Catalytic degradation of ciprofloxacin by a visible-light-assisted peroxymonosulfate activation system: Performance and mechanism
Peroxymonosulfate (PMS) is extensively used as an oxidant to develop the sulfate radical-based advanced oxidation processes in the decontamination of organic pollutants and various PMS activation methods have been explored. Visible-light-assisted PMS activation to construct a Fenton-like process has...
Saved in:
Published in | Water research (Oxford) Vol. 173; p. 115559 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
15.04.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Peroxymonosulfate (PMS) is extensively used as an oxidant to develop the sulfate radical-based advanced oxidation processes in the decontamination of organic pollutants and various PMS activation methods have been explored. Visible-light-assisted PMS activation to construct a Fenton-like process has shown a great potential for pollution control. In our work, BiVO4 nanosheets were prepared using a hydrothermal process and used to activate PMS under visible light. A rapid degradation of ciprofloxacin (CIP) was achieved by dosing PMS (0.96 g/L), BiVO4 (0.32 g/L) under visible light with a reaction rate constant of 77.72-fold higher than that in the BiVO4/visible light process. The electron spin resonance and free radical quenching experiments indicate that reactive species of •O2−, h+, •OH and SO4•− all worked, where h+, •OH and SO4•− were found as the dominant contributors to the CIP degradation. The spectroscopic analyses further demonstrate that the photoinduced electrons were directly involved in the PMS activation process. The generated •O2− was partially utilized to activate PMS and more •OH was produced because of the chain reactions between SO4•− and H2O/OH−. In this process, PMS acted as an electron acceptor to transfer the photo-induced charges from the conduction band of BiVO4 and PMS was successfully activated to yield the high-powered oxidative species. From the degradation intermediates of CIP detected by a liquid-chromatography-mass spectrometer, the possible degradation pathways were proposed. The substantially decreased toxicity of CIP after the reaction was also observed. This work might provide new insights into the visible-light-assisted PMS activation mechanisms and is useful to construct environmentally-friendly catalytic processes for the efficient degradation of organic pollutants.
[Display omitted]
•PMS was effectively activated by BiVO4 nanosheets for water purification under visible light.•Separation of electron/hole pairs and generation of oxidative species were enhanced.•Visible-light-assisted PMS activation Fenton-like mechanism was elucidated.•High mineralization and low biotoxicity validated the application potential of the system. |
---|---|
AbstractList | Peroxymonosulfate (PMS) is extensively used as an oxidant to develop the sulfate radical-based advanced oxidation processes in the decontamination of organic pollutants and various PMS activation methods have been explored. Visible-light-assisted PMS activation to construct a Fenton-like process has shown a great potential for pollution control. In our work, BiVO4 nanosheets were prepared using a hydrothermal process and used to activate PMS under visible light. A rapid degradation of ciprofloxacin (CIP) was achieved by dosing PMS (0.96 g/L), BiVO4 (0.32 g/L) under visible light with a reaction rate constant of 77.72-fold higher than that in the BiVO4/visible light process. The electron spin resonance and free radical quenching experiments indicate that reactive species of •O2−, h+, •OH and SO4•− all worked, where h+, •OH and SO4•− were found as the dominant contributors to the CIP degradation. The spectroscopic analyses further demonstrate that the photoinduced electrons were directly involved in the PMS activation process. The generated •O2− was partially utilized to activate PMS and more •OH was produced because of the chain reactions between SO4•− and H2O/OH−. In this process, PMS acted as an electron acceptor to transfer the photo-induced charges from the conduction band of BiVO4 and PMS was successfully activated to yield the high-powered oxidative species. From the degradation intermediates of CIP detected by a liquid-chromatography-mass spectrometer, the possible degradation pathways were proposed. The substantially decreased toxicity of CIP after the reaction was also observed. This work might provide new insights into the visible-light-assisted PMS activation mechanisms and is useful to construct environmentally-friendly catalytic processes for the efficient degradation of organic pollutants.
[Display omitted]
•PMS was effectively activated by BiVO4 nanosheets for water purification under visible light.•Separation of electron/hole pairs and generation of oxidative species were enhanced.•Visible-light-assisted PMS activation Fenton-like mechanism was elucidated.•High mineralization and low biotoxicity validated the application potential of the system. Peroxymonosulfate (PMS) is extensively used as an oxidant to develop the sulfate radical-based advanced oxidation processes in the decontamination of organic pollutants and various PMS activation methods have been explored. Visible-light-assisted PMS activation to construct a Fenton-like process has shown a great potential for pollution control. In our work, BiVO4 nanosheets were prepared using a hydrothermal process and used to activate PMS under visible light. A rapid degradation of ciprofloxacin (CIP) was achieved by dosing PMS (0.96 g/L), BiVO4 (0.32 g/L) under visible light with a reaction rate constant of 77.72-fold higher than that in the BiVO4/visible light process. The electron spin resonance and free radical quenching experiments indicate that reactive species of •O2-, h+, •OH and SO4•- all worked, where h+, •OH and SO4•- were found as the dominant contributors to the CIP degradation. The spectroscopic analyses further demonstrate that the photoinduced electrons were directly involved in the PMS activation process. The generated •O2- was partially utilized to activate PMS and more •OH was produced because of the chain reactions between SO4•- and H2O/OH-. In this process, PMS acted as an electron acceptor to transfer the photo-induced charges from the conduction band of BiVO4 and PMS was successfully activated to yield the high-powered oxidative species. From the degradation intermediates of CIP detected by a liquid-chromatography-mass spectrometer, the possible degradation pathways were proposed. The substantially decreased toxicity of CIP after the reaction was also observed. This work might provide new insights into the visible-light-assisted PMS activation mechanisms and is useful to construct environmentally-friendly catalytic processes for the efficient degradation of organic pollutants.Peroxymonosulfate (PMS) is extensively used as an oxidant to develop the sulfate radical-based advanced oxidation processes in the decontamination of organic pollutants and various PMS activation methods have been explored. Visible-light-assisted PMS activation to construct a Fenton-like process has shown a great potential for pollution control. In our work, BiVO4 nanosheets were prepared using a hydrothermal process and used to activate PMS under visible light. A rapid degradation of ciprofloxacin (CIP) was achieved by dosing PMS (0.96 g/L), BiVO4 (0.32 g/L) under visible light with a reaction rate constant of 77.72-fold higher than that in the BiVO4/visible light process. The electron spin resonance and free radical quenching experiments indicate that reactive species of •O2-, h+, •OH and SO4•- all worked, where h+, •OH and SO4•- were found as the dominant contributors to the CIP degradation. The spectroscopic analyses further demonstrate that the photoinduced electrons were directly involved in the PMS activation process. The generated •O2- was partially utilized to activate PMS and more •OH was produced because of the chain reactions between SO4•- and H2O/OH-. In this process, PMS acted as an electron acceptor to transfer the photo-induced charges from the conduction band of BiVO4 and PMS was successfully activated to yield the high-powered oxidative species. From the degradation intermediates of CIP detected by a liquid-chromatography-mass spectrometer, the possible degradation pathways were proposed. The substantially decreased toxicity of CIP after the reaction was also observed. This work might provide new insights into the visible-light-assisted PMS activation mechanisms and is useful to construct environmentally-friendly catalytic processes for the efficient degradation of organic pollutants. Peroxymonosulfate (PMS) is extensively used as an oxidant to develop the sulfate radical-based advanced oxidation processes in the decontamination of organic pollutants and various PMS activation methods have been explored. Visible-light-assisted PMS activation to construct a Fenton-like process has shown a great potential for pollution control. In our work, BiVO₄ nanosheets were prepared using a hydrothermal process and used to activate PMS under visible light. A rapid degradation of ciprofloxacin (CIP) was achieved by dosing PMS (0.96 g/L), BiVO₄ (0.32 g/L) under visible light with a reaction rate constant of 77.72-fold higher than that in the BiVO₄/visible light process. The electron spin