Exogenous melatonin enhances tomato heat resistance by regulating photosynthetic electron flux and maintaining ROS homeostasis
Heat stress reduces plant growth and reproduction and increases agricultural risks. As a natural compound, melatonin modulates broad aspects of the responses of plants to various biotic and abiotic stresses. However, regulation of the photosynthetic electron transfer, reactive oxygen species (ROS) h...
Saved in:
Published in | Plant physiology and biochemistry Vol. 196; pp. 197 - 209 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
France
Elsevier Masson SAS
01.03.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Heat stress reduces plant growth and reproduction and increases agricultural risks. As a natural compound, melatonin modulates broad aspects of the responses of plants to various biotic and abiotic stresses. However, regulation of the photosynthetic electron transfer, reactive oxygen species (ROS) homeostasis and the redox state of redox-sensitive proteins in the tolerance to heat stress induced by melatonin remain largely unknown. The oxygen evolution complex activity on the electron-donating side of photosystem II (PSII) is inhibited, and the electron transfer process from QA to QB on the electron-accepting side of PSII is inhibited. In this case, heat stress decreased the chlorophyll content, carbon assimilation rate, PSII activity, and the proportion of light absorbed by tomato seedlings during electron transfer. The ROS burst led to the breakdown of the PSII core protein. However, exogenous melatonin increased the net photosynthetic rate by 11.3% compared with heat stress, substantially reducing the restriction of photosynthetic systems induced by heat stress. Additionally, melatonin reduces the oxidative damage to PSII by balancing electron transfer on the donor, reactive center, and acceptor sides. Melatonin was used under heat stress to increase the activity of the antioxidant enzyme and preserve ROS equilibrium. In addition, redox proteomics also showed that melatonin controls the redox levels of proteins involved in photosynthesis, and stress and defense processes, which enhances the expression of oxidative genes. In conclusion, melatonin via controlling the photosynthetic electron transport and antioxidant, melatonin increased tomato heat stress tolerance and aided plant growth.
•MT alleviated the oxidative damage of PSII by balancing the electron transfer of the donor side, reaction center, and receptor side.•MT inhibited ROS accumulation by promoting the key enzyme activities of AsA-GSH cycle, and modulating redox state of redox-sensitive proteins.•MT regulates the redox proteins of heat resistant signaling pathway and increases the expression of oxidative genes in downstream. |
---|---|
