Catalytic degradation of ciprofloxacin by a visible-light-assisted peroxymonosulfate activation system: Performance and mechanism

Peroxymonosulfate (PMS) is extensively used as an oxidant to develop the sulfate radical-based advanced oxidation processes in the decontamination of organic pollutants and various PMS activation methods have been explored. Visible-light-assisted PMS activation to construct a Fenton-like process has...

Full description

Saved in:
Bibliographic Details
Published inWater research (Oxford) Vol. 173; p. 115559
Main Authors Chen, Fei, Huang, Gui-Xiang, Yao, Fu-Bing, Yang, Qi, Zheng, Yu-Ming, Zhao, Quan-Bao, Yu, Han-Qing
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 15.04.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Peroxymonosulfate (PMS) is extensively used as an oxidant to develop the sulfate radical-based advanced oxidation processes in the decontamination of organic pollutants and various PMS activation methods have been explored. Visible-light-assisted PMS activation to construct a Fenton-like process has shown a great potential for pollution control. In our work, BiVO4 nanosheets were prepared using a hydrothermal process and used to activate PMS under visible light. A rapid degradation of ciprofloxacin (CIP) was achieved by dosing PMS (0.96 g/L), BiVO4 (0.32 g/L) under visible light with a reaction rate constant of 77.72-fold higher than that in the BiVO4/visible light process. The electron spin resonance and free radical quenching experiments indicate that reactive species of •O2−, h+, •OH and SO4•− all worked, where h+, •OH and SO4•− were found as the dominant contributors to the CIP degradation. The spectroscopic analyses further demonstrate that the photoinduced electrons were directly involved in the PMS activation process. The generated •O2− was partially utilized to activate PMS and more •OH was produced because of the chain reactions between SO4•− and H2O/OH−. In this process, PMS acted as an electron acceptor to transfer the photo-induced charges from the conduction band of BiVO4 and PMS was successfully activated to yield the high-powered oxidative species. From the degradation intermediates of CIP detected by a liquid-chromatography-mass spectrometer, the possible degradation pathways were proposed. The substantially decreased toxicity of CIP after the reaction was also observed. This work might provide new insights into the visible-light-assisted PMS activation mechanisms and is useful to construct environmentally-friendly catalytic processes for the efficient degradation of organic pollutants. [Display omitted] •PMS was effectively activated by BiVO4 nanosheets for water purification under visible light.•Separation of electron/hole pairs and generation of oxidative species were enhanced.•Visible-light-assisted PMS activation Fenton-like mechanism was elucidated.•High mineralization and low biotoxicity validated the application potential of the system.
AbstractList Peroxymonosulfate (PMS) is extensively used as an oxidant to develop the sulfate radical-based advanced oxidation processes in the decontamination of organic pollutants and various PMS activation methods have been explored. Visible-light-assisted PMS activation to construct a Fenton-like process has shown a great potential for pollution control. In our work, BiVO4 nanosheets were prepared using a hydrothermal process and used to activate PMS under visible light. A rapid degradation of ciprofloxacin (CIP) was achieved by dosing PMS (0.96 g/L), BiVO4 (0.32 g/L) under visible light with a reaction rate constant of 77.72-fold higher than that in the BiVO4/visible light process. The electron spin resonance and free radical quenching experiments indicate that reactive species of •O2−, h+, •OH and SO4•− all worked, where h+, •OH and SO4•− were found as the dominant contributors to the CIP degradation. The spectroscopic analyses further demonstrate that the photoinduced electrons were directly involved in the PMS activation process. The generated •O2− was partially utilized to activate PMS and more •OH was produced because of the chain reactions between SO4•− and H2O/OH−. In this process, PMS acted as an electron acceptor to transfer the photo-induced charges from the conduction band of BiVO4 and PMS was successfully activated to yield the high-powered oxidative species. From the degradation intermediates of CIP detected by a liquid-chromatography-mass spectrometer, the possible degradation pathways were proposed. The substantially decreased toxicity of CIP after the reaction was also observed. This work might provide new insights into the visible-light-assisted PMS activation mechanisms and is useful to construct environmentally-friendly catalytic processes for the efficient degradation of organic pollutants. [Display omitted] •PMS was effectively activated by BiVO4 nanosheets for water purification under visible light.•Separation of electron/hole pairs and generation of oxidative species were enhanced.•Visible-light-assisted PMS activation Fenton-like mechanism was elucidated.•High mineralization and low biotoxicity validated the application potential of the system.
Peroxymonosulfate (PMS) is extensively used as an oxidant to develop the sulfate radical-based advanced oxidation processes in the decontamination of organic pollutants and various PMS activation methods have been explored. Visible-light-assisted PMS activation to construct a Fenton-like process has shown a great potential for pollution control. In our work, BiVO4 nanosheets were prepared using a hydrothermal process and used to activate PMS under visible light. A rapid degradation of ciprofloxacin (CIP) was achieved by dosing PMS (0.96 g/L), BiVO4 (0.32 g/L) under visible light with a reaction rate constant of 77.72-fold higher than that in the BiVO4/visible light process. The electron spin resonance and free radical quenching experiments indicate that reactive species of •O2-, h+, •OH and SO4•- all worked, where h+, •OH and SO4•- were found as the dominant contributors to the CIP degradation. The spectroscopic analyses further demonstrate that the photoinduced electrons were directly involved in the PMS activation process. The generated •O2- was partially utilized to activate PMS and more •OH was produced because of the chain reactions between SO4•- and H2O/OH-. In this process, PMS acted as an electron acceptor to transfer the photo-induced charges from the conduction band of BiVO4 and PMS was successfully activated to yield the high-powered oxidative species. From the degradation intermediates of CIP detected by a liquid-chromatography-mass spectrometer, the possible degradation pathways were proposed. The substantially decreased toxicity of CIP after the reaction was also observed. This work might provide new insights into the visible-light-assisted PMS activation mechanisms and is useful to construct environmentally-friendly catalytic processes for the efficient degradation of organic pollutants.Peroxymonosulfate (PMS) is extensively used as an oxidant to develop the sulfate radical-based advanced oxidation processes in the decontamination of organic pollutants and various PMS activation methods have been explored. Visible-light-assisted PMS activation to construct a Fenton-like process has shown a great potential for pollution control. In our work, BiVO4 nanosheets were prepared using a hydrothermal process and used to activate PMS under visible light. A rapid degradation of ciprofloxacin (CIP) was achieved by dosing PMS (0.96 g/L), BiVO4 (0.32 g/L) under visible light with a reaction rate constant of 77.72-fold higher than that in the BiVO4/visible light process. The electron spin resonance and free radical quenching experiments indicate that reactive species of •O2-, h+, •OH and SO4•- all worked, where h+, •OH and SO4•- were found as the dominant contributors to the CIP degradation. The spectroscopic analyses further demonstrate that the photoinduced electrons were directly involved in the PMS activation process. The generated •O2- was partially utilized to activate PMS and more •OH was produced because of the chain reactions between SO4•- and H2O/OH-. In this process, PMS acted as an electron acceptor to transfer the photo-induced charges from the conduction band of BiVO4 and PMS was successfully activated to yield the high-powered oxidative species. From the degradation intermediates of CIP detected by a liquid-chromatography-mass spectrometer, the possible degradation pathways were proposed. The substantially decreased toxicity of CIP after the reaction was also observed. This work might provide new insights into the visible-light-assisted PMS activation mechanisms and is useful to construct environmentally-friendly catalytic processes for the efficient degradation of organic pollutants.
Peroxymonosulfate (PMS) is extensively used as an oxidant to develop the sulfate radical-based advanced oxidation processes in the decontamination of organic pollutants and various PMS activation methods have been explored. Visible-light-assisted PMS activation to construct a Fenton-like process has shown a great potential for pollution control. In our work, BiVO₄ nanosheets were prepared using a hydrothermal process and used to activate PMS under visible light. A rapid degradation of ciprofloxacin (CIP) was achieved by dosing PMS (0.96 g/L), BiVO₄ (0.32 g/L) under visible light with a reaction rate constant of 77.72-fold higher than that in the BiVO₄/visible light process. The electron spin resonance and free radical quenching experiments indicate that reactive species of •O₂⁻, h⁺, •OH and SO₄•⁻ all worked, where h⁺, •OH and SO₄•⁻ were found as the dominant contributors to the CIP degradation. The spectroscopic analyses further demonstrate that the photoinduced electrons were directly involved in the PMS activation process. The generated •O₂⁻ was partially utilized to activate PMS and more •OH was produced because of the chain reactions between SO₄•⁻ and H₂O/OH⁻. In this process, PMS acted as an electron acceptor to transfer the photo-induced charges from the conduction band of BiVO₄ and PMS was successfully activated to yield the high-powered oxidative species. From the degradation intermediates of CIP detected by a liquid-chromatography-mass spectrometer, the possible degradation pathways were proposed. The substantially decreased toxicity of CIP after the reaction was also observed. This work might provide new insights into the visible-light-assisted PMS activation mechanisms and is useful to construct environmentally-friendly catalytic processes for the efficient degradation of organic pollutants.
Peroxymonosulfate (PMS) is extensively used as an oxidant to develop the sulfate radical-based advanced oxidation processes in the decontamination of organic pollutants and various PMS activation methods have been explored. Visible-light-assisted PMS activation to construct a Fenton-like process has shown a great potential for pollution control. In our work, BiVO nanosheets were prepared using a hydrothermal process and used to activate PMS under visible light. A rapid degradation of ciprofloxacin (CIP) was achieved by dosing PMS (0.96 g/L), BiVO (0.32 g/L) under visible light with a reaction rate constant of 77.72-fold higher than that in the BiVO /visible light process. The electron spin resonance and free radical quenching experiments indicate that reactive species of O , h , •OH and SO all worked, where h , •OH and SO were found as the dominant contributors to the CIP degradation. The spectroscopic analyses further demonstrate that the photoinduced electrons were directly involved in the PMS activation process. The generated O was partially utilized to activate PMS and more •OH was produced because of the chain reactions between SO and H O/OH . In this process, PMS acted as an electron acceptor to transfer the photo-induced charges from the conduction band of BiVO and PMS was successfully activated to yield the high-powered oxidative species. From the degradation intermediates of CIP detected by a liquid-chromatography-mass spectrometer, the possible degradation pathways were proposed. The substantially decreased toxicity of CIP after the reaction was also observed. This work might provide new insights into the visible-light-assisted PMS activation mechanisms and is useful to construct environmentally-friendly catalytic processes for the efficient degradation of organic pollutants.