resonance and free radical quenching experiments indicate that reactive species of •O₂⁻, h⁺, •OH and SO₄•⁻ all worked, where h⁺, •OH and SO₄•⁻ were found as the dominant contributors to the CIP degradation. The spectroscopic analyses further demonstrate that the photoinduced electrons were directly involved in the PMS activation process. The generated •O₂⁻ was partially utilized to activate PMS and more •OH was produced because of the chain reactions between SO₄•⁻ and H₂O/OH⁻. In this process, PMS acted as an electron acceptor to transfer the photo-induced charges from the conduction band of BiVO₄ and PMS was successfully activated to yield the high-powered oxidative species. From the degradation intermediates of CIP detected by a liquid-chromatography-mass spectrometer, the possible degradation pathways were proposed. The substantially decreased toxicity of CIP after the reaction was also observed. This work might provide new insights into the visible-light-assisted PMS activation mechanisms and is useful to construct environmentally-friendly catalytic processes for the efficient degradation of organic pollutants. Peroxymonosulfate (PMS) is extensively used as an oxidant to develop the sulfate radical-based advanced oxidation processes in the decontamination of organic pollutants and various PMS activation methods have been explored. Visible-light-assisted PMS activation to construct a Fenton-like process has shown a great potential for pollution control. In our work, BiVO nanosheets were prepared using a hydrothermal process and used to activate PMS under visible light. A rapid degradation of ciprofloxacin (CIP) was achieved by dosing PMS (0.96 g/L), BiVO (0.32 g/L) under visible light with a reaction rate constant of 77.72-fold higher than that in the BiVO /visible light process. The electron spin resonance and free radical quenching experiments indicate that reactive species of O , h , •OH and SO all worked, where h , •OH and SO were found as the dominant contributors to the CIP degradation. The spectroscopic analyses further demonstrate that the photoinduced electrons were directly involved in the PMS activation process. The generated O was partially utilized to activate PMS and more •OH was produced because of the chain reactions between SO and H O/OH . In this process, PMS acted as an electron acceptor to transfer the photo-induced charges from the conduction band of BiVO and PMS was successfully activated to yield the high-powered oxidative species. From the degradation intermediates of CIP detected by a liquid-chromatography-mass spectrometer, the possible degradation pathways were proposed. The substantially decreased toxicity of CIP after the reaction was also observed. This work might provide new insights into the visible-light-assisted PMS activation mechanisms and is useful to construct environmentally-friendly catalytic processes for the efficient degradation of organic pollutants. |
ArticleNumber | 115559 |
Author | Chen, Fei Yu, Han-Qing Huang, Gui-Xiang Zheng, Yu-Ming Yang, Qi Yao, Fu-Bing Zhao, Quan-Bao |
Author_xml | – sequence: 1 givenname: Fei surname: Chen fullname: Chen, Fei organization: CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science & Technology of China, Hefei, China – sequence: 2 givenname: Gui-Xiang surname: Huang fullname: Huang, Gui-Xiang organization: CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science & Technology of China, Hefei, China – sequence: 3 givenname: Fu-Bing surname: Yao fullname: Yao, Fu-Bing organization: College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China – sequence: 4 givenname: Qi orcidid: 0000-0001-6781-770X surname: Yang fullname: Yang, Qi organization: College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China – sequence: 5 givenname: Yu-Ming orcidid: 0000-0002-3858-1037 surname: Zheng fullname: Zheng, Yu-Ming organization: CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China – sequence: 6 givenname: Quan-Bao surname: Zhao fullname: Zhao, Quan-Bao organization: CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China – sequence: 7 givenname: Han-Qing orcidid: 0000-0001-5247-6244 surname: Yu fullname: Yu, Han-Qing email: hqyu@ustc.edu.cn organization: CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science & Technology of China, Hefei, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32028250$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUFvFCEYhompsdvqPzCGo5dZgYEZpgcTs9HWpIke9Ey-YT5aNjPDCuy2e_SfS5324sGeSOB53oT3PSMnc5iRkLecrTnjzYft-g5yxLQWTJQrrpTqXpAV121XCSn1CVkxJuuK10qekrOUtowxIeruFTmti6OFYivyewMZxmP2lg54E2GA7MNMg6PW72JwY7gH62faHynQg0--H7Ea_c1triAlnzIOdIcx3B-nMIe0Hx1kpGCzPyxJ6ViY6YJ-x-hCnGC25Xke6IT2FmafptfkpYMx4ZvH85z8_PL5x-aquv52-XXz6bqysuG5cr3qtG3aTgHvmxawdY5B1wvdd8A63rEBFPZOaVkIyxlreGNbx6QGaRuoz8n7Jbd869ceUzaTTxbHEWYM-2SEamUtlGbqebRWopG81bqg7x7RfT_hYHbRTxCP5qnhAlwsgI0hpYjOWJ__VpMj-NFwZh7mNFuzzGke5jTLnEWW_8hP-c9oHxcNS58Hj9Ek67E0P_iINpsh-P8H_AEBNL5S |
CitedBy_id | crossref_primary_10_1016_j_seppur_2023_123779 crossref_primary_10_1016_j_jwpe_2022_103184 crossref_primary_10_1016_j_cej_2023_147323 crossref_primary_10_1016_j_seppur_2023_124628 crossref_primary_10_1073_pnas_2401175121 crossref_primary_10_1016_j_eti_2023_103337 crossref_primary_10_1016_j_seppur_2020_118109 crossref_primary_10_1002_adma_202202891 crossref_primary_10_1016_j_seppur_2024_129357 crossref_primary_10_1080_09593330_2022_2093651 crossref_primary_10_1016_j_jhazmat_2023_132401 crossref_primary_10_1016_j_cej_2024_153852 crossref_primary_10_1016_j_apcatb_2024_124848 crossref_primary_10_1016_j_cej_2022_140774 crossref_primary_10_1016_j_cej_2022_140895 crossref_primary_10_1021_acsami_2c16144 crossref_primary_10_1016_j_jwpe_2023_104428 crossref_primary_10_1016_j_jece_2021_105524 crossref_primary_10_1016_j_seppur_2024_126645 crossref_primary_10_1016_j_rsurfi_2023_100122 crossref_primary_10_1021_acsestwater_3c00319 crossref_primary_10_1038_s41545_024_00418_2 crossref_primary_10_1016_j_ijbiomac_2021_12_120 crossref_primary_10_1016_j_jcis_2021_11_162 crossref_primary_10_1021_acsami_2c08189 crossref_primary_10_1016_j_apsusc_2023_158861 crossref_primary_10_1016_j_jece_2023_110681 crossref_primary_10_1016_j_jcis_2024_01_135 crossref_primary_10_1016_j_psep_2024_03_015 crossref_primary_10_1007_s11356_023_27782_9 crossref_primary_10_1007_s10854_023_11142_x crossref_primary_10_1016_j_seppur_2024_129225 crossref_primary_10_1021_acs_langmuir_4c00558 crossref_primary_10_1007_s11356_022_19664_3 crossref_primary_10_1016_j_scitotenv_2020_140492 crossref_primary_10_1007_s10904_024_03360_5 crossref_primary_10_1016_j_seppur_2023_125967 crossref_primary_10_1016_j_jhazmat_2022_128513 crossref_primary_10_1016_j_seppur_2022_121099 crossref_primary_10_1021_acsestengg_1c00330 crossref_primary_10_1016_j_chemosphere_2021_132920 crossref_primary_10_1016_j_jhazmat_2021_125528 crossref_primary_10_1016_j_psep_2024_12_084 crossref_primary_10_1016_j_watres_2021_116881 crossref_primary_10_1016_j_apcatb_2023_122918 crossref_primary_10_1016_j_jclepro_2025_144982 crossref_primary_10_1016_j_jece_2023_111502 crossref_primary_10_1016_j_jhazmat_2021_127828 crossref_primary_10_1080_03067319_2021_1917558 crossref_primary_10_1016_j_jmrt_2022_04_046 crossref_primary_10_1016_j_envpol_2022_120668 crossref_primary_10_1016_j_jcis_2022_08_108 crossref_primary_10_1016_j_cej_2021_129477 crossref_primary_10_1038_s41598_024_73888_6 crossref_primary_10_1016_j_seppur_2024_127837 crossref_primary_10_1002_aoc_70008 crossref_primary_10_1016_j_cej_2025_160094 crossref_primary_10_1016_j_cej_2021_128713 crossref_primary_10_1016_j_jhazmat_2021_126841 crossref_primary_10_1016_j_psep_2022_07_003 crossref_primary_10_1016_j_dwt_2025_101001 crossref_primary_10_1016_j_jcis_2025_137250 crossref_primary_10_3390_catal13050836 crossref_primary_10_1016_j_jcis_2021_08_183 crossref_primary_10_1021_acsestwater_1c00495 crossref_primary_10_1016_j_jece_2023_110538 crossref_primary_10_1016_j_seppur_2023_125980 crossref_primary_10_2139_ssrn_4008767 crossref_primary_10_1016_j_cej_2022_140201 crossref_primary_10_1016_j_seppur_2024_127701 crossref_primary_10_1016_j_seppur_2023_123565 crossref_primary_10_1016_j_apcatb_2022_121542 crossref_primary_10_1016_j_chemosphere_2020_127675 crossref_primary_10_1021_acsami_2c06011 crossref_primary_10_1016_j_cej_2021_131457 crossref_primary_10_1016_j_jwpe_2024_106370 crossref_primary_10_1039_D3EN00660C crossref_primary_10_1016_j_seppur_2021_118787 crossref_primary_10_1016_j_cej_2022_137044 crossref_primary_10_1016_j_electacta_2022_141428 crossref_primary_10_1016_j_scitotenv_2020_140587 crossref_primary_10_1016_j_apcatb_2023_123557 crossref_primary_10_1016_j_cej_2024_151180 crossref_primary_10_1016_j_apcatb_2024_124243 crossref_primary_10_1016_j_cej_2022_137608 crossref_primary_10_1016_j_jhazmat_2022_128970 crossref_primary_10_1016_j_jiec_2025_01_026 crossref_primary_10_1016_j_cej_2023_145221 crossref_primary_10_1021_acs_est_4c14644 crossref_primary_10_1073_pnas_2314396121 crossref_primary_10_1016_j_apsusc_2023_157972 crossref_primary_10_1016_j_jcis_2021_03_066 crossref_primary_10_1016_j_seppur_2022_122875 crossref_primary_10_1016_j_chemosphere_2020_128197 crossref_primary_10_1016_j_envres_2024_119111 crossref_primary_10_1016_j_jwpe_2024_105735 crossref_primary_10_1016_j_jcis_2021_12_046 crossref_primary_10_1016_j_jenvman_2024_121608 crossref_primary_10_1016_j_scitotenv_2021_145522 