Neutrophil as a Carrier for Cancer Nanotherapeutics: A Comparative Study of Liposome, PLGA, and Magnetic Nanoparticles Delivery to Tumors
Insufficient drug accumulation in tumors is still a major concern for using cancer nanotherapeutics. Here, the neutrophil-based delivery of three nanoparticle types—liposomes, PLGA, and magnetite nanoparticles—was assessed both in vitro and in vivo. Confocal microscopy and a flow cytometry analysis...
Saved in:
Published in | Pharmaceuticals (Basel, Switzerland) Vol. 16; no. 11; p. 1564 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.11.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Insufficient drug accumulation in tumors is still a major concern for using cancer nanotherapeutics. Here, the neutrophil-based delivery of three nanoparticle types—liposomes, PLGA, and magnetite nanoparticles—was assessed both in vitro and in vivo. Confocal microscopy and a flow cytometry analysis demonstrated that all the studied nanoparticles interacted with neutrophils from the peripheral blood of mice with 4T1 mammary adenocarcinoma without a significant impact on neutrophil viability or activation state. Intravital microscopy of the tumor microenvironment showed that the neutrophils did not engulf the liposomes after intravenous administration, but facilitated nanoparticle extravasation in tumors through micro- and macroleakages. PLGA accumulated along the vessel walls in the form of local clusters. Later, PLGA nanoparticle-loaded neutrophils were found to cross the vascular barrier and migrate towards the tumor core. The magnetite nanoparticles extravasated in tumors both via spontaneous macroleakages and on neutrophils. Overall, the specific type of nanoparticles largely determined their behavior in blood vessels and their neutrophil-mediated delivery to the tumor. Since neutrophils are the first to migrate to the site of inflammation, they can increase nanodrug delivery effectiveness for nanomedicine application. |
---|---|
AbstractList | Insufficient drug accumulation in tumors is still a major concern for using cancer nanotherapeutics. Here, the neutrophil-based delivery of three nanoparticle types—liposomes, PLGA, and magnetite nanoparticles—was assessed both in vitro and in vivo. Confocal microscopy and a flow cytometry analysis demonstrated that all the studied nanoparticles interacted with neutrophils from the peripheral blood of mice with 4T1 mammary adenocarcinoma without a significant impact on neutrophil viability or activation state. Intravital microscopy of the tumor microenvironment showed that the neutrophils did not engulf the liposomes after intravenous administration, but facilitated nanoparticle extravasation in tumors through micro- and macroleakages. PLGA accumulated along the vessel walls in the form of local clusters. Later, PLGA nanoparticle-loaded neutrophils were found to cross the vascular barrier and migrate towards the tumor core. The magnetite nanoparticles extravasated in tumors both via spontaneous macroleakages and on neutrophils. Overall, the specific type of nanoparticles largely determined their behavior in blood vessels and their neutrophil-mediated delivery to the tumor. Since neutrophils are the first to migrate to the site of inflammation, they can increase nanodrug delivery effectiveness for nanomedicine application. Insufficient drug accumulation in tumors is still a major concern for using cancer nanotherapeutics. Here, the neutrophil-based delivery of three nanoparticle types-liposomes, PLGA, and magnetite nanoparticles-was assessed both in vitro and in vivo. Confocal microscopy and a flow cytometry analysis demonstrated that all the studied nanoparticles