ArticleNumber 115559
Author Chen, Fei
Yu, Han-Qing
Huang, Gui-Xiang
Zheng, Yu-Ming
Yang, Qi
Yao, Fu-Bing
Zhao, Quan-Bao
Author_xml – sequence: 1
  givenname: Fei
  surname: Chen
  fullname: Chen, Fei
  organization: CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science & Technology of China, Hefei, China
– sequence: 2
  givenname: Gui-Xiang
  surname: Huang
  fullname: Huang, Gui-Xiang
  organization: CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science & Technology of China, Hefei, China
– sequence: 3
  givenname: Fu-Bing
  surname: Yao
  fullname: Yao, Fu-Bing
  organization: College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
– sequence: 4
  givenname: Qi
  orcidid: 0000-0001-6781-770X
  surname: Yang
  fullname: Yang, Qi
  organization: College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
– sequence: 5
  givenname: Yu-Ming
  orcidid: 0000-0002-3858-1037
  surname: Zheng
  fullname: Zheng, Yu-Ming
  organization: CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
– sequence: 6
  givenname: Quan-Bao
  surname: Zhao
  fullname: Zhao, Quan-Bao
  organization: CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
– sequence: 7
  givenname: Han-Qing
  orcidid: 0000-0001-5247-6244
  surname: Yu
  fullname: Yu, Han-Qing
  email: hqyu@ustc.edu.cn
  organization: CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science & Technology of China, Hefei, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32028250$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFvFCEYhompsdvqPzCGo5dZgYEZpgcTs9HWpIke9Ey-YT5aNjPDCuy2e_SfS5324sGeSOB53oT3PSMnc5iRkLecrTnjzYft-g5yxLQWTJQrrpTqXpAV121XCSn1CVkxJuuK10qekrOUtowxIeruFTmti6OFYivyewMZxmP2lg54E2GA7MNMg6PW72JwY7gH62faHynQg0--H7Ea_c1triAlnzIOdIcx3B-nMIe0Hx1kpGCzPyxJ6ViY6YJ-x-hCnGC25Xke6IT2FmafptfkpYMx4ZvH85z8_PL5x-aquv52-XXz6bqysuG5cr3qtG3aTgHvmxawdY5B1wvdd8A63rEBFPZOaVkIyxlreGNbx6QGaRuoz8n7Jbd869ceUzaTTxbHEWYM-2SEamUtlGbqebRWopG81bqg7x7RfT_hYHbRTxCP5qnhAlwsgI0hpYjOWJ__VpMj-NFwZh7mNFuzzGke5jTLnEWW_8hP-c9oHxcNS58Hj9Ek67E0P_iINpsh-P8H_AEBNL5S
CitedBy_id crossref_primary_10_1016_j_seppur_2023_123779
crossref_primary_10_1016_j_jwpe_2022_103184
crossref_primary_10_1016_j_cej_2023_147323
crossref_primary_10_1016_j_seppur_2023_124628
crossref_primary_10_1073_pnas_2401175121
crossref_primary_10_1016_j_eti_2023_103337
crossref_primary_10_1016_j_seppur_2020_118109
crossref_primary_10_1002_adma_202202891
crossref_primary_10_1016_j_seppur_2024_129357
crossref_primary_10_1080_09593330_2022_2093651
crossref_primary_10_1016_j_jhazmat_2023_132401
crossref_primary_10_1016_j_cej_2024_153852
crossref_primary_10_1016_j_apcatb_2024_124848
crossref_primary_10_1016_j_cej_2022_140774
crossref_primary_10_1016_j_cej_2022_140895
crossref_primary_10_1021_acsami_2c16144
crossref_primary_10_1016_j_jwpe_2023_104428
crossref_primary_10_1016_j_jece_2021_105524
crossref_primary_10_1016_j_seppur_2024_126645
crossref_primary_10_1016_j_rsurfi_2023_100122
crossref_primary_10_1021_acsestwater_3c00319
crossref_primary_10_1038_s41545_024_00418_2
crossref_primary_10_1016_j_ijbiomac_2021_12_120
crossref_primary_10_1016_j_jcis_2021_11_162
crossref_primary_10_1021_acsami_2c08189
crossref_primary_10_1016_j_apsusc_2023_158861
crossref_primary_10_1016_j_jece_2023_110681
crossref_primary_10_1016_j_jcis_2024_01_135
crossref_primary_10_1016_j_psep_2024_03_015
crossref_primary_10_1007_s11356_023_27782_9
crossref_primary_10_1007_s10854_023_11142_x
crossref_primary_10_1016_j_seppur_2024_129225
crossref_primary_10_1021_acs_langmuir_4c00558
crossref_primary_10_1007_s11356_022_19664_3
crossref_primary_10_1016_j_scitotenv_2020_140492
crossref_primary_10_1007_s10904_024_03360_5
crossref_primary_10_1016_j_seppur_2023_125967
crossref_primary_10_1016_j_jhazmat_2022_128513
crossref_primary_10_1016_j_seppur_2022_121099
crossref_primary_10_1021_acsestengg_1c00330
crossref_primary_10_1016_j_chemosphere_2021_132920
crossref_primary_10_1016_j_jhazmat_2021_125528
crossref_primary_10_1016_j_psep_2024_12_084
crossref_primary_10_1016_j_watres_2021_116881
crossref_primary_10_1016_j_apcatb_2023_122918
crossref_primary_10_1016_j_jclepro_2025_144982
crossref_primary_10_1016_j_jece_2023_111502
crossref_primary_10_1016_j_jhazmat_2021_127828
crossref_primary_10_1080_03067319_2021_1917558
crossref_primary_10_1016_j_jmrt_2022_04_046
crossref_primary_10_1016_j_envpol_2022_120668
crossref_primary_10_1016_j_jcis_2022_08_108
crossref_primary_10_1016_j_cej_2021_129477
crossref_primary_10_1038_s41598_024_73888_6
crossref_primary_10_1016_j_seppur_2024_127837
crossref_primary_10_1002_aoc_70008
crossref_primary_10_1016_j_cej_2025_160094
crossref_primary_10_1016_j_cej_2021_128713
crossref_primary_10_1016_j_jhazmat_2021_126841
crossref_primary_10_1016_j_psep_2022_07_003
crossref_primary_10_1016_j_dwt_2025_101001
crossref_primary_10_1016_j_jcis_2025_137250
crossref_primary_10_3390_catal13050836
crossref_primary_10_1016_j_jcis_2021_08_183
crossref_primary_10_1021_acsestwater_1c00495
crossref_primary_10_1016_j_jece_2023_110538
crossref_primary_10_1016_j_seppur_2023_125980
crossref_primary_10_2139_ssrn_4008767
crossref_primary_10_1016_j_cej_2022_140201
crossref_primary_10_1016_j_seppur_2024_127701
crossref_primary_10_1016_j_seppur_2023_123565
crossref_primary_10_1016_j_apcatb_2022_121542
crossref_primary_10_1016_j_chemosphere_2020_127675
crossref_primary_10_1021_acsami_2c06011
crossref_primary_10_1016_j_cej_2021_131457
crossref_primary_10_1016_j_jwpe_2024_106370
crossref_primary_10_1039_D3EN00660C
crossref_primary_10_1016_j_seppur_2021_118787
crossref_primary_10_1016_j_cej_2022_137044
crossref_primary_10_1016_j_electacta_2022_141428
crossref_primary_10_1016_j_scitotenv_2020_140587
crossref_primary_10_1016_j_apcatb_2023_123557
crossref_primary_10_1016_j_cej_2024_151180
crossref_primary_10_1016_j_apcatb_2024_124243
crossref_primary_10_1016_j_cej_2022_137608
crossref_primary_10_1016_j_jhazmat_2022_128970
crossref_primary_10_1016_j_jiec_2025_01_026
crossref_primary_10_1016_j_cej_2023_145221
crossref_primary_10_1021_acs_est_4c14644
crossref_primary_10_1073_pnas_2314396121
crossref_primary_10_1016_j_apsusc_2023_157972
crossref_primary_10_1016_j_jcis_2021_03_066
crossref_primary_10_1016_j_seppur_2022_122875
crossref_primary_10_1016_j_chemosphere_2020_128197
crossref_primary_10_1016_j_envres_2024_119111
crossref_primary_10_1016_j_jwpe_2024_105735
crossref_primary_10_1016_j_jcis_2021_12_046
crossref_primary_10_1016_j_jenvman_2024_121608
crossref_primary_10_1016_j_scitotenv_2021_145522
crossref_primary_10_1039_D3CE00547J
crossref_primary_10_1016_j_apsusc_2023_158263
crossref_primary_10_1016_j_envres_2021_112184
crossref_primary_10_1039_D3EN00172E
crossref_primary_10_1016_j_seppur_2024_130412
crossref_primary_10_1016_j_seppur_2024_128577
crossref_primary_10_1016_j_apcatb_2020_119297
crossref_primary_10_1016_j_watres_2021_117800
crossref_primary_10_1016_j_cej_2022_140103
crossref_primary_10_1016_j_apcatb_2024_123825
crossref_primary_10_1155_2020_8888767
crossref_primary_10_1016_j_seppur_2024_126832
crossref_primary_10_1016_j_apcatb_2024_124594
crossref_primary_10_1016_j_chemosphere_2021_133158
crossref_primary_10_1016_j_jhazmat_2021_127596
crossref_primary_10_1016_j_apcatb_2021_120694
crossref_primary_10_1016_j_cclet_2021_11_061
crossref_primary_10_1007_s11581_025_06105_7
crossref_primary_10_1016_j_apcatb_2021_120572
crossref_primary_10_1016_j_jphotochem_2024_115651
crossref_primary_10_1016_j_seppur_2021_119055
crossref_primary_10_1016_j_jhazmat_2020_123460
crossref_primary_10_1016_j_ijbiomac_2023_125137
crossref_primary_10_1016_j_jwpe_2024_105142
crossref_primary_10_3390_w16243667
crossref_primary_10_1016_j_seppur_2021_118401
crossref_primary_10_1016_j_jece_2023_110603
crossref_primary_10_1063_5_0197850
crossref_primary_10_2139_ssrn_4010657
crossref_primary_10_1016_j_cej_2024_156505
crossref_primary_10_1016_j_watres_2021_116961
crossref_primary_10_1016_j_cej_2022_139009
crossref_primary_10_1016_j_seppur_2021_118891
crossref_primary_10_1016_j_seppur_2021_120058
crossref_primary_10_1016_j_seppur_2022_122771
crossref_primary_10_1021_acs_est_2c01913
crossref_primary_10_2139_ssrn_4060544
crossref_primary_10_1016_j_jece_2023_109879
crossref_primary_10_1016_j_watres_2020_116799
crossref_primary_10_1016_j_apcatb_2022_122033
crossref_primary_10_1016_j_cej_2022_141219