AbstractList | Heat stress reduces plant growth and reproduction and increases agricultural risks. As a natural compound, melatonin modulates broad aspects of the responses of plants to various biotic and abiotic stresses. However, regulation of the photosynthetic electron transfer, reactive oxygen species (ROS) homeostasis and the redox state of redox-sensitive proteins in the tolerance to heat stress induced by melatonin remain largely unknown. The oxygen evolution complex activity on the electron-donating side of photosystem II (PSII) is inhibited, and the electron transfer process from QA to QB on the electron-accepting side of PSII is inhibited. In this case, heat stress decreased the chlorophyll content, carbon assimilation rate, PSII activity, and the proportion of light absorbed by tomato seedlings during electron transfer. The ROS burst led to the breakdown of the PSII core protein. However, exogenous melatonin increased the net photosynthetic rate by 11.3% compared with heat stress, substantially reducing the restriction of photosynthetic systems induced by heat stress. Additionally, melatonin reduces the oxidative damage to PSII by balancing electron transfer on the donor, reactive center, and acceptor sides. Melatonin was used under heat stress to increase the activity of the antioxidant enzyme and preserve ROS equilibrium. In addition, redox proteomics also showed that melatonin controls the redox levels of proteins involved in photosynthesis, and stress and defense processes, which enhances the expression of oxidative genes. In conclusion, melatonin via controlling the photosynthetic electron transport and antioxidant, melatonin increased tomato heat stress tolerance and aided plant growth.Heat stress reduces plant growth and reproduction and increases agricultural risks. As a natural compound, melatonin modulates broad aspects of the responses of plants to various biotic and abiotic stresses. However, regulation of the photosynthetic electron transfer, reactive oxygen species (ROS) homeostasis and the redox state of redox-sensitive proteins in the tolerance to heat stress induced by melatonin remain largely unknown. The oxygen evolution complex activity on the electron-donating side of photosystem II (PSII) is inhibited, and the electron transfer process from QA to QB on the electron-accepting side of PSII is inhibited. In this case, heat stress decreased the chlorophyll content, carbon assimilation rate, PSII activity, and the proportion of light absorbed by tomato seedlings during electron transfer. The ROS burst led to the breakdown of the PSII core protein. However, exogenous melatonin increased the net photosynthetic rate by 11.3% compared with heat stress, substantially reducing the restriction of photosynthetic systems induced by heat stress. Additionally, melatonin reduces the oxidative damage to PSII by balancing electron transfer on the donor, reactive center, and acceptor sides. Melatonin was used under heat stress to increase the activity of the antioxidant enzyme and preserve ROS equilibrium. In addition, redox proteomics also showed that melatonin controls the redox levels of proteins involved in photosynthesis, and stress and defense processes, which enhances the expression of oxidative genes. In conclusion, melatonin via controlling the photosynthetic electron transport and antioxidant, melatonin increased tomato heat stress tolerance and aided plant growth. Heat stress reduces plant growth and reproduction and increases agricultural risks. As a natural compound, melatonin modulates broad aspects of the responses of plants