Waterproof Fabric‐Based Multifunctional Triboelectric Nanogenerator for Universally Harvesting Energy from Raindrops, Wind, and Human Motions and as Self‐Powered Sensors

Developing nimble, shape‐adaptable, conformable, and widely implementable energy harvesters with the capability to scavenge multiple renewable and ambient energy sources is highly demanded for distributed, remote, and wearable energy uses to meet the needs of internet of things. Here, the first sing...

Full description

Saved in:
Bibliographic Details
Published inAdvanced science Vol. 6; no. 5; pp. 1801883 - n/a
Main Authors Lai, Ying‐Chih, Hsiao, Yung‐Chi, Wu, Hsing‐Mei, Wang, Zhong Lin
Format Journal Article
LanguageEnglish
Published Germany John Wiley & Sons, Inc 06.03.2019
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Developing nimble, shape‐adaptable, conformable, and widely implementable energy harvesters with the capability to scavenge multiple renewable and ambient energy sources is highly demanded for distributed, remote, and wearable energy uses to meet the needs of internet of things. Here, the first single waterproof and fabric‐based multifunctional triboelectric nanogenerator (WPF‐MTENG) is presented, which can produce electricity from both natural tiny impacts (rain and wind) and body movements, and can not only serve as a flexible, adaptive, wearable, and universal energy collector but also act as a self‐powered, active, fabric‐based sensor. The working principle comes from a conjunction of contact triboelectrification and electrostatic induction during contact/separation of internal soft fabrics. The structural/material designs of the WPF‐MTENG are systematically studied to optimize its performance, and its outputs under different conditions of rain, wind, and various body movements are comprehensively investigated. Its applicability is practically demonstrated in various objects and working situations to gather ambient energy. Lastly, a WPF‐MTENG‐based keypad as self‐powered human–system interfaces is demonstrated on a garment for remotely controlling a music‐player system. This multifunctional WPF‐MTENG, which is as flexible as clothes, not only presents a promising step toward democratic collections of alternative energy but also provides a new vision for wearable technologies. The first waterproof fabric‐based multifunctional triboelectric nanogenerator that can produce electricity from natural tiny impacts (rains and winds) and body movements is presented. It can not only serve as a flexible, adaptive, wearable, and universal energy collector but also act as a self‐powered fabric‐based interface. This multifunctional yet nimble nanogenerator can provide new vision for decentralized, remote, and wearable energy technologies.
AbstractList Developing nimble, shape‐adaptable, conformable, and widely implementable energy harvesters with the capability to scavenge multiple renewable and ambient energy sources is highly demanded for distributed, remote, and wearable energy uses to meet the needs of internet of things. Here, the first single waterproof and fabric‐based multifunctional triboelectric nanogenerator (WPF‐MTENG) is presented, which can produce electricity from both natural tiny impacts (rain and wind) and body movements, and can not only serve as a flexible, adaptive, wearable, and universal energy collector but also act as a self‐powered, active, fabric‐based sensor. The working principle comes from a conjunction of contact triboelectrification and electrostatic induction during contact/separation of internal soft fabrics. The structural/material designs of the WPF‐MTENG are systematically studied to optimize its performance, and its outputs under different conditions of rain, wind, and various body movements are comprehensively investigated. Its applicability is practically demonstrated in various objects and working situations to gather ambient energy. Lastly, a WPF‐MTENG‐based keypad as self‐powered human–system interfaces is demonstrated on a garment for remotely controlling a music‐player system. This multifunctional WPF‐MTENG, which is as flexible as clothes, not only presents a promising step toward democratic collections of alternative energy but also provides a new vision for wearable technologies.
Developing nimble, shape‐adaptable, conformable, and widely implementable energy harvesters with the capability to scavenge multiple renewable and ambient energy sources is highly demanded for distributed, remote, and wearable energy uses to meet the needs of internet of things. Here, the first single waterproof and fabric‐based multifunctional triboelectric nanogenerator (WPF‐MTENG) is presented, which can produce electricity from both natural tiny impacts (rain and wind) and body movements, and can not only serve as a flexible, adaptive, wearable, and universal energy collector but also act as a self‐powered, active, fabric‐based sensor. The working principle comes from a conjunction of contact triboelectrification and electrostatic induction during contact/separation of internal soft fabrics. The structural/material designs of the WPF‐MTENG are systematically studied to optimize its performance, and its outputs under different conditions of rain, wind, and various body movements are comprehensively investigated. Its applicability is practically demonstrated in various objects and working situations to gather ambient energy. Lastly, a WPF‐MTENG‐based keypad as self‐powered human–system interfaces is demonstrated on a garment for remotely controlling a music‐player system. This multifunctional WPF‐MTENG, which is as flexible as clothes, not only presents a promising step toward democratic collections of alternative energy but also provides a new vision for wearable technologies. The first waterproof fabric‐based multifunctional triboelectric nanogenerator that can produce electricity from natural tiny impacts (rains and winds) and body movements is presented. It can not only serve as a flexible, adaptive, wearable, and universal energy collector but also act as a self‐powered fabric‐based interface. This multifunctional yet nimble nanogenerator can provide new vision for decentralized, remote, and wearable energy technologies.
Abstract Developing nimble, shape‐adaptable, conformable, and widely implementable energy harvesters with the capability to scavenge multiple renewable and ambient energy sources is highly demanded for distributed, remote, and wearable energy uses to meet the needs of internet of things. Here, the first single waterproof and fabric‐based multifunctional triboelectric nanogenerator (WPF‐MTENG) is presented, which can produce electricity from both natural tiny impacts (rain and wind) and body movements, and can not only serve as a flexible, adaptive, wearable, and universal energy collector but also act as a self‐powered, active, fabric‐based sensor. The working principle comes from a conjunction of contact triboelectrification and electrostatic induction during contact/separation of internal soft fabrics. The structural/material designs of the WPF‐MTENG are systematically studied to optimize its performance, and its outputs under different conditions of rain, wind, and various body movements are comprehensively investigated. Its applicability is practically demonstrated in various objects and working situations to gather ambient energy. Lastly, a WPF‐MTENG‐based keypad as self‐powered human–system interfaces is demonstrated on a garment for remotely controlling a music‐player system. This multifunctional WPF‐MTENG, which is as flexible as clothes, not only presents a promising step toward democratic collections of alternative energy but also provides a new vision for wearable technologies.