crossref_primary_10_1007_s11144_024_02566_5
crossref_primary_10_1016_j_psep_2024_07_096
crossref_primary_10_1016_j_jece_2022_107397
crossref_primary_10_1016_j_jhazmat_2024_134871
crossref_primary_10_1016_j_cej_2023_148026
crossref_primary_10_1016_j_seppur_2023_123127
crossref_primary_10_1016_j_jhazmat_2023_131506
crossref_primary_10_1016_j_gee_2024_12_008
crossref_primary_10_1016_j_watcyc_2024_06_003
crossref_primary_10_1016_j_jwpe_2025_107549
crossref_primary_10_1016_j_seppur_2021_118463
crossref_primary_10_1016_j_watres_2024_121774
crossref_primary_10_1016_j_jcis_2023_05_048
crossref_primary_10_1016_j_jwpe_2022_103468
crossref_primary_10_1016_j_jece_2023_110159
crossref_primary_10_1038_s41598_023_38958_1
crossref_primary_10_1016_j_colsurfa_2023_131080
crossref_primary_10_1016_j_jcis_2024_09_104
crossref_primary_10_1039_D2NJ00112H
crossref_primary_10_1016_j_jhazmat_2023_131274
crossref_primary_10_1016_j_mtcomm_2022_105187
crossref_primary_10_1016_j_colsurfa_2024_134862
crossref_primary_10_1038_s41545_023_00254_w
crossref_primary_10_1016_j_mtcomm_2021_102871
crossref_primary_10_1016_j_chemosphere_2021_130257
crossref_primary_10_1016_j_cej_2021_134417
crossref_primary_10_1016_j_jcis_2021_05_044
crossref_primary_10_1016_j_mtcomm_2024_108694
crossref_primary_10_1016_j_watres_2024_122066
crossref_primary_10_1016_j_cej_2023_148378
crossref_primary_10_1002_aoc_7073
crossref_primary_10_1016_j_jclepro_2023_137023
crossref_primary_10_1016_j_jhazmat_2020_124461
crossref_primary_10_1016_j_cclet_2022_107837
crossref_primary_10_1016_j_cej_2024_148789
crossref_primary_10_1016_j_seppur_2022_121460
crossref_primary_10_1016_j_cej_2023_146987
crossref_primary_10_1016_j_jece_2023_111494
crossref_primary_10_1016_j_seppur_2021_119328
crossref_primary_10_1016_j_jece_2024_114227
crossref_primary_10_3390_catal10121373
crossref_primary_10_1016_j_xcrp_2024_102170
crossref_primary_10_1039_D4TA02531H
crossref_primary_10_1016_j_cej_2024_156278
crossref_primary_10_1016_j_materresbull_2022_112090
crossref_primary_10_1016_j_envres_2021_112301
crossref_primary_10_1016_j_jhazmat_2023_130874
crossref_primary_10_1016_j_envres_2022_114789
crossref_primary_10_1002_ces2_10250
crossref_primary_10_2166_wst_2022_367
crossref_primary_10_1016_j_jes_2022_03_018
crossref_primary_10_1016_j_cej_2020_127852
crossref_primary_10_1016_j_apsusc_2023_157105
crossref_primary_10_1016_j_cjche_2021_10_030
crossref_primary_10_1016_j_cej_2024_151802
crossref_primary_10_1016_j_seppur_2022_121135
crossref_primary_10_1007_s10854_024_13464_w
crossref_primary_10_1016_j_cej_2023_146856
crossref_primary_10_1080_09593330_2023_2238131
crossref_primary_10_1016_j_jece_2023_110371
crossref_primary_10_1016_j_seppur_2025_132196
crossref_primary_10_1016_j_apcatb_2022_121703
crossref_primary_10_1016_j_cej_2024_150035
crossref_primary_10_1016_j_colsurfa_2023_132021
crossref_primary_10_1021_acs_est_3c10898
crossref_primary_10_1016_j_jece_2021_106592
crossref_primary_10_1016_j_cej_2021_133588
crossref_primary_10_1016_j_cej_2022_134836
crossref_primary_10_1016_j_apcatb_2021_120023
crossref_primary_10_1016_j_cej_2021_132937
crossref_primary_10_1007_s11783_023_1713_1
crossref_primary_10_1016_j_cej_2023_146961
crossref_primary_10_1016_j_efmat_2025_02_004
crossref_primary_10_1016_j_jcis_2020_12_043
crossref_primary_10_1016_j_jece_2023_110143
crossref_primary_10_1016_j_jhazmat_2021_126686
crossref_primary_10_1021_acsestengg_1c00188
crossref_primary_10_1039_D2EW00320A
crossref_primary_10_1002_adfm_202419597
crossref_primary_10_1007_s11270_023_06638_5
crossref_primary_10_1007_s11144_022_02240_8
crossref_primary_10_1016_j_chemosphere_2022_134564
crossref_primary_10_1016_j_jpcs_2021_110027
crossref_primary_10_1016_j_jece_2022_108322
crossref_primary_10_1016_j_apcatb_2023_122539
crossref_primary_10_1016_j_mtcomm_2021_102288
crossref_primary_10_1016_j_cej_2021_128793
crossref_primary_10_1016_j_jclepro_2022_132442
crossref_primary_10_1016_j_surfin_2021_101272
crossref_primary_10_1016_j_colsurfa_2023_131728
crossref_primary_10_1016_j_seppur_2022_122219
crossref_primary_10_1038_s41467_020_18776_z
crossref_primary_10_1039_D0TA04541A
crossref_primary_10_1016_j_cej_2021_131739
crossref_primary_10_1016_j_cej_2023_144893
crossref_primary_10_1016_j_jclepro_2024_142425
crossref_primary_10_1016_j_cej_2024_149828
crossref_primary_10_2166_wst_2022_043
crossref_primary_10_1016_j_jece_2022_109087
crossref_primary_10_1016_j_jece_2025_115802
crossref_primary_10_1016_j_jtice_2024_105454
crossref_primary_10_1016_j_jhazmat_2020_123846
crossref_primary_10_1016_j_cclet_2022_05_069
crossref_primary_10_1016_j_radphyschem_2023_110958
crossref_primary_10_1016_j_seppur_2024_129038
crossref_primary_10_1016_j_jece_2024_112927
crossref_primary_10_1016_j_jhazmat_2024_133816
crossref_primary_10_1016_j_seppur_2022_121716
crossref_primary_10_1016_j_cej_2021_133803
crossref_primary_10_1016_j_cej_2020_127078
crossref_primary_10_1016_j_jclepro_2022_133420
crossref_primary_10_1016_j_cej_2021_131749
crossref_primary_10_1016_j_apcatb_2021_120845
crossref_primary_10_1016_j_cej_2023_142344
crossref_primary_10_1016_j_scitotenv_2023_168860
crossref_primary_10_1021_acs_iecr_4c02875
crossref_primary_10_1016_j_colsurfa_2023_132353
crossref_primary_10_1021_acs_iecr_2c02458
crossref_primary_10_1016_j_ceramint_2021_10_059
crossref_primary_10_1016_j_jwpe_2022_103314
crossref_primary_10_1016_j_seppur_2024_129274
crossref_primary_10_1016_j_apcatb_2020_119579
crossref_primary_10_1007_s42452_022_05097_7
crossref_primary_10_1016_j_cej_2024_154055
crossref_primary_10_1016_j_apcatb_2023_122994
crossref_primary_10_1016_j_ijbiomac_2024_133373
crossref_primary_10_1080_09593330_2021_2000037
crossref_primary_10_1016_j_seppur_2023_124152
crossref_primary_10_1016_j_ecoenv_2021_112189
crossref_primary_10_3390_w17050710
crossref_primary_10_1016_j_ceja_2022_100240
crossref_primary_10_1016_j_jhazmat_2022_130412
crossref_primary_10_1016_j_seppur_2022_120733
crossref_primary_10_1016_j_apcatb_2023_122990
crossref_primary_10_1016_j_cej_2023_147346
crossref_primary_10_1016_j_comptc_2021_113427
crossref_primary_10_1016_j_jphotochem_2024_115608
crossref_primary_10_1016_j_cej_2024_149129
crossref_primary_10_1016_j_apsusc_2023_158199
crossref_primary_10_1016_j_jhazmat_2020_123860
crossref_primary_10_1016_S1872_2067_23_64536_X
crossref_primary_10_1016_j_jenvman_2024_123775
crossref_primary_10_1016_j_seppur_2024_130807
crossref_primary_10_1039_D4EN00737A
crossref_primary_10_3390_ma16216879
crossref_primary_10_1016_j_jclepro_2023_140384
crossref_primary_10_1016_j_cej_2023_144519
crossref_primary_10_1016_j_cej_2024_153075
crossref_primary_10_1080_02772248_2023_2168005
crossref_primary_10_1016_j_cej_2022_136373
crossref_primary_10_1016_j_cej_2022_135840
crossref_primary_10_1016_j_envres_2025_121460
crossref_primary_10_1016_j_jwpe_2022_102903
crossref_primary_10_61186_jcc_7_1_1
crossref_primary_10_1016_j_cej_2025_159579
crossref_primary_10_1016_j_inoche_2022_109414
crossref_primary_10_1016_j_jpcs_2022_110639
crossref_primary_10_2139_ssrn_3986919
crossref_primary_10_1016_j_colsurfa_2024_135336
crossref_primary_10_1016_j_jclepro_2023_136914
crossref_primary_10_1016_j_seppur_2023_125015
crossref_primary_10_1016_j_cej_2021_132613
crossref_primary_10_1016_j_jphotochem_2021_113425
crossref_primary_10_1016_j_seppur_2021_120329
crossref_primary_10_1016_j_seppur_2022_122703
crossref_primary_10_1016_j_seppur_2022_120764
crossref_primary_10_1016_j_envres_2023_117851
crossref_primary_10_1073_pnas_2305378120
crossref_primary_10_1016_j_cej_2021_131525
crossref_primary_10_1016_j_jcis_2021_03_122
crossref_primary_10_1016_j_jece_2024_113351
crossref_primary_10_1016_j_seppur_2022_121040
crossref_primary_10_1016_j_cej_2023_143778
crossref_primary_10_1038_s41598_024_57542_9
crossref_primary_10_1007_s11356_024_32828_7
crossref_primary_10_1016_j_cej_2022_139659
crossref_primary_10_1016_j_apcatb_2022_121341
crossref_primary_10_1016_j_jhazmat_2023_131463
crossref_primary_10_1039_D2EN00665K
crossref_primary_10_1016_j_apsusc_2020_147412
crossref_primary_10_1016_j_jhazmat_2023_131103
crossref_primary_10_1016_j_cej_2024_156337
crossref_primary_10_1016_j_jece_2020_104121
crossref_primary_10_1016_j_jwpe_2024_106639
crossref_primary_10_1016_j_chemosphere_2023_139554
crossref_primary_10_1016_j_seppur_2024_127866