to various biotic and abiotic stresses. However, regulation of the photosynthetic electron transfer, reactive oxygen species (ROS) homeostasis and the redox state of redox-sensitive proteins in the tolerance to heat stress induced by melatonin remain largely unknown. The oxygen evolution complex activity on the electron-donating side of photosystem II (PSII) is inhibited, and the electron transfer process from QA to QB on the electron-accepting side of PSII is inhibited. In this case, heat stress decreased the chlorophyll content, carbon assimilation rate, PSII activity, and the proportion of light absorbed by tomato seedlings during electron transfer. The ROS burst led to the breakdown of the PSII core protein. However, exogenous melatonin increased the net photosynthetic rate by 11.3% compared with heat stress, substantially reducing the restriction of photosynthetic systems induced by heat stress. Additionally, melatonin reduces the oxidative damage to PSII by balancing electron transfer on the donor, reactive center, and acceptor sides. Melatonin was used under heat stress to increase the activity of the antioxidant enzyme and preserve ROS equilibrium. In addition, redox proteomics also showed that melatonin controls the redox levels of proteins involved in photosynthesis, and stress and defense processes, which enhances the expression of oxidative genes. In conclusion, melatonin via controlling the photosynthetic electron transport and antioxidant, melatonin increased tomato heat stress tolerance and aided plant growth. Heat stress reduces plant growth and reproduction and increases agricultural risks. As a natural compound, melatonin modulates broad aspects of the responses of plants to various biotic and abiotic stresses. However, regulation of the photosynthetic electron transfer, reactive oxygen species (ROS) homeostasis and the redox state of redox-sensitive proteins in the tolerance to heat stress induced by melatonin remain largely unknown. The oxygen evolution complex activity on the electron-donating side of photosystem II (PSII) is inhibited, and the electron transfer process from QA to QB on the electron-accepting side of PSII is inhibited. In this case, heat stress decreased the chlorophyll content, carbon assimilation rate, PSII activity, and the proportion of light absorbed by tomato seedlings during electron transfer. The ROS burst led to the breakdown of the PSII core protein. However, exogenous melatonin increased the net photosynthetic rate by 11.3% compared with heat stress, substantially reducing the restriction of photosynthetic systems induced by heat stress. Additionally, melatonin reduces the oxidative damage to PSII by balancing electron transfer on the donor, reactive center, and acceptor sides. Melatonin was used under heat stress to increase the activity of the antioxidant enzyme and preserve ROS equilibrium. In addition, redox proteomics also showed that melatonin controls the redox levels of proteins involved in photosynthesis, and stress and defense processes, which enhances the expression of oxidative genes. In conclusion, melatonin via controlling the photosynthetic electron transport and antioxidant, melatonin increased tomato heat stress tolerance and aided plant growth. •MT alleviated the oxidative damage of PSII by balancing the electron transfer of the donor side, reaction center, and receptor side.•MT inhibited ROS accumulation by promoting the key enzyme activities of AsA-GSH cycle, and modulating redox state of redox-sensitive proteins.•MT regulates the redox proteins of heat resistant signaling pathway and increases the expression of oxidative genes in downstream. |