interacted with neutrophils from the peripheral blood of mice with 4T1 mammary adenocarcinoma without a significant impact on neutrophil viability or activation state. Intravital microscopy of the tumor microenvironment showed that the neutrophils did not engulf the liposomes after intravenous administration, but facilitated nanoparticle extravasation in tumors through micro- and macroleakages. PLGA accumulated along the vessel walls in the form of local clusters. Later, PLGA nanoparticle-loaded neutrophils were found to cross the vascular barrier and migrate towards the tumor core. The magnetite nanoparticles extravasated in tumors both via spontaneous macroleakages and on neutrophils. Overall, the specific type of nanoparticles largely determined their behavior in blood vessels and their neutrophil-mediated delivery to the tumor. Since neutrophils are the first to migrate to the site of inflammation, they can increase nanodrug delivery effectiveness for nanomedicine application.Insufficient drug accumulation in tumors is still a major concern for using cancer nanotherapeutics. Here, the neutrophil-based delivery of three nanoparticle types-liposomes, PLGA, and magnetite nanoparticles-was assessed both in vitro and in vivo. Confocal microscopy and a flow cytometry analysis demonstrated that all the studied nanoparticles interacted with neutrophils from the peripheral blood of mice with 4T1 mammary adenocarcinoma without a significant impact on neutrophil viability or activation state. Intravital microscopy of the tumor microenvironment showed that the neutrophils did not engulf the liposomes after intravenous administration, but facilitated nanoparticle extravasation in tumors through micro- and macroleakages. PLGA accumulated along the vessel walls in the form of local clusters. Later, PLGA nanoparticle-loaded neutrophils were found to cross the vascular barrier and migrate towards the tumor core. The magnetite nanoparticles extravasated in tumors both via spontaneous macroleakages and on neutrophils. Overall, the specific type of nanoparticles largely determined their behavior in blood vessels and their neutrophil-mediated delivery to the tumor. Since neutrophils are the first to migrate to the site of inflammation, they can increase nanodrug delivery effectiveness for nanomedicine application. |
Audience | Academic |
Author | Vishnevskiy, Daniil A. Valikhov, Marat P. Abakumov, Maxim A. Chernysheva, Anastasia A. Lazareva, Polina A. Semkina, Alevtina S. Malinovskaya, Julia A. Garanina, Anastasiia S. Naumenko, Victor A. |
Author_xml | – sequence: 1 givenname: Anastasiia S. orcidid: 0000-0003-3442-9553 surname: Garanina fullname: Garanina, Anastasiia S. – sequence: 2 givenname: Daniil A. orcidid: 0000-0002-5778-215X surname: Vishnevskiy fullname: Vishnevskiy, Daniil A. – sequence: 3 givenname: Anastasia A. orcidid: 0000-0002-9793-0129 surname: Chernysheva fullname: Chernysheva, Anastasia A. – sequence: 4 givenname: Marat P. surname: Valikhov fullname: Valikhov, Marat P. – sequence: 5 givenname: Julia A. surname: Malinovskaya fullname: Malinovskaya, Julia A. – sequence: 6 givenname: Polina A. surname: Lazareva fullname: Lazareva, Polina A. – sequence: 7 givenname: Alevtina S. surname: Semkina fullname: Semkina, Alevtina S. – sequence: 8 givenname: Maxim A. orcidid: 0000-0003-2622-9201 surname: Abakumov fullname: Abakumov, Maxim A. – sequence: 9 givenname: Victor A. surname: Naumenko fullname: Naumenko, Victor A. |