Author Wu, Hsing‐Mei
Hsiao, Yung‐Chi
Lai, Ying‐Chih
Wang, Zhong Lin
AuthorAffiliation 3 School of Materials Science and Engineering Georgia Institute of Technology Atlanta GA 30332 USA
2 Innovation and Development Center of Sustainable Agriculture Research Center for Sustainable Energy and Nanotechnology National Chung Hsing University Taichung 40227 Taiwan
4 Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences National Center for Nanoscience and Technology (NCNST) Beijing 100083 P. R. China
1 Department of Materials Science and Engineering National Chung Hsing University Taichung 40227 Taiwan
AuthorAffiliation_xml – name: 4 Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences National Center for Nanoscience and Technology (NCNST) Beijing 100083 P. R. China
– name: 1 Department of Materials Science and Engineering National Chung Hsing University Taichung 40227 Taiwan
– name: 2 Innovation and Development Center of Sustainable Agriculture Research Center for Sustainable Energy and Nanotechnology National Chung Hsing University Taichung 40227 Taiwan
– name: 3 School of Materials Science and Engineering Georgia Institute of Technology Atlanta GA 30332 USA
Author_xml – sequence: 1
  givenname: Ying‐Chih
  surname: Lai
  fullname: Lai, Ying‐Chih
  email: yclai@nchu.edu.tw
  organization: National Chung Hsing University
– sequence: 2
  givenname: Yung‐Chi
  surname: Hsiao
  fullname: Hsiao, Yung‐Chi
  organization: National Chung Hsing University
– sequence: 3
  givenname: Hsing‐Mei
  surname: Wu
  fullname: Wu, Hsing‐Mei
  organization: National Chung Hsing University
– sequence: 4
  givenname: Zhong Lin
  orcidid: 0000-0002-5530-0380
  surname: Wang
  fullname: Wang, Zhong Lin
  email: zhong.wang@mse.gatech.edu
  organization: National Center for Nanoscience and Technology (NCNST)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30886807$$D View this record in MEDLINE/PubMed
BookMark eNqFks1uEzEQx1eoiH7QK0dkiQuHJvhrvd4LUiktQWoBkZYeLa93Nrhy7GDvpsqtj8CL8FI8CQ4pUeGCZMsjz2_-Hs_MfrHjg4eieEbwmGBMX-l2mcYUE5mXZI-KPUpqOWKS850H9m5xmNINxpiUrOJEPil2GZZSSFztFT-udQ9xEUPo0JluojU_776_0QladDG43naDN70NXjt0GW0TwIHpM4U-aB9m4CHqPkTU5X3l7RJi0s6t0ETHJaTe-hk6zcxshboY5uiztr6NYZGO0HW2jpD2LZoMc-3RRVg_k37f6ISm4LqcyadwCzHnMgWfQkxPi8eddgkO78-D4urs9PJkMjr_-O79yfH5yHBB8UiXQNuyMZ3pWKdpiZmsy6ZuWi6zmzUVaWqBTVXikoJhIMraEAMlr0TT8Nqwg-L1RncxNHNoDfg-aqcW0c51XKmgrfrb4-1XNQtLJTimHNdZ4OW9QAzfhlwJNbfJgHPaQxiSys3hhMmKrNEX_6A3YYi54JmigubeCiEyNd5QJoaUInTbZAhW62FQ62FQ22HIAc8ffmGL_2l9BtgGuLUOVv-RU8dvv0zrXLtfihfH9Q
CitedBy_id crossref_primary_10_1002_adfm_202208277
crossref_primary_10_1016_j_sna_2019_111738
crossref_primary_10_1016_j_apenergy_2021_118159
crossref_primary_10_1002_aenm_202002646
crossref_primary_10_1002_admt_202100203
crossref_primary_10_1039_D0EE03911J
crossref_primary_10_1016_j_isci_2020_101813
crossref_primary_10_3390_s23062991
crossref_primary_10_1016_j_rser_2021_110800
crossref_primary_10_1021_acsami_0c12709
crossref_primary_10_1016_j_nanoen_2022_107902
crossref_primary_10_1016_j_nanoen_2022_107346
crossref_primary_10_1016_j_nanoen_2022_107347
crossref_primary_10_1002_adfm_201904350
crossref_primary_10_1002_admt_202201137
crossref_primary_10_1016_j_nanoen_2021_106531
crossref_primary_10_1038_s43016_021_00449_9
crossref_primary_10_1002_aenm_202001669
crossref_primary_10_1002_cnma_202200034
crossref_primary_10_1002_adma_202005902
crossref_primary_10_1007_s40544_022_0740_z
crossref_primary_10_1016_j_nanoen_2020_104863
crossref_primary_10_1039_C9NA00790C
crossref_primary_10_1016_j_nanoen_2022_107219
crossref_primary_10_1016_j_compositesa_2021_106646
crossref_primary_10_1039_D1TA02518J
crossref_primary_10_1016_j_nanoen_2023_108842
crossref_primary_10_1016_j_ymssp_2022_109729
crossref_primary_10_1016_j_nanoen_2023_109018
crossref_primary_10_1016_j_apmt_2023_101789
crossref_primary_10_1016_j_cej_2024_150677
crossref_primary_10_1016_j_mattod_2023_02_030
crossref_primary_10_1039_D1NR02061G
crossref_primary_10_1039_D2TC01931K
crossref_primary_10_1016_j_nanoen_2021_106639
crossref_primary_10_3390_nanoenergyadv2010004
crossref_primary_10_1021_acs_chemrev_9b00821
crossref_primary_10_1016_j_nanoen_2021_106199
crossref_primary_10_1016_j_nanoen_2023_108734
crossref_primary_10_1002_advs_202302443
crossref_primary_10_1016_j_scib_2019_06_020
crossref_primary_10_1186_s11671_020_03401_1
crossref_primary_10_1016_j_nanoen_2022_107471
crossref_primary_10_1016_j_nanoen_2022_107592