crossref_primary_10_1039_D3CE00547J crossref_primary_10_1016_j_apsusc_2023_158263 crossref_primary_10_1016_j_envres_2021_112184 crossref_primary_10_1039_D3EN00172E crossref_primary_10_1016_j_seppur_2024_130412 crossref_primary_10_1016_j_seppur_2024_128577 crossref_primary_10_1016_j_apcatb_2020_119297 crossref_primary_10_1016_j_watres_2021_117800 crossref_primary_10_1016_j_cej_2022_140103 crossref_primary_10_1016_j_apcatb_2024_123825 crossref_primary_10_1155_2020_8888767 crossref_primary_10_1016_j_seppur_2024_126832 crossref_primary_10_1016_j_apcatb_2024_124594 crossref_primary_10_1016_j_chemosphere_2021_133158 crossref_primary_10_1016_j_jhazmat_2021_127596 crossref_primary_10_1016_j_apcatb_2021_120694 crossref_primary_10_1016_j_cclet_2021_11_061 crossref_primary_10_1007_s11581_025_06105_7 crossref_primary_10_1016_j_apcatb_2021_120572 crossref_primary_10_1016_j_jphotochem_2024_115651 crossref_primary_10_1016_j_seppur_2021_119055 crossref_primary_10_1016_j_jhazmat_2020_123460 crossref_primary_10_1016_j_ijbiomac_2023_125137 crossref_primary_10_1016_j_jwpe_2024_105142 crossref_primary_10_3390_w16243667 crossref_primary_10_1016_j_seppur_2021_118401 crossref_primary_10_1016_j_jece_2023_110603 crossref_primary_10_1063_5_0197850 crossref_primary_10_2139_ssrn_4010657 crossref_primary_10_1016_j_cej_2024_156505 crossref_primary_10_1016_j_watres_2021_116961 crossref_primary_10_1016_j_cej_2022_139009 crossref_primary_10_1016_j_seppur_2021_118891 crossref_primary_10_1016_j_seppur_2021_120058 crossref_primary_10_1016_j_seppur_2022_122771 crossref_primary_10_1021_acs_est_2c01913 crossref_primary_10_2139_ssrn_4060544 crossref_primary_10_1016_j_jece_2023_109879 crossref_primary_10_1016_j_watres_2020_116799 crossref_primary_10_1016_j_apcatb_2022_122033 crossref_primary_10_1016_j_cej_2022_141219 crossref_primary_10_1007_s11144_024_02566_5 crossref_primary_10_1016_j_psep_2024_07_096 crossref_primary_10_1016_j_jece_2022_107397 crossref_primary_10_1016_j_jhazmat_2024_134871 crossref_primary_10_1016_j_cej_2023_148026 crossref_primary_10_1016_j_seppur_2023_123127 crossref_primary_10_1016_j_jhazmat_2023_131506 crossref_primary_10_1016_j_gee_2024_12_008 crossref_primary_10_1016_j_watcyc_2024_06_003 crossref_primary_10_1016_j_jwpe_2025_107549 crossref_primary_10_1016_j_seppur_2021_118463 crossref_primary_10_1016_j_watres_2024_121774 crossref_primary_10_1016_j_jcis_2023_05_048 crossref_primary_10_1016_j_jwpe_2022_103468 crossref_primary_10_1016_j_jece_2023_110159 crossref_primary_10_1038_s41598_023_38958_1 crossref_primary_10_1016_j_colsurfa_2023_131080 crossref_primary_10_1016_j_jcis_2024_09_104 crossref_primary_10_1039_D2NJ00112H crossref_primary_10_1016_j_jhazmat_2023_131274 crossref_primary_10_1016_j_mtcomm_2022_105187 crossref_primary_10_1016_j_colsurfa_2024_134862 crossref_primary_10_1038_s41545_023_00254_w crossref_primary_10_1016_j_mtcomm_2021_102871 crossref_primary_10_1016_j_chemosphere_2021_130257 crossref_primary_10_1016_j_cej_2021_134417 crossref_primary_10_1016_j_jcis_2021_05_044 crossref_primary_10_1016_j_mtcomm_2024_108694 crossref_primary_10_1016_j_watres_2024_122066 crossref_primary_10_1016_j_cej_2023_148378 crossref_primary_10_1002_aoc_7073 crossref_primary_10_1016_j_jclepro_2023_137023 crossref_primary_10_1016_j_jhazmat_2020_124461 crossref_primary_10_1016_j_cclet_2022_107837 crossref_primary_10_1016_j_cej_2024_148789 crossref_primary_10_1016_j_seppur_2022_121460 crossref_primary_10_1016_j_cej_2023_146987 crossref_primary_10_1016_j_jece_2023_111494 crossref_primary_10_1016_j_seppur_2021_119328 crossref_primary_10_1016_j_jece_2024_114227 crossref_primary_10_3390_catal10121373 crossref_primary_10_1016_j_xcrp_2024_102170 crossref_primary_10_1039_D4TA02531H crossref_primary_10_1016_j_cej_2024_156278 crossref_primary_10_1016_j_materresbull_2022_112090 crossref_primary_10_1016_j_envres_2021_112301 crossref_primary_10_1016_j_jhazmat_2023_130874 crossref_primary_10_1016_j_envres_2022_114789 crossref_primary_10_1002_ces2_10250 crossref_primary_10_2166_wst_2022_367 crossref_primary_10_1016_j_jes_2022_03_018 crossref_primary_10_1016_j_cej_2020_127852 crossref_primary_10_1016_j_apsusc_2023_157105 crossref_primary_10_1016_j_cjche_2021_10_030 crossref_primary_10_1016_j_cej_2024_151802 crossref_primary_10_1016_j_seppur_2022_121135 crossref_primary_10_1007_s10854_024_13464_w crossref_primary_10_1016_j_cej_2023_146856 crossref_primary_10_1080_09593330_2023_2238131 crossref_primary_10_1016_j_jece_2023_110371 crossref_primary_10_1016_j_seppur_2025_132196 crossref_primary_10_1016_j_apcatb_2022_121703 crossref_primary_10_1016_j_cej_2024_150035 crossref_primary_10_1016_j_colsurfa_2023_132021 crossref_primary_10_1021_acs_est_3c10898 crossref_primary_10_1016_j_jece_2021_106592 crossref_primary_10_1016_j_cej_2021_133588 crossref_primary_10_1016_j_cej_2022_134836 crossref_primary_10_1016_j_apcatb_2021_120023 crossref_primary_10_1016_j_cej_2021_132937 crossref_primary_10_1007_s11783_023_1713_1 crossref_primary_10_1016_j_cej_2023_146961 crossref_primary_10_1016_j_efmat_2025_02_004 crossref_primary_10_1016_j_jcis_2020_12_043 crossref_primary_10_1016_j_jece_2023_110143 crossref_primary_10_1016_j_jhazmat_2021_126686 crossref_primary_10_1021_acsestengg_1c00188 crossref_primary_10_1039_D2EW00320A crossref_primary_10_1002_adfm_202419597 crossref_primary_10_1007_s11270_023_06638_5 crossref_primary_10_1007_s11144_022_02240_8 crossref_primary_10_1016_j_chemosphere_2022_134564 crossref_primary_10_1016_j_jpcs_2021_110027 crossref_primary_10_1016_j_jece_2022_108322 crossref_primary_10_1016_j_apcatb_2023_122539 crossref_primary_10_1016_j_mtcomm_2021_102288 crossref_primary_10_1016_j_cej_2021_128793 crossref_primary_10_1016_j_jclepro_2022_132442 crossref_primary_10_1016_j_surfin_2021_101272 crossref_primary_10_1016_j_colsurfa_2023_131728 crossref_primary_10_1016_j_seppur_2022_122219 crossref_primary_10_1038_s41467_020_18776_z crossref_primary_10_1039_D0TA04541A crossref_primary_10_1016_j_cej_2021_131739 crossref_primary_10_1016_j_cej_2023_144893 crossref_primary_10_1016_j_jclepro_2024_142425 crossref_primary_10_1016_j_cej_2024_149828 crossref_primary_10_2166_wst_2022_043 crossref_primary_10_1016_j_jece_2022_109087 crossref_primary_10_1016_j_jece_2025_115802 crossref_primary_10_1016_j_jtice_2024_105454 crossref_primary_10_1016_j_jhazmat_2020_123846 crossref_primary_10_1016_j_cclet_2022_05_069 crossref_primary_10_1016_j_radphyschem_2023_110958 crossref_primary_10_1016_j_seppur_2024_129038 crossref_primary_10_1016_j_jece_2024_112927 crossref_primary_10_1016_j_jhazmat_2024_133816 crossref_primary_10_1016_j_seppur_2022_121716 crossref_primary_10_1016_j_cej_2021_133803 crossref_primary_10_1016_j_cej_2020_127078 crossref_primary_10_1016_j_jclepro_2022_133420 crossref_primary_10_1016_j_cej_2021_131749 crossref_primary_10_1016_j_apcatb_2021_120845 crossref_primary_10_1016_j_cej_2023_142344 crossref_primary_10_1016_j_scitotenv_2023_168860 crossref_primary_10_1021_acs_iecr_4c02875 crossref_primary_10_1016_j_colsurfa_2023_132353 crossref_primary_10_1021_acs_iecr_2c02458 crossref_primary_10_1016_j_ceramint_2021_10_059 crossref_primary_10_1016_j_jwpe_2022_103314 crossref_primary_10_1016_j_seppur_2024_129274 crossref_primary_10_1016_j_apcatb_2020_119579 crossref_primary_10_1007_s42452_022_05097_7 crossref_primary_10_1016_j_cej_2024_154055 crossref_primary_10_1016_j_apcatb_2023_122994 crossref_primary_10_1016_j_ijbiomac_2024_133373 crossref_primary_10_1080_09593330_2021_2000037 crossref_primary_10_1016_j_seppur_2023_124152 crossref_primary_10_1016_j_ecoenv_2021_112189 crossref_primary_10_3390_w17050710 crossref_primary_10_1016_j_ceja_2022_100240 crossref_primary_10_1016_j_jhazmat_2022_130412 crossref_primary_10_1016_j_seppur_2022_120733 crossref_primary_10_1016_j_apcatb_2023_122990 crossref_primary_10_1016_j_cej_2023_147346 crossref_primary_10_1016_j_comptc_2021_113427 crossref_primary_10_1016_j_jphotochem_2024_115608 crossref_primary_10_1016_j_cej_2024_149129 crossref_primary_10_1016_j_apsusc_2023_158199 crossref_primary_10_1016_j_jhazmat_2020_123860 crossref_primary_10_1016_S1872_2067_23_64536_X crossref_primary_10_1016_j_jenvman_2024_123775 crossref_primary_10_1016_j_seppur_2024_130807 crossref_primary_10_1039_D4EN00737A crossref_primary_10_3390_ma16216879 crossref_primary_10_1016_j_jclepro_2023_140384 crossref_primary_10_1016_j_cej_2023_144519 crossref_primary_10_1016_j_cej_2024_153075 crossref_primary_10_1080_02772248_2023_2168005 crossref_primary_10_1016_j_cej_2022_136373 crossref_primary_10_1016_j_cej_2022_135840 crossref_primary_10_1016_j_envres_2025_121460 crossref_primary_10_1016_j_jwpe_2022_102903 crossref_primary_10_61186_jcc_7_1_1 crossref_primary_10_1016_j_cej_2025_159579 crossref_primary_10_1016_j_inoche_2022_109414 crossref_primary_10_1016_j_jpcs_2022_110639 crossref_primary_10_2139_ssrn_3986919 crossref_primary_10_1016_j_colsurfa_2024_135336 crossref_primary_10_1016_j_jclepro_2023_136914 crossref_primary_10_1016_j_seppur_2023_125015 crossref_primary_10_1016_j_cej_2021_132613 crossref_primary_10_1016_j_jphotochem_2021_113425 crossref_primary_10_1016_j_seppur_2021_120329 crossref_primary_10_1016_j_seppur_2022_122703 crossref_primary_10_1016_j_seppur_2022_120764 crossref_primary_10_1016_j_envres_2023_117851 crossref_primary_10_1073_pnas_2305378120 crossref_primary_10_1016_j_cej_2021_131525 crossref_primary_10_1016_j_jcis_2021_03_122 crossref_primary_10_1016_j_jece_2024_113351 crossref_primary_10_1016_j_seppur_2022_121040 crossref_primary_10_1016_j_cej_2023_143778 crossref_primary_10_1038_s41598_024_57542_9 crossref_primary_10_1007_s11356_024_32828_7 crossref_primary_10_1016_j_cej_2022_139659 crossref_primary_10_1016_j_apcatb_2022_121341 crossref_primary_10_1016_j_jhazmat_2023_131463 crossref_primary_10_1039_D2EN00665K crossref_primary_10_1016_j_apsusc_2020_147412 crossref_primary_10_1016_j_jhazmat_2023_131103 crossref_primary_10_1016_j_cej_2024_156337 crossref_primary_10_1016_j_jece_2020_104121 crossref_primary_10_1016_j_jwpe_2024_106639 crossref_primary_10_1016_j_chemosphere_2023_139554 crossref_primary_10_1016_j_seppur_2024_127866 crossref_primary_10_1016_j_apcatb_2021_120513 crossref_primary_10_1016_j_chemosphere_2022_134481 crossref_primary_10_1016_j_jhazmat_2021_127292 crossref_primary_10_1007_s10904_021_02184_x crossref_primary_10_1016_j_seppur_2024_126659 |