crossref_primary_10_1016_j_apcatb_2021_120513
crossref_primary_10_1016_j_chemosphere_2022_134481
crossref_primary_10_1016_j_jhazmat_2021_127292
crossref_primary_10_1007_s10904_021_02184_x
crossref_primary_10_1016_j_seppur_2024_126659
Cites_doi 10.1021/acs.est.7b05543
10.1016/j.watres.2019.03.078
10.1016/j.apcatb.2017.03.043
10.1016/j.apcatb.2018.01.014
10.1016/j.cej.2017.07.137
10.1002/anie.201708709
10.1016/j.cej.2012.04.033
10.1016/j.watres.2019.114969
10.1021/acs.est.8b01662
10.1016/j.watres.2017.03.054
10.1021/acs.est.8b03340
10.1021/es050634b
10.1016/j.cej.2017.02.133
10.1016/j.scitotenv.2013.11.008
10.1016/j.apcatb.2018.06.049
10.1016/j.apcatb.2009.12.002
10.1021/jp056367d
10.1039/C5CY01735A
10.1021/acs.est.8b01817
10.1016/j.apcatb.2016.07.021
10.1021/acs.est.6b02841
10.1016/j.watres.2019.03.096
10.1021/cs5017613
10.1016/j.nanoen.2018.07.018
10.1021/acs.est.8b02266
10.1016/j.watres.2006.06.018
10.1016/j.cej.2018.08.049
10.1016/j.watres.2018.03.012
10.1016/j.watres.2019.115107
10.1016/j.cej.2018.05.177
10.1021/acsami.6b12278
10.1021/es035121o
10.1021/acs.est.5b00989
10.1016/j.watres.2018.12.001
10.1021/es0263792
10.1016/j.watres.2018.06.002
10.1021/acs.est.8b02282
10.1021/es400728c
10.1016/j.apcatb.2016.09.006
10.1039/C8EN00366A
10.1016/j.apcatb.2018.03.088
10.1016/j.apcatb.2017.03.079
10.1021/acs.est.8b05901
10.1016/j.watres.2019.115110
10.1016/j.apcatb.2017.07.035
10.1021/acs.est.7b03007
10.1021/acs.est.6b05536
10.1021/am5065409
10.1016/j.apcatb.2017.06.057
10.1016/j.seppur.2016.03.026
10.1016/j.cej.2015.06.061
10.1016/j.apcatb.2017.10.007
10.1002/adma.201703119
10.1016/j.bios.2018.08.042
10.1021/am508416n
10.1021/acsami.7b14412
10.1021/jacs.6b11263
10.1016/j.apcatb.2018.04.058
10.1016/j.watres.2018.06.068
10.1021/jacs.8b05992
10.1021/acs.est.7b00350
10.1016/j.cej.2017.06.064
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright © 2020 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright © 2020 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.watres.2020.115559
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
AGRICOLA
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2448
ExternalDocumentID 32028250
10_1016_j_watres_2020_115559
S0043135420300956
Genre Journal Article
GroupedDBID ---
--K
--M
-DZ
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFO
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMC
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TAE
TN5
TWZ
WH7
XPP
ZCA
ZMT
~02
~G-
~KM
.55
186
29R
6TJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACKIV
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HMA
HVGLF
HZ~
H~9
MVM
OHT
R2-
RIG
SEN
SEP
SEW
SSH
WUQ
X7M
XOL
YHZ
YV5
ZXP
ZY4
~A~
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c461t-fb598c6795a1b67ae7ff0a9b28b9a09190da5ebf5845a1c100616c7f048a4c6a3
IEDL.DBID .~1
ISSN 0043-1354
1879-2448
IngestDate Fri Jul 11 10:46:13 EDT 2025
Fri Jul 11 16:14:36 EDT 2025
Wed Feb 19 02:31:10 EST 2025
Thu Apr 24 23:06:44 EDT 2025
Tue Jul 01 01:21:00 EDT 2025
Fri Feb 23 02:44:24 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Water treatment
Visible light
Peroxymonosulfate
Catalytic degradation
Mechanism
BiVO4
BiVO
Language English
License Copyright © 2020 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c461t-fb598c6795a1b67ae7ff0a9b28b9a09190da5ebf5845a1c100616c7f048a4c6a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6781-770X
0000-0001-5247-6244
0000-0002-3858-1037
PMID 32028250
PQID 2352641788
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2574325805
proquest_miscellaneous_2352641788
pubmed_primary_32028250
crossref_citationtrail_10_1016_j_watres_2020_115559
crossref_primary_10_1016_j_watres_2020_115559
elsevier_sciencedirect_doi_10_1016_j_watres_2020_115559
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-15
PublicationDateYYYYMMDD 2020-04-15
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-15
  day: 15
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Water research (Oxford)
PublicationTitleAlternate Water Res
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References An, Yang, Li, Song, Cooper, Nie (bib3) 2010; 94
Cheng, Guo, Zhang, Korshin, Yang (bib15) 2019; 157
Zhang, Chen, Jiao (bib57) 2006; 110
Wei, Zhu, Gu, An, Liu, Wu, Liu, Tang, Qu (bib48) 2018; 51
Wei, Wei, Liu, Chen, Tang, Ma, Yin, Luo (bib49) 2019; 167
Wang, Liu, Zhang, Meng, Yu, Pu, Yuan, Qi, Xu, Chu (bib44) 2018; 235
Chen, Fang, Xia, Huang, Huang (bib10) 2018; 52
Zhang, Zhao, Wang, Gong, Cao, Qiao (bib56) 2018; 237
Anipsitakis, Dionysiou (bib5) 2004; 38
Wu, Huang, Xu, Lu, Li, Chen (bib51) 2017; 218
Weon, Choi, Kim, Kim, Park, Kim, Kim, Choi (bib50) 2018; 52
Fang, Wu, Liu, Dionysiou, Deng, Zhou (bib23) 2017; 202
Ahmad, Teel, Watts (bib1) 2013; 47
Chen, Li, Zhang, Jin, Song, Wang, Tratnyek (bib14) 2019; 53
Liu, Hu, Qiu, Wang, Lin, Zhu, Wei, Zhou, Ouyang (bib37) 2017; 51
Yan, Peng, Lai, Ji, Zhang, Lai, Chen, Yao, Chen, Song (bib53) 2018; 52
Li, Huang, Xi, Miao, Ding, Cai, Liu, Yang, Yang, Gao, Wang, Huang, Zhang, Liu (bib35) 2018; 140
Sabio, Zamora, Ganan, Gonzalez-Garcia, Gonzalez (bib42) 2006; 40
Li, Quan, Chen, Yu (bib31) 2017; 209
Duan, Ao, Zhang, Saunders, Sun, Shao, Wang (bib21) 2018; 222
Chen, Wang, Xiao, Hong, Zhu, Yao, Xue (bib12) 2012; 193–194
Ahn, Yun, Seo, Lee, Kim, Kim, Lee (bib2) 2016; 50
Li, Chen, He, Zhou, Zhou, Zou (bib33) 2018; 30
Zhu, Liu, Chen, Yin, Ge, Li, Wang (bib63) 2017; 9
Chen, Zhang, Liu, Qu (bib13) 2019; 58
Wang, Zhao, Fan, Tian, Zhao (bib45) 2018; 5
Yao, Yang, Zhong, Shu, Chen, Sun, Ma, Fu, Wang, Li (bib55) 2019; 157
Lu, Zhao, Wang, Wang, Xu, Ma, Qiu, Hu (bib39) 2019; 165
Chen, Oh, Lim (bib11) 2018; 354
Wang, Zhao, Cao, Wang, Zhu (bib46) 2017; 211
Peng, Tang, Zeng, Fang, Ouyang, Long, Zhou, Deng, Liu, Wang (bib40) 2018; 121
Gao, Gu, Jiao, Sun, Zu, Yang, Zhu, Wang, Feng, Ye, Xie (bib24) 2017; 139
Duan, Sun, Wang, Kang, Wang (bib22) 2014; 5
Zhao, Zhao, Yang (bib59) 2017; 327
Wu, Xu, Shi, Yin, Zhang, Wu, Duan, Wang, Sun (bib52) 2019; 167
Du, Bao, Liu, Kim, Dionysiou (bib19) 2018; 376
Hammouda, Zhao, Safaei, Ramasamy, Doshi, Sillanpaa (bib26) 2018; 233
Jorfi, Kakavandi, Motlagh, Ahmadi, Jaafarzadeh (bib30) 2017; 219
Ji, Ferronato, Salvador, Yang, Chovelon (bib29) 2014; 472
Zhu, Huang, Ma, Wang, Duan, Wang (bib64) 2018; 52
Anipsitakis, Dionysiou (bib4) 2003; 37
Chen, Yang, Li, Zeng, Wang, Niu, Zhao, An, Xie, Deng (bib8) 2017; 200
Liu, Li, Liu, Jiang, Zhang, Liang (bib38) 2019; 150
Zhang, Zhou, Sun, Meng, Luo, Zhou, Crittenden (bib58) 2018; 52
Chen, Yang, Sun, Yao, Wang, Wang, Wang, Li, Niu, Wang, Zeng (bib9) 2016; 8
Huang, Wang, Yang, Guo, Yu (bib27) 2017; 51
Huang, Han, Li, Wang, Chu, Zhang (bib28) 2015; 7
Wang, Jiang, Pang, Zhou, Guan, Gao, Li, Yang, Qiu, Jiang (bib47) 2018; 52
Ghauch, Baalbaki, Amasha, El Asmar, Tantawi (bib25) 2017; 317
Zhou, Wang, Zhu, Dionysiou, Zhao, Fang, Zhou (bib61) 2018; 142
Yang, Lu, Jiang, Ma, Liu, Cao, Liu, Li, Pang, Kong, Luo (bib54) 2017; 118
Song, Lu, Wu, Jiang, Sun, Le (bib43) 2018; 227
Zhou, Xu, Dong, Huo, Dong, Tian, Cui, Xiong, Li, Ma (bib60) 2015; 49
Lian, Yao, Hou, Fang, Yan, Song (bib36) 2017; 51
Anipsitakis, Dionysiou, Gonzalez (bib6) 2006; 40
Li, Wu, Pan, Zhang, Chen (bib32) 2018; 57
Qin, Li, Gao, Zhang, Ok, An (bib41) 2018; 137
Zhu, Wang, Wang, Jin, Ganeshraja (bib62) 2016; 6
Cai, Liu, Zhang, Zheng, Zhang (bib7) 2016; 165
Deng, Ge, Tan, Wang, Li, Zhou, Zhang (bib17) 2017; 330
Li, Zhang, Wang, Yang, Li, Zhu, Zhou, Han, Li (bib34) 2013; 4
Darsinou, Frontistis, Antonopoulou, Konstantinou, Mantzavinos (bib16) 2015; 280
Ding, Yan, Wu, Xiao, Gang, Wang, Chen, Zhao (bib18) 2018; 143
Duan, Ao, Sun, Indrawirawan, Wang, Kang, Liang, Zhu, Wang (bib20) 2015; 7
Weon (10.1016/j.watres.2020.115559_bib50) 2018; 52
Chen (10.1016/j.watres.2020.115559_bib11) 2018; 354
Lu (10.1016/j.watres.2020.115559_bib39) 2019; 165
Yan (10.1016/j.watres.2020.115559_bib53) 2018; 52
Lian (10.1016/j.watres.2020.115559_bib36) 2017; 51
Zhu (10.1016/j.watres.2020.115559_bib64) 2018; 52
Wu (10.1016/j.watres.2020.115559_bib51) 2017; 218
Darsinou (10.1016/j.watres.2020.115559_bib16) 2015; 280
Chen (10.1016/j.watres.2020.115559_bib12) 2012; 193–194
Wang (10.1016/j.watres.2020.115559_bib47) 2018; 52
Song (10.1016/j.watres.2020.115559_bib43) 2018; 227
Huang (10.1016/j.watres.2020.115559_bib27) 2017; 51
