 end-page: 126 article-title: Mini‐ and microsatellite expansions: the recombination connection publication-title: EMBO Reports – volume: 13 start-page: 551 year: 2000 end-page: 560 article-title: Microsatellite mutations in litters of the Australian lizard Egernia stokesii publication-title: J Evol Biol – volume: 8 start-page: 1061 year: 1999 end-page: 1067 article-title: Cis‐acting modifiers of expanded CAG/CTG triplet repeat expandability: associations with flanking GC content and proximity to CpG islands publication-title: Human Molecular Genetics – volume: 346 start-page: 241 year: 2005 end-page: 247 article-title: Distribution and abundance of microsatellites in the genome of bivalves publication-title: Gene – volume: 21 start-page: 991 year: 2004 end-page: 1007 article-title: Microsatellites within genes: structure, function, and evolution publication-title: Molecular Biology and Evolution – volume: 9 start-page: 1599 year: 2000 end-page: 1608 article-title: Complex mutations in a high proportion of microsatellite loci from the protozoan parasite Plasmodium falciparum publication-title: Molec Ecol – volume: 76 start-page: 227 year: 2000 end-page: 236 article-title: Insertions, substitutions, and the origin of microsatellites publication-title: Genetical Res – volume: 14 start-page: 446 year: 1998 end-page: 452 article-title: Sex biases in the mutation rate publication-title: Trends in Genetics – volume: 164 start-page: 781 year: 2003 end-page: 787 article-title: Likelihood‐based estimation of microsatellite mutation rates publication-title: Genetics – volume: 16 start-page: 567 year: 1999 end-page: 572 article-title: The death of a microsatellite: a phylogenetic perspective on microsatellite interruptions publication-title: Molec Biol Evol – volume: 18 start-page: 1161 year: 2001 end-page: 1167 article-title: Differential distribution of simple sequence repeats in eukaryotic genome sequences publication-title: Molec Biol Evol – volume: 6 start-page: 729 year: 2005 end-page: 742 article-title: Repeat instability: mechanisms of dynamic mutations publication-title: Nature Rev Genet – volume: 18 start-page: 384 year: 2001 end-page: 392 article-title: Mobile elements and the genesis of microsatellites in dipterans publication-title: Molec Biol Evol – volume: 26 start-page: 520 year: 2005 end-page: 528 article-title: Mutation rates at Y chromosome specific microsatellites publication-title: Human Mutation – volume: 126 start-page: 455 year: 2000 end-page: 476 article-title: Microsatellites: consensus and controversy publication-title: Comp Biochem Physiol B‐Biochem & Molec Biol – volume: 29 start-page: 136 year: 1995 end-page: 144 article-title: Alu repeats: a source for the genesis of primate microsatellites publication-title: Genomics – volume: 12 start-page: 408 year: 2002 end-page: 413 article-title: Domain‐level differences in microsatellite distribution and content result from different relative rates of insertion and deletion mutations publication-title: Gen Res – volume: 13 start-page: 2242 year: 2003 end-page: 2251 article-title: Two distinct modes of microsatellite mutation processes: evidence from the complete genomic sequences of nine species publication-title: Genome Res – volume: 303 start-page: 1626 year: 2004 end-page: 1632 article-title: Mobile elements: drivers of genome evolution publication-title: Science – volume: 148 start-page: 1269 year: 1998 end-page: 1284 article-title: Heterogeneity of microsatellite mutations within and between loci, and implications for human demographic histories publication-title: Genetics – volume: 24 start-page: 400 year: 2000 end-page: 402 article-title: Heterogeneous mutation processes in human microsatellite DNA sequences publication-title: Nature Genetics – volume: 10 start-page: 1108 year: 2000 end-page: 1114 article-title: GT repeats are associated with recombination on human chromosome 22 publication-title: Genome Res – volume: 96 start-page: 40 year: 2005 end-page: 51 article-title: Distribution properties of polymononucleotide repeats in molluscan genomes publication-title: J Heredity – volume: 70 start-page: 625 year: 2002 end-page: 634 article-title: Mutation patterns at dinucleotide microsatellite loci in humans publication-title: Am J Hum Genetics – volume: 2 start-page: 1123 year: 1993 end-page: 1128 article-title: Mutation of human short tandem repeats publication-title: Hum Molec Genetics – volume: 27 start-page: 573 year: 1999 end-page: 580 article-title: Tandem Repeats Finder: a program to analyze DNA sequences publication-title: Nucleic Acids Res – volume: 10 start-page: 967 year: 2000 end-page: 981 article-title: Microsatellites in different eukaryotic genomes: survey and analysis publication-title: Gen Res – volume: 20 start-page: 1081 year: 2004 end-page: 1086 article-title: Preference of simple sequence repeats in coding and non‐coding regions of Arabidopsis thaliana publication-title: Bioinform – volume: 99 start-page: 8748 year: 2002 end-page: 8753 article-title: Microsatellite evolution inferred from human‐chimpanzee genomic sequence alignments publication-title: Proc Natnl Acad Sci USA – volume: 12 start-page: 13 year: 1996 end-page: 14 article-title: Microsatellites are subject to directional evolution publication-title: Nature Genetics – volume: 21 start-page: 71 year: 2003 end-page: 79 article-title: The mutational spectrum of human autosomal tetranucleotide microsatellites publication-title: Human Mutation – volume: 93 start-page: 15285 year: 1996 end-page: 15288 article-title: . Mutation rate varies among alleles at a microsatellite locus: phylogenetic evidence publication-title: Proc Natnl Acad Sci USA – volume: 11 start-page: 2453 year: 2002 end-page: 2465 article-title: Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review publication-title: Molec Ecol – volume: 55 start-page: 1717 year: 2001 end-page: 1733 article-title: Microsatellite evolution in vertebrates: Inference from AC dinucleotide repeats publication-title: Evolution – volume: 9 start-page: 830 year: 1999 end-page: 838 article-title: Compound Microsatellite Repeats: Practical and Theoretical Features publication-title: Genome Res – volume: 84 start-page: 205 year: 2005 end-page: 224 article-title: Genomic microsatellite adaptive divergence of wild barley by microclimatic stress in ‘Evolution Canyon’, Israel publication-title: Biol J Linnean Soc – volume: 42 start-page: 215 year: 2004 end-page: 223 article-title: Allelic variation, fragment length analyses and population genetic models: a case study on Drosophila microsatellites publication-title: J Zoological Systematics – volume: 293 start-page: 151 year: 1999 end-page: 160 article-title: A census of protein repeats publication-title: J Molec Biol – volume: 19 start-page: 782 year: 2005 end-page: 787 article-title: Chromatin and RNAi factors protect the C. elegans germline against repetitive sequences publication-title: Genes & Develop – volume: 10 start-page: 72 year: 2000 end-page: 80 article-title: Selection against frameshift mutations limits microsatellite expansion in coding DNA publication-title: Genome Research – volume: 136 start-page: 333 year: 1994 end-page: 341 article-title: Possible role of natural selection in the formation of tandem‐repetitive noncoding DNA publication-title: Genetics – volume: 525 start-page: 93 year: 2003 end-page: 101 article-title: Extremely complex pattern of microsatellite mutation in the germline of wheat exposed to the post‐Chernobyl radioactive contamination publication-title: Mutation Res – volume: 75 start-page: 167 year: 2000 end-page: 177 article-title: Bayesian estimation of range for microsatellite loci publication-title: Genetical Res – volume: 18 start-page: 2119 year: 2001 end-page: 2123 article-title: A relationship between lengths of microsatellites and nearby substitution rates in mammalian genomes publication-title: Molecular Biology and Evolution – volume: 20 start-page: 1143 year: 2003 end-page: 1157 article-title: Rapid divergence of microsatellite abundance among species of Drosophila publication-title: Molec Biol Evol – start-page: 60 year: 1999 end-page: 79 – volume: 74 start-page: 681 year: 2005 end-page: 710 article-title: DNA mismatch repair publication-title: Ann Revi Biochem – volume: 5 start-page: 435 year: 2004 end-page: 445 article-title: Microsatellites: Simple sequences with complex evolution publication-title: Nature Reviews Genetics – volume: 20 start-page: 1480 year: 2003 end-page: 1483 article-title: Directional evolution for microsatellite size in maize publication-title: Molecular Biology and Evolution – volume: 103 start-page: 8780 year: 2006 end-page: 8785 article-title: Cellular inhibitors of long interspersed element 1 and Alu retrotransposition publication-title: Proc Natnl Acad of Sci USA – volume: 30 start-page: 194 year: 2002 end-page: 200 article-title: Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes publication-title: Nature Genetics – volume: 87 start-page: 57 year: 2006 end-page: 67 article-title: Expansion of GAA trinucleotide repeats in mammals publication-title: Genomics – volume: 308 start-page: 1630 year: 2005 end-page: 1634 article-title: Microsatellite instability generates diversity in brain and sociobehavioral traits publication-title: Science – volume: 15 start-page: 1269 year: 1998 end-page: 1274 article-title: High mutation rate of a long microsatellite allele in Drosophila melanogaster provides evidence for allele‐specific mutation rates publication-title: Molec Biol Evol – volume: 13 start-page: 391 year: 1996 end-page: 393 article-title: Directional evolution in germline microsatellite mutations publication-title: Nature Genetics – volume: 15 start-page: 1047 year: 1998 end-page: 1054 article-title: Unraveling the processes of microsatellite evolution through analysis of germ line mutations in barn swallows Hirundo rustica publication-title: Molec Biol Evol – volume: 7 start-page: 471 year: 1997 end-page: 482 article-title: Low frequency of microsatellites in the avian genome publication-title: Genome Res – volume: 499 start-page: 213 year: 2002 end-page: 225 article-title: Relative rates of insertion and deletion mutations in dinucleotide repeats of various lengths in mismatch repair proficient mouse and mismatch repair deficient human cells publication-title: Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis – start-page: 49 year: 1999 end-page: 65 – volume: 95 start-page: 10774 year: 1998 end-page: 10778 article-title: Equilibrium distributions of microsatellite repeat length resulting from a balance between slippage events and point mutations publication-title: Proc Natnl Acad Sci USA – volume: 23 start-page: 117 year: 2004 end-page: 124 article-title: Y‐chromosomal microsatellite mutation rates: differences in mutation rate between and within loci publication-title: Human Mutation – volume: 55 start-page: 706 year: 2002 end-page: 717 article-title: A DNA sequence evolution analysis