Author | Wang, Zhenqi Meng, Sida Yin, Zepeng Sun, Cong Zhao, Siting Qi, Mingfang Liu, Yulong Li, Tianlai Wang, Baofeng |
Author_xml | – sequence: 1 givenname: Cong surname: Sun fullname: Sun, Cong organization: Key Laboratory of Fruit Postharvest Biology, Shenyang, 110866, China – sequence: 2 givenname: Sida surname: Meng fullname: Meng, Sida organization: Key Laboratory of Fruit Postharvest Biology, Shenyang, 110866, China – sequence: 3 givenname: Baofeng surname: Wang fullname: Wang, Baofeng organization: Key Laboratory of Fruit Postharvest Biology, Shenyang, 110866, China – sequence: 4 givenname: Siting surname: Zhao fullname: Zhao, Siting organization: Key Laboratory of Fruit Postharvest Biology, Shenyang, 110866, China – sequence: 5 givenname: Yulong surname: Liu fullname: Liu, Yulong organization: Mudanjiang Forest Ecosystem Positioning Observation and Research Station, Heilongjiang Ecological Institute, Harbin 150081, China – sequence: 6 givenname: Mingfang surname: Qi fullname: Qi, Mingfang organization: Key Laboratory of Fruit Postharvest Biology, Shenyang, 110866, China – sequence: 7 givenname: Zhenqi surname: Wang fullname: Wang, Zhenqi organization: Guizhou Aerospace Intelligent Agriculture Co., Ltd., Guizhou, 550000, China – sequence: 8 givenname: Zepeng orcidid: 0000-0002-5123-8321 surname: Yin fullname: Yin, Zepeng email: yinzp@syau.edu.cn organization: Key Laboratory of Fruit Postharvest Biology, Shenyang, 110866, China – sequence: 9 givenname: Tianlai surname: Li fullname: Li, Tianlai email: ltl@syau.edu.cn organization: Key Laboratory of Fruit Postharvest Biology, Shenyang, 110866, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36724704$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtv1DAUhS1URKeFf4CQl2wS_Mg4MQskVBVaqVIlHmvrjnMz8Sixg-1BnQ2_HY-msGBBF5btq-8c6Z5zQc588EjIa85qzrh6t6uXCZbxUAsmZM14zRr5jKx418pKKM3OyIrpjle6Ed05uUhpxxgTTStfkHOp2vJizYr8un4IW_Rhn-iME-TgnafoR_AWE81hLiM6ImQaMbmUj3O6OZTfdl9w57d0GUMO6eDziNlZihPaHIOnw7R_oOB7OoPzuZwj_OX-Kx3DjKFYFb-X5PkAU8JXj_cl-f7p-tvVTXV3__n26uNdZRvFczWA6Cy3PQLqBphSfaM2gxiUaBXqDXTcIl_DwEBb1XNgCKJnvRUa7LDWQl6StyffJYYfe0zZzC5ZnCbwWHY3kq8l77iW-klUtC3XDZdtV9A3j-h-M2NvluhmiAfzJ94CNCfAxpBSxOEvwpk5tmh25tSiObZoGDdFVWTv_5FZl0vYwecIbnpK_OEkxpLnT4fRJOuw1Na7WJoxfXD_N_gNF5q-xg |
CitedBy_id | crossref_primary_10_1016_j_scienta_2023_112445 crossref_primary_10_1007_s00344_024_11582_7 crossref_primary_10_1016_j_plaphy_2025_109665 crossref_primary_10_1016_j_plaphy_2024_109055 crossref_primary_10_1079_cabireviews_2024_0027 crossref_primary_10_1186_s12870_024_05289_w crossref_primary_10_3390_plants12162948 crossref_primary_10_21926_obm_genet_2402242 crossref_primary_10_1080_00380768_2024_2405834 crossref_primary_10_1016_j_stress_2025_100789 crossref_primary_10_1111_jpi_70018 crossref_primary_10_3390_nano14151253 crossref_primary_10_1016_j_plaphy_2023_107698 crossref_primary_10_1111_ppl_14188 crossref_primary_10_1016_j_indcrop_2024_118888 crossref_primary_10_1016_j_jhazmat_2024_133829 crossref_primary_10_1016_j_hpj_2023_12_006 crossref_primary_10_1016_j_plaphy_2024_108736 crossref_primary_10_1111_ppl_14267 |