BookMark | eNptksFuEzEQhleoSLSFC09giQtCTbF3vWsvtyiFUikUJMrZcuxx4mjXXuxdpDwCb80kqShUtQ8ejb7_H49mzoqTEAMUxWtGL6uqpe-HDWsYY3XDnxWnjJd8JksuTv6JXxRnOW8prQXj7LT4fQvTmOKw8R3RmWiy0Cl5SMTFhHEwGN7qEMcNJD0g603-QOZkEftBJz36X0C-j5PdkejI0g8xxx4uyLfl9fyC6GDJF70OgKqDC0ow7CCTK-hQmnZkjORu6mPKL4vnTncZXt2_58WPTx_vFp9ny6_XN4v5cmZ4w8aZW620w9OYlsmSlXUrnQHLV9w4AaJilDdNZSxjBlwpQXCruWClBWOAU1OdFzdHXxv1Vg3J9zrtVNReHRIxrdX9L5XZ12kNc7auOIVSUstqUzMHVJayXaHX26PXkOLPCfKoep8NdJ0OEKesEKokr-q6RvTNI3QbpxSw0wNFZVNW4oFaa6zvg4tj0mZvquZC8AoHKCRSl09QeC303uBGOI_5_wTvjgKTYs4J3N--GVX7xVEPi4MwfQQbP-KkY8AqvntK8gccHMa9 |
CitedBy_id | crossref_primary_10_1016_j_ijpharm_2024_124753 crossref_primary_10_1016_j_lfs_2024_122899 crossref_primary_10_1021_acsami_4c05691 crossref_primary_10_3390_ijms25094981 crossref_primary_10_1016_j_jconrel_2024_12_056 crossref_primary_10_3390_ijms26051965 crossref_primary_10_33380_2305_2066_2024_13_4_1897 crossref_primary_10_1016_j_jddst_2024_106346 crossref_primary_10_3390_biomedicines12102180 |
Cites_doi | 10.1002/adma.201701021 10.3389/fimmu.2022.1003871 10.2147/IJN.S328705 10.1007/s10517-019-04475-3 10.3390/pharmaceutics12111054 10.3390/pharmaceutics14030614 10.1002/adhm.201700818 10.1016/j.ebiom.2020.102958 10.2217/nnm-2021-0405 10.1007/978-1-4939-3801-8_16 10.2147/IJN.S394389 10.3390/pharmaceutics15071881 10.4049/jimmunol.1900235 10.4049/jimmunol.180.10.6439 10.1038/s41418-018-0261-x 10.1021/acsnano.9b03848 10.1038/s41419-019-1806-8 10.1016/j.apsb.2018.12.009 10.1038/nnano.2017.54 10.1021/acsnano.7b03190 10.1016/j.cbi.2015.04.011 10.1002/adhm.202002071 10.1021/acsnano.9b03942 10.1186/s13045-019-0833-3 10.1038/s41598-020-66135-1 10.1080/10717544.2018.1474973 10.1038/s41467-018-07250-6 10.1021/acsbiomaterials.8b01062 10.1080/17435390.2020.1834635 10.1186/s12951-021-01087-w 10.3390/pharmaceutics12121222 10.1002/adhm.201901058 10.1016/j.colsurfb.2015.02.022 10.1038/nrclinonc.2010.139 10.3390/ijms23031685 10.3390/bios12020123 10.3390/ijms24010627 10.1002/adhm.201500998 10.1080/10717544.2019.1701141 10.1111/bcpt.12845 10.1016/j.intimp.2015.06.030 10.3390/ijms24098194 10.3390/cells11182889 10.1021/acs.analchem.9b02579 10.1007/s11239-021-02526-z 10.1002/adma.202003598 10.1155/2019/3560180 10.1016/j.toxlet.2013.05.010 10.1039/C9BM01732A 10.3389/fphar.2022.990505 10.1016/j.biopha.2022.113841 10.3390/molecules27041372 10.1172/JCI136259 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7XB 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH M2O MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U 7X8 DOA |
DOI | 10.3390/ph16111564 |
DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea ProQuest Central Student Research Library Prep Research Library Research Library (Corporate) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1424-8247 |
ExternalDocumentID | oai_doaj_org_article_cfff69c1fd5340e280d15c51fe08289b A774324778 10_3390_ph16111564 |
GeographicLocations | Russia Japan Germany |
GeographicLocations_xml | – name: Russia – name: Germany – name: Japan |
GroupedDBID | --- 2WC 53G 5VS 8G5 AADQD AAFWJ AAYXX ABDBF ABUWG ACGFO ACIHN ACUHS ADBBV AEAQA AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BCNDV BENPR BPHCQ CCPQU CITATION DIK DWQXO EBD ESX GNUQQ GROUPED_DOAJ GUQSH GX1 HH5 HYE IAO IHR ITC KQ8 M2O M48 MK0 MODMG M~E OK1 P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RPM TUS PMFND 3V. 7XB 8FK MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO |
ID | FETCH-LOGICAL-c461t-fbbaffff6c918212598fced4b4cf7e73104663cd11cef28e74da4712decce40c3 |
IEDL.DBID | M48 |
ISSN | 1424-8247 |
IngestDate | Wed Aug 27 01:30:53 EDT 2025 Fri Jul 11 13:58:54 EDT 2025 Mon Jun 30 06:43:57 EDT 2025 Tue Jun 17 22:24:23 EDT 2025 Tue Jun 10 21:29:50 EDT 2025 Tue Jul 01 04:13:43 EDT 2025 Thu Apr 24 23:08:46 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c461t-fbbaffff6c918212598fced4b4cf7e73104663cd11cef28e74da4712decce40c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5778-215X 0000-0002-9793-0129 0000-0003-2622-9201 0000-0003-3442-9553 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/ph16111564 |