Cites_doi | 10.1021/acs.est.7b05543 10.1016/j.watres.2019.03.078 10.1016/j.apcatb.2017.03.043 10.1016/j.apcatb.2018.01.014 10.1016/j.cej.2017.07.137 10.1002/anie.201708709 10.1016/j.cej.2012.04.033 10.1016/j.watres.2019.114969 10.1021/acs.est.8b01662 10.1016/j.watres.2017.03.054 10.1021/acs.est.8b03340 10.1021/es050634b 10.1016/j.cej.2017.02.133 10.1016/j.scitotenv.2013.11.008 10.1016/j.apcatb.2018.06.049 10.1016/j.apcatb.2009.12.002 10.1021/jp056367d 10.1039/C5CY01735A 10.1021/acs.est.8b01817 10.1016/j.apcatb.2016.07.021 10.1021/acs.est.6b02841 10.1016/j.watres.2019.03.096 10.1021/cs5017613 10.1016/j.nanoen.2018.07.018 10.1021/acs.est.8b02266 10.1016/j.watres.2006.06.018 10.1016/j.cej.2018.08.049 10.1016/j.watres.2018.03.012 10.1016/j.watres.2019.115107 10.1016/j.cej.2018.05.177 10.1021/acsami.6b12278 10.1021/es035121o 10.1021/acs.est.5b00989 10.1016/j.watres.2018.12.001 10.1021/es0263792 10.1016/j.watres.2018.06.002 10.1021/acs.est.8b02282 10.1021/es400728c 10.1016/j.apcatb.2016.09.006 10.1039/C8EN00366A 10.1016/j.apcatb.2018.03.088 10.1016/j.apcatb.2017.03.079 10.1021/acs.est.8b05901 10.1016/j.watres.2019.115110 10.1016/j.apcatb.2017.07.035 10.1021/acs.est.7b03007 10.1021/acs.est.6b05536 10.1021/am5065409 10.1016/j.apcatb.2017.06.057 10.1016/j.seppur.2016.03.026 10.1016/j.cej.2015.06.061 10.1016/j.apcatb.2017.10.007 10.1002/adma.201703119 10.1016/j.bios.2018.08.042 10.1021/am508416n 10.1021/acsami.7b14412 10.1021/jacs.6b11263 10.1016/j.apcatb.2018.04.058 10.1016/j.watres.2018.06.068 10.1021/jacs.8b05992 10.1021/acs.est.7b00350 10.1016/j.cej.2017.06.064 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd Copyright © 2020 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright © 2020 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.watres.2020.115559 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-2448 |
ExternalDocumentID | 32028250 10_1016_j_watres_2020_115559 S0043135420300956 |
Genre | Journal Article |
GroupedDBID | --- --K --M -DZ -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFO ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA HMC IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SCU SDF SDG SDP SES SPC SPCBC SSE SSJ SSZ T5K TAE TN5 TWZ WH7 XPP ZCA ZMT ~02 ~G- ~KM .55 186 29R 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACKIV ACRPL ACVFH ADCNI ADMUD ADNMO AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HMA HVGLF HZ~ H~9 MVM OHT R2- RIG SEN SEP SEW SSH WUQ X7M XOL YHZ YV5 ZXP ZY4 ~A~ CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c461t-fb598c6795a1b67ae7ff0a9b28b9a09190da5ebf5845a1c100616c7f048a4c6a3 |
IEDL.DBID | .~1 |
ISSN | 0043-1354 1879-2448 |
IngestDate | Fri Jul 11 10:46:13 EDT 2025 Fri Jul 11 16:14:36 EDT 2025 Wed Feb 19 02:31:10 EST 2025 Thu Apr 24 23:06:44 EDT 2025 Tue Jul 01 01:21:00 EDT 2025 Fri Feb 23 02:44:24 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Water treatment Visible light Peroxymonosulfate Catalytic degradation Mechanism BiVO4 BiVO |
Language | English |
License | Copyright © 2020 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c461t-fb598c6795a1b67ae7ff0a9b28b9a09190da5ebf5845a1c100616c7f048a4c6a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-6781-770X 0000-0001-5247-6244 0000-0002-3858-1037 |
PMID | 32028250 |
PQID | 2352641788 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2574325805 proquest_miscellaneous_2352641788 pubmed_primary_32028250 crossref_citationtrail_10_1016_j_watres_2020_115559 crossref_primary_10_1016_j_watres_2020_115559 elsevier_sciencedirect_doi_10_1016_j_watres_2020_115559 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-04-15 |
PublicationDateYYYYMMDD | 2020-04-15 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Water research (Oxford) |
PublicationTitleAlternate | Water Res |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | An, Yang, Li, Song, Cooper, Nie (bib3) 2010; 94 Cheng, Guo, Zhang, Korshin, Yang (bib15) 2019; 157 Zhang, Chen, Jiao (bib57) 2006; 110 Wei, Zhu, Gu, An, Liu, Wu, Liu, Tang, Qu (bib48) 2018; 51 Wei, Wei, Liu, Chen, Tang, Ma, Yin, Luo (bib49) 2019; 167 Wang, Liu, Zhang, Meng, Yu, Pu, Yuan, Qi, Xu, Chu (bib44) 2018; 235 Chen, Fang, Xia, Huang, Huang (bib10) 2018; 52 Zhang, Zhao, Wang, Gong, Cao, Qiao (bib56) 2018; 237 Anipsitakis, Dionysiou (bib5) 2004; 38 Wu, Huang, Xu, Lu, Li, Chen (bib51) 2017; 218 Weon, Choi, Kim, Kim, Park, Kim, Kim, Choi (bib50) 2018; 52 Fang, Wu, Liu, Dionysiou, Deng, Zhou (bib23) 2017; 202 Ahmad, Teel, Watts (bib1) 2013; 47 Chen, Li, Zhang, Jin, Song, Wang, Tratnyek (bib14) 2019; 53 Liu, Hu, Qiu, Wang, Lin, Zhu, Wei, Zhou, Ouyang (bib37) 2017; 51 Yan, Peng, Lai, Ji, Zhang, Lai, Chen, Yao, Chen, Song (bib53) 2018; 52 Li, Huang, Xi, Miao, Ding, Cai, Liu, Yang, Yang, Gao, Wang, Huang, Zhang, Liu (bib35) 2018; 140 Sabio, Zamora, Ganan, Gonzalez-Garcia, Gonzalez (bib42) 2006; 40 Li, Quan, Chen, Yu (bib31) 2017; 209 Duan, Ao, Zhang, Saunders, Sun, Shao, Wang (bib21) 2018; 222 Chen, Wang, Xiao, Hong, Zhu, Yao, Xue (bib12) 2012; 193–194 Ahn, Yun, Seo, Lee, Kim, Kim, Lee (bib2) 2016; 50 Li, Chen, He, Zhou, Zhou, Zou (bib33) 2018; 30 Zhu, Liu, Chen, Yin, Ge, Li, Wang (bib63) 2017; 9 Chen, Zhang, Liu, Qu (bib13) 2019; 58 Wang, Zhao, Fan, Tian, Zhao (bib45) 2018; 5 Yao, Yang, Zhong, Shu, Chen, Sun, Ma, Fu, Wang, Li (bib55) 2019; 157 Lu, Zhao, Wang, Wang, Xu, Ma, Qiu, Hu (bib39) 2019; 165 Chen, Oh, Lim (bib11) 2018; 354 Wang, Zhao, Cao, Wang, Zhu (bib46) 2017; 211 Peng, Tang, Zeng, Fang, Ouyang, Long, Zhou, Deng, Liu, Wang (bib40) 2018; 121 Gao, Gu, Jiao, Sun, Zu, Yang, Zhu, Wang, Feng, Ye, Xie (bib24) 2017; 139 Duan, Sun, Wang, Kang, Wang (bib22) 2014; 5 Zhao, Zhao, Yang (bib59) 2017; 327 Wu, Xu, Shi, Yin, Zhang, Wu, Duan, Wang, Sun (bib52) 2019; 167 Du, Bao, Liu, Kim, Dionysiou (bib19) 2018; 376 Hammouda, Zhao, Safaei, Ramasamy, Doshi, Sillanpaa (bib26) 2018; 233 Jorfi, Kakavandi, Motlagh, Ahmadi, Jaafarzadeh (bib30) 2017; 219 Ji, Ferronato, Salvador, Yang, Chovelon (bib29) 2014; 472 Zhu, Huang, Ma, Wang, Duan, Wang (bib64) 2018; 52 Anipsitakis, Dionysiou (bib4) 2003; 37 Chen, Yang, Li, Zeng, Wang, Niu, Zhao, An, Xie, Deng (bib8) 2017; 200 Liu, Li, Liu, Jiang, Zhang, Liang (bib38) 2019; 150 Zhang, Zhou, Sun, Meng, Luo, Zhou, Crittenden (bib58) 2018; 52 Chen, Yang, Sun, Yao, Wang, Wang, Wang, Li, Niu, Wang, Zeng (bib9) 2016; 8 Huang, Wang, Yang, Guo, Yu (bib27) 2017; 51 Huang, Han, Li, Wang, Chu, Zhang (bib28) 2015; 7 Wang, Jiang, Pang, Zhou, Guan, Gao, Li, Yang, Qiu, Jiang (bib47) 2018; 52 Ghauch, Baalbaki, Amasha, El Asmar, Tantawi (bib25) 2017; 317 Zhou, Wang, Zhu, Dionysiou, Zhao, Fang, Zhou (bib61) 2018; 142 Yang, Lu, Jiang, Ma, Liu, Cao, Liu, Li, Pang, Kong, Luo (bib54) 2017; 118 Song, Lu, Wu, Jiang, Sun, Le (bib43) 2018; 227 Zhou, Xu, Dong, Huo, Dong, Tian, Cui, Xiong, Li, Ma (bib60) 2015; 49 Lian, Yao, Hou, Fang, Yan, Song (bib36) 2017; 51 Anipsitakis, Dionysiou, Gonzalez (bib6) 2006; 40 Li, Wu, Pan, Zhang, Chen (bib32) 2018; 57 Qin, Li, Gao, Zhang, Ok, An (bib41) 2018; 137 Zhu, Wang, Wang, Jin, Ganeshraja (bib62) 2016; 6 Cai, Liu, Zhang, Zheng, Zhang (bib7) 2016; 165 Deng, Ge, Tan, Wang, Li, Zhou, Zhang (bib17) 2017; 330 Li, Zhang, Wang, Yang, Li, Zhu, Zhou, Han, Li (bib34) 2013; 4 Darsinou, Frontistis, Antonopoulou, Konstantinou, Mantzavinos (bib16) 2015; 280 Ding, Yan, Wu, Xiao, Gang, Wang, Chen, Zhao (bib18) 2018; 143 Duan, Ao, Sun, Indrawirawan, Wang, Kang, Liang, Zhu, Wang (bib20) 2015; 7 Weon (10.1016/j.watres.2020.115559_bib50) 2018; 52 Chen (10.1016/j.watres.2020.115559_bib11) 2018; 354 Lu (10.1016/j.watres.2020.115559_bib39) 2019; 165 Yan (10.1016/j.watres.2020.115559_bib53) 2018; 52 Lian (10.1016/j.watres.2020.115559_bib36) 2017; 51 Zhu (10.1016/j.watres.2020.115559_bib64) 2018; 52 Wu (10.1016/j.watres.2020.115559_bib51) 2017; 218 Darsinou (10.1016/j.watres.2020.115559_bib16) 2015; 280 Chen (10.1016/j.watres.2020.115559_bib12) 2012; 193–194 Wang (10.1016/j.watres.2020.115559_bib47) 2018; 52 Song (10.1016/j.watres.2020.115559_bib43) 2018; 227 Huang (10.1016/j.watres.2020.115559_bib27) 2017; 51 Wei (10.1016/j.watres.2020.115559_bib48) 2018; 51 Du (10.1016/j.watres.2020.115559_bib19) 2018; 376 Sabio (10.1016/j.watres.2020.115559_bib42) 2006; 40 Fang (10.1016/j.watres.2020.115559_bib23) 2017; 202 Ji (10.1016/j.watres.2020.115559_bib29) 2014; 472 Anipsitakis (10.1016/j.watres.2020.115559_bib6) 2006; 40 Chen (10.1016/j.watres.2020.115559_bib9) 2016; 8 Peng (10.1016/j.watres.2020.115559_bib40) 2018; 121 Li (10.1016/j.watres.2020.115559_bib31) 2017; 209 Wei (10.1016/j.watres.2020.115559_bib49) 2019; 167 Ahn (10.1016/j.watres.2020.115559_bib2) 2016; 50 Duan (10.1016/j.watres.2020.115559_bib22) 2014; 5 Wang (10.1016/j.watres.2020.115559_bib44) 2018; 235 Ahmad (10.1016/j.watres.2020.115559_bib1) 2013; 47 Liu (10.1016/j.watres.2020.115559_bib37) 2017; 51 Chen (10.1016/j.watres.2020.115559_bib14) 2019; 53 Cheng (10.1016/j.watres.2020.115559_bib15) 2019; 157 Qin (10.1016/j.watres.2020.115559_bib41) 2018; 137 Yao (10.1016/j.watres.2020.115559_bib55) 2019; 157 Wang (10.1016/j.watres.2020.115559_bib46) 2017; 211 Zhu (10.1016/j.watres.2020.115559_bib62) 2016; 6 Anipsitakis (10.1016/j.watres.2020.115559_bib5) 2004; 38 Zhang (10.1016/j.watres.2020.115559_bib57) 2006; 110 Cai (10.1016/j.watres.2020.115559_bib7) 2016; 165 Li (10.1016/j.watres.2020.115559_bib34) 2013; 4 Huang (10.1016/j.watres.2020.115559_bib28) 2015; 7 Deng (10.1016/j.watres.2020.115559_bib17) 2017; 330 Wang (10.1016/j.watres.2020.115559_bib45) 2018; 5 Chen (10.1016/j.watres.2020.115559_bib13) 2019; 58 Ghauch (10.1016/j.watres.2020.115559_bib25) 2017; 317 Li (10.1016/j.watres.2020.115559_bib33) 2018; 30 Li (10.1016/j.watres.2020.115559_bib32) 2018; 57 An (10.1016/j.watres.2020.115559_bib3) 2010; 94 Duan (10.1016/j.watres.2020.115559_bib20) 2015; 7 Li (10.1016/j.watres.2020.115559_bib35) 2018; 140 Chen (10.1016/j.watres.2020.115559_bib10) 2018; 52 Zhang (10.1016/j.watres.2020.115559_bib58) 2018; 52 Gao (10.1016/j.watres.2020.115559_bib24) 2017; 139 Hammouda (10.1016/j.watres.2020.115559_bib26) 2018; 233 Zhou (10.1016/j.watres.2020.115559_bib61) 2018; 142 Chen (10.1016/j.watres.2020.115559_bib8) 2017; 200 Anipsitakis (10.1016/j.watres.2020.115559_bib4) 2003; 37 Ding (10.1016/j.watres.2020.115559_bib18) 2018; 143 Jorfi (10.1016/j.watres.2020.115559_bib30) 2017; 219 Zhang (10.1016/j.watres.2020.115559_bib56) 2018; 237 Zhou (10.1016/j.watres.2020.115559_bib60) 2015; 49 Zhao (10.1016/j.watres.2020.115559_bib59) 2017; 327 Duan (10.1016/j.watres.2020.115559_bib21) 2018; 222 Yang (10.1016/j.watres.2020.115559_bib54) 2017; 118 Zhu (10.1016/j.watres.2020.115559_bib63) 2017; 9 Wu (10.1016/j.watres.2020.115559_bib52) 2019; 167 Liu (10.1016/j.watres.2020.115559_bib38) 2019; 150 |
References_xml | – volume: 193–194 start-page: 290 year: 2012 end-page: 295 ident: bib12 article-title: Accelerated TiO publication-title: Chem. Eng. J. – volume: 50 start-page: 10187 year: 2016 end-page: 10197 ident: bib2 article-title: Activation of peroxymonosulfate by surface-loaded noble metal nanoparticles for oxidative degradation of organic compounds publication-title: Environ. Sci. Technol. – volume: 209 start-page: 591 year: 2017 end-page: 599 ident: bib31 article-title: Ferroelectric-enhanced Z-schematic electron transfer in BiVO publication-title: Appl. Catal. B Environ. – volume: 52 start-page: 9330 year: 2018 end-page: 9340 ident: bib50 article-title: Active {001} facet exposed TiO publication-title: Environ. Sci. Technol. – volume: 157 start-page: 406 year: 2019 end-page: 414 ident: bib15 article-title: Insights into the mechanism of nonradical reactions of persulfate activated by carbon nanotubes: activation performance and structure-function relationship publication-title: Water Res. – volume: 330 start-page: 1390 year: 2017 end-page: 1400 ident: bib17 article-title: Degradation of ciprofloxacin using α-MnO publication-title: Chem. Eng. J. – volume: 37 start-page: 4790 year: 2003 end-page: 4797 ident: bib4 article-title: Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt publication-title: Environ. Sci. Technol. – volume: 51 start-page: 2954 year: 2017 end-page: 2962 ident: bib36 article-title: Kinetic study of hydroxyl and sulfate radical-mediated oxidation of pharmaceuticals in wastewater effluents publication-title: Environ. Sci. Technol. – volume: 237 start-page: 976 year: 2018 end-page: 985 ident: bib56 article-title: Peroxymonosulfate-enhanced visible light photocatalytic degradation of bisphenol A by perylene imide-modified g-C publication-title: Appl. Catal. B Environ. – volume: 40 start-page: 3053 year: 2006 end-page: 3060 ident: bib42 article-title: Adsorption of p-nitrophenol on activated carbon fixed-bed publication-title: Water Res. – volume: 110 start-page: 2668 year: 2006 end-page: 2673 ident: bib57 article-title: Monoclinic structured BiVO publication-title: J. Phys. Chem. B – volume: 150 start-page: 431 year: 2019 end-page: 441 ident: bib38 article-title: Visible-light-driven photocatalytic degradation of diclofenac by carbon quantum dots modified porous g-C publication-title: Water Res. – volume: 40 start-page: 1000 year: 2006 end-page: 1007 ident: bib6 article-title: Cobalt-mediated activation of peroxymonosulfate and sulfate radical attack on phenolic compounds. implications of chloride ions publication-title: Environ. Sci. Technol. – volume: 219 start-page: 216 year: 2017 end-page: 230 ident: bib30 article-title: A novel combination of oxidative degradation for benzotriazole removal using TiO publication-title: Appl. Catal. B Environ. – volume: 137 start-page: 130 year: 2018 end-page: 143 ident: bib41 article-title: Persistent free radicals in carbon-based materials on transformation of refractory organic contaminants (ROCs) in water: a critical review publication-title: Water Res. – volume: 202 start-page: 1 year: 2017 end-page: 11 ident: bib23 article-title: Activation of persulfate with vanadium species for PCBs degradation: a mechanistic study publication-title: Appl. Catal. B Environ. – volume: 472 start-page: 800 year: 2014 end-page: 808 ident: bib29 article-title: Degradation of ciprofloxacin and sulfamethoxazole by ferrous-activated persulfate: implications for remediation of groundwater contaminated by antibiotics publication-title: Sci. Total Environ. – volume: 121 start-page: 19 year: 2018 end-page: 26 ident: bib40 article-title: Self-powered photoelectrochemical aptasensor based on phosphorus doped porous ultrathin g-C publication-title: Biosens. Bioelectron. – volume: 218 start-page: 230 year: 2017 end-page: 239 ident: bib51 article-title: Visible-light-assisted peroxymonosulfate activation and mechanism for the degradation of pharmaceuticals over pyridyl-functionalized graphitic carbon nitride coordinated with iron phthalocyanine publication-title: Appl. Catal. B Environ. – volume: 47 start-page: 5864 year: 2013 end-page: 5871 ident: bib1 article-title: Mechanism of persulfate activation by phenols publication-title: Environ. Sci. Technol. – volume: 9 start-page: 38832 year: 2017 end-page: 38841 ident: bib63 article-title: Boosting the visible-light photoactivity of BiOCl/BiVO publication-title: ACS Appl. Mater. Interfaces – volume: 233 start-page: 99 year: 2018 end-page: 111 ident: bib26 article-title: Sulfate radical-mediated degradation and mineralization of bisphenol F in neutral medium by the novel magnetic Sr publication-title: Appl. Catal. B Environ. – volume: 30 start-page: 1703119 year: 2018 ident: bib33 article-title: Polyhedral 30-faceted BiVO publication-title: Adv. Mater. – volume: 139 start-page: 3438 year: 2017 end-page: 3445 ident: bib24 article-title: Highly efficient and exceptionally durable CO publication-title: J. Am. Chem. Soc. – volume: 227 start-page: 145 year: 2018 end-page: 152 ident: bib43 article-title: Strong base g-C publication-title: Appl. Catal. B Environ. – volume: 200 start-page: 330 year: 2017 end-page: 342 ident: bib8 article-title: Hierarchical assembly of graphene-bridged Ag publication-title: Appl. Catal. B Environ. – volume: 222 start-page: 176 year: 2018 end-page: 181 ident: bib21 article-title: Nanodiamonds in sp publication-title: Appl. Catal. B Environ. – volume: 94 start-page: 288 year: 2010 end-page: 294 ident: bib3 article-title: Kinetics and mechanism of advanced oxidation processes (AOPs) in degradation of ciprofloxacin in water publication-title: Appl. Catal. B Environ. – volume: 354 start-page: 941 year: 2018 end-page: 976 ident: bib11 article-title: Graphene- and CNTs-based carbocatalysts in persulfates activation: material design and catalytic mechanisms publication-title: Chem. Eng. J. – volume: 52 start-page: 1461 year: 2018 end-page: 1470 ident: bib10 article-title: Selective transformation of beta-Lactam antibiotics by peroxymonosulfate: reaction kinetics and nonradical mechanism publication-title: Environ. Sci. Technol. – volume: 5 start-page: 553 year: 2014 end-page: 559 ident: bib22 article-title: N-doping-induced nonradical reaction on single-walled carbon nanotubes for catalytic phenol oxidation publication-title: ACS Catal. – volume: 118 start-page: 196 year: 2017 end-page: 207 ident: bib54 article-title: Degradation of sulfamethoxazole by UV, UV/H publication-title: Water Res. – volume: 280 start-page: 623 year: 2015 end-page: 633 ident: bib16 article-title: Sono-activated persulfate oxidation of bisphenol A: kinetics, pathways and the controversial role of temperature publication-title: Chem. Eng. J. – volume: 8 start-page: 32887 year: 2016 end-page: 32900 ident: bib9 article-title: Enhanced photocatalytic degradation of tetracycline by AgI/BiVO publication-title: ACS Appl. Mater. Interfaces – volume: 58 start-page: 1 year: 2019 end-page: 6 ident: bib13 article-title: Confining free radicals in close vicinity to contaminants enables ultrafast Fenton-like processes in the interspacing of MoS publication-title: Angew. Chem. Int. Ed. – volume: 57 start-page: 