Cites_doi | 10.1111/jpi.12155 10.1111/jpi.12219 10.3390/molecules23020386 10.1371/journal.ppat.1005811 10.1111/plb.13296 10.1080/17429145.2019.1645895 10.1111/ppl.12976 10.1111/j.1365-3040.2007.01710.x 10.1016/j.envexpbot.2018.06.012 10.1111/jpi.12253 10.1038/hortres.2015.43 10.1111/j.1399-3054.2011.01457.x 10.1093/jxb/ern252 10.1016/j.jhazmat.2020.122882 10.1042/BST20170299 10.3389/fpls.2020.00669 10.1007/s00344-020-10273-3 10.1016/j.plantsci.2019.110387 10.1111/j.1600-079X.2008.00625.x 10.1093/jxb/erab090 10.1111/jpi.12258 10.3389/fpls.2020.599111 10.1007/s00299-008-0666-y 10.1016/j.scienta.2018.10.058 10.3390/molecules26144157 10.1016/j.plantsci.2019.110371 10.3390/plants9030363 10.1016/j.sajb.2022.06.065 10.1007/s10725-014-9905-0 10.1111/jpi.12359 10.1016/j.envexpbot.2020.104151 10.1093/jxb/erj191 10.1007/s00299-022-02843-4 10.1089/ars.2019.7823 10.1111/j.1399-3054.2008.01090.x 10.1074/jbc.M602896200 10.1016/j.chemosphere.2019.03.026 10.1074/jbc.M710465200 10.1093/jxb/eru373 10.1046/j.1600-079X.2003.00106.x 10.1186/s12870-019-2110-6 10.1007/s10535-012-0100-8 10.1016/j.plaphy.2021.08.002 10.1016/j.plantsci.2022.111305 10.1016/j.bbabio.2007.05.001 10.1111/nph.13621 10.1016/j.jmb.2011.01.013 10.1089/ars.2008.2177 10.1111/j.1600-079X.2011.00966.x 10.1046/j.1365-3040.1997.d01-44.x 10.1007/s00299-021-02675-8 10.1023/A:1020470224740 10.1016/j.ecoenv.2020.110822 10.15252/embj.2021108664 10.1016/j.bbabio.2018.03.002 10.1038/s41598-018-27032-w 10.17957/IJAB/15.0348 10.1111/j.1365-3040.2005.01289.x 10.1016/0003-2697(76)90527-3 10.1111/j.1600-079X.2007.00552.x 10.1038/srep14078 10.1016/j.envexpbot.2011.12.022 10.1016/j.plaphy.2021.12.018 10.1104/pp.18.00067 10.1093/plphys/kiab550 10.1016/j.plantsci.2020.110795 10.1104/pp.106.090712 10.3390/antiox10081216 10.1111/tpj.13317 10.1093/jxb/erx473 10.1016/j.envexpbot.2017.07.007 10.3390/ijms20092068 10.3390/ijms22010117 10.1111/jpi.12642 10.1016/j.ecoenv.2019.05.043 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Masson SAS Copyright © 2023 Elsevier Masson SAS. All rights reserved. |
Copyright_xml | – notice: 2023 Elsevier Masson SAS – notice: Copyright © 2023 Elsevier Masson SAS. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.plaphy.2023.01.043 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Botany |
EISSN | 1873-2690 |
EndPage | 209 |
ExternalDocumentID | 36724704 10_1016_j_plaphy_2023_01_043 S0981942823000475 |
Genre | Journal Article |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AATLK AAXUO ABFNM ABFRF ABGRD ABGSF ABJNI ABLJU ABMAC ABUDA ABXDB ABYKQ ACDAQ ACGFO ACIUM ACRLP ADBBV ADEZE ADQTV ADUVX AEBSH AEFWE AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPCBC SSA SSU SSZ T5K TN5 UNMZH ~G- AAHBH AATTM AAXKI AAYWO AAYXX ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EFKBS EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c461t-fa28c1cdeae94a066d46bf2f6276e9ba81ce15af0a9c6d1a0ea2d0dc29acf5923 |