Wei (10.1016/j.watres.2020.115559_bib48) 2018; 51
Du (10.1016/j.watres.2020.115559_bib19) 2018; 376
Sabio (10.1016/j.watres.2020.115559_bib42) 2006; 40
Fang (10.1016/j.watres.2020.115559_bib23) 2017; 202
Ji (10.1016/j.watres.2020.115559_bib29) 2014; 472
Anipsitakis (10.1016/j.watres.2020.115559_bib6) 2006; 40
Chen (10.1016/j.watres.2020.115559_bib9) 2016; 8
Peng (10.1016/j.watres.2020.115559_bib40) 2018; 121
Li (10.1016/j.watres.2020.115559_bib31) 2017; 209
Wei (10.1016/j.watres.2020.115559_bib49) 2019; 167
Ahn (10.1016/j.watres.2020.115559_bib2) 2016; 50
Duan (10.1016/j.watres.2020.115559_bib22) 2014; 5
Wang (10.1016/j.watres.2020.115559_bib44) 2018; 235
Ahmad (10.1016/j.watres.2020.115559_bib1) 2013; 47
Liu (10.1016/j.watres.2020.115559_bib37) 2017; 51
Chen (10.1016/j.watres.2020.115559_bib14) 2019; 53
Cheng (10.1016/j.watres.2020.115559_bib15) 2019; 157
Qin (10.1016/j.watres.2020.115559_bib41) 2018; 137
Yao (10.1016/j.watres.2020.115559_bib55) 2019; 157
Wang (10.1016/j.watres.2020.115559_bib46) 2017; 211
Zhu (10.1016/j.watres.2020.115559_bib62) 2016; 6
Anipsitakis (10.1016/j.watres.2020.115559_bib5) 2004; 38
Zhang (10.1016/j.watres.2020.115559_bib57) 2006; 110
Cai (10.1016/j.watres.2020.115559_bib7) 2016; 165
Li (10.1016/j.watres.2020.115559_bib34) 2013; 4
Huang (10.1016/j.watres.2020.115559_bib28) 2015; 7
Deng (10.1016/j.watres.2020.115559_bib17) 2017; 330
Wang (10.1016/j.watres.2020.115559_bib45) 2018; 5
Chen (10.1016/j.watres.2020.115559_bib13) 2019; 58
Ghauch (10.1016/j.watres.2020.115559_bib25) 2017; 317
Li (10.1016/j.watres.2020.115559_bib33) 2018; 30
Li (10.1016/j.watres.2020.115559_bib32) 2018; 57
An (10.1016/j.watres.2020.115559_bib3) 2010; 94
Duan (10.1016/j.watres.2020.115559_bib20) 2015; 7
Li (10.1016/j.watres.2020.115559_bib35) 2018; 140
Chen (10.1016/j.watres.2020.115559_bib10) 2018; 52
Zhang (10.1016/j.watres.2020.115559_bib58) 2018; 52
Gao (10.1016/j.watres.2020.115559_bib24) 2017; 139
Hammouda (10.1016/j.watres.2020.115559_bib26) 2018; 233
Zhou (10.1016/j.watres.2020.115559_bib61) 2018; 142
Chen (10.1016/j.watres.2020.115559_bib8) 2017; 200
Anipsitakis (10.1016/j.watres.2020.115559_bib4) 2003; 37
Ding (10.1016/j.watres.2020.115559_bib18) 2018; 143
Jorfi (10.1016/j.watres.2020.115559_bib30) 2017; 219
Zhang (10.1016/j.watres.2020.115559_bib56) 2018; 237
Zhou (10.1016/j.watres.2020.115559_bib60) 2015; 49
Zhao (10.1016/j.watres.2020.115559_bib59) 2017; 327
Duan (10.1016/j.watres.2020.115559_bib21) 2018; 222
Yang (10.1016/j.watres.2020.115559_bib54) 2017; 118
Zhu (10.1016/j.watres.2020.115559_bib63) 2017; 9
Wu (10.1016/j.watres.2020.115559_bib52) 2019; 167
Liu (10.1016/j.watres.2020.115559_bib38) 2019; 150
References_xml – volume: 193–194
  start-page: 290
  year: 2012
  end-page: 295
  ident: bib12
  article-title: Accelerated TiO
  publication-title: Chem. Eng. J.
– volume: 50
  start-page: 10187
  year: 2016
  end-page: 10197
  ident: bib2
  article-title: Activation of peroxymonosulfate by surface-loaded noble metal nanoparticles for oxidative degradation of organic compounds
  publication-title: Environ. Sci. Technol.
– volume: 209
  start-page: 591
  year: 2017
  end-page: 599
  ident: bib31
  article-title: Ferroelectric-enhanced Z-schematic electron transfer in BiVO
  publication-title: Appl. Catal. B Environ.
– volume: 52
  start-page: 9330
  year: 2018
  end-page: 9340
  ident: bib50
  article-title: Active {001} facet exposed TiO
  publication-title: Environ. Sci. Technol.
– volume: 157
  start-page: 406
  year: 2019
  end-page: 414
  ident: bib15
  article-title: Insights into the mechanism of nonradical reactions of persulfate activated by carbon nanotubes: activation performance and structure-function relationship
  publication-title: Water Res.
– volume: 330
  start-page: 1390
  year: 2017
  end-page: 1400
  ident: bib17
  article-title: Degradation of ciprofloxacin using α-MnO
  publication-title: Chem. Eng. J.
– volume: 37
  start-page: 4790
  year: 2003
  end-page: 4797
  ident: bib4
  article-title: Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt
  publication-title: Environ. Sci. Technol.
– volume: 51
  start-page: 2954
  year: 2017
  end-page: 2962
  ident: bib36
  article-title: Kinetic study of hydroxyl and sulfate radical-mediated oxidation of pharmaceuticals in wastewater effluents
  publication-title: Environ. Sci. Technol.
– volume: 237
  start-page: 976
  year: 2018
  end-page: 985
  ident: bib56
  article-title: Peroxymonosulfate-enhanced visible light photocatalytic degradation of bisphenol A by perylene imide-modified g-C
  publication-title: Appl. Catal. B Environ.
– volume: 40
  start-page: 3053
  year: 2006
  end-page: 3060
  ident: bib42
  article-title: Adsorption of p-nitrophenol on activated carbon fixed-bed
  publication-title: Water Res.
– volume: 110
  start-page: 2668
  year: 2006
  end-page: 2673
  ident: bib57
  article-title: Monoclinic structured BiVO
  publication-title: J. Phys. Chem. B
– volume: 150
  start-page: 431
  year: 2019
  end-page: 441
  ident: bib38
  article-title: Visible-light-driven photocatalytic degradation of diclofenac by carbon quantum dots modified porous g-C
  publication-title: Water Res.
– volume: 40
  start-page: 1000
  year: 2006
  end-page: 1007
  ident: bib6
  article-title: Cobalt-mediated activation of peroxymonosulfate and sulfate radical attack on phenolic compounds. implications of chloride ions
  publication-title: Environ. Sci. Technol.
– volume: 219
  start-page: 216
  year: 2017
  end-page: 230
  ident: bib30
  article-title: A novel combination of oxidative degradation for benzotriazole removal using TiO
  publication-title: Appl. Catal. B Environ.
– volume: 137
  start-page: 130
  year: 2018
  end-page: 143
  ident: bib41
  article-title: Persistent free radicals in carbon-based materials on transformation of refractory organic contaminants (ROCs) in water: a critical review
  publication-title: Water Res.
– volume: 202
  start-page: 1
  year: 2017
  end-page: 11
  ident: bib23
  article-title: Activation of persulfate with vanadium species for PCBs degradation: a mechanistic study
  publication-title: Appl. Catal. B Environ.
– volume: 472
  start-page: 800
  year: 2014
  end-page: 808
  ident: bib29
  article-title: Degradation of ciprofloxacin and sulfamethoxazole by ferrous-activated persulfate: implications for remediation of groundwater contaminated by antibiotics
  publication-title: Sci. Total Environ.
– volume: 121
  start-page: 19
  year: 2018
  end-page: 26
  ident: bib40
  article-title: Self-powered photoelectrochemical aptasensor based on phosphorus doped porous ultrathin g-C
  publication-title: Biosens. Bioelectron.
– volume: 218
  start-page: 230
  year: 2017
  end-page: 239
  ident: bib51
  article-title: Visible-light-assisted peroxymonosulfate activation and mechanism for the degradation of pharmaceuticals over pyridyl-functionalized graphitic carbon nitride coordinated with iron phthalocyanine
  publication-title: Appl. Catal. B Environ.
– volume: 47
  start-page: 5864
  year: 2013
  end-page: 5871
  ident: bib1
  article-title: Mechanism of persulfate activation by phenols
  publication-title: Environ. Sci. Technol.
– volume: 9
  start-page: 38832
  year: 2017
  end-page: 38841
  ident: bib63
  article-title: Boosting the visible-light photoactivity of BiOCl/BiVO
  publication-title: ACS Appl. Mater. Interfaces
– volume: 233
  start-page: 99
  year: 2018
  end-page: 111
  ident: bib26
  article-title: Sulfate radical-mediated degradation and mineralization of bisphenol F in neutral medium by the novel magnetic Sr
  publication-title: Appl. Catal. B Environ.
– volume: 30
  start-page: 1703119
  year: 2018
  ident: bib33
  article-title: Polyhedral 30-faceted BiVO
  publication-title: Adv. Mater.
– volume: 139
  start-page: 3438
  year: 2017
  end-page: 3445
  ident: bib24
  article-title: Highly efficient and exceptionally durable CO
  publication-title: J. Am. Chem. Soc.
– volume: 227
  start-page: 145
  year: 2018
  end-page: 152
  ident: bib43
  article-title: Strong base g-C
  publication-title: Appl. Catal. B Environ.
– volume: 200
  start-page: 330
  year: 2017
  end-page: 342
  ident: bib8
  article-title: Hierarchical assembly of graphene-bridged Ag
  publication-title: Appl. Catal. B Environ.