491 year: 2018 end-page: 495 ident: bib32 article-title: Vacancy-rich monolayer BiO publication-title: Angew. Chem. Int. Ed. – volume: 142 start-page: 208 year: 2018 end-page: 216 ident: bib61 article-title: New insight into the mechanism of peroxymonosulfate activation by sulfur-containing minerals: role of sulfur conversion in sulfate radical generation publication-title: Water Res. – volume: 165 start-page: 42 year: 2016 end-page: 52 ident: bib7 article-title: Visible light enhanced heterogeneous photo-degradation of Orange II by zinc ferrite (ZnFe publication-title: Separ. Purif. Technol. – volume: 157 start-page: 191 year: 2019 end-page: 200 ident: bib55 article-title: Indirect electrochemical reduction of nitrate in water using zero-valent titanium anode: factors, kinetics, and mechanism publication-title: Water Res. – volume: 6 start-page: 2296 year: 2016 end-page: 2304 ident: bib62 article-title: Visible-light-induced photocatalysis and peroxymonosulfate activation over ZnFe publication-title: Catal. Sci. Technol. – volume: 143 start-page: 589 year: 2018 end-page: 598 ident: bib18 article-title: Light-excited photoelectrons coupled with bio-photocatalysis enhanced the degradation efficiency of oxytetracycline publication-title: Water Res. – volume: 376 start-page: 119193 year: 2018 ident: bib19 article-title: Facile preparation of porous Mn/Fe publication-title: Chem. Eng. J. – volume: 4 start-page: 7 year: 2013 ident: bib34 article-title: Spatial separation of photogenerated electrons and holes among {010} and {110} crystal facets of BiVO publication-title: Nat. Commun. – volume: 51 start-page: 5137 year: 2017 end-page: 5145 ident: bib37 article-title: Enhanced photocatalytic degradation of environmental pollutants under visible irradiation by a composite coating publication-title: Environ. Sci. Technol. – volume: 7 start-page: 4169 year: 2015 end-page: 4178 ident: bib20 article-title: Nitrogen-doped graphene for generation and evolution of reactive radicals by metal-free catalysis publication-title: ACS Appl. Mater. Interfaces – volume: 38 start-page: 3705 year: 2004 end-page: 3712 ident: bib5 article-title: Radical generation by the interaction of transition metals with common oxidants publication-title: Environ. Sci. Technol. – volume: 5 start-page: 1933 year: 2018 end-page: 1942 ident: bib45 article-title: The synthesis of novel Co-Al publication-title: Environ. Sci. Nano – volume: 51 start-page: 12611 year: 2017 end-page: 12618 ident: bib27 article-title: Degradation of bisphenol A by peroxymonosulfate catalytically activated with Mn publication-title: Environ. Sci. Technol. – volume: 53 start-page: 2054 year: 2019 end-page: 2062 ident: bib14 article-title: Overlooked role of peroxides as free radical precursors in advanced oxidation processes publication-title: Environ. Sci. Technol. – volume: 51 start-page: 764 year: 2018 end-page: 773 ident: bib48 article-title: Multi-electric field modulation for photocatalytic oxygen evolution: enhanced charge separation by coupling oxygen vacancies with faceted heterostructures publication-title: Nano Energy – volume: 317 start-page: 1012 year: 2017 end-page: 1025 ident: bib25 article-title: Contribution of persulfate in UV-254 nm activated systems for complete degradation of chloramphenicol antibiotic in water publication-title: Chem. Eng. J. – volume: 165 start-page: 114969 year: 2019 ident: bib39 article-title: Sonolytic degradation of bisphenol S: effect of dissolved oxygen and peroxydisulfate, oxidation products and acute toxicity publication-title: Water Res. – volume: 167 start-page: 115110 year: 2019 ident: bib52 article-title: Manganese oxide integrated catalytic ceramic membrane for degradation of organic pollutants using sulfate radicals publication-title: Water Res. – volume: 52 start-page: 14302 year: 2018 end-page: 14310 ident: bib53 article-title: Activation CuFe publication-title: Environ. Sci. Technol. – volume: 235 start-page: 264 year: 2018 end-page: 273 ident: bib44 article-title: Sulfate radical-based photo-Fenton reaction derived by CuBi publication-title: Appl. Catal. B Environ. – volume: 167 start-page: 115107 year: 2019 ident: bib49 article-title: Efficient removal of arsenic from groundwater using iron oxide nanoneedle array-decorated biochar fibers with high Fe utilization and fast adsorption kinetics publication-title: Water Res. – volume: 52 start-page: 8649 year: 2018 end-page: 8658 ident: bib64 article-title: Catalytic removal of aqueous contaminants on N-doped graphitic biochars: inherent roles of adsorption and nonradical mechanisms publication-title: Environ. Sci. Technol. – volume: 140 start-page: 12469 year: 2018 end-page: 12475 ident: bib35 article-title: Single cobalt atoms anchored on porous N-doped graphene with dual reaction sites for efficient Fenton-like catalysis publication-title: J. Am. Chem. Soc. – volume: 211 start-page: 79 year: 2017 end-page: 88 ident: bib46 article-title: Peroxymonosulfate enhanced visible light photocatalytic degradation bisphenol A by single-atom dispersed Ag mesoporous g-C publication-title: Appl. Catal. B Environ. – volume: 52 start-page: 11276 year: 2018 end-page: 11284 ident: bib47 article-title: Is sulfate radical really generated from peroxydisulfate activated by Iron(II) for environmental decontamination? publication-title: Environ. Sci. Technol. – volume: 7 start-page: 482 year: 2015 end-page: 492 ident: bib28 article-title: Fabrication of multiple heterojunctions with tunable visible-light-active photocatalytic reactivity in BiOBr-BiOI full-range composites based on microstructure modulation and band structures publication-title: ACS Appl. Mater. Interfaces – volume: 327 start-page: 481 year: 2017 end-page: 489 ident: bib59 article-title: Efficient removal of ciprofloxacin by peroxymonosulfate/Mn publication-title: Chem. Eng. J. – volume: 52 start-page: 7380 year: 2018 end-page: 7389 ident: bib58 article-title: Impact of chloride ions on UV/H publication-title: Environ. Sci. Technol. – volume: 49 start-page: 7776 year: 2015 end-page: 7783 ident: bib60 article-title: Intimate coupling of photocatalysis and biodegradation for degrading phenol using different light types: visible light vs UV light publication-title: Environ. Sci. Technol. – volume: 52 start-page: 1461 issue: 3 year: 2018 ident: 10.1016/j.watres.2020.115559_bib10 article-title: Selective transformation of beta-Lactam antibiotics by peroxymonosulfate: reaction kinetics and nonradical mechanism publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b05543 – volume: 157 start-page: 191 year: 2019 ident: 10.1016/j.watres.2020.115559_bib55 article-title: Indirect electrochemical reduction of nitrate in water using zero-valent titanium anode: factors, kinetics, and mechanism publication-title: Water Res. doi: 10.1016/j.watres.2019.03.078 – volume: 209 start-page: 591 year: 2017 ident: 10.1016/j.watres.2020.115559_bib31 article-title: Ferroelectric-enhanced Z-schematic electron transfer in BiVO4-BiFeO3-CuInS2 for efficient photocatalytic pollutant degradation publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2017.03.043 – volume: 227 start-page: 145 year: 2018 ident: 10.1016/j.watres.2020.115559_bib43 article-title: Strong base g-C3N4 with perfect structure for photocatalytically eliminating formaldehyde under visible-light irradiation publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2018.01.014 – volume: 330 start-page: 1390 year: 2017 ident: 10.1016/j.watres.2020.115559_bib17 article-title: Degradation of ciprofloxacin using α-MnO2 activated peroxymonosulfate process: effect of water constituents, degradation intermediates and toxicity evaluation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.07.137 – volume: 57 start-page: 491 issue: 2 year: 2018 ident: 10.1016/j.watres.2020.115559_bib32 article-title: Vacancy-rich monolayer BiO2-x as a highly efficient UV, visible, and near-infrared responsive photocatalyst publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201708709 – volume: 193–194 start-page: 290 year: 2012 ident: 10.1016/j.watres.2020.115559_bib12 article-title: Accelerated TiO2 photocatalytic degradation of Acid Orange 7 under visible light mediated by peroxymonosulfate publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2012.04.033 – volume: 165 start-page: 114969 year: 2019 ident: 10.1016/j.watres.2020.115559_bib39 article-title: Sonolytic degradation of bisphenol S: effect of dissolved oxygen and peroxydisulfate, oxidation products and acute toxicity publication-title: Water Res. doi: 10.1016/j.watres.2019.114969 – volume: 52 start-page: 7380 issue: 13 year: 2018 ident: 10.1016/j.watres.2020.115559_bib58 article-title: Impact of chloride ions on UV/H2O2 and UV/persulfate advanced oxidation processes publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b01662 – volume: 118 start-page: 196 year: 2017 ident: 10.1016/j.watres.2020.115559_bib54 article-title: Degradation of sulfamethoxazole by UV, UV/H2O2 and UV/persulfate (PDS): formation of oxidation products and effect of bicarbonate publication-title: Water Res. doi: 10.1016/j.watres.2017.03.054 – volume: 52 start-page: 14302 issue: 24 year: 2018 ident: 10.1016/j.watres.2020.115559_bib53 article-title: Activation CuFe2O4 by hydroxylamine for oxidation of antibiotic sulfamethoxazole publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b03340 – volume: 40 start-page: 1000 issue: 3 year: 2006 ident: 10.1016/j.watres.2020.115559_bib6 article-title: Cobalt-mediated activation of peroxymonosulfate and sulfate radical attack on phenolic compounds. implications of chloride ions publication-title: Environ. Sci. Technol. doi: 10.1021/es050634b – volume: 317 start-page: 1012 year: 2017 ident: 10.1016/j.watres.2020.115559_bib25 article-title: Contribution of persulfate in UV-254 nm activated systems for complete degradation of chloramphenicol antibiotic in water publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.02.133 – volume: 472 start-page: 800 year: 2014 ident: 10.1016/j.watres.2020.115559_bib29 article-title: Degradation of ciprofloxacin and sulfamethoxazole by ferrous-activated persulfate: implications for remediation of groundwater contaminated by antibiotics publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2013.11.008 – volume: 237 start-page: 976 year: 2018 ident: 10.1016/j.watres.2020.115559_bib56 article-title: Peroxymonosulfate-enhanced visible light photocatalytic degradation of bisphenol A by perylene imide-modified g-C3N4 publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2018.06.049 – volume: 94 start-page: 288 issue: 3–4 year: 2010 ident: 10.1016/j.watres.2020.115559_bib3 article-title: Kinetics and mechanism of advanced oxidation processes (AOPs) in degradation of ciprofloxacin in water publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2009.12.002 – volume: 110 start-page: 2668 issue: 6 year: 2006 ident: 10.1016/j.watres.2020.115559_bib57 article-title: Monoclinic structured BiVO4 nanosheets: hydrothermal preparation, formation mechanism, and coloristic and photocatalytic properties publication-title: J. Phys. Chem. B doi: 10.1021/jp056367d – volume: 6 start-page: 2296 issue: 7 year: 2016 ident: 10.1016/j.watres.2020.115559_bib62 article-title: Visible-light-induced photocatalysis and peroxymonosulfate activation over ZnFe2O4 fine nanoparticles for degradation of orange II publication-title: Catal. Sci. Technol. doi: 10.1039/C5CY01735A – volume: 52 start-page: 8649 issue: 15 year: 2018 ident: 10.1016/j.watres.2020.115559_bib64 article-title: Catalytic removal of aqueous contaminants on N-doped graphitic biochars: inherent roles of adsorption and nonradical mechanisms publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b01817 – volume: 200 start-page: 330 year: 2017 ident: 10.1016/j.watres.2020.115559_bib8 article-title: Hierarchical assembly of graphene-bridged Ag3PO4/Ag/BiVO4 (040) Z-scheme photocatalyst: an efficient, sustainable and heterogeneous catalyst with enhanced visible-light photoactivity towards tetracycline degradation under visible light irradiation publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2016.07.021 – volume: 50 start-page: 10187 issue: 18 year: 2016 ident: 10.1016/j.watres.2020.115559_bib2 article-title: Activation of peroxymonosulfate by surface-loaded noble metal nanoparticles for oxidative degradation of organic compounds publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b02841 – volume: 157 start-page: 406 year: 2019 ident: 10.1016/j.watres.2020.115559_bib15 article-title: Insights into the mechanism of nonradical reactions of persulfate activated by carbon nanotubes: activation performance and structure-function relationship publication-title: Water Res. doi: 10.1016/j.watres.2019.03.096 – volume: 5 start-page: 553 issue: 2 year: 2014 ident: 10.1016/j.watres.2020.115559_bib22 article-title: N-doping-induced nonradical reaction on single-walled carbon nanotubes for catalytic phenol oxidation publication-title: ACS Catal. doi: 10.1021/cs5017613 – volume: 51 start-page: 764 year: 2018 ident: 10.1016/j.watres.2020.115559_bib48 article-title: Multi-electric field modulation for photocatalytic oxygen evolution: enhanced charge separation by coupling oxygen vacancies with faceted heterostructures publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.07.018 – volume: 52 start-page: 11276 issue: 19 year: 2018 ident: 10.1016/j.watres.2020.115559_bib47 article-title: Is sulfate radical really generated from peroxydisulfate activated by Iron(II) for environmental decontamination? publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b02266 – volume: 40 start-page: 3053 issue: 16 year: 2006 ident: 10.1016/j.watres.2020.115559_bib42 article-title: Adsorption of p-nitrophenol on activated carbon fixed-bed publication-title: Water Res. doi: 10.1016/j.watres.2006.06.018 – volume: 354 start-page: 941 year: 2018 ident: 10.1016/j.watres.2020.115559_bib11 article-title: Graphene- and CNTs-based carbocatalysts in persulfates activation: material design and catalytic mechanisms publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.08.049 – volume: 137 start-page: 130 year: 2018 ident: 10.1016/j.watres.2020.115559_bib41 article-title: Persistent free radicals in carbon-based materials on transformation of refractory organic contaminants (ROCs) in water: a critical review publication-title: Water Res. doi: 10.1016/j.watres.2018.03.012 – volume: 167 start-page: 115107 year: 2019 ident: 10.1016/j.watres.2020.115559_bib49 article-title: Efficient removal of arsenic from groundwater using iron oxide nanoneedle array-decorated biochar fibers with high Fe utilization and fast adsorption kinetics publication-title: Water Res. doi: 10.1016/j.watres.2019.115107 – volume: 376 start-page: 119193 year: 2018 ident: 10.1016/j.watres.2020.115559_bib19 article-title: Facile preparation of porous Mn/Fe3O4 cubes as peroxymonosulfate activating catalyst for effective bisphenol A degradation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.05.177 – volume: 8 start-page: 32887 issue: 48 year: 2016 ident: 10.1016/j.watres.2020.115559_bib9 article-title: Enhanced photocatalytic degradation of tetracycline by AgI/BiVO4 heterojunction under visible-light irradiation: mineralization efficiency and mechanism publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b12278 – volume: 38 start-page: 3705 issue: 13 year: 2004 ident: 10.1016/j.watres.2020.115559_bib5 article-title: Radical generation by the interaction of transition metals with common oxidants publication-title: Environ. Sci. Technol. doi: 10.1021/es035121o – volume: 49 start-page: 7776 issue: 13 year: 2015 ident: 10.1016/j.watres.2020.115559_bib60 article-title: Intimate coupling of photocatalysis and biodegradation for degrading phenol using different light types: visible light vs UV light publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b00989 – volume: 150 start-page: 431 year: 2019 ident: 10.1016/j.watres.2020.115559_bib38 article-title: Visible-light-driven photocatalytic degradation of diclofenac by carbon quantum dots modified porous g-C3N4: mechanisms, degradation pathway and DFT calculation publication-title: Water Res. doi: 10.1016/j.watres.2018.12.001 – volume: 37 start-page: 4790 issue: 20 year: 2003 ident: 10.1016/j.watres.2020.115559_bib4 article-title: Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt publication-title: Environ. Sci. Technol. doi: 10.1021/es0263792 – volume: 142 start-page: 208 year: 2018 ident: 10.1016/j.watres.2020.115559_bib61 article-title: New insight into the mechanism of peroxymonosulfate activation by sulfur-containing minerals: role of sulfur conversion in sulfate radical generation publication-title: Water Res. doi: 10.1016/j.watres.2018.06.002 – volume: 52 start-page: 9330 issue: 16 year: 2018 ident: 10.1016/j.watres.2020.115559_bib50 article-title: Active {001} facet exposed TiO2 nanotubes photocatalyst filter for volatile organic compounds removal: from material development to commercial indoor air cleaner application publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b02282 – volume: 47 start-page: 5864 issue: 11 year: 2013 ident: 10.1016/j.watres.2020.115559_bib1 article-title: Mechanism of persulfate activation by phenols publication-title: Environ. Sci. Technol. doi: 10.1021/es400728c – volume: 202 start-page: 1 year: 2017 ident: 10.1016/j.watres.2020.115559_bib23 article-title: Activation of persulfate with vanadium species for PCBs degradation: a mechanistic study publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2016.09.006 – volume: 5 start-page: 1933 issue: 8 year: 2018 ident: 10.1016/j.watres.2020.115559_bib45 article-title: The synthesis of novel Co-Al2O3 nanofibrous membranes with efficient activation of peroxymonosulfate for bisphenol A degradation publication-title: Environ. Sci. Nano doi: 10.1039/C8EN00366A – volume: 233 start-page: 99 year: 2018 ident: 10.1016/j.watres.2020.115559_bib26 article-title: Sulfate radical-mediated degradation and mineralization of bisphenol F in neutral medium by the novel magnetic Sr2CoFeO6 double perovskite oxide catalyzed peroxymonosulfate: influence of co-existing chemicals and UV irradiation publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2018.03.088 – volume: 211 start-page: 79 year: 2017 ident: 10.1016/j.watres.2020.115559_bib46 article-title: Peroxymonosulfate enhanced visible light photocatalytic degradation bisphenol A by single-atom dispersed Ag mesoporous g-C3N4 hybrid publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2017.03.079 – volume: 53 start-page: 2054 issue: 4 year: 2019 ident: 10.1016/j.watres.2020.115559_bib14 article-title: Overlooked role of peroxides as free radical precursors in advanced oxidation