IEDL.DBID | .~1 |
ISSN | 0981-9428 1873-2690 |
IngestDate | Fri Aug 22 20:33:50 EDT 2025 Fri Jul 11 11:29:40 EDT 2025 Sat Aug 02 01:41:09 EDT 2025 Thu Apr 24 22:56:20 EDT 2025 Tue Jul 01 04:26:01 EDT 2025 Fri Feb 23 02:36:36 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Melatonin Redox proteomics Photosynthetic electron transfer Antioxidant Solanum lycopersicum ROS |
Language | English |
License | Copyright © 2023 Elsevier Masson SAS. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c461t-fa28c1cdeae94a066d46bf2f6276e9ba81ce15af0a9c6d1a0ea2d0dc29acf5923 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-5123-8321 |
PMID | 36724704 |
PQID | 2771941378 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_3153181939 proquest_miscellaneous_2771941378 pubmed_primary_36724704 crossref_primary_10_1016_j_plaphy_2023_01_043 crossref_citationtrail_10_1016_j_plaphy_2023_01_043 elsevier_sciencedirect_doi_10_1016_j_plaphy_2023_01_043 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2023 2023-03-00 2023-Mar 20230301 |
PublicationDateYYYYMMDD | 2023-03-01 |
PublicationDate_xml | – month: 03 year: 2023 text: March 2023 |
PublicationDecade | 2020 |
PublicationPlace | France |
PublicationPlace_xml | – name: France |
PublicationTitle | Plant physiology and biochemistry |
PublicationTitleAlternate | Plant Physiol Biochem |
PublicationYear | 2023 |
Publisher | Elsevier Masson SAS |
Publisher_xml | – name: Elsevier Masson SAS |
References | Tracy, Silvère (bib64) 2018; 221 Caspy, Nelson (bib12) 2018; 46 Yu, Li, Qin, Guo, Li, Miao, Song, Chen, Dai (bib78) 2020; 33 Sperdouli, Moustaka, Ouzounidou, Moustakas (bib60) 2021; 26 Tan, Yang, Liu, Zhang, Huang (bib62) 2020; 292 Zhang, Gao, Zhang, Xue, Meng (bib81) 2012; 56 Moore, Meacham-Hensold, Lemonnier, Slattery, Benjamin, Bernacchi, Lawson, Cavanagh (bib35) 2021; 72 Alamri, Siddiqui, Al-Khaishany, Khan, Ali, Alakeel (bib2) 2019; 161 Wada, Takagi, Miyake, Makino, Suzuki (bib67) 2019; 20 Slowik, Rossmann, Konarev, Irrgang, Saenger (bib58) 2011; 407 Li, Ahammed, Zhou, Xia, Zhou, Shi, Yu, Zhou (bib26) 2016; 7 Arnao, Hernández‐Ruiz (bib6) 2009; 46 Yin, Lu, Meng, Liu, Mostafa, Qi, Li (bib75) 2019; 14 Siddiqui, Khan, Singh (bib56) 2022; 41 Poór, Nawaz, Gupta, Ashfaque, Khan (bib39) 2022; 41 Ali, Kamran, Abbasi, Saleem, Ahmad, Parveen, Malik, Afzal, Ahmar, Dawar, Ali, Alamri, Siddiqui, Akbar, Fahad (bib5) 2021; 40 Jalal, Wen, Liu, Chen (bib20) 2018; 161 Shi, Li, Zhang, Zhang, Liu, Zhou, Xia, Chen, Yu (bib52) 2015; 208 Arnao, Hernández-Ruiz (bib7) 2015; 59 Röth, Mirus, Bublak, Scharf, Schleiff (bib46) 2017; 89 Ahmad, Tripathi, Deshmukh, Singh, Corpas (bib1) 2019; 1–3 Al-Huqail, Khan, Ali, Siddiqui, Al-Huqail, AlZuaibr, Al-Muwayhi, Marraiki, Al-Humaid (bib4) 2020; 201 Fatma, Iqbal, Sehar, Alyemeni, Kaushik, Khan, Ahmad (bib16) 2021; 10 Bradford (bib11) 1976; 72 Foyer, Noctor (bib17) 2009; 11 Turk, Erdal, Genisel, Atici, Demir, Yanmis (bib65) 2014; 74 Zhao, Lu, Wang, Jin (bib83) 2020; 22 Rodriguez-Heredia, Saccon, Wilson, Finazzi, Ruban, Hanke (bib45) 2022; 188 Shi, Chan (bib49) 2014; 57 Zhao, Su, Huo, Wei, Jiang, Xu, Ma (bib82) 2015; 59 Liang, Ni, Xia, Xie, Lv, Wang, Lin, Deng, Luo (bib29) 2019; 246 Raja, Qadir, Alyemeni, Ahmad (bib43) 2020; 10 Siddiqui, Alamri, Khan, Corpas, Al-Amri, Alsubaie, Ali, Kalaji, Ahmad (bib54) 2020; 398 Yang, Li, Chen, Huang, Zhang, Qi, Liu, Li (bib73) 2020; 9 Yin, Ren, Zhou, Sun, Wang, Liu, Song (bib76) 2017; 15 Couto, Niebergall, Liang, Bücherl, Sklenar, Macho, Ntoukakis, Derbyshire, Altenbach, Maclean, Robatzek, Uhrig, Menke, Zhou, Zipfel (bib13) 2016; 12 Lu, Wang, Yang, Wang, Qi, Li, Liu (bib31) 2020; 177 Sharkey, Bernacchi, Farquhar, Singsaas (bib48) 2007; 30 Wang, Reiter, Chan (bib70) 2018; 69 Essemine, Govindachary, Ammar, Bouzid, Carpentier (bib15) 2012; 80 Lu, Lu, Qi, Sun, Liu, Li (bib33) 2021; 28 Shi, Tan, Reiter, Ye, Yang, Chan (bib51) 2015; 58 Yoshioka, Uchida, Mori, Komayama, Ohira, Morita, Nakanishi, Yamamoto (bib77) 2006; 281 Tang, Wen, Lu, Yang, Cheng, Lu (bib63) 2007; 143 Xu, Cai, Zhang, Wang, Ahammed, Xia, Shi, Zhou, Yu, Reiter, Zhou (bib71) 2016; 61 Albertos, Dündar, Schenk, Carrera, Cavelius, Sieberer, Poppenberger (bib3) 2022; 41 Kaur, Sirhindi, Bhardwaj, Alyemeni, Siddique, Ahmad (bib21) 2018; 8 Siddiqui, Khan, Mukherjee, Basahi, Alamri, Al-Amri, Alsubaie, Ali, Al-Munqedhi, Almohisen (bib55) 2021; 23 Asada, Nishimura, Ifuku, Mino (bib9) 2018; 1859 Shi, Jiang, Ye, Tan, Reiter, Zhang, Liu, Chan (bib50) 2015; 66 Ding, He, Wu, Wu, Ge, Wang, Zhong, Peiter, Liang, Xu (bib14) 2018; 177 Lei, Zhu, Zhang, Dai (bib25) 2004; 36 Mostofa, Rahman, Ansary, Watanabe, Fujita, Tran (bib36) 2015; 5 Lu, Yin, Lu, Yang, Wang, Qi, Li, Liu (bib32) 2020; 292 Smertenko, Dráber, Viklický, Opatrný (bib59) 1997; 20 Arnao, Hernández-Ruiz (bib8) 2021; 21 Santisree, Bhatnagar-Mathur, Sharma (bib47) 2017; 141 Siddiqui, Mukherjee, Kumar, Alansi, Shah, Kalaji, Javed, Raza (bib57) 2022; 171 Palma, Río (bib38) 2006; 57 Rinalducci, Murgiano, Zolla (bib44) 2008; 59 Qi, Wang, Yan, Kanwar, Li, Wijaya, Alyemeni, Ahmad, Zhou (bib42) 2018; 23 Zhang, Xu, Li, Jin, Tian, Gu (bib80) 2017; 19 Balmant, Parker, Yoo, Zhu, Dufresne, Chen (bib10) 2015; 2 Siddiqui, Alamri, Alsubaie, Ali, Ibrahim, Alsadon (bib53) 2019; 180 Wang, Yan, Ahammed, Wang, Bu, Xiang, Li, Lu, Liu, Qi, Qi, Li (bib68) 2020; 11 Kaya, Higgs, Ashraf, Alyemeni, Ahmad (bib22) 2020; 168 Sun, Lv, Huang, Liu, Jin, Lin (bib61) 2020; 68 Wang, Yin, Liang, Li, Ma, Yue (bib69) 2012; 53 Porra (bib40) 2002; 73 Haldimann, Feller (bib18) 2005; 28 Li, Gao, Lu, Wei, Qi, Yin, Li (bib28) 2022; 321 Yang, Tan, Sun, Huang, Huang, Zhang (bib74) 2021; 303 Jahan, Guo, Sun, Shu, Wang, Abou El-Yazied, Alabdallah, Hikal, Mohamed, Ibrahim, Hasan (bib19) 2021; 167 Zaman, Abbasi, Tabassum, Ashraf, Ahmad, Siddiqui, Alamri, Maqsood, Sultan (bib79) 2022; 149 Kaya, Okant, Ugurlar, Alyemeni, Ashraf, Ahmad (bib23) 2019; 225 Posmyk, Kuran, Marciniak, Janas (bib41) 2008; 45 Lu, Guan, Gu, Yang, Wang, Qi, Li, Liu (bib30) 2021; 11 Nishiyama, Allakhverdiev, Murata (bib37) 2011; 142 Miller, Shulaev, Mittler (bib34) 2008; 133 Yamashita, Nijo, Pospĺšil, Morita, Takenaka, Aminaka, Yamamoto, Yamamoto (bib72) 2008; 283 Komayama, Khatoon, Takenaka, Horie, Yamashita, Yoshioka, Ohira, Morita, Velitchkova, Enami, Yamamoto (bib24) 2007; 1767 