crossref_primary_10_1016_j_nanoso_2023_101046
crossref_primary_10_1021_acsnano_1c06985
crossref_primary_10_1021_acsaelm_1c00165
crossref_primary_10_1016_j_nanoen_2019_104082
crossref_primary_10_1002_mame_202000510
crossref_primary_10_1002_aenm_202100411
crossref_primary_10_1002_inf2_12122
crossref_primary_10_1016_j_nanoen_2019_05_043
crossref_primary_10_1016_j_nanoen_2019_05_046
crossref_primary_10_1002_smll_202100804
crossref_primary_10_1016_j_egyr_2020_10_011
crossref_primary_10_1016_j_nanoen_2019_104012
crossref_primary_10_1016_j_apsusc_2023_157960
crossref_primary_10_3390_s22062102
crossref_primary_10_1021_acsaelm_3c00996
crossref_primary_10_1063_5_0045787
crossref_primary_10_1016_j_isci_2021_102300
crossref_primary_10_1021_acsanm_1c01455
crossref_primary_10_1002_adfm_201910026
crossref_primary_10_1088_1361_6528_ab793e
crossref_primary_10_1177_1558925020967352
crossref_primary_10_3390_en14185600
crossref_primary_10_3390_pr11092769
crossref_primary_10_1002_admt_202201294
crossref_primary_10_1016_j_jclepro_2022_133702
crossref_primary_10_1002_admt_202200403
crossref_primary_10_1080_21663831_2022_2026513
crossref_primary_10_1016_j_nanoen_2019_104259
crossref_primary_10_1002_advs_201900617
crossref_primary_10_3390_nano13010157
crossref_primary_10_1021_acsnano_1c07579
crossref_primary_10_3390_ma14144045
crossref_primary_10_1016_j_eng_2023_05_023
crossref_primary_10_1002_advs_202307382
crossref_primary_10_1063_5_0004724
crossref_primary_10_1080_14686996_2019_1650396
crossref_primary_10_1007_s00419_024_02623_4
crossref_primary_10_1021_acsaelm_0c01044
crossref_primary_10_1021_acsnano_2c12458
crossref_primary_10_1016_j_nanoen_2021_106501
crossref_primary_10_1088_1361_665X_ad508d
crossref_primary_10_1016_j_nanoen_2024_109555
crossref_primary_10_1016_j_nanoen_2021_106740
crossref_primary_10_1631_jzus_A2300231
crossref_primary_10_1002_admt_201900741
crossref_primary_10_1088_1361_665X_ac50f5
crossref_primary_10_1002_admt_202000454
crossref_primary_10_1016_j_seta_2020_100717
crossref_primary_10_1016_j_cej_2024_150871
crossref_primary_10_1016_j_mtchem_2023_101390
crossref_primary_10_1088_1361_665X_ace394
crossref_primary_10_1016_j_nanoen_2020_104809
crossref_primary_10_38088_jise_953600
crossref_primary_10_29026_oes_2023_230011
crossref_primary_10_1007_s40684_020_00212_8
crossref_primary_10_1021_acsami_3c18558
crossref_primary_10_1016_j_apsusc_2020_147027
crossref_primary_10_1039_C9NR09925E
crossref_primary_10_1088_1361_6501_ac65dd
crossref_primary_10_35848_1347_4065_ab747a
crossref_primary_10_1016_j_nanoen_2019_104167
crossref_primary_10_1016_j_nanoen_2021_106042
crossref_primary_10_1021_acsaelm_2c00630
crossref_primary_10_1016_j_nanoen_2024_109655
crossref_primary_10_1016_j_joule_2022_06_013
crossref_primary_10_1016_j_nanoen_2020_105696
crossref_primary_10_1016_j_nanoen_2021_106289
crossref_primary_10_1016_j_nanoen_2023_108389
crossref_primary_10_1002_adfm_202214317
crossref_primary_10_1002_adfm_202106527
crossref_primary_10_1021_acsami_1c03250
crossref_primary_10_1016_j_joule_2021_03_013
crossref_primary_10_1021_acsnano_1c04258
crossref_primary_10_1038_s42256_021_00439_3
crossref_primary_10_1002_adfm_202210637
crossref_primary_10_1021_acsami_2c01963
crossref_primary_10_1002_admt_202101139
crossref_primary_10_1063_5_0027634
crossref_primary_10_1016_j_nanoen_2020_104904
crossref_primary_10_1002_adfm_202004181
crossref_primary_10_35848_1882_0786_ad1f06
crossref_primary_10_1016_j_jsamd_2020_11_003
crossref_primary_10_1021_acs_jpcc_2c03170
crossref_primary_10_1002_adfm_202200260
crossref_primary_10_1021_acsaelm_1c00534
crossref_primary_10_1016_j_sna_2021_112723
crossref_primary_10_1002_advs_202000261
crossref_primary_10_1016_j_nanoen_2023_108313
crossref_primary_10_3390_polym12010189
crossref_primary_10_1002_adfm_202208783
crossref_primary_10_1021_acssuschemeng_0c07531
crossref_primary_10_1002_admt_202101485
crossref_primary_10_1016_j_cej_2022_138741
crossref_primary_10_1016_j_jiec_2023_04_028
crossref_primary_10_1016_j_mattod_2020_10_004
crossref_primary_10_1021_acsnano_2c06540
crossref_primary_10_1021_acsami_1c15481
crossref_primary_10_1557_s43579_024_00583_y
crossref_primary_10_1002_aelm_202300436
crossref_primary_10_1007_s42765_023_00334_z
crossref_primary_10_1016_j_nanoen_2020_105432
crossref_primary_10_1021_acsami_1c10366
crossref_primary_10_3390_s19153412
crossref_primary_10_3390_s22093304
crossref_primary_10_3390_mi12121462