– volume: 222
  start-page: 176
  year: 2018
  end-page: 181
  ident: bib21
  article-title: Nanodiamonds in sp
  publication-title: Appl. Catal. B Environ.
– volume: 94
  start-page: 288
  year: 2010
  end-page: 294
  ident: bib3
  article-title: Kinetics and mechanism of advanced oxidation processes (AOPs) in degradation of ciprofloxacin in water
  publication-title: Appl. Catal. B Environ.
– volume: 354
  start-page: 941
  year: 2018
  end-page: 976
  ident: bib11
  article-title: Graphene- and CNTs-based carbocatalysts in persulfates activation: material design and catalytic mechanisms
  publication-title: Chem. Eng. J.
– volume: 52
  start-page: 1461
  year: 2018
  end-page: 1470
  ident: bib10
  article-title: Selective transformation of beta-Lactam antibiotics by peroxymonosulfate: reaction kinetics and nonradical mechanism
  publication-title: Environ. Sci. Technol.
– volume: 5
  start-page: 553
  year: 2014
  end-page: 559
  ident: bib22
  article-title: N-doping-induced nonradical reaction on single-walled carbon nanotubes for catalytic phenol oxidation
  publication-title: ACS Catal.
– volume: 118
  start-page: 196
  year: 2017
  end-page: 207
  ident: bib54
  article-title: Degradation of sulfamethoxazole by UV, UV/H
  publication-title: Water Res.
– volume: 280
  start-page: 623
  year: 2015
  end-page: 633
  ident: bib16
  article-title: Sono-activated persulfate oxidation of bisphenol A: kinetics, pathways and the controversial role of temperature
  publication-title: Chem. Eng. J.
– volume: 8
  start-page: 32887
  year: 2016
  end-page: 32900
  ident: bib9
  article-title: Enhanced photocatalytic degradation of tetracycline by AgI/BiVO
  publication-title: ACS Appl. Mater. Interfaces
– volume: 58
  start-page: 1
  year: 2019
  end-page: 6
  ident: bib13
  article-title: Confining free radicals in close vicinity to contaminants enables ultrafast Fenton-like processes in the interspacing of MoS
  publication-title: Angew. Chem. Int. Ed.
– volume: 57
  start-page: 491
  year: 2018
  end-page: 495
  ident: bib32
  article-title: Vacancy-rich monolayer BiO
  publication-title: Angew. Chem. Int. Ed.
– volume: 142
  start-page: 208
  year: 2018
  end-page: 216
  ident: bib61
  article-title: New insight into the mechanism of peroxymonosulfate activation by sulfur-containing minerals: role of sulfur conversion in sulfate radical generation
  publication-title: Water Res.
– volume: 165
  start-page: 42
  year: 2016
  end-page: 52
  ident: bib7
  article-title: Visible light enhanced heterogeneous photo-degradation of Orange II by zinc ferrite (ZnFe
  publication-title: Separ. Purif. Technol.
– volume: 157
  start-page: 191
  year: 2019
  end-page: 200
  ident: bib55
  article-title: Indirect electrochemical reduction of nitrate in water using zero-valent titanium anode: factors, kinetics, and mechanism
  publication-title: Water Res.
– volume: 6
  start-page: 2296
  year: 2016
  end-page: 2304
  ident: bib62
  article-title: Visible-light-induced photocatalysis and peroxymonosulfate activation over ZnFe
  publication-title: Catal. Sci. Technol.
– volume: 143
  start-page: 589
  year: 2018
  end-page: 598
  ident: bib18
  article-title: Light-excited photoelectrons coupled with bio-photocatalysis enhanced the degradation efficiency of oxytetracycline
  publication-title: Water Res.
– volume: 376
  start-page: 119193
  year: 2018
  ident: bib19
  article-title: Facile preparation of porous Mn/Fe
  publication-title: Chem. Eng. J.
– volume: 4
  start-page: 7
  year: 2013
  ident: bib34
  article-title: Spatial separation of photogenerated electrons and holes among {010} and {110} crystal facets of BiVO
  publication-title: Nat. Commun.
– volume: 51
  start-page: 5137
  year: 2017
  end-page: 5145
  ident: bib37
  article-title: Enhanced photocatalytic degradation of environmental pollutants under visible irradiation by a composite coating
  publication-title: Environ. Sci. Technol.
– volume: 7
  start-page: 4169
  year: 2015
  end-page: 4178
  ident: bib20
  article-title: Nitrogen-doped graphene for generation and evolution of reactive radicals by metal-free catalysis
  publication-title: ACS Appl. Mater. Interfaces
– volume: 38
  start-page: 3705
  year: 2004
  end-page: 3712
  ident: bib5
  article-title: Radical generation by the interaction of transition metals with common oxidants
  publication-title: Environ. Sci. Technol.
– volume: 5
  start-page: 1933
  year: 2018
  end-page: 1942
  ident: bib45
  article-title: The synthesis of novel Co-Al
  publication-title: Environ. Sci. Nano
– volume: 51
  start-page: 12611
  year: 2017
  end-page: 12618
  ident: bib27
  article-title: Degradation of bisphenol A by peroxymonosulfate catalytically activated with Mn
  publication-title: Environ. Sci. Technol.
– volume: 53
  start-page: 2054
  year: 2019
  end-page: 2062
  ident: bib14
  article-title: Overlooked role of peroxides as free radical precursors in advanced oxidation processes
  publication-title: Environ. Sci. Technol.
– volume: 51
  start-page: 764
  year: 2018
  end-page: 773
  ident: bib48
  article-title: Multi-electric field modulation for photocatalytic oxygen evolution: enhanced charge separation by coupling oxygen vacancies with faceted heterostructures
  publication-title: Nano Energy
– volume: 317
  start-page: 1012
  year: 2017
  end-page: 1025
  ident: bib25
  article-title: Contribution of persulfate in UV-254 nm activated systems for complete degradation of chloramphenicol antibiotic in water
  publication-title: Chem. Eng. J.
– volume: 165
  start-page: 114969
  year: 2019
  ident: bib39
  article-title: Sonolytic degradation of bisphenol S: effect of dissolved oxygen and peroxydisulfate, oxidation products and acute toxicity
  publication-title: Water Res.
– volume: 167
  start-page: 115110
  year: 2019
  ident: bib52
  article-title: Manganese oxide integrated catalytic ceramic membrane for degradation of organic pollutants using sulfate radicals
  publication-title: Water Res.
– volume: 52
  start-page: 14302
  year: 2018
  end-page: 14310
  ident: bib53
  article-title: Activation CuFe
  publication-title: Environ. Sci. Technol.
– volume: 235
  start-page: 264
  year: 2018
  end-page: 273
  ident: bib44
  article-title: Sulfate radical-based photo-Fenton reaction derived by CuBi
  publication-title: Appl. Catal. B Environ.
– volume: 167
  start-page: 115107
  year: 2019
  ident: bib49
  article-title: Efficient removal of arsenic from groundwater using iron oxide nanoneedle array-decorated biochar fibers with high Fe utilization and fast adsorption kinetics
  publication-title: Water Res.
– volume: 52
  start-page: 8649
  year: 2018
  end-page: 8658
  ident: bib64
  article-title: Catalytic removal of aqueous contaminants on N-doped graphitic biochars: inherent roles of adsorption and nonradical mechanisms
  publication-title: Environ. Sci. Technol.
– volume: 140
  start-page: 12469
  year: 2018
  end-page: 12475
  ident: bib35
  article-title: Single cobalt atoms anchored on porous N-doped graphene with dual reaction sites for efficient Fenton-like catalysis
  publication-title: J. Am. Chem. Soc.
– volume: 211
  start-page: 79
  year: 2017
  end-page: 88
  ident: bib46
  article-title: Peroxymonosulfate enhanced visible light photocatalytic degradation bisphenol A by single-atom dispersed Ag mesoporous g-C
  publication-title: Appl. Catal. B Environ.
– volume: 52
  start-page: 11276
  year: 2018
  end-page: 11284
  ident: bib47
  article-title: Is sulfate radical really generated from peroxydisulfate activated by Iron(II) for environmental decontamination?
  publication-title: Environ. Sci. Technol.
– volume: 7
  start-page: 482
  year: 2015
  end-page: 492
  ident: bib28
  article-title: Fabrication of multiple heterojunctions with tunable visible-light-active photocatalytic reactivity in BiOBr-BiOI full-range composites based on microstructure modulation and band structures
  publication-title: ACS Appl. Mater. Interfaces
– volume: 327
  start-page: 481
  year: 2017
  end-page: 489
  ident: bib59
  article-title: Efficient removal of ciprofloxacin by peroxymonosulfate/Mn
  publication-title: Chem. Eng. J.
– volume: 52
  start-page: 7380
  year: 2018
  end-page: 7389
  ident: bib58
  article-title: Impact of chloride ions on UV/H
  publication-title: Environ. Sci. Technol.
– volume: 49
  start-page: 7776
  year: 2015
  end-page: 7783
  ident: bib60
  article-title: Intimate coupling of photocatalysis and biodegradation for degrading phenol using different light types: visible light vs UV light
  publication-title: Environ. Sci. Technol.
– volume: 52
  start-page: 1461
  issue: 3
  year: 2018
  ident: 10.1016/j.watres.2020.115559_bib10
  article-title: Selective transformation of beta-Lactam antibiotics by peroxymonosulfate: reaction kinetics and nonradical mechanism
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b05543
– volume: 157
  start-page: 191
  year: 2019
  ident: 10.1016/j.watres.2020.115559_bib55
  article-title: Indirect electrochemical reduction of nitrate in water using zero-valent titanium anode: factors, kinetics, and mechanism
  publication-title: Water Res.
  doi: 10.1016/j.watres.2019.03.078
– volume: 209
  start-page: 591
  year: 2017
  ident: 10.1016/j.watres.2020.115559_bib31
  article-title: Ferroelectric-enhanced Z-schematic electron transfer in BiVO4-BiFeO3-CuInS2 for efficient photocatalytic pollutant degradation
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2017.03.043
– volume: 227
  start-page: 145
  year: 2018
  ident: 10.1016/j.watres.2020.115559_bib43
  article-title: Strong base g-C3N4 with perfect structure for photocatalytically eliminating formaldehyde under visible-light irradiation
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2018.01.014
– volume: 330
  start-page: 1390
  year: 2017
  ident: 10.1016/j.watres.2020.115559_bib17
  article-title: Degradation of ciprofloxacin using α-MnO2 activated peroxymonosulfate process: effect of water constituents, degradation intermediates and toxicity evaluation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.07.137
– volume: 57
  start-page: 491
  issue: 2
  year: 2018
  ident: 10.1016/j.watres.2020.115559_bib32
  article-title: Vacancy-rich monolayer BiO2-x as a highly efficient UV, visible, and near-infrared responsive photocatalyst
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201708709
– volume: 193–194
  start-page: 290
  year: 2012
  ident: 10.1016/j.watres.2020.115559_bib12
  article-title: Accelerated TiO2 photocatalytic degradation of Acid Orange 7 under visible light mediated by peroxymonosulfate
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2012.04.033
– volume: 165
  start-page: 114969
  year: 2019
  ident: 10.1016/j.watres.2020.115559_bib39
  article-title: Sonolytic degradation of bisphenol S: effect of dissolved oxygen and peroxydisulfate, oxidation products and acute toxicity
  publication-title: Water Res.