processes publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b05901 – volume: 167 start-page: 115110 year: 2019 ident: 10.1016/j.watres.2020.115559_bib52 article-title: Manganese oxide integrated catalytic ceramic membrane for degradation of organic pollutants using sulfate radicals publication-title: Water Res. doi: 10.1016/j.watres.2019.115110 – volume: 219 start-page: 216 year: 2017 ident: 10.1016/j.watres.2020.115559_bib30 article-title: A novel combination of oxidative degradation for benzotriazole removal using TiO2 loaded on FeIIFe2IIIO4@C as an efficient activator of peroxymonosulfate publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2017.07.035 – volume: 51 start-page: 12611 issue: 21 year: 2017 ident: 10.1016/j.watres.2020.115559_bib27 article-title: Degradation of bisphenol A by peroxymonosulfate catalytically activated with Mn1.8Fe1.2O4 nanospheres: synergism between Mn and Fe publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b03007 – volume: 51 start-page: 2954 issue: 5 year: 2017 ident: 10.1016/j.watres.2020.115559_bib36 article-title: Kinetic study of hydroxyl and sulfate radical-mediated oxidation of pharmaceuticals in wastewater effluents publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b05536 – volume: 7 start-page: 482 issue: 1 year: 2015 ident: 10.1016/j.watres.2020.115559_bib28 article-title: Fabrication of multiple heterojunctions with tunable visible-light-active photocatalytic reactivity in BiOBr-BiOI full-range composites based on microstructure modulation and band structures publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am5065409 – volume: 218 start-page: 230 year: 2017 ident: 10.1016/j.watres.2020.115559_bib51 article-title: Visible-light-assisted peroxymonosulfate activation and mechanism for the degradation of pharmaceuticals over pyridyl-functionalized graphitic carbon nitride coordinated with iron phthalocyanine publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2017.06.057 – volume: 165 start-page: 42 year: 2016 ident: 10.1016/j.watres.2020.115559_bib7 article-title: Visible light enhanced heterogeneous photo-degradation of Orange II by zinc ferrite (ZnFe2O4) catalyst with the assistance of persulfate publication-title: Separ. Purif. Technol. doi: 10.1016/j.seppur.2016.03.026 – volume: 280 start-page: 623 year: 2015 ident: 10.1016/j.watres.2020.115559_bib16 article-title: Sono-activated persulfate oxidation of bisphenol A: kinetics, pathways and the controversial role of temperature publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.06.061 – volume: 222 start-page: 176 year: 2018 ident: 10.1016/j.watres.2020.115559_bib21 article-title: Nanodiamonds in sp2/sp3 configuration for radical to nonradical oxidation: core-shell layer dependence publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2017.10.007 – volume: 30 start-page: 1703119 issue: 1 year: 2018 ident: 10.1016/j.watres.2020.115559_bib33 article-title: Polyhedral 30-faceted BiVO4 microcrystals predominantly enclosed by high-index planes promoting photocatalytic water-splitting activity publication-title: Adv. Mater. doi: 10.1002/adma.201703119 – volume: 121 start-page: 19 year: 2018 ident: 10.1016/j.watres.2020.115559_bib40 article-title: Self-powered photoelectrochemical aptasensor based on phosphorus doped porous ultrathin g-C3N4 nanosheets enhanced by surface plasmon resonance effect publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2018.08.042 – volume: 58 start-page: 1 year: 2019 ident: 10.1016/j.watres.2020.115559_bib13 article-title: Confining free radicals in close vicinity to contaminants enables ultrafast Fenton-like processes in the interspacing of MoS2 membranes publication-title: Angew. Chem. Int. Ed. – volume: 7 start-page: 4169 issue: 7 year: 2015 ident: 10.1016/j.watres.2020.115559_bib20 article-title: Nitrogen-doped graphene for generation and evolution of reactive radicals by metal-free catalysis publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am508416n – volume: 9 start-page: 38832 issue: 44 year: 2017 ident: 10.1016/j.watres.2020.115559_bib63 article-title: Boosting the visible-light photoactivity of BiOCl/BiVO4/N-GQD ternary heterojunctions based on internal Z-Scheme charge transfer of N-GQDs: simultaneous band gap narrowing and carrier lifetime prolonging publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b14412 – volume: 139 start-page: 3438 issue: 9 year: 2017 ident: 10.1016/j.watres.2020.115559_bib24 article-title: Highly efficient and exceptionally durable CO2 Pphotoreduction to methanol over freestanding defective single-unit-cell bismuth vanadate layers publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b11263 – volume: 235 start-page: 264 year: 2018 ident: 10.1016/j.watres.2020.115559_bib44 article-title: Sulfate radical-based photo-Fenton reaction derived by CuBi2O4 and its composites with α-Bi2O3 under visible light irradiation: catalyst fabrication, performance and reaction mechanism publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2018.04.058 – volume: 143 start-page: 589 year: 2018 ident: 10.1016/j.watres.2020.115559_bib18 article-title: Light-excited photoelectrons coupled with bio-photocatalysis enhanced the degradation efficiency of oxytetracycline publication-title: Water Res. doi: 10.1016/j.watres.2018.06.068 – volume: 140 start-page: 12469 issue: 39 year: 2018 ident: 10.1016/j.watres.2020.115559_bib35 article-title: Single cobalt atoms anchored on porous N-doped graphene with dual reaction sites for efficient Fenton-like catalysis publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b05992 – volume: 4 start-page: 7 year: 2013 ident: 10.1016/j.watres.2020.115559_bib34 article-title: Spatial separation of photogenerated electrons and holes among {010} and {110} crystal facets of BiVO4 publication-title: Nat. Commun. – volume: 51 start-page: 5137 issue: 9 year: 2017 ident: 10.1016/j.watres.2020.115559_bib37 article-title: Enhanced photocatalytic degradation of environmental pollutants under visible irradiation by a composite coating publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b00350 – volume: 327 start-page: 481 year: 2017 ident: 10.1016/j.watres.2020.115559_bib59 article-title: Efficient removal of ciprofloxacin by peroxymonosulfate/Mn3O4-MnO2 catalytic oxidation system publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.06.064 |
SSID | ssj0002239 |
Score | 2.6889563 |
Snippet | Peroxymonosulfate (PMS) is extensively used as an oxidant to develop the sulfate radical-based advanced oxidation processes in the decontamination of organic... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 115559 |
SubjectTerms | BiVO4 Catalysis Catalytic degradation Ciprofloxacin decontamination electron paramagnetic resonance spectroscopy free radicals Light Mechanism nanosheets oxidants oxidation Peroxides Peroxymonosulfate pollution control spectrometers sulfates toxicity Visible light water Water treatment |
Title | Catalytic degradation of ciprofloxacin by a visible-light-assisted peroxymonosulfate activation system: Performance and mechanism |
URI | https://dx.doi.org/10.1016/j.watres.2020.115559 https://www.ncbi.nlm.nih.gov/pubmed/32028250 https://www.proquest.com/docview/2352641788 https://www.proquest.com/docview/2574325805 |
Volume | 173 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS91AEF_EXupBbGv11Va24HU1H7vZbG_yqLy2VHpQ8Bb2EyIxeeh71HcR_M87k020hVahx4QJLDuTmd9-_H5DyEECeTdIJ5iW1jKurWMqURmD5ZAVGXfGCiQKfz8tZuf864W4WCPTkQuD1yqH3B9zep-thzdHw2wezesaOb5Q_HLBM4hTlNNDBjuXGOWHd4_XPKD8qfGUGa1H-lx_x-unRkIGrBIzzB1CoGLp38vTv-BnX4ZOtsjmgB_pcRziK7Lm29dk4zdVwTfkfopbMiswoA6lIGLXJNoFamts0d10t9rWLTUrqilyy03jWdMLigCSRrc7ivLhtysI0e5m2QTAoxQJEHH7lkb150_0xyPpgOrW0SuPNOL65mqbnJ98PpvO2NBpgVlepAsWjFClLaQSOjWF1F6GkGhlstIoDYhCJU4LbwKgFbCwKQKfwsoAv7_mttD5W7Ledq3fJVSbzAhjZOAy51wZ7Z2DvOGckIiO8gnJxwmu7CBDjt0wmmq8b3ZZRbdU6JYqumVC2MNX8yjD8Yy9HH1X_RFOFVSKZ778OLq6gj8Nj09067slGGErAZ7KsnzCRgAiy0SZiAnZiXHyMF7sVA_r8eTdf49tj7zEJzzMSsV7sr64XvoPgIkWZr8P-n3y4vjLt9npL5t5D2M |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKOQAHxLvL00hcTfOw45gbWrVaoK04tFJvlp9SUJpU7a7oXpD458zESQtSoRLXZCxZHnvm8-P7hpB3GcTdKL1gRjrHuHGeqUwVDLZDThTcWyeQKLx_UC2O-OdjcbxB5hMXBp9VjrE_xfQhWo9ftsfR3D5tGuT4QvIrBS9gnqKc3i1ym8PyxTIG739cvfOA_Kema2Y0n_hzwyOv7wYZGbBNLDB4CIGSpdfnp7_hzyEP7T4g90cAST-mPj4kG6F7RO79Jiv4mPyc45nMGgyoRy2IVDaJ9pG6Bmt0t_2FcU1H7ZoaiuRy2wbWDooiAKXR756ifvjFGuZof75qIwBSigyIdH5Lk_zzB_r1inVATefpSUAecXN-8oQc7e4czhdsLLXAHK_yJYtWqNpVUgmT20qaIGPMjLJFbZUBSKEyb0SwEeAKWLgckU_lZIT1b7irTPmUbHZ9F7YINbawwloZuSw5V9YE7yFweC8kwqNyRsppgLUbdcixHEarpwdn33Ryi0a36OSWGWGXrU6TDscN9nLynf5jPmlIFTe0fDu5WsNSw_sT04V-BUZYS4Dnsq7_YSMAkhWizsSMPEvz5LK_WKoeNuTZ8__u2xtyZ3G4v6f3Ph18eUHu4h-82crFS7K5PFuFVwCQlvb1sAB-AarCEPE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Catalytic+degradation+of+ciprofloxacin+by+a+visible-light-assisted+peroxymonosulfate+activation+system%3A+Performance+and+mechanism&rft.jtitle=Water+research+%28Oxford%29&rft.au=Chen%2C+Fei&rft.au=Huang%2C+Gui-Xiang&rft.au=Yao%2C+Fu-Bing&rft.au=Yang%2C+Qi&rft.date=2020-04-15&rft.eissn=1879-2448&rft.volume=173&rft.spage=115559&rft_id=info:doi/10.1016%2Fj.watres.2020.115559&rft_id=info%3Apmid%2F32028250&rft.externalDocID=32028250 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1354&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1354&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1354&client=summon |