crossref_primary_10_1002_aenm_201901149
crossref_primary_10_1109_JSEN_2023_3287291
crossref_primary_10_1016_j_nanoen_2020_105301
crossref_primary_10_1021_acsami_1c19174
crossref_primary_10_1002_inf2_12079
crossref_primary_10_1016_j_nanoen_2021_106592
crossref_primary_10_1002_admt_202200664
crossref_primary_10_1016_j_nanoen_2021_106476
crossref_primary_10_1016_j_nanoen_2019_04_089
crossref_primary_10_1016_j_colsurfa_2022_128897
crossref_primary_10_1002_admt_202400215
crossref_primary_10_1002_advs_202105084
crossref_primary_10_1002_advs_202004727
crossref_primary_10_1002_aesr_202000087
crossref_primary_10_1021_acsapm_1c01880
crossref_primary_10_3390_nano13050832
crossref_primary_10_1016_j_nanoen_2020_105656
crossref_primary_10_1016_j_ijbiomac_2024_129691
crossref_primary_10_3390_act12070298
crossref_primary_10_3390_nano9050773
crossref_primary_10_1016_j_mtnano_2023_100358
crossref_primary_10_1016_j_mattod_2020_11_012
crossref_primary_10_1016_j_polymer_2020_122486
crossref_primary_10_1002_advs_201901437
crossref_primary_10_1016_j_ccr_2024_215741
crossref_primary_10_1002_ente_202300831
crossref_primary_10_1016_j_cej_2024_153770
crossref_primary_10_1002_aelm_202100578
crossref_primary_10_1016_j_ymssp_2023_110649
crossref_primary_10_1016_j_nanoen_2020_105405
crossref_primary_10_1002_eem2_12654
crossref_primary_10_1016_j_mtener_2021_100772
crossref_primary_10_1002_advs_202000186
crossref_primary_10_1002_adfm_202207498
crossref_primary_10_1039_D1SE01582F
crossref_primary_10_1016_j_nanoen_2023_108752
crossref_primary_10_1016_j_watres_2022_119242
crossref_primary_10_3390_mi14010031
crossref_primary_10_3390_nanoenergyadv3040016
crossref_primary_10_1002_smll_202201331
crossref_primary_10_1089_soro_2019_0151
crossref_primary_10_1002_adsr_202200058
crossref_primary_10_1007_s40820_021_00644_0
crossref_primary_10_1016_j_nanoen_2021_105811
crossref_primary_10_1021_acsami_1c02815
crossref_primary_10_1021_acs_langmuir_3c03126
crossref_primary_10_35848_1347_4065_acd507
crossref_primary_10_1002_advs_202301567
crossref_primary_10_1016_j_nanoen_2021_106461
crossref_primary_10_1039_D2PY00252C
crossref_primary_10_1088_1755_1315_850_1_012015
crossref_primary_10_1002_admt_202201105
crossref_primary_10_1038_s41598_024_60823_y
crossref_primary_10_1088_1361_665X_abaf08
crossref_primary_10_3390_nanoenergyadv2040018
crossref_primary_10_1002_aenm_202102991
crossref_primary_10_1007_s40820_021_00695_3
crossref_primary_10_1002_admt_202300672
crossref_primary_10_1021_acsanm_3c01804
crossref_primary_10_3390_s21248422
crossref_primary_10_1126_scirobotics_abm0608
crossref_primary_10_1016_j_sna_2020_112147
crossref_primary_10_1016_j_nanoen_2022_108134
crossref_primary_10_1002_adma_202004832
crossref_primary_10_1063_5_0139951
crossref_primary_10_1016_j_seta_2023_103122
crossref_primary_10_1016_j_ijmecsci_2022_108074
crossref_primary_10_1016_j_measurement_2022_112010
crossref_primary_10_1038_s41467_021_27066_1
crossref_primary_10_1039_D2DT03477H
crossref_primary_10_1088_2515_7655_ad307c
crossref_primary_10_1016_j_apenergy_2021_117394
crossref_primary_10_1016_j_nanoen_2023_108789
crossref_primary_10_1021_acsami_1c06632
crossref_primary_10_1016_j_nanoen_2020_105178
crossref_primary_10_1016_j_nanoen_2022_107035
Cites_doi 10.1039/c3ee42571a
10.1002/adma.201706790
10.1021/nn4043157
10.1021/acsnano.7b05317
10.1002/adfm.201704112
10.1021/nn501732z
10.1021/acsnano.8b00416
10.1002/adma.201707271
10.1002/adma.201504462
10.1016/j.energy.2016.12.097
10.1016/S1364-0321(02)00006-0
10.1002/adfm.201604462
10.1002/aenm.201601048
10.1002/adma.201500009
10.1016/j.nanoen.2014.07.024
10.1016/j.rser.2005.08.004
10.1002/adma.201603527
10.1002/aenm.201702649
10.1002/adfm.201604378
10.1038/542159a
10.1016/j.rser.2013.12.043
10.1126/science.aam8771
10.1016/j.mattod.2016.12.001
10.1039/C5EE01532D
10.1021/nn404614z
10.1016/S1364-0321(00)00004-6
10.1038/ncomms9975
10.1038/nature06601
10.1038/nenergy.2016.138
10.1002/aenm.201701243
10.1002/aenm.201801114
10.1126/science.1124005
10.1021/acsnano.5b07157
10.1016/j.nanoen.2013.07.012
10.1002/adma.201403944
10.1126/sciadv.1600097
10.1016/j.nanoen.2014.11.050
10.1002/adma.201702648
10.1002/adma.201504403
10.1002/adma.201400373
10.1016/j.jcis.2016.05.029
10.5923/j.ajps.20120203.04
10.1021/acsnano.6b01569
10.1002/adfm.201503606
10.1002/adma.201205280
ContentType Journal Article
Copyright 2019 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
NPM
AAYXX
CITATION
3V.