PQID | 2893086237 |
PQPubID | 2032350 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_cfff69c1fd5340e280d15c51fe08289b proquest_miscellaneous_2893843555 proquest_journals_2893086237 gale_infotracmisc_A774324778 gale_infotracacademiconefile_A774324778 crossref_primary_10_3390_ph16111564 crossref_citationtrail_10_3390_ph16111564 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-11-01 |
PublicationDateYYYYMMDD | 2023-11-01 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Pharmaceuticals (Basel, Switzerland) |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_50 Babin (ref_15) 2013; 221 Wang (ref_28) 2021; 16 Naumenko (ref_35) 2019; 13 Yang (ref_41) 2019; 2019 ref_11 ref_54 ref_52 ref_51 Chu (ref_8) 2016; 5 Hwang (ref_19) 2015; 235 Chu (ref_21) 2017; 29 Shaul (ref_29) 2022; 13 Liz (ref_12) 2015; 28 Keshavan (ref_42) 2019; 10 Vodopyanov (ref_55) 2019; 167 Wu (ref_27) 2018; 9 Jain (ref_39) 2010; 7 Chan (ref_5) 2022; 17 Petri (ref_7) 2008; 180 Lin (ref_9) 2018; 14 Watanabe (ref_34) 2020; 10 Marki (ref_53) 2020; 130 Hwang (ref_17) 2015; 10 ref_26 Hwang (ref_18) 2015; 128 Farzin (ref_38) 2020; 9 Boeltz (ref_49) 2019; 26 Skallberg (ref_13) 2019; 91 ref_36 ref_32 ref_31 Choi (ref_6) 2023; 18 Luo (ref_23) 2018; 25 Verdon (ref_16) 2021; 15 Fromen (ref_30) 2017; 11 Naumenko (ref_56) 2016; 1458 Bisso (ref_14) 2018; 4 Xue (ref_22) 2017; 12 Freitas (ref_46) 2020; 2 Kozma (ref_44) 2019; 13 Zhang (ref_37) 2022; 13 Zapponi (ref_33) 2022; 53 ref_47 Zhang (ref_2) 2019; 12 Kermanizadeh (ref_45) 2018; 122 ref_43 Che (ref_40) 2020; 32 ref_1 Timin (ref_4) 2018; 7 ref_3 Cao (ref_20) 2019; 9 Li (ref_25) 2020; 8 Dahlgren (ref_48) 2019; 202 Hao (ref_24) 2020; 27 Vishnevskiy (ref_10) 2021; 10 |
References_xml | – volume: 29 start-page: 1701021 year: 2017 ident: ref_21 article-title: Photosensitization Priming of Tumor Microenvironments Improves Delivery of Nanotherapeutics via Neutrophil Infiltration publication-title: Adv. Mater. doi: 10.1002/adma.201701021 – volume: 13 start-page: 1003871 year: 2022 ident: ref_29 article-title: Targeted nanoparticles modify neutrophil function in vivo publication-title: Front. Immunol. doi: 10.3389/fimmu.2022.1003871 – volume: 16 start-page: 7663 year: 2021 ident: ref_28 article-title: The Advances of Neutrophil-Derived Effective Drug Delivery Systems: A Key Review of Managing Tumors and Inflammation publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S328705 – volume: 167 start-page: 123 year: 2019 ident: ref_55 article-title: Preparation and Testing of Cells Expressing Fluorescent Proteins for Intravital Imaging of Tumor Microenvironment publication-title: Bull. Exp. Biol. Med. doi: 10.1007/s10517-019-04475-3 – ident: ref_36 doi: 10.3390/pharmaceutics12111054 – ident: ref_31 doi: 10.3390/pharmaceutics14030614 – volume: 2 start-page: 1 year: 2020 ident: ref_46 article-title: Small-size silver nanoparticles stimulate neutrophil oxidative burst through an increase of intracellular calcium levels publication-title: World Acad. Sci. J. – volume: 7 start-page: 1700818 year: 2018 ident: ref_4 article-title: Cell-Based Drug Delivery and Use of Nano-and Microcarriers for Cell Functionalization publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.201700818 – ident: ref_52 doi: 10.1016/j.ebiom.2020.102958 – volume: 17 start-page: 349 year: 2022 ident: ref_5 article-title: Cell-based drug-delivery systems: A possible solution to improve nanomedicine for cancer treatment? publication-title: Nanomedicine doi: 10.2217/nnm-2021-0405 – volume: 1458 start-page: 217 year: 