Ulhassan, Huang, Gill, Ali, Zhou (bib66) 2019; 19 Li, Fu, Huang, Yu (bib27) 2009; 28 Lei (10.1016/j.plaphy.2023.01.043_bib25) 2004; 36 Komayama (10.1016/j.plaphy.2023.01.043_bib24) 2007; 1767 Wang (10.1016/j.plaphy.2023.01.043_bib70) 2018; 69 Ahmad (10.1016/j.plaphy.2023.01.043_bib1) 2019; 1–3 Lu (10.1016/j.plaphy.2023.01.043_bib30) 2021; 11 Moore (10.1016/j.plaphy.2023.01.043_bib35) 2021; 72 Shi (10.1016/j.plaphy.2023.01.043_bib50) 2015; 66 Albertos (10.1016/j.plaphy.2023.01.043_bib3) 2022; 41 Zhang (10.1016/j.plaphy.2023.01.043_bib81) 2012; 56 Arnao (10.1016/j.plaphy.2023.01.043_bib8) 2021; 21 Posmyk (10.1016/j.plaphy.2023.01.043_bib41) 2008; 45 Slowik (10.1016/j.plaphy.2023.01.043_bib58) 2011; 407 Palma (10.1016/j.plaphy.2023.01.043_bib38) 2006; 57 Zaman (10.1016/j.plaphy.2023.01.043_bib79) 2022; 149 Wang (10.1016/j.plaphy.2023.01.043_bib68) 2020; 11 Al-Huqail (10.1016/j.plaphy.2023.01.043_bib4) 2020; 201 Lu (10.1016/j.plaphy.2023.01.043_bib32) 2020; 292 Couto (10.1016/j.plaphy.2023.01.043_bib13) 2016; 12 Alamri (10.1016/j.plaphy.2023.01.043_bib2) 2019; 161 Röth (10.1016/j.plaphy.2023.01.043_bib46) 2017; 89 Santisree (10.1016/j.plaphy.2023.01.043_bib47) 2017; 141 Liang (10.1016/j.plaphy.2023.01.043_bib29) 2019; 246 Caspy (10.1016/j.plaphy.2023.01.043_bib12) 2018; 46 Tan (10.1016/j.plaphy.2023.01.043_bib62) 2020; 292 Balmant (10.1016/j.plaphy.2023.01.043_bib10) 2015; 2 Li (10.1016/j.plaphy.2023.01.043_bib27) 2009; 28 Porra (10.1016/j.plaphy.2023.01.043_bib40) 2002; 73 Li (10.1016/j.plaphy.2023.01.043_bib26) 2016; 7 Siddiqui (10.1016/j.plaphy.2023.01.043_bib55) 2021; 23 Miller (10.1016/j.plaphy.2023.01.043_bib34) 2008; 133 Yang (10.1016/j.plaphy.2023.01.043_bib73) 2020; 9 Yu (10.1016/j.plaphy.2023.01.043_bib78) 2020; 33 Sharkey (10.1016/j.plaphy.2023.01.043_bib48) 2007; 30 Zhao (10.1016/j.plaphy.2023.01.043_bib83) 2020; 22 Tracy (10.1016/j.plaphy.2023.01.043_bib64) 2018; 221 Siddiqui (10.1016/j.plaphy.2023.01.043_bib56) 2022; 41 Rinalducci (10.1016/j.plaphy.2023.01.043_bib44) 2008; 59 Kaya (10.1016/j.plaphy.2023.01.043_bib23) 2019; 225 Tang (10.1016/j.plaphy.2023.01.043_bib63) 2007; 143 Arnao (10.1016/j.plaphy.2023.01.043_bib6) 2009; 46 Haldimann (10.1016/j.plaphy.2023.01.043_bib18) 2005; 28 Yamashita (10.1016/j.plaphy.2023.01.043_bib72) 2008; 283 Zhao (10.1016/j.plaphy.2023.01.043_bib82) 2015; 59 Bradford (10.1016/j.plaphy.2023.01.043_bib11) 1976; 72 Wang (10.1016/j.plaphy.2023.01.043_bib69) 2012; 53 Shi (10.1016/j.plaphy.2023.01.043_bib51) 2015; 58 Li (10.1016/j.plaphy.2023.01.043_bib28) 2022; 321 Yoshioka (10.1016/j.plaphy.2023.01.043_bib77) 2006; 281 Sperdouli (10.1016/j.plaphy.2023.01.043_bib60) 2021; 26 Siddiqui (10.1016/j.plaphy.2023.01.043_bib53) 2019; 180 Siddiqui (10.1016/j.plaphy.2023.01.043_bib57) 2022; 171 Essemine (10.1016/j.plaphy.2023.01.043_bib15) 2012; 80 Kaur (10.1016/j.plaphy.2023.01.043_bib21) 2018; 8 Qi (10.1016/j.plaphy.2023.01.043_bib42) 2018; 23 Turk (10.1016/j.plaphy.2023.01.043_bib65) 2014; 74 Fatma (10.1016/j.plaphy.2023.01.043_bib16) 2021; 10 Siddiqui (10.1016/j.plaphy.2023.01.043_bib54) 2020; 398 Shi (10.1016/j.plaphy.2023.01.043_bib52) 2015; 208 Ali (10.1016/j.plaphy.2023.01.043_bib5) 2021; 40 Asada (10.1016/j.plaphy.2023.