7XB
88I
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
M2O
M2P
MBDVC
PIMPY
PQEST
PQQKQ
PQUKI
Q9U
7X8
5PM
DOI 10.1002/advs.201801883
DatabaseName Wiley Online Library Open Access
Wiley Online Library Free Content
PubMed
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Student
Research Library Prep
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest research library
Science Journals (ProQuest Database)
Research Library (Corporate)
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
Publicly Available Content Database
Research Library Prep
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

PubMed

CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Music
EISSN 2198-3844
EndPage n/a
ExternalDocumentID 10_1002_advs_201801883
30886807
ADVS920
Genre article
Journal Article
GrantInformation_xml – fundername: Hightower Chair Foundation
– fundername: National Key R&D Project from Minister of Science and Technology
  funderid: 2016YFA0202704; 201711114786.X
– fundername: “Thousands Talents” program
– fundername: Taiwan Ministry of Science and Technology
  funderid: 106‐2112‐M‐005‐010; 107‐2218‐E‐005‐021
– fundername: National Key R&D Project from Minister of Science and Technology
  grantid: 2016YFA0202704; 201711114786.X
– fundername: Taiwan Ministry of Science and Technology
  grantid: 106‐2112‐M‐005‐010; 107‐2218‐E‐005‐021
GroupedDBID 0R~
1OC
24P
53G
5VS
88I
8G5
AAFWJ
AAHHS
AAZKR
ABDBF
ABUWG
ACCFJ
ACGFS
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AFBPY
AFKRA
AFPKN
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
AZQEC
BCNDV
BENPR
BPHCQ
BRXPI
CCPQU
DWQXO
EBS
EJD
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HYE
KQ8
M2O
M2P
O9-
OK1
PIMPY
PQQKQ
PROAC
ROL
RPM
WIN
NPM
AAYXX
CITATION
IAO
ITC
3V.
7XB
8FK
MBDVC
PQEST
PQUKI
Q9U
7X8
5PM
ID FETCH-LOGICAL-c4620-a5e2d5bcfcf3fa2503895b9bd486203b71b960c75052ec3e659c1ce5476bb49c3
IEDL.DBID RPM
ISSN 2198-3844
IngestDate Tue Sep 17 21:18:41 EDT 2024
Sat Oct 05 06:02:23 EDT 2024
Thu Oct 10 17:19:14 EDT 2024
Thu Sep 26 16:47:31 EDT 2024
Thu May 23 23:51:18 EDT 2024
Sat Aug 24 00:47:09 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords triboelectric nanogenerators
wind energy
smart clothes
wearable energy
raindrop energy
Language English
License Attribution
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4620-a5e2d5bcfcf3fa2503895b9bd486203b71b960c75052ec3e659c1ce5476bb49c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5530-0380
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6402409/
PMID 30886807
PQID 2262801666
PQPubID 4365299
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6402409
proquest_miscellaneous_2194138719
proquest_journals_2262801666
crossref_primary_10_1002_advs_201801883
pubmed_primary_30886807
wiley_primary_10_1002_advs_201801883_ADVS920
PublicationCentury 2000
PublicationDate March 6, 2019
PublicationDateYYYYMMDD 2019-03-06
PublicationDate_xml – month: 03
  year: 2019
  text: March 6, 2019
  day: 06
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: Hoboken
PublicationTitle Advanced science
PublicationTitleAlternate Adv Sci (Weinh)
PublicationYear 2019
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
References 2017; 119
2017; 7
2017; 20
2015; 14
2018; 28
2015; 6
2013; 25
2013; 2
2000; 4
2017; 27
2002; 6
2016; 10
2014; 26
2017; 29
2013; 7
2015; 8
2007; 11
2013; 6
2017; 357
2006; 312
2018; 6
2016; 6
2018; 8
2012; 2
2015; 27
2016; 1
2016; 2
2017; 11
2018; 30
2016; 477
2018; 12
2014; 9
2014; 8
2016; 28
2017; 542
2008; 451
2016; 26
2014; 31
e_1_2_4_40_1
e_1_2_4_41_1
e_1_2_4_21_1
e_1_2_4_44_1
e_1_2_4_20_1
e_1_2_4_45_1
e_1_2_4_23_1
e_1_2_4_42_1
e_1_2_4_22_1
e_1_2_4_43_1
e_1_2_4_25_1
e_1_2_4_24_1
e_1_2_4_27_1
e_1_2_4_26_1
e_1_2_4_29_1
e_1_2_4_28_1
e_1_2_4_1_1
e_1_2_4_3_1
e_1_2_4_2_1
e_1_2_4_5_1
e_1_2_4_4_1
e_1_2_4_7_1
e_1_2_4_6_1
e_1_2_4_9_1
e_1_2_4_8_1
e_1_2_4_30_1
e_1_2_4_32_1
e_1_2_4_10_1
e_1_2_4_31_1
e_1_2_4_11_1
e_1_2_4_34_1
e_1_2_4_12_1
e_1_2_4_33_1
e_1_2_4_13_1
e_1_2_4_36_1
e_1_2_4_14_1
e_1_2_4_35_1
e_1_2_4_15_1
e_1_2_4_16_1
e_1_2_4_38_1
e_1_2_4_37_1
e_1_2_4_18_1
e_1_2_4_17_1
e_1_2_4_39_1
e_1_2_4_19_1
References_xml – volume: 1
  start-page: 16138
  year: 2016
  publication-title: Nat. Energy
– volume: 27
  start-page: 240
  year: 2015
  publication-title: Adv. Mater.
– volume: 10
  start-page: 1780
  year: 2016
  publication-title: ACS Nano
– volume: 28
  start-page: 10024
  year: 2016
  publication-title: Adv. Mater.
– volume: 30
  start-page: 1706790
  year: 2018
  publication-title: Adv. Mater.
– volume: 6
  start-page: 8975
  year: 2015
  publication-title: Nat. Commun.
– volume: 30
  start-page: 1707271
  year: 2018
  publication-title: Adv. Mater.