2016 ident: ref_56 article-title: Intravital Microscopy for Imaging the Tumor Microenvironment in Live Mice publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-3801-8_16 – volume: 18 start-page: 509 year: 2023 ident: ref_6 article-title: Cell-Based Drug Delivery Systems with Innate Homing Capability as a Novel Nanocarrier Platform publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S394389 – ident: ref_54 doi: 10.3390/pharmaceutics15071881 – volume: 202 start-page: 3127 year: 2019 ident: ref_48 article-title: Intracellular Neutrophil Oxidants: From Laboratory Curiosity to Clinical Reality publication-title: J. Immunol. doi: 10.4049/jimmunol.1900235 – volume: 180 start-page: 6439 year: 2008 ident: ref_7 article-title: The Physiology of Leukocyte Recruitment: An In Vivo Perspective publication-title: J. Immunol. doi: 10.4049/jimmunol.180.10.6439 – volume: 10 start-page: 371 year: 2015 ident: ref_17 article-title: Cationic additives in nanosystems activate cytotoxicity and inflammatory response of human neutrophils: Lipid nanoparticles versus polymeric nanoparticles publication-title: Int. J. Nanomed. – volume: 26 start-page: 395 year: 2019 ident: ref_49 article-title: To NET or not to NET:current opinions and state of the science regarding the formation of neutrophil extracellular traps publication-title: Cell Death Differ. doi: 10.1038/s41418-018-0261-x – volume: 13 start-page: 12599 year: 2019 ident: ref_35 article-title: Extravasating Neutrophils Open Vascular Barrier and Improve Liposomes Delivery to Tumors publication-title: ACS Nano doi: 10.1021/acsnano.9b03848 – volume: 10 start-page: 569 year: 2019 ident: ref_42 article-title: Nano-bio interactions: A neutrophil-centric view publication-title: Cell Death Dis. doi: 10.1038/s41419-019-1806-8 – volume: 9 start-page: 575 year: 2019 ident: ref_20 article-title: Neutrophil-mimicking therapeutic nanoparticles for targeted chemotherapy of pancreatic carcinoma publication-title: Acta Pharm. Sin. B doi: 10.1016/j.apsb.2018.12.009 – volume: 12 start-page: 692 year: 2017 ident: ref_22 article-title: Neutrophil-mediated anticancer drug delivery for suppression of postoperative malignant glioma recurrence publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2017.54 – volume: 11 start-page: 10797 year: 2017 ident: ref_30 article-title: Neutrophil–Particle Interactions in Blood Circulation Drive Particle Clearance and Alter Neutrophil Responses in Acute Inflammation publication-title: ACS Nano doi: 10.1021/acsnano.7b03190 – volume: 235 start-page: 106 year: 2015 ident: ref_19 article-title: The impact of cationic solid lipid nanoparticles on human neutrophil activation and formation of neutrophil extracellular traps (NETs) publication-title: Chem. Biol. Interact. doi: 10.1016/j.cbi.2015.04.011 – volume: 10 start-page: e2002071 year: 2021 ident: ref_10 article-title: Neutrophil and Nanoparticles Delivery to Tumor: Is It Going to Carry That Weight? publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.202002071 – volume: 13 start-page: 9315 year: 2019 ident: ref_44 article-title: Pseudo-anaphylaxis to Polyethylene Glycol (PEG)-Coated Liposomes: Roles of Anti-PEG IgM and Complement Activation in a Porcine Model of Human Infusion Reactions publication-title: ACS Nano doi: 10.1021/acsnano.9b03942 – volume: 12 start-page: 137 year: 2019 ident: ref_2 article-title: Nanotechnology in cancer diagnosis: Progress, challenges and opportunities publication-title: J. Hematol. Oncol. doi: 10.1186/s13045-019-0833-3 – volume: 10 start-page: 9211 year: 2020 ident: ref_34 article-title: The neovascularization effect of dedifferentiated fat cells publication-title: Sci. Rep. doi: 10.1038/s41598-020-66135-1 – volume: 25 start-page: 1200 year: 2018 ident: ref_23 article-title: Neutrophil-mediated delivery of pixantrone-loaded liposomes decorated with poly(Sialic acid)–octadecylamine conjugate for lung cancer treatment publication-title: Drug Deliv. doi: 10.1080/10717544.2018.1474973 – volume: 9 start-page: 4777 year: 2018 ident: ref_27 article-title: MR imaging tracking of inflammation-activatable engineered neutrophils for targeted therapy of surgically treated glioma publication-title: Nat. Commun. doi: 10.1038/s41467-018-07250-6 – volume: 4 start-page: 4255 year: 2018 ident: ref_14 article-title: Nanomaterial Interactions with Human Neutrophils publication-title: ACS Biomater. Sci. Eng. doi: 10.1021/acsbiomaterials.8b01062 – volume: 15 start-page: 1 year: 2021 ident: ref_16 article-title: Neutrophil activation by nanomaterials in vitro: Comparing strengths and limitations of primary human cells with those of an immortalized (HL-60) cell line publication-title: Nanotoxicology doi: 10.1080/17435390.2020.1834635 – ident: ref_26 doi: 10.1186/s12951-021-01087-w – ident: ref_43 doi: 10.3390/pharmaceutics12121222 – volume: 9 start-page: e1901058 year: 2020 ident: ref_38 article-title: Magnetic Nanoparticles in Cancer Therapy and Diagnosis publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.201901058 – volume: 128 start-page: 119 year: 2015 ident: ref_18 article-title: Cationic liposomes evoke proinflammatory mediator release and neutrophil extracellular traps (NETs) toward human neutrophils publication-title: Colloids Surf. B Biointerfaces doi: 10.1016/j.colsurfb.2015.02.022 – volume: 7 start-page: 653 year: 2010 ident: ref_39 article-title: Delivering nanomedicine to solid tumors publication-title: Nat. Rev. Clin. Oncol. doi: 10.1038/nrclinonc.2010.139 – ident: ref_1 doi: 10.3390/ijms23031685 – ident: ref_47 doi: 10.3390/bios12020123 – ident: ref_51 doi: 10.3390/ijms24010627 – volume: 5 start-page: 1088 year: 2016 ident: ref_8 article-title: Nanoparticle Targeting of Neutrophils for Improved Cancer Immunotherapy publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.201500998 – volume: 27 start-page: 1 year: 2020 ident: ref_24 article-title: Neutrophils, as ‘Trojan horses’, participate in the delivery of therapeutical PLGA nanoparticles into a tumor based on the chemotactic effect publication-title: Drug Deliv. doi: 10.1080/10717544.2019.1701141 – volume: 122 start-page: 149 year: 2018 ident: ref_45 article-title: A Flow Cytometry-based Method for the Screening of Nanomaterial-induced Reactive Oxygen Species Production in Leukocytes Subpopulations in Whole Blood publication-title: Basic Clin. Pharmacol. Toxicol. doi: 10.1111/bcpt.12845 – volume: 28 start-page: 616 year: 2015 ident: ref_12 article-title: Silver nanoparticles rapidly induce atypical human neutrophil cell death by a process involving inflammatory caspases and reactive oxygen species and induce neutrophil extracellular traps release upon cell adhesion publication-title: Int. Immunopharmacol. doi: 10.1016/j.intimp.2015.06.030 – ident: ref_3 doi: 10.3390/ijms24098194 – ident: ref_50 doi: 10.3390/cells11182889 – volume: 91 start-page: 13514 year: 2019 ident: ref_13 article-title: Neutrophils Activated by Nanoparticles and Formation of Neutrophil Extracellular Traps: Work Function Mapping and Element Specific Imaging publication-title: Anal. Chem. doi: 10.1021/acs.analchem.9b02579 – volume: 53 start-page: 30 year: 2022 ident: ref_33 article-title: Neutrophil activation and circulating neutrophil extracellular traps are increased in venous thromboembolism patients for at least one year after the clinical event publication-title: J. Thromb. Thrombolysis doi: 