generalized by simulation and the Markov chain Monte Carlo method implicates strand slippage in a majority of insertions and deletions publication-title: J Molec Evol – volume: 50 start-page: 324 year: 2000 end-page: 338 article-title: A phylogenetic perspective on sequence evolution in microsatellite loci publication-title: J Molec Evol – volume: 168 start-page: 1231 year: 2004 end-page: 1248 article-title: Mutation and evolution of microsatellite loci in Neurospora publication-title: Genetics – volume: 13 start-page: 562 year: 2003 end-page: 568 article-title: Mutation rate variation in the mammalian genome publication-title: Current Opinion in Genetics & Develop – volume: 17 start-page: 2851 year: 1997 end-page: 2858 article-title: Microsatellite instability in yeast: dependence on repeat unit size and DNA mismatch repair genes publication-title: Molec Cellular Biol – volume: 19 start-page: 1251 year: 2002 end-page: 1260 article-title: Rate and pattern of mutation at microsatellite loci in maize publication-title: Molecular Biology and Evolution – volume: 9 start-page: 347 year: 2000 end-page: 352 article-title: Microsatellite instability in tumors as a model to study the process of microsatellite mutations publication-title: Human Molec Genetics – volume: 21 start-page: 1427 year: 1993 end-page: 1431 article-title: Characterization of (GT)n and (CT)n microsatellites in two insect species: Apis mellifera and Bombus terrestris publication-title: Nucleic Acids Res – volume: 168 start-page: 383 year: 2004 end-page: 395 article-title: Microsatellite mutation models: Insights from a comparison of humans and chimpanzees publication-title: Genetics – volume: 15 start-page: 5323 year: 1987 end-page: 5338 article-title: High frequencies of short frameshifts in poly‐CA/TG tandem repeats borne by bacteriophage M13 in Escherichia coli K‐12 publication-title: Nucleic Acids Res – volume: 11 start-page: 1591 year: 2002 end-page: 1604 article-title: Homoplasy and mutation model at microsatellite loci and their consequences for population genetics analysis publication-title: Molec Ecol – volume: 25 start-page: 3344 year: 2004 end-page: 3348 article-title: Haplotype studies support slippage as the mechanism of germline mutations in short tandem repeats publication-title: Electrophoresis – volume: 17 start-page: 1277 year: 2000 end-page: 1285 article-title: Microsatellite variability differs between dinucleotide repeat motifs ‐ Evidence from Drosophila melanogaster publication-title: Molecular Biology and Evolution – volume: 4 start-page: R13 year: 2003 article-title: Genome‐wide analysis of microsatellite repeats in humans: their abundance and density in specific genomic regions publication-title: Gen Biol – volume: 8 start-page: 2567 year: 1999 end-page: 2572 article-title: Relative stabilities of dinucleotide and tetranucleotide repeats in cultured mammalian cells publication-title: Human Molec Genetics – volume: 83 start-page: 373 year: 2004 end-page: 383 article-title: Expansion of GAA triplet repeats in the human genome: unique origin of the FRDA mutation at the center of an Alu publication-title: Genomics – volume: 96 start-page: 11916 year: 1999 end-page: 11921 article-title: Markov Chain Monte Carlo analysis of human Y‐chromosome microsatellites provides evidence of biased mutation publication-title: Proc Natnl Acad of Sciences USA – volume: 20 start-page: 173 year: 2000 end-page: 180 article-title: Stabilizing effects of interruptions on trinucleotide repeat expansions in Saccharomyces cerevisiae publication-title: Molec Cellular Biol – volume: 15 start-page: 613 year: 1998 end-page: 615 article-title: A threshold size for microsatellite expansion publication-title: Molecular Biology and Evolution – volume: 146 start-page: 491 year: 1997 end-page: 498 article-title: Stabilization of microsatellite sequences by variant repeats in the yeast Saccharomyces cerevisiae publication-title: Genetics – volume: 24 start-page: 396 year: 2000 end-page: 399 article-title: The direction of microsatellite mutations is dependent upon allele length publication-title: Nature Genetics – volume: 10 start-page: 199 year: 2002 end-page: 205 article-title: Mismatch repair‐driven mutational bias in D. melanogaster publication-title: Molec Cell – volume: 10 start-page: 337 year: 1995 end-page: 343 article-title: Microsatellite evolution ‐ evidence for directionality and variation in rate between species publication-title: Nature Genetics – volume: 11 start-page: 707 year: 2002 end-page: 713 article-title: Sequence dependent instability of mononucleotide microsatellites in cultured mismatch repair proficient and deficient mammalian cells publication-title: Human Molec Genetics – volume: 23 start-page: 3882 year: 1995 end-page: 3886 article-title: Microsatellite variation in North American populations of Drosophila melanogaster publication-title: Nucleic Acids Res – volume: 62 start-page: 158 year: 2006 end-page: 167 article-title: Long repeats in a huge genome: microsatellite loci in the grasshopper Chorthippus biguttulus publication-title: J Molec Evol – volume: 28 start-page: 2831 year: 2000 end-page: 2838 article-title: Mutational analyses of dinucleotide and tetranucleotide microsatellites in Escherichia coli: influence of sequence on expansion mutagenesis publication-title: Nucleic Acids Res – volume: 51 start-page: 166 year: 2000 end-page: 172 article-title: Evolution of microsatellite alleles in four species of mice (genus Apodemus) publication-title: J Molec Evol – volume: 12 start-page: 594 year: 1995 end-page: 603 article-title: Microsatellite allele frequencies in humans and chimpanzees, with implications for constraints on allele size publication-title: Molec Biol Evol – volume: 155 start-page: 1213 year: 2000 end-page: 1220 article-title: Long microsatellite alleles in Drosophila melanogaster have a downward mutation bias and short persistence times, which cause their genome‐wide underrepresentation publication-title: Genetics – volume: 23 start-page: 598 year: 2006 end-page: 607 article-title: Quantifying ascertainment bias and species‐specific length differences in human and chimpanzee microsatellites using genome sequences publication-title: Molec BiolEvol – ident: e_1_2_1_61_2 doi: 10.1093/molbev/msj065 – volume: 10 start-page: 72 year: 2000 ident: e_1_2_1_35_2 article-title: Selection against frameshift mutations limits microsatellite expansion in coding DNA publication-title: Genome Research contributor: fullname: Metzgar D – start-page: 60 volume-title: Microsatellites ‐ Evolution and Applications year: 1999 ident: e_1_2_1_20_2 contributor: fullname: Amos W – ident: e_1_2_1_59_2 doi: 10.1073/pnas.122067599 – volume: 12 start-page: 594 year: 1995 ident: e_1_2_1_127_2 article-title: Microsatellite allele frequencies in humans and chimpanzees, with implications for constraints on allele size publication-title: Molec Biol Evol contributor: fullname: Garza JC – ident: e_1_2_1_66_2 doi: 10.1086/301869 – ident: e_1_2_1_24_2 doi: 10.1017/S001667230000478X – ident: e_1_2_1_39_2 doi: 10.1101/gr.4624306 – ident: e_1_2_1_67_2 doi: 10.1046/j.1420-9101.2000.00189.x – ident: e_1_2_1_95_2 doi: 10.1093/nar/28.14.2831 – ident: e_1_2_1_34_2 doi: 10.1038/ng822 – ident: e_1_2_1_40_2 doi: 10.1093/oxfordjournals.molbev.a025964 – ident: e_1_2_1_26_2 doi: 10.1093/oxfordjournals.molbev.a003753 – volume: 162 start-page: 813 year: 2002 ident: e_1_2_1_89_2 article-title: Reconstruction of microsatellite mutation history reveals a strong and consistent deletion bias in invasive clonal snails, Potamopyrgus antipodarum publication-title: Genetics doi: 10.1093/genetics/162.2.813 contributor: fullname: Weetman D – ident: e_1_2_1_46_2 doi: 10.1093/oxfordjournals.molbev.a026015 – ident: e_1_2_1_23_2 doi: 10.1007/s00239-002-2366-5 – ident: e_1_2_1_70_2 doi: 10.1093/embo-reports/kvd031 – ident: e_1_2_1_48_2 doi: 10.1038/ng0197-99 – volume: 146 start-page: 491 year: 1997 ident: e_1_2_1_103_2 article-title: Stabilization of microsatellite sequences by variant repeats in the yeast Saccharomyces cerevisiae publication-title: Genetics doi: 10.1093/genetics/146.2.491 contributor: fullname: Petes TD – ident: e_1_2_1_37_2 doi: 10.1073/pnas.0603313103 – ident: e_1_2_1_3_2 doi: 10.1101/gr.10.7.967 – ident: e_1_2_1_68_2 doi: 10.1007/s10709-005-0204-6 – ident: e_1_2_1_78_2 doi: 10.1073/pnas.93.26.15285 – ident: e_1_2_1_88_2 doi: 10.1016/S0960-9822(03)00284-7 – ident: e_1_2_1_14_2 doi: 10.1534/genetics.103.022665 – ident: e_1_2_1_99_2 doi: 10.1101/gr.9.9.830 – ident: e_1_2_1_100_2 doi: 10.1098/rspb.1999.0712 – ident: e_1_2_1_54_2 doi: 10.1093/genetics/152.2.617 – ident: e_1_2_1_74_2 doi: 10.1534/genetics.104.029322 – ident: e_1_2_1_56_2 doi: 10.1007/s002390010077 – ident: e_1_2_1_123_2 doi: 10.1146/annurev.biochem.74.082803.133243 – ident: e_1_2_1_13_2 doi: 10.1016/S0305-0491(00)00233-9 – ident: e_1_2_1_10_2 doi: 10.1016/j.tig.2006.03.005 – ident: e_1_2_1_17_2 doi: 10.1093/oxfordjournals.molbev.a026185 – ident: e_1_2_1_31_2 doi: 10.1007/s003359900111 – ident: e_1_2_1_92_2 doi: 10.1073/pnas.95.18.10774 – ident: e_1_2_1_63_2 doi: 10.1093/nar/15.13.5323 – ident: e_1_2_1_85_2 doi: 10.1007/s002399910036 – ident: e_1_2_1_87_2 doi: 10.1128/MCB.17.5.2851 – ident: e_1_2_1_117_2 doi: 10.1002/humu.10294 – ident: e_1_2_1_97_2 doi: 10.1534/genetics.104.036855 – volume: 45 start-page: 337 year: 1997 ident: e_1_2_1_19_2 article-title: Microsatellite birth register publication-title: Journal of Molecular Evolution contributor: fullname: Gordon AJ – ident: e_1_2_1_18_2 doi: 10.1093/oxfordjournals.molbev.a026138 – ident: e_1_2_1_81_2 doi: 10.1093/genetics/164.2.781 – ident: e_1_2_1_107_2 doi: 10.1007/s00122-003-1458-y – ident: e_1_2_1_28_2 doi: 10.1073/pnas.93.13.6470 – ident: e_1_2_1_72_2 doi: 10.1002/elps.200406069 – ident: e_1_2_1_96_2 doi: 10.1093/oxfordjournals.molbev.a026411 – ident: e_1_2_1_114_2 doi: 10.1101/gr.10.8.1108 – ident: e_1_2_1_112_2 doi: 10.1093/nar/27.2.573 – ident: e_1_2_1_110_2 doi: 10.1073/pnas.0503415102 – ident: e_1_2_1_51_2 doi: 10.1093/oxfordjournals.molbev.a004186 – ident: e_1_2_1_47_2 doi: 10.1038/ng0896-391 – ident: e_1_2_1_8_2 doi: 10.1093/bioinformatics/bth043 – ident: e_1_2_1_122_2 doi: 10.1006/jmbi.1999.3136 – ident: e_1_2_1_36_2 doi: 10.1101/gad.332305 – ident: e_1_2_1_42_2 doi: 10.1093/jhered/esi005 – ident: e_1_2_1_29_2 doi: 10.1006/geno.1995.1224 – ident: e_1_2_1_106_2 doi: 10.1093/hmg/9.18.2707 – ident: e_1_2_1_80_2 doi: 10.1002/humu.10153 – ident: e_1_2_1_104_2 doi: 10.1128/MCB.20.1.173-180.2000 – ident: e_1_2_1_126_2 doi: 10.1007/s00239-005-0022-6 – ident: e_1_2_1_133_2 doi: 10.1016/S0027-5107(01)00282-2 – ident: e_1_2_1_131_2 doi: 10.1046/j.1365-294X.2002.01576.x – ident: e_1_2_1_41_2 doi: 10.1007/PL00006474 – ident: e_1_2_1_77_2 doi: 10.1093/oxfordjournals.molbev.a026003 – ident: e_1_2_1_132_2 doi: 10.1093/genetics/155.3.1213 – ident: e_1_2_1_76_2 doi: 10.1111/j.1439-0469.2004.00275.x – ident: e_1_2_1_121_2 doi: 10.1111/j.1095-8312.2005.00425.x – ident: e_1_2_1_4_2 doi: 10.1093/oxfordjournals.molbev.a003903 – ident: e_1_2_1_49_2 doi: 10.1002/humu.20254 – ident: e_1_2_1_82_2 doi: 10.1038/ng0795-337 – ident: e_1_2_1_124_2 doi: 10.1016/S1097-2765(02)00575-0 – ident: e_1_2_1_94_2 doi: 10.1093/hmg/11.6.707 – ident: e_1_2_1_9_2 doi: 10.1016/j.gene.2004.11.013 – ident: e_1_2_1_90_2 doi: 10.1093/hmg/9.3.347 – ident: e_1_2_1_109_2 doi: 10.1093/molbev/msh073 – ident: e_1_2_1_115_2 doi: 10.1186/1471-2164-7-179 – ident: e_1_2_1_119_2 doi: 10.1007/s00595-005-3125-1 – ident: e_1_2_1_91_2 doi: 10.1073/pnas.94.3.1041 – ident: e_1_2_1_55_2 doi: 10.1038/74249 – ident: e_1_2_1_5_2 doi: 10.1046/j.1365-294X.2002.01643.x – ident: e_1_2_1_73_2 doi: 10.1093/genetics/146.3.769 – ident: e_1_2_1_27_2 doi: 10.1126/science.1089670 – ident: e_1_2_1_60_2 doi: 10.1111/j.1439-0426.2004.00629.x – ident: e_1_2_1_25_2 doi: 10.1016/j.gde.2003.10.008 – ident: e_1_2_1_116_2 doi: 10.1016/S0168-9525(98)01577-7 – ident: e_1_2_1_16_2 doi: 10.1038/381483a0 – ident: e_1_2_1_113_2 doi: 10.1007/BF00196228 – ident: e_1_2_1_102_2 doi: 10.1093/molbev/msg056 – ident: e_1_2_1_111_2 doi: 10.1093/molbev/msg137 – ident: e_1_2_1_101_2 doi: 10.1093/oxfordjournals.molbev.a026381 – ident: e_1_2_1_43_2 doi: 10.1093/oxfordjournals.molbev.a003817 – ident: e_1_2_1_128_2 doi: 10.1017/S0016672399004280 – ident: e_1_2_1_125_2 doi: 10.1093/nar/gnh098 – ident: e_1_2_1_62_2 doi: 10.1038/nrg1348 – ident: e_1_2_1_129_2 doi: 10.1093/nar/21.6.1427 – volume: 136 start-page: 333 year: 1994 ident: e_1_2_1_71_2 article-title: Possible role of natural selection in the formation of tandem‐repetitive noncoding DNA publication-title: Genetics doi: 10.1093/genetics/136.1.333 contributor: fullname: Stephan W – ident: e_1_2_1_7_2 doi: 10.1186/gb-2003-4-2-r13 – ident: e_1_2_1_98_2 doi: 10.1093/molbev/msh108 – ident: e_1_2_1_32_2 doi: 10.1086/421531 – ident: e_1_2_1_79_2 doi: 10.1038/74238 – ident: e_1_2_1_57_2 doi: 10.1046/j.1365-294x.2000.01057.x – ident: e_1_2_1_58_2 doi: 10.1111/j.0014-3820.2001.tb00822.x – ident: e_1_2_1_69_2 doi: 10.1086/338997 – ident: e_1_2_1_105_2 doi: 10.1093/nar/23.19.3882 – ident: e_1_2_1_64_2 doi: 10.1093/hmg/2.8.1123 – ident: e_1_2_1_6_2 doi: 10.1101/gr.198602 – ident: e_1_2_1_45_2 doi: 10.1093/molbev/msg228 – ident: e_1_2_1_130_2 doi: 10.1016/j.ygeno.2005.09.006 – ident: e_1_2_1_21_2 doi: 10.1093/oxfordjournals.molbev.a003814 – ident: e_1_2_1_118_2 doi: 10.1016/j.mrfmmm.2003.09.012 – ident: e_1_2_1_53_2 doi: 10.1093/genetics/148.3.1269 – ident: e_1_2_1_38_2 doi: 10.1016/S0168-9525(97)01181-5 – ident: e_1_2_1_44_2 doi: 10.1093/nar/gkg178 – ident: e_1_2_1_84_2 doi: 10.1073/pnas.96.21.11916 – ident: e_1_2_1_50_2 doi: 10.1093/oxfordjournals.molbev.a026404 – ident: e_1_2_1_11_2 doi: 10.1038/nrg1689 – ident: e_1_2_1_120_2 doi: 10.1016/S0027-5107(03)00006-X – start-page: 49 volume-title: Microsatellites ‐ Evolution and Applications year: 1999 ident: e_1_2_1_15_2 contributor: fullname: Estoup A – ident: e_1_2_1_93_2 doi: 10.1093/hmg/8.13.2567 – ident: e_1_2_1_33_2 doi: 10.1101/gr.7.5.471 – start-page: 1 volume-title: Microsatellites ‐ Evolution and Applications year: 1999 ident: e_1_2_1_2_2 contributor: fullname: Hancock JM – ident: e_1_2_1_30_2 doi: 10.1016/j.ygeno.2003.09.001 – ident: e_1_2_1_83_2 doi: 10.1038/ng0196-13 – ident: e_1_2_1_12_2 doi: 10.1126/science.1111427 – ident: e_1_2_1_108_2 doi: 10.1093/hmg/8.6.1061 – ident: e_1_2_1_22_2 doi: 10.1101/gr.1416703 – ident: e_1_2_1_86_2 doi: 10.1093/molbev/msg156 – ident: e_1_2_1_65_2 doi: 10.1038/ng0896-390 – ident: e_1_2_1_52_2 doi: 10.1093/oxfordjournals.molbev.a025855 – ident: e_1_2_1_75_2 doi: 10.1093/oxfordjournals.molbev.a025901 |
SSID | ssj0009624 |
Score | 2.369669 |
SecondaryResourceType | review_article |
Snippet | Microsatellites are among the most versatile of genetic markers, being used in an impressive number of biological applications. However, the evolutionary... |
SourceID | proquest crossref pubmed wiley istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1040 |
SubjectTerms | Animals Base Sequence Eukaryotic Cells Evolution, Molecular Genome Humans Microsatellite Repeats Models, Genetic Mutation Selection, Genetic |
Title | The rise, fall and renaissance of microsatellites in eukaryotic genomes |
URI | https://api.istex.fr/ark:/67375/WNG-DN53381D-R/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbies.20470 https://www.ncbi.nlm.nih.gov/pubmed/16998838 https://search.proquest.com/docview/19330700 https://search.proquest.com/docview/68898198 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB5EEbz4fqzPgOJBrJt2kyaCF3V9ILgHUfQiIUlTkNWu7APUX-8kdXdRVNBboUmZZiaTbyaTLwBbCXVcZ8ZFuBaYiCFkjgz3ReNCOEGNsXnqDzhfNtLzG3Zxx-9G4KB_Fqbkhxgk3PzMCP7aT3BtOtUhaajxkWRCmfABe1wTvp6vfjXkjtpPw422GGPwCIMMMeAmTarDrp9WozE_sC_fQc3PyDUsPadTcN8Xuqw4ae71umbPvn3hc_zvX03D5AcmJYelEc3AiCtmYby8pfJ1Ds7QlAj6ArdLcv34SHSRkbYrNKrMmwxp5eTJl_V1dGD3ROxKHgriek2UooWfJJ4H9sl15uHm9OT6-Dz6uH8hsqg0GmWUZiKX6ASstDaxGAnKJE6tppYylhkqMgQjfqfVJYYbBGvGGYv-MuOJSB2vLcBo0SrcEhCba5PKWpwjoGAuZxL7SMsdMxh-SssqsNnXg3ouaTZUSaicKD8kKgxJBbaDigZNdLvpC9MEV7eNM1VvIHaVcV1dVWCjr0OF08XvgejCtXodFfsEjqD05xaplPsIk2QFFkvlDwVKMTaVNXyzE1T4i6TqCMF8eFr-S-MVmAgpnlAsuAqj3XbPrSHo6Zr1YNzvm3f7kw |
link.rule.ids | 314,780,784,1375,27924,27925,46294,46718 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFLdQKwSXMWBshUEtMXFACzipHbvHjQKF0R4Q1bhZtuNIUyFF_ZDY_nrec0orEEyCW6TYkeP34d97fv6ZkG8J88Jk1kewFtiIA2SOrMCicSm9ZNa6PMUDzp1u2u7x82txPa3NwbMwJT_ELOGGlhH8NRo4JqQP56yhFkPJhHEJEXsV7D3Giq7W5Zw9qpmGO20hyhARhBlyxk6aHM77PlmPqji19y-BzafYNSw-JyvlDaujwFmINSf9g8nYHrh_zxgd3_1fH8mHKSylP0o9WiULvlgji-VFlX_XySloEwV34L_T3NzcUFNkdOgLA1JDraGDnN5iZd_IBIJPgK_0T0H9pA_DGMAnKVLB3vrRJ9I7Ob46akfTKxgiB3JjUcZYJnMFfsAp5xIHwaBK4tQZ5hjnmWUyAzyCm60-scICXrPeOnCZmUhk6kVjg1SKQeG_EOpyY1PViHPAFNznXEEf5YTnFiJQ5XiN7D4KQt-VTBu65FRONE6JDlNSI3tBRrMmZtjH2jQp9O_uqW51Ab6quKUva6T-KEQNFoPbIKbwg8lIx5jDkYy93iJVqglISdXI51L68wGlEJ6qBrzZDzL8z0j1T8Dz4WnzLY3rZKl91bnQF2fdX1tkOWR8Qu3gV1IZDyd-GzDQ2O4ETX8AYjT_tA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED-hIiZeGGx8dANqadMe0FLc1I5diRegK91XNVVU6wuybMeRpkKK-iEBfz1nh7bqtCFtb5FiJ5e78_l39uVngPcxdVynxkU4F5iIIWSODPdF40I4QY2xWeJ_cP7eSdo99qXP-ytwMvsXpuCHmC-4-ZER4rUf4LdpdrwgDTU-k4wpE5iwr-JLGp45v9ldkEc1knCkLSYZPMIsQ8zJSePjRd-l6WjVa_buT1hzGbqGuaf1Eq5mUhclJ4PqdGKq9uE3Qsf__axN2HgCpeS08KItWHH5K1grjqm8fw0X6EsEg4H7SDJ9fU10npKRyzXazPsMGWbkxtf1jXWg90TwSn7lxE0HKMUQH0k8EeyNG29Dr_Xp8rwdPR3AEFlUKI1SSlORSYwCVlobW0wFZVxLrKaWMpYaKlJEI36r1cWGG0RrxhmLATPlsUgcr-9AKR_mbg-IzbRJZL2WIaJgLmMS-0jLHTOYf0rLyvBuZgd1W_BsqIJROVZeJSqopAwfgonmTfRo4CvTBFc_Oxeq2UHwKmtN1S1DZWZDhePFb4Lo3A2nY1XzKziC0r-3SKRsIE6SZdgtjL8QKMHkVNbxzlEw4TOSqjNE8-Hqzb80rsCLH82W-va58_UtrIflnlA4uA-lyWjqDhAATcxh8PNHZgD-Yw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+rise%2C+fall+and+renaissance+of+microsatellites+in+eukaryotic+genomes&rft.jtitle=BioEssays&rft.au=Buschiazzo%2C+Emmanuel&rft.au=Gemmell%2C+Neil+J.&rft.date=2006-10-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=0265-9247&rft.eissn=1521-1878&rft.volume=28&rft.issue=10&rft.spage=1040&rft.epage=1050&rft_id=info:doi/10.1002%2Fbies.20470&rft.externalDBID=10.1002%252Fbies.20470&rft.externalDocID=BIES20470 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0265-9247&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0265-9247&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0265-9247&client=summon |