– volume: 27
  start-page: 1604462
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 27
  start-page: 1604378
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 28
  start-page: 1704112
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 6
  start-page: 537
  year: 2002
  publication-title: Renewable Sustainable Energy Rev.
– volume: 11
  start-page: 1117
  year: 2007
  publication-title: Renewable Sustainable Energy Rev.
– volume: 2
  start-page: 39
  year: 2012
  publication-title: Am. J. Polym. Sci.
– volume: 26
  start-page: 4690
  year: 2014
  publication-title: Adv. Mater.
– volume: 25
  start-page: 2733
  year: 2013
  publication-title: Adv. Mater.
– volume: 29
  start-page: 1702648
  year: 2017
  publication-title: Adv. Mater.
– volume: 119
  start-page: 472
  year: 2017
  publication-title: Energy
– volume: 6
  start-page: 1801114
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 2
  start-page: 604
  year: 2013
  publication-title: Nano Energy
– volume: 7
  start-page: 9461
  year: 2013
  publication-title: ACS Nano
– volume: 2
  start-page: e1600097
  year: 2016
  publication-title: Sci. Adv.
– volume: 20
  start-page: 74
  year: 2017
  publication-title: Mater. Today
– volume: 4
  start-page: 315
  year: 2000
  publication-title: Renewable Sustainable Energy Rev.
– volume: 7
  start-page: 1701243
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 8
  start-page: 2250
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 10
  start-page: 4797
  year: 2016
  publication-title: ACS Nano
– volume: 12
  start-page: 2893
  year: 2018
  publication-title: ACS Nano
– volume: 6
  start-page: 3576
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 14
  start-page: 126
  year: 2015
  publication-title: Nano Energy
– volume: 8
  start-page: 1702649
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 7
  start-page: 9533
  year: 2013
  publication-title: ACS Nano
– volume: 9
  start-page: 291
  year: 2014
  publication-title: Nano Energy
– volume: 6
  start-page: 1601048
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 28
  start-page: 98
  year: 2016
  publication-title: Adv. Mater.
– volume: 357
  start-page: 773
  year: 2017
  publication-title: Science
– volume: 11
  start-page: 9490
  year: 2017
  publication-title: ACS Nano
– volume: 27
  start-page: 2433
  year: 2015
  publication-title: Adv. Mater.
– volume: 542
  start-page: 159
  year: 2017
  publication-title: Nature
– volume: 26
  start-page: 1286
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 477
  start-page: 176
  year: 2016
  publication-title: J. Colloid Interface Sci.
– volume: 451
  start-page: 809
  year: 2008
  publication-title: Nature
– volume: 312
  start-page: 242
  year: 2006
  publication-title: Science
– volume: 31
  start-page: 746
  year: 2014
  publication-title: Renewable Sustainable Energy Rev.
– volume: 28
  start-page: 1650
  year: 2016
  publication-title: Adv. Mater.
– volume: 8
  start-page: 6273
  year: 2014
  publication-title: ACS Nano
– ident: e_1_2_4_39_1
  doi: 10.1039/c3ee42571a
– ident: e_1_2_4_40_1
  doi: 10.1002/adma.201706790
– ident: e_1_2_4_17_1
  doi: 10.1021/nn4043157
– ident: e_1_2_4_34_1
  doi: 10.1021/acsnano.7b05317
– ident: e_1_2_4_45_1
  doi: 10.1002/adfm.201704112
– ident: e_1_2_4_25_1
  doi: 10.1021/nn501732z
– ident: e_1_2_4_15_1
  doi: 10.1021/acsnano.8b00416
– ident: e_1_2_4_4_1
  doi: 10.1002/adma.201707271
– ident: e_1_2_4_43_1
  doi: 10.1002/adma.201504462
– ident: e_1_2_4_5_1
  doi: 10.1016/j.energy.2016.12.097
– ident: e_1_2_4_19_1
  doi: 10.1016/S1364-0321(02)00006-0
– ident: e_1_2_4_26_1
  doi: 10.1002/adfm.201604462
– ident: e_1_2_4_13_1
  doi: 10.1002/aenm.201601048
– ident: e_1_2_4_44_1
  doi: 10.1002/adma.201500009
– ident: e_1_2_4_16_1
  doi: 10.1016/j.nanoen.2014.07.024
– ident: e_1_2_4_21_1
  doi: 10.1016/j.rser.2005.08.004
– ident: e_1_2_4_29_1
  doi: 10.1002/adma.201603527
– ident: e_1_2_4_27_1
  doi: 10.1002/aenm.201702649
– ident: e_1_2_4_33_1
  doi: 10.1002/adfm.201604378
– ident: e_1_2_4_1_1
  doi: 10.1038/542159a
– ident: e_1_2_4_20_1
  doi: 10.1016/j.rser.2013.12.043
– ident: e_1_2_4_22_1
  doi: 10.1126/science.aam8771
– ident: e_1_2_4_38_1
  doi: 10.1016/j.mattod.2016.12.001
– ident: e_1_2_4_6_1
  doi: 10.1039/C5EE01532D
– ident: e_1_2_4_7_1
  doi: 10.1021/nn404614z
– ident: e_1_2_4_18_1
  doi: 10.1016/S1364-0321(00)00004-6
– ident: e_1_2_4_28_1
  doi: 10.1038/ncomms9975
– ident: e_1_2_4_3_1
  doi: 10.1038/nature06601
– ident: e_1_2_4_12_1
  doi: 10.1038/nenergy.2016.138
– ident: e_1_2_4_36_1
  doi: 10.1002/aenm.201701243
– ident: e_1_2_4_31_1
  doi: 10.1002/aenm.201801114
– ident: e_1_2_4_2_1
  doi: 10.1126/science.1124005
– ident: e_1_2_4_9_1
  doi: 10.1021/acsnano.5b07157
– ident: e_1_2_4_37_1
  doi: 10.1016/j.nanoen.2013.07.012
– ident: e_1_2_4_11_1
  doi: 10.1002/adma.201403944
– ident: e_1_2_4_14_1
  doi: 10.1126/sciadv.1600097
– ident: e_1_2_4_8_1
  doi: 10.1016/j.nanoen.2014.11.050
– ident: e_1_2_4_32_1
  doi: 10.1002/adma.201702648
– ident: e_1_2_4_35_1
  doi: 10.1002/adma.201504403
– ident: e_1_2_4_10_1
  doi: 10.1002/adma.201400373
– ident: e_1_2_4_42_1
  doi: 10.1016/j.jcis.2016.05.029
– ident: e_1_2_4_41_1
  doi: 10.5923/j.ajps.20120203.04
– ident: e_1_2_4_30_1
  doi: 10.1021/acsnano.6b01569
– ident: e_1_2_4_24_1
  doi: 10.1002/adfm.201503606
– ident: e_1_2_4_23_1
  doi: 10.1002/adma.201205280
SSID ssj0001537418
Score 2.5970175
Snippet Developing nimble, shape‐adaptable, conformable, and widely implementable energy harvesters with the capability to scavenge multiple renewable and ambient...