10.1007/s11239-021-02526-z – volume: 32 start-page: 2003598 year: 2020 ident: ref_40 article-title: Neutrophils Enable Local and Non-Invasive Liposome Delivery to Inflamed Skeletal Muscle and Ischemic Heart publication-title: Adv. Mater. doi: 10.1002/adma.202003598 – volume: 2019 start-page: 3560180 year: 2019 ident: ref_41 article-title: Nanomaterial Exposure Induced Neutrophil Extracellular Traps: A New Target in Inflammation and Innate Immunity publication-title: J. Immunol. Res. doi: 10.1155/2019/3560180 – volume: 14 start-page: 66 year: 2018 ident: ref_9 article-title: The Interplay Between Nanoparticles and Neutrophils publication-title: JBN – volume: 221 start-page: 57 year: 2013 ident: ref_15 article-title: TiO2, CeO2 and ZnO nanoparticles and modulation of the degranulation process in human neutrophils publication-title: Toxicol. Lett. doi: 10.1016/j.toxlet.2013.05.010 – volume: 8 start-page: 2189 year: 2020 ident: ref_25 article-title: Sialic acid-conjugate modified liposomes targeting neutrophils for improved tumour therapy publication-title: Biomater. Sci. doi: 10.1039/C9BM01732A – volume: 13 start-page: 990505 year: 2022 ident: ref_37 article-title: Drug-loaded PEG-PLGA nanoparticles for cancer treatment publication-title: Front. Pharmacol. doi: 10.3389/fphar.2022.990505 – ident: ref_11 doi: 10.1016/j.biopha.2022.113841 – ident: ref_32 doi: 10.3390/molecules27041372 – volume: 130 start-page: 2177 year: 2020 ident: ref_53 article-title: Leaking chemokines confuse neutrophils publication-title: J. Clin. Investig. doi: 10.1172/JCI136259 |
SSID | ssj0057141 |
Score | 2.377738 |
Snippet | Insufficient drug accumulation in tumors is still a major concern for using cancer nanotherapeutics. Here, the neutrophil-based delivery of three nanoparticle... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 1564 |
SubjectTerms | Ablation Cancer Cancer therapies Care and treatment cell-based delivery system Chemical properties Chemokines Comparative analysis Drug delivery systems Drugs Efficiency Evaluation Health aspects Inflammation intravital microscopy Investigations Leukocytes Liposomes Magnetic properties Magnetite Materials Microscopy Nanoparticles Neutrophils Oncology, Experimental Photographic industry Toxicity tumor Tumors Vehicles |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9tAEF5KTr2UPlKqNg0TWlIKFtFjdyX35rhJQ0mCDw7kJvbZBBzJSPbBPyH_ujOSbMfQ0ktvQjuSdmd254FmvmHsM5rgWHMlQ82ta0tyQpUnPjRSehcJE-mIipOvruXFDf95K26ftPqinLAOHrhj3Inx3suhib0VKY9ckkc2FkbE-CYKFjRpX7R562Cq08Eii3ncgZGmGNSfUD8APNRC8h3z06L0_00Xtwbm_CV70XuGMOpm9Io9c-VrdjzpoKVXA5huK6WaARzDZAs6vXrDHq9xpK7md_czUA0oGKuamtEBOqV4jaKtATXp03qr5huMYLxF_wbKKVxB5eHyfl411YMbwOTyx2gAqrRwpX6VVPDYvmW-zqeD725GmR0rWFQwXT5UdbPPbs7PpuOLsG-zEBou40XotVaeuGyGGGygwzPMvXGWa2585rKU_gLL1Ng4Ns4nucu4VWjSEovSdzwy6Vu2V1ale8cAOe-kzFOjchSAdTpzKOwk1Qnq94SrgH1dc78wPQY5tcKYFRiLkKSKraQC9mlDO--QN_5IdUpC3FAQWnZ7A_dQ0fOi-NceCtgX2gIFnWmcjlF9aQIuitCxihH6yOh4ZlkesIMdSjyLZnd4vYmKXhc0BX4hpcAxzQJ2tBmmJym_rXTVsqPJ0XMV4v3_WNAH9jxBtnc1kwdsb1Ev3Ud0nhb6sD0nvwEOtxnq priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELege-EF8SkCAx0CDSE1Wj6cxOUFdWVjQltVoU7aW2Q7zpjUxSFpH_on8F9zl4-GSkCeovgSxb7z-c6--x1j73EJ9hWXsat4ZpqUHFeKIHd1HOfGi7SnPEpOvpzH51f823V03W241V1YZa8TG0WdWU175MfoGIRkfofJ5_KnS1Wj6HS1K6Fxnx2gChZixA5OTueL770ujhKf-y0oaYjO_THVBcDJHcV8bxlq0Pr_pZObhebsEXvYWYgwbVn6mN0zxRN2tGghprdjWA4ZU_UYjmAxgE9vn7Jfc2ypbPnjdgWyBgkzWVFROkDjFO-RxRWgRv0z76r-BFOYDSjgQLGFW7A5XNyWtrZ3ZgyLi6_TMcgig0t5U1DiY_OVso-rgy9mRREeW1hbWG7ubFU_Y1dnp8vZuduVW3A1j_21myslc7xiPUGnAw2fici1ybjiOk9MEtJpcBzqzPe1yQNhEp5JXNqCDKXAcE-Hz9mosIV5wQBH3sSxCLUUyIDMqMQg04NQBajnAy4d9rEf_VR3WORUEmOVok9CnEoHTjns3Y62bBE4_kp1QkzcURBqdvPAVjdpNxappt5NtJ9nUcg9Ewgv8yMd-SiV5Hgqh30gEUhpbuPvaNmlKGCnCCUrnaKtjAZokgiHHe5R4pzU-829EKWdTqjTQYId9nbXTG9SnFth7KalEWjBRtHL_3_iFXtAhe_brMhDNlpXG_MazaO1etPNgd_ooRJY priority: 102 providerName: ProQuest |
Title | Neutrophil as a Carrier for Cancer Nanotherapeutics: A Comparative Study of Liposome, PLGA, and Magnetic Nanoparticles Delivery to Tumors |
URI | https://www.proquest.com/docview/2893086237 https://www.proquest.com/docview/2893843555 https://doaj.org/article/cfff69c1fd5340e280d15c51fe08289b |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELfG9sIL4lMEtuoQaAipgXw4ToqEUFc2JrRWFWqlvUW244xJXdIlrUT-BP5r7vLRUjTIUxSf49h39t3Fvt8x9gZVsKu4FLbiialDcmwZeamthUiNE2hHORScPJ6I8zn_dhlc7rEuf2c7gOWdrh3lk5oXi_c_b6vPOOE_kceJLvsHQvvHKRsIfo8doEYKKZPBmG92E4KwyWBJQV125PGwgSn9q-6OYqrx-_-1Steq5-whe9DajDBsmPyI7ZnsMTueNqDTVR9m2xiqsg_HMN3CUVdP2K8JlhT58sf1AmQJEkayoDR1gOYq3iPTC8A19s9IrPIjDGG0xQUHOm1YQZ7CxfUyL_Mb04fpxddhH2SWwFheZRQKWb9l2Z20gy9mQWc-KljlMFvf5EX5lM3PTmejc7tNwGBrLtyVnSolU7yEHqAbgqbQIEq1SbjiOg1N6NP-sPB14rrapF5kQp5IVHZegnJhuKP9Z2w_yzPznAFywQgR-VpGyIzEqNCgGHi-8nDl97i02Ltu9GPdopNTkoxFjF4KcSrecspirze0ywaT406qE2LihoJwtOsHeXEVt2MRa-rdQLtpEvjcMV7kJG6gAxfllFxRZbG3JAIxyR9-jpZt0AJ2inCz4iFaz2iShmFkscMdSpylere4E6K4E_IYW_DJpfRDi73aFFNNOvmWmXzd0ERo0wbBi_-38JLd93BAmzjJQ7a_KtbmCA2mleqxg5PTyfR7r_7h0Kvnxm_gZxbf |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdG9wAviE9RGHAIGEJqtMRxnBQJoa7b6FhXVaiT9pY5jjMmdUlJWqH-Cfwz_I3c5aOlEvC2PEXxxYp959-d4_tg7A2qYCcSSlqRiE0ZkmOpgCeWljIxtqftyKbg5NORHJyJL-fe-Rb71cTCkFtlg4klUMeZpn_ke7gxcMn8dv1Ps-8WVY2i09WmhEYlFidm-QO3bMXH4wPk71vOjw4n_YFVVxWwtJDO3EqiSCV4Sd1F2xr1ezdItIlFJHTiG9-lQ0_p6thxtEl4YHwRK0RwHuNgjbC1i_3eYtvClTZvse39w9H4a4P9nu8Ip0qC6rpde4_qECCYeFJsqL2yOsC_dECp2I7usbu1RQq9SoTusy2TPmC74yql9bIDk3WEVtGBXRivk10vH7KfI2zJs9m3qymoAhT0VU5F8ACNYbxHkcoBEfzPOK_iA_Sgv846DuTLuIQsgeHVLCuya9OB8fBzrwMqjeFUXaYUaFn2Mmv8-ODATMmjZAnzDCaL6ywvHrGzG2HEY9ZKs9Q8YYAzb6QMXK0CZEBsIt-gkHE34qhXuFBt9r6Z_VDXuc-pBMc0xD0QcSpcc6rNXq9oZ1XGj79S7RMTVxSUpbt8kOWXYT0XoabRdbWTxJ4rbMMDO3Y87Tm4CmijG7XZOxKBkLAEP0erOiQCB0VZucIe2uZo8Pp-0GY7G5SIAXqzuRGisMagIlyvmDZ7tWqmN8mvLjXZoqIJ0GL2vKf_7-Iluz2YnA7D4fHo5Bm7w3Fyq4jMHdaa5wvzHE2zefSiXg_ALm56Cf4GKwJRnQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3ZbtNAcFVSCfGCOEWgwCCgCClWfKyPICGUJg0tTSMLpVLf3PV6XSqldrATIX8Cv8TXMeMjJhLwVj9Z3vHKu3N752DsDapgI-TC0UIeqTIlRxOeGWvScWKl21IPdUpOPp05R2f8y7l9vsN-NbkwFFbZyMRSUEeppH_kfXQMLDK_Lbcf12ER_njyafldow5SdNLatNOoSOREFT_Qfcs_Ho8R129Nc3I4Hx1pdYcBTXLHWGlxGIoYL0cO0M5GXT_wYqkiHnIZu8q16ADUsWRkGFLFpqdcHgmU5maEC1dclxbOe4vtuuQVddjuweHM_9roAds1uFEVRLWsgd6nngQoWGyHb6nAslPAv_RBqeQm99jd2jqFYUVO99mOSh6wfb8qb130YN5ma-U92Ae_LXxdPGQ_ZziSpctvVwsQOQgYiYwa4gEaxniP5JUBSvM_c77yDzCEUVuBHCiusYA0hunVMs3Ta9UDf_p52AORRHAqLhNKuixnWTYxfTBWC4ouKWCVwnx9nWb5I3Z2I4h4zDpJmqgnDHDnleN4lhQeIiBSoauQ4EwrNFHHmFx02ftm9wNZ10GndhyLAP0hwlTQYqrLXm9gl1X1j79CHRASNxBUsbt8kGaXQb0XgaTVDaQRR7bFdWV6emTY0jaQI8jpDbvsHZFAQHIFP0eKOj0CF0UVuoIh2ulo_Lqu12V7W5AoD-T2cENEQS2P8qDlni57tRmmNynGLlHpuoLx0Hq27af_n-Ilu42sF0yPZyfP2B0T97ZKztxjnVW2Vs_RSluFL2p2AHZx0xz4G5SFVdI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neutrophil+as+a+Carrier+for+Cancer+Nanotherapeutics%3A+A+Comparative+Study+of+Liposome%2C+PLGA%2C+and+Magnetic+Nanoparticles+Delivery+to+Tumors&rft.jtitle=Pharmaceuticals+%28Basel%2C+Switzerland%29&rft.au=Garanina%2C+Anastasiia+S&rft.au=Vishnevskiy%2C+Daniil+A&rft.au=Chernysheva%2C+Anastasia+A&rft.au=Valikhov%2C+Marat+P&rft.date=2023-11-01&rft.pub=MDPI+AG&rft.issn=1424-8247&rft.eissn=1424-8247&rft.volume=16&rft.issue=11&rft_id=info:doi/10.3390%2Fph16111564&rft.externalDocID=A774324778 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8247&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8247&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8247&client=summon |