  doi: 10.1016/j.watres.2019.114969
– volume: 52
  start-page: 7380
  issue: 13
  year: 2018
  ident: 10.1016/j.watres.2020.115559_bib58
  article-title: Impact of chloride ions on UV/H2O2 and UV/persulfate advanced oxidation processes
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b01662
– volume: 118
  start-page: 196
  year: 2017
  ident: 10.1016/j.watres.2020.115559_bib54
  article-title: Degradation of sulfamethoxazole by UV, UV/H2O2 and UV/persulfate (PDS): formation of oxidation products and effect of bicarbonate
  publication-title: Water Res.
  doi: 10.1016/j.watres.2017.03.054
– volume: 52
  start-page: 14302
  issue: 24
  year: 2018
  ident: 10.1016/j.watres.2020.115559_bib53
  article-title: Activation CuFe2O4 by hydroxylamine for oxidation of antibiotic sulfamethoxazole
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b03340
– volume: 40
  start-page: 1000
  issue: 3
  year: 2006
  ident: 10.1016/j.watres.2020.115559_bib6
  article-title: Cobalt-mediated activation of peroxymonosulfate and sulfate radical attack on phenolic compounds. implications of chloride ions
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es050634b
– volume: 317
  start-page: 1012
  year: 2017
  ident: 10.1016/j.watres.2020.115559_bib25
  article-title: Contribution of persulfate in UV-254 nm activated systems for complete degradation of chloramphenicol antibiotic in water
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.02.133
– volume: 472
  start-page: 800
  year: 2014
  ident: 10.1016/j.watres.2020.115559_bib29
  article-title: Degradation of ciprofloxacin and sulfamethoxazole by ferrous-activated persulfate: implications for remediation of groundwater contaminated by antibiotics
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2013.11.008
– volume: 237
  start-page: 976
  year: 2018
  ident: 10.1016/j.watres.2020.115559_bib56
  article-title: Peroxymonosulfate-enhanced visible light photocatalytic degradation of bisphenol A by perylene imide-modified g-C3N4
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2018.06.049
– volume: 94
  start-page: 288
  issue: 3–4
  year: 2010
  ident: 10.1016/j.watres.2020.115559_bib3
  article-title: Kinetics and mechanism of advanced oxidation processes (AOPs) in degradation of ciprofloxacin in water
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2009.12.002
– volume: 110
  start-page: 2668
  issue: 6
  year: 2006
  ident: 10.1016/j.watres.2020.115559_bib57
  article-title: Monoclinic structured BiVO4 nanosheets: hydrothermal preparation, formation mechanism, and coloristic and photocatalytic properties
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp056367d
– volume: 6
  start-page: 2296
  issue: 7
  year: 2016
  ident: 10.1016/j.watres.2020.115559_bib62
  article-title: Visible-light-induced photocatalysis and peroxymonosulfate activation over ZnFe2O4 fine nanoparticles for degradation of orange II
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C5CY01735A
– volume: 52
  start-page: 8649
  issue: 15
  year: 2018
  ident: 10.1016/j.watres.2020.115559_bib64
  article-title: Catalytic removal of aqueous contaminants on N-doped graphitic biochars: inherent roles of adsorption and nonradical mechanisms
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b01817
– volume: 200
  start-page: 330
  year: 2017
  ident: 10.1016/j.watres.2020.115559_bib8
  article-title: Hierarchical assembly of graphene-bridged Ag3PO4/Ag/BiVO4 (040) Z-scheme photocatalyst: an efficient, sustainable and heterogeneous catalyst with enhanced visible-light photoactivity towards tetracycline degradation under visible light irradiation
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2016.07.021
– volume: 50
  start-page: 10187
  issue: 18
  year: 2016
  ident: 10.1016/j.watres.2020.115559_bib2
  article-title: Activation of peroxymonosulfate by surface-loaded noble metal nanoparticles for oxidative degradation of organic compounds
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b02841
– volume: 157
  start-page: 406
  year: 2019
  ident: 10.1016/j.watres.2020.115559_bib15
  article-title: Insights into the mechanism of nonradical reactions of persulfate activated by carbon nanotubes: activation performance and structure-function relationship
  publication-title: Water Res.
  doi: 10.1016/j.watres.2019.03.096
– volume: 5
  start-page: 553
  issue: 2
  year: 2014
  ident: 10.1016/j.watres.2020.115559_bib22
  article-title: N-doping-induced nonradical reaction on single-walled carbon nanotubes for catalytic phenol oxidation
  publication-title: ACS Catal.
  doi: 10.1021/cs5017613
– volume: 51
  start-page: 764
  year: 2018
  ident: 10.1016/j.watres.2020.115559_bib48
  article-title: Multi-electric field modulation for photocatalytic oxygen evolution: enhanced charge separation by coupling oxygen vacancies with faceted heterostructures
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.07.018
– volume: 52
  start-page: 11276
  issue: 19
  year: 2018
  ident: 10.1016/j.watres.2020.115559_bib47
  article-title: Is sulfate radical really generated from peroxydisulfate activated by Iron(II) for environmental decontamination?
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b02266
– volume: 40
  start-page: 3053
  issue: 16
  year: 2006
  ident: 10.1016/j.watres.2020.115559_bib42
  article-title: Adsorption of p-nitrophenol on activated carbon fixed-bed
  publication-title: Water Res.
  doi: 10.1016/j.watres.2006.06.018
– volume: 354
  start-page: 941
  year: 2018
  ident: 10.1016/j.watres.2020.115559_bib11
  article-title: Graphene- and CNTs-based carbocatalysts in persulfates activation: material design and catalytic mechanisms
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.08.049
– volume: 137
  start-page: 130
  year: 2018
  ident: 10.1016/j.watres.2020.115559_bib41
  article-title: Persistent free radicals in carbon-based materials on transformation of refractory organic contaminants (ROCs) in water: a critical review
  publication-title: Water Res.
  doi: 10.1016/j.watres.2018.03.012
– volume: 167
  start-page: 115107
  year: 2019
  ident: 10.1016/j.watres.2020.115559_bib49
  article-title: Efficient removal of arsenic from groundwater using iron oxide nanoneedle array-decorated biochar fibers with high Fe utilization and fast adsorption kinetics
  publication-title: Water Res.
  doi: 10.1016/j.watres.2019.115107
– volume: 376
  start-page: 119193
  year: 2018
  ident: 10.1016/j.watres.2020.115559_bib19
  article-title: Facile preparation of porous Mn/Fe3O4 cubes as peroxymonosulfate activating catalyst for effective bisphenol A degradation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.05.177
– volume: 8
  start-page: 32887
  issue: 48
  year: 2016
  ident: 10.1016/j.watres.2020.115559_bib9
  article-title: Enhanced photocatalytic degradation of tetracycline by AgI/BiVO4 heterojunction under visible-light irradiation: mineralization efficiency and mechanism
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b12278
– volume: 38
  start-page: 3705
  issue: 13
  year: 2004
  ident: 10.1016/j.watres.2020.115559_bib5
  article-title: Radical generation by the interaction of transition metals with common oxidants
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es035121o
– volume: 49
  start-page: 7776
  issue: 13
  year: 2015
  ident: 10.1016/j.watres.2020.115559_bib60
  article-title: Intimate coupling of photocatalysis and biodegradation for degrading phenol using different light types: visible light vs UV light
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b00989
– volume: 150
  start-page: 431
  year: 2019
  ident: 10.1016/j.watres.2020.115559_bib38
  article-title: Visible-light-driven photocatalytic degradation of diclofenac by carbon quantum dots modified porous g-C3N4: mechanisms, degradation pathway and DFT calculation
  publication-title: Water Res.
  doi: 10.1016/j.watres.2018.12.001
– volume: 37
  start-page: 4790
  issue: 20
  year: 2003
  ident: 10.1016/j.watres.2020.115559_bib4
  article-title: Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0263792
– volume: 142
  start-page: 208
  year: 2018
  ident: 10.1016/j.watres.2020.115559_bib61
  article-title: New insight into the mechanism of peroxymonosulfate activation by sulfur-containing minerals: role of sulfur conversion in sulfate radical generation
  publication-title: Water Res.
  doi: 10.1016/j.watres.2018.06.002
– volume: 52
  start-page: 9330
  issue: 16
  year: 2018
  ident: 10.1016/j.watres.2020.115559_bib50
  article-title: Active {001} facet exposed TiO2 nanotubes photocatalyst filter for volatile organic compounds removal: from material development to commercial indoor air cleaner application
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b02282
– volume: 47
  start-page: 5864
  issue: 11
  year: 2013
  ident: 10.1016/j.watres.2020.115559_bib1
  article-title: Mechanism of persulfate activation by phenols
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es400728c
– volume: 202
  start-page: 1
  year: 2017
  ident: 10.1016/j.watres.2020.115559_bib23
  article-title: Activation of persulfate with vanadium species for PCBs degradation: a mechanistic study
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2016.09.006
– volume: 5
  start-page: 1933
  issue: 8
  year: 2018
  ident: 10.1016/j.watres.2020.115559_bib45
  article-title: The synthesis of novel Co-Al2O3 nanofibrous membranes with efficient activation of peroxymonosulfate for bisphenol A degradation
  publication-title: Environ. Sci. Nano
  doi: 10.1039/C8EN00366A
– volume: 233
  start-page: 99
  year: 2018
  ident: 10.1016/j.watres.2020.115559_bib26
  article-title: Sulfate radical-mediated degradation and mineralization of bisphenol F in neutral medium by the novel magnetic Sr2CoFeO6 double perovskite oxide catalyzed peroxymonosulfate: influence of co-existing chemicals and UV irradiation
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2018.03.088
– volume: 211
  start-page: 79
  year: 2017
  ident: 10.1016/j.watres.2020.115559_bib46
  article-title: Peroxymonosulfate enhanced visible light photocatalytic degradation bisphenol A by single-atom dispersed Ag mesoporous g-C3N4 hybrid
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2017.03.079
– volume: 53
  start-page: 2054
  issue: 4
  year: 2019
  ident: 10.1016/j.watres.2020.115559_bib14
  article-title: Overlooked role of peroxides as free radical precursors in advanced oxidation processes
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b05901
– volume: 167
  start-page: 115110
  year: 2019
  ident: 10.1016/j.watres.2020.115559_bib52
  article-title: Manganese oxide integrated catalytic ceramic membrane for degradation of organic pollutants using sulfate radicals
  publication-title: Water Res.
  doi: 10.1016/j.watres.2019.115110
– volume: 219
  start-page: 216
  year: 2017
  ident: 10.1016/j.watres.2020.115559_bib30
  article-title: A novel combination of oxidative degradation for benzotriazole removal using TiO2 loaded on FeIIFe2IIIO4@C as an efficient activator of peroxymonosulfate
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2017.07.035
– volume: 51
  start-page: 12611
  issue: 21
  year: 2017
  ident: 10.1016/j.watres.2020.115559_bib27
  article-title: Degradation of bisphenol A by peroxymonosulfate catalytically activated with Mn1.8Fe1.2O4 nanospheres: synergism between Mn and Fe
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b03007
– volume: 51
  start-page: 2954
  issue: 5
  year: 2017
  ident: 10.1016/j.watres.2020.115559_bib36
  article-title: Kinetic study of hydroxyl and sulfate radical-mediated oxidation of pharmaceuticals in wastewater effluents
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b05536
– volume: 7
  start-page: 482
  issue: 1
  year: 2015
  ident: 10.1016/j.watres.2020.115559_bib28
  article-title: Fabrication of multiple heterojunctions with tunable visible-light-active photocatalytic reactivity in BiOBr-BiOI full-range composites based on microstructure modulation and band structures
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am5065409
– volume: 218
  start-page: 230
  year: 2017
  ident: 10.1016/j.watres.2020.115559_bib51
  article-title: Visible-light-assisted peroxymonosulfate activation and mechanism for the degradation of pharmaceuticals over pyridyl-functionalized graphitic carbon nitride coordinated with iron phthalocyanine
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2017.06.057
– volume: 165
  start-page: 42
  year: 2016
  ident: 10.1016/j.watres.2020.115559_bib7
  article-title: Visible light enhanced heterogeneous photo-degradation of Orange II by zinc ferrite (ZnFe2O4) catalyst with the assistance of persulfate
  publication-title: Separ. Purif. Technol.
  doi: 10.1016/j.seppur.2016.03.026
– volume: 280
  start-page: 623
  year: 2015
  ident: 10.1016/j.watres.2020.115559_bib16
  article-title: Sono-activated persulfate oxidation of bisphenol A: kinetics, pathways and the controversial role of temperature
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2015.06.061
– volume: 222
  start-page: 176
  year: 2018
  ident: 10.1016/j.watres.2020.115559_bib21
  article-title: Nanodiamonds in sp2/sp3 configuration for radical to nonradical oxidation: core-shell layer dependence
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2017.10.007
– volume: 30
  start-page: 1703119
  issue: 1
  year: 2018
  ident: 10.1016/j.watres.2020.115559_bib33
  article-title: Polyhedral 30-faceted BiVO4 microcrystals predominantly enclosed by high-index planes promoting photocatalytic water-splitting activity
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201703119
– volume: 121
  start-page: 19
  year: 2018
  ident: 10.1016/j.watres.2020.115559_bib40
  article-title: Self-powered photoelectrochemical aptasensor based on phosphorus doped porous ultrathin g-C3N4 nanosheets enhanced by surface plasmon resonance effect
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2018.08.042
– volume: 58
  start-page: 1
  year: 2019
  ident: 10.1016/j.watres.2020.115559_bib13
  article-title: Confining free radicals in close vicinity to contaminants enables ultrafast Fenton-like processes in the interspacing of MoS2 membranes
  publication-title: Angew. Chem. Int. Ed.
– volume: 7
  start-page: 4169
  issue: 7
  year: 2015
  ident: 10.1016/j.watres.2020.115559_bib20
  article-title: Nitrogen-doped graphene for generation and evolution of reactive radicals by metal-free catalysis
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am508416n
– volume: 9
  start-page: 38832
  issue: 44
  year: 2017
  ident: 10.1016/j.watres.2020.115559_bib63
  article-title: Boosting the visible-light photoactivity of BiOCl/BiVO4/N-GQD ternary heterojunctions based on internal Z-Scheme charge transfer of N-GQDs: simultaneous band gap narrowing and carrier lifetime prolonging
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b14412
– volume: 139
  start-page: 3438
  issue: 9
  year: 2017
  ident: 10.1016/j.watres.2020.115559_bib24
  article-title: Highly efficient and exceptionally durable CO2 Pphotoreduction to methanol over freestanding defective single-unit-cell bismuth vanadate layers
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b11263
– volume: 235
  start-page: 264
  year: 2018
  ident: 10.1016/j.watres.2020.115559_bib44
  article-title: Sulfate radical-based photo-Fenton reaction derived by CuBi2O4 and its composites with α-Bi2O3 under visible light irradiation: catalyst fabrication, performance and reaction mechanism
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2018.04.058
– volume: 143
  start-page: 589
  year: 2018
  ident: 10.1016/j.watres.2020.115559_bib18
  article-title: Light-excited photoelectrons coupled with bio-photocatalysis enhanced the degradation efficiency of oxytetracycline
  publication-title: Water Res.
  doi: 10.1016/j.watres.2018.06.068
– volume: 140
  start-page: 12469
  issue: 39
  year: 2018
  ident: 10.1016/j.watres.2020.115559_bib35
  article-title: Single cobalt atoms anchored on porous N-doped graphene with dual reaction sites for efficient Fenton-like catalysis
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b05992
– volume: 4
  start-page: 7
  year: 2013
  ident: 10.1016/j.watres.2020.115559_bib34
  article-title: Spatial separation of photogenerated electrons and holes among {010} and {110} crystal facets of BiVO4
  publication-title: Nat. Commun.
– volume: 51
  start-page: 5137
  issue: 9
  year: 2017
  ident: 10.1016/j.watres.2020.115559_bib37
  article-title: Enhanced photocatalytic degradation of environmental pollutants under visible irradiation by a composite coating
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b00350
– volume: 327
  start-page: 481
  year: 2017
  ident: 10.1016/j.watres.2020.115559_bib59
  article-title: Efficient removal of ciprofloxacin by peroxymonosulfate/Mn3O4-MnO2 catalytic oxidation system
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.06.064
SSID ssj0002239
Score 2.6889563
Snippet Peroxymonosulfate (PMS) is extensively used as an oxidant to develop the sulfate radical-based advanced oxidation processes in the decontamination of organic...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 115559
SubjectTerms BiVO4
Catalysis
Catalytic degradation
Ciprofloxacin
decontamination
electron paramagnetic resonance spectroscopy
free radicals
Light
Mechanism
nanosheets
oxidants
oxidation
Peroxides
Peroxymonosulfate
pollution control
spectrometers
sulfates
toxicity
Visible light
water
Water treatment
Title Catalytic degradation of ciprofloxacin by a visible-light-assisted peroxymonosulfate activation system: Performance and mechanism
URI https://dx.doi.org/10.1016/j.watres.2020.115559
https://www.ncbi.nlm.nih.gov/pubmed/32028250
https://www.proquest.com/docview/2352641788
https://www.proquest.com/docview/2574325805
Volume 173
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS91AEF_EXupBbGv11Va24HU1H7vZbG_yqLy2VHpQ8Bb2EyIxeeh71HcR_M87k020hVahx4QJLDuTmd9-_H5DyEECeTdIJ5iW1jKurWMqURmD5ZAVGXfGCiQKfz8tZuf864W4WCPTkQuD1yqH3B9zep-thzdHw2wezesaOb5Q_HLBM4hTlNNDBjuXGOWHd4_XPKD8qfGUGa1H-lx_x-unRkIGrBIzzB1CoGLp38vTv-BnX4ZOtsjmgB_pcRziK7Lm29dk4zdVwTfkfopbMiswoA6lIGLXJNoFamts0d10t9rWLTUrqilyy03jWdMLigCSRrc7ivLhtysI0e5m2QTAoxQJEHH7lkb150_0xyPpgOrW0SuPNOL65mqbnJ98PpvO2NBpgVlepAsWjFClLaQSOjWF1F6GkGhlstIoDYhCJU4LbwKgFbCwKQKfwsoAv7_mttD5W7Ledq3fJVSbzAhjZOAy51wZ7Z2DvOGckIiO8gnJxwmu7CBDjt0wmmq8b3ZZRbdU6JYqumVC2MNX8yjD8Yy9HH1X_RFOFVSKZ778OLq6gj8Nj09067slGGErAZ7KsnzCRgAiy0SZiAnZiXHyMF7sVA_r8eTdf49tj7zEJzzMSsV7sr64XvoPgIkWZr8P-n3y4vjLt9npL5t5D2M
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKOQAHxLvL00hcTfOw45gbWrVaoK04tFJvlp9SUJpU7a7oXpD458zESQtSoRLXZCxZHnvm8-P7hpB3GcTdKL1gRjrHuHGeqUwVDLZDThTcWyeQKLx_UC2O-OdjcbxB5hMXBp9VjrE_xfQhWo9ftsfR3D5tGuT4QvIrBS9gnqKc3i1ym8PyxTIG739cvfOA_Kema2Y0n_hzwyOv7wYZGbBNLDB4CIGSpdfnp7_hzyEP7T4g90cAST-mPj4kG6F7RO79Jiv4mPyc45nMGgyoRy2IVDaJ9pG6Bmt0t_2FcU1H7ZoaiuRy2wbWDooiAKXR756ifvjFGuZof75qIwBSigyIdH5Lk_zzB_r1inVATefpSUAecXN-8oQc7e4czhdsLLXAHK_yJYtWqNpVUgmT20qaIGPMjLJFbZUBSKEyb0SwEeAKWLgckU_lZIT1b7irTPmUbHZ9F7YINbawwloZuSw5V9YE7yFweC8kwqNyRsppgLUbdcixHEarpwdn33Ryi0a36OSWGWGXrU6TDscN9nLynf5jPmlIFTe0fDu5WsNSw_sT04V-BUZYS4Dnsq7_YSMAkhWizsSMPEvz5LK_WKoeNuTZ8__u2xtyZ3G4v6f3Ph18eUHu4h-82crFS7K5PFuFVwCQlvb1sAB-AarCEPE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Catalytic+degradation+of+ciprofloxacin+by+a+visible-light-assisted+peroxymonosulfate+activation+system%3A+Performance+and+mechanism&rft.jtitle=Water+research+%28Oxford%29&rft.au=Chen%2C+Fei&rft.au=Huang%2C+Gui-Xiang&rft.au=Yao%2C+Fu-Bing&rft.au=Yang%2C+Qi&rft.date=2020-04-15&rft.eissn=1879-2448&rft.volume=173&rft.spage=115559&rft_id=info:doi/10.1016%2Fj.watres.2020.115559&rft_id=info%3Apmid%2F32028250&rft.externalDocID=32028250
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1354&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1354&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1354&client=summon