Developing nimble, shape-adaptable, conformable, and widely implementable energy harvesters with the capability to scavenge multiple renewable and ambient...
Abstract Developing nimble, shape‐adaptable, conformable, and widely implementable energy harvesters with the capability to scavenge multiple renewable and...
SourceID pubmedcentral
proquest
crossref
pubmed
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1801883
SubjectTerms Batteries
Communication
Communications
Energy resources
Flexibility
Music
Power
Precipitation
Rain
raindrop energy
Sensors
smart clothes
Solar energy
Textiles
triboelectric nanogenerators
wearable energy
Wind
wind energy
SummonAdditionalLinks – databaseName: AUTh Library subscriptions: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3datswFBZbc7ObsXZ_XruiwWAbxNSyJVm-Gm1JKIOWsqy0d0aS5a4Q7CxuC7vbI-xF9lJ7kp0jK-5CYbsLkaPIHJ0_naPvI-StVoqrGhSQaSZizlQSayWqWArEw-JM9xdpj0_k0Rn_dCEuwoFbF9oqVzbRG-qqtXhGvgdhQgrWFKLtj4tvMbJGYXU1UGg8JKOUcSzTjg4mJ6ef705ZRIbwLCu0xiTd09UtonTDophS2bo3uhdi3u-U_DuC9S5o-oQ8DrEj3e-FvUkeuGaLjDxT8xbZDFra0fcBSvrDU_LrXPuewrat6VQbsHm_f_w8AMdVUX_zFr1afxhIEUKk7UlxriwFo9te-mkgJ6cQ2NLQwaHn8-8UCYUQnaO5pBN_d5DiLRWKtaJq2S66MT2HT2Oqm4r6KgE99mRBnf9Gd3Tm5jWs5BQp2mAtM8il22X3jJxNJ18Oj-JA0BBbLiHt1MKllTC2tnVW69SD9QlTmIpDnpRkJmcGEiSbI1mes5mTorDMOsFzaQwvbPacbDRt414SyqTimaotZDA1zM2Mla4wOZeWCcedjMi7laDKRY_DUfaIy2mJIi0HkUZkZyXHMugjjA67JyJvhmHQJCyP6Ma1N_AMK8CjQwJZRORFL_bhrzIwxlIleUTytQ0xPIAo3esjzdVXj9YtOcLIwZxjv3X-s_oSopFZkSav_v0W2-QR_KTwzXByh2xcL2_ca4iOrs1uUIE_3TETSA
  priority: 102
  providerName: ProQuest
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NatwwEBZteumlNP11m5YpFNrCmljWj-VjW7KEQkpgG5KbkWQ5CSx2WCeF3voIfZG-VJ-kM7LXyZJD6c1IYiwYjWY-SfMNY2-tMdI0aIDccpVKbrLUGlWnWhEfluR2SKQ9-Kr3j-SXE3VyI4t_4IeYDtzIMuJ-TQZuXb97TRpq6-9Et43SuTHiLruHsY2hdZ3Lw-tTFiWInoUqzCG6ToWRcs3cmOW7myI2PdOtcPP2q8mb0Wx0R_OH7MEYR8LHQfHb7E5oH7Ht0VJ7eD_SSX94zH4f2_iusOsamFuH-96fn78-ofOqIWbfkmcbDgSBaES6oTDOuQfceLvTKAZxOWBwC-MrDrtc_gAqKkQMHe0p7MX8QaBMFaD7onrVXfQzOMavGdi2hnhTAAexYFAfW2wPi7BscCaHVKYN57JAPN2t-ifsaL737fN-OhZpSL3UCD2tCnmtnG98IxqbR8I-5UpXS8RKmXAFdwiSfEEF84IXQavScx-ULLRzsvTiKdtquzY8Z8C1kcI0HlFMg7K58zqUrpDacxVk0Al7t1ZQdTFwcVQD63JekSqrSZUJ21nrrxptEntznWM34rWEvZm60ZroisS2obvCMbxEr44gskzYs0Hd068EbsjaZEXCio2FMA0gpu7Nnvb8LDJ2a0lUcihzFpfMP2ZfYUSyKPPsxf8Nf8nuY1sZH8jpHbZ1uboKrzBiunSvo1H8Bf-lFDQ
  priority: 102
  providerName: Wiley-Blackwell
Title Waterproof Fabric‐Based Multifunctional Triboelectric Nanogenerator for Universally Harvesting Energy from Raindrops, Wind, and Human Motions and as Self‐Powered Sensors
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.201801883
https://www.ncbi.nlm.nih.gov/pubmed/30886807
https://www.proquest.com/docview/2262801666
https://search.proquest.com/docview/2194138719
https://pubmed.ncbi.nlm.nih.gov/PMC6402409
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fa9swED-a7mUvY-3-eeuCBoNtEDeRLcnyY1sSyiAlLCvtm5FkuQukdojbwd72EfZF9qX2SXaS7ZDSh0LfjGXkg7vz3c-6-x3ARyUlkwU6IFWUh4zKUagkz0PBHR8Wo6pppJ2eidNz9vWSX-4A73phfNG-0YvDcnl9WC5--NrK1bUZdnViw9n0RDDHzJUOe9BL4ngLojetwbFjZOkIGkfRUOU_HTE3ykGldINzYnQtId0E2e1YdC_BvF8nuZ2_-gA0eQ7P2syRHDUS7sGOLfdhr_XNmnxuCaS_vIC_F8pXElZVQSZK45fu3-8_xxiucuL7bV0sa34BEkccUjWjcBaG4Ke2uvLbIBInmM6Stm5DLZe_iBsj5Dg5yisy9h2DxPWmEHdClK-rVT0gF3g1IKrMiT8bIFM_Iqj2d1RN5nZZoCQzN5gNZZkjgq7W9Us4n4y_n5yG7ViG0DCBYFNxG-Vcm8IUcaEiT9HHdapzhuhoFOuEaoRFJnEj8qyJreCpocZylgitWWriV7BbVqV9A4QKyWJZGMQtBe5NtRE21QkThnLLrAjgU6egbNWwb2QNz3KUOa1mG60GcNDpL2u9EFcjEeEyIrQAPmyW0X_coYgqbXWLz9AU4zjCxjSA1426N6_q7CSA5I4hbB5w3Nx3V9BkPUd3a6IBDLzJPCB9hjnIPI1Gbx_9onfwFHdLfXWcOIDdm_WtfY_p0o3uQy9isz48OR6fzb71_U-HvneZ_5TmHCo
link.rule.ids 230,315,733,786,790,870,891,11589,21416,27955,27956,33777,33778,43838,46085,46509,50847,50956,53825,53827,74657
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3dbtMwFD6C9gJu0DZ-FjbASEiA1GhxYjvOFWKoVYG1muim7S6yHWdMqpLSbEjc8Qi8CC_Fk3DspIVqEtxFceI4Oj5_9vH3AbxQUjJZogJSRXnIqIxCJXkRCu7wsBhV7UHayVSMT9mHc37eLbg1XVnlyiZ6Q13Uxq2RH2CYEKM1xWj7zeJL6Fij3O5qR6FxG_oOclP2oH84nB5_-rPKwhMHz7JCa4ziA1V8dSjdOCgqZbLpjW6EmDcrJf-OYL0LGm3BvS52JG9bYW_DLVvtQN8zNe_AdqelDXnVQUm_vg8_z5SvKazrkoyURpv36_uPQ3RcBfEnb51XaxcDiYMQqVtSnEtD0OjWF74bzMkJBrakq-BQ8_k34giFHDpHdUGG_uwgcadUiNsrKpb1ohmQM7waEFUVxO8SkIknC2r8HdWQmZ2XOJJjR9GGY5lhLl0vmwdwOhqevBuHHUFDaJjAtFNxGxdcm9KUSaliD9bHdaYLhnlSlOiUakyQTOrI8qxJrOCZocZylgqtWWaSh9Cr6sruAqFCogRLgxlMiX1TbYTNdMqEodwyKwJ4uRJUvmhxOPIWcTnOnUjztUgD2F_JMe_0EVvXsyeA5-tm1CS3PaIqW1_jMzRDj44JZBbAo1bs608laIyFjNIA0o0JsX7AoXRvtlSXnz1at2AORg77HPip85_R5xiNzLI4evzvv3gGd8Ynk6P86P304x7cxdczXxgn9qF3tby2TzBSutJPO3X4DQj1Fj4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3dbtMwFLZglRA3iI2_sAFGQgKkRo0T23GuEINW42dVRZm2u8h2nDGpirtmQ-KOR-BFeCmehGPHDVST4C6KE8fR8fmzj78PoWdSCCpqUEAiCYspEUksBatizhweFiWyO0h7OOUHR_T9CTsJ9U9tKKtc20RvqCur3Rr5CMKEFKwpRNujOpRFzN5OXi3PY8cg5XZaA53GdTTIKWeQiA32x9PZpz8rLixzUC1r5MYkHcnqq0PshgESIbJNz3Ql3LxaNfl3NOvd0eQ2uhXiSPy6E_w2umaaHTTwrM07aDtobItfBFjpl3fQz2Pp6wutrfFEKrB_v77_2AcnVmF_Ctd5uG5hEDs4EdsR5JxpDAbYnvpuID_HEOTiUM0hF4tv2JELOaSO5hSP_TlC7E6sYLdvVK3ssh3iY7gaYtlU2O8Y4ENPHNT6O7LFc7OoYSQzR9cGY5lDXm1X7V10NBl_fnMQB7KGWFMOKahkJq2Y0rWus1qmHriPqUJVFHKmJFM5UZAs6dwR5xmdGc4KTbRhNOdK0UJn99BWYxvzAGHCBc1ErSGbqaFvojQ3hQKhasIMNTxCz9eCKpcdJkfZoS-npRNp2Ys0QntrOZZBN6G1n0kReto3g1a5rRLZGHsJz5ACvDskk0WE7ndi7z-VgWHmIskjlG9MiP4Bh9i92dKcffHI3Zw6SDnoc-inzn9GX0JkMi_S5OG__-IJugGaUH58N_2wi27C24WvkeN7aOtidWkeQdB0oR4HbfgN2HIacg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Waterproof+Fabric%E2%80%90Based+Multifunctional+Triboelectric+Nanogenerator+for+Universally+Harvesting+Energy+from+Raindrops%2C+Wind%2C+and+Human+Motions+and+as+Self%E2%80%90Powered+Sensors&rft.jtitle=Advanced+science&rft.au=Ying%E2%80%90Chih+Lai&rft.au=Yung%E2%80%90Chi+Hsiao&rft.au=Hsing%E2%80%90Mei+Wu&rft.au=Zhong+Lin+Wang&rft.date=2019-03-06&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2198-3844&rft.volume=6&rft.issue=5&rft_id=info:doi/10.1002%2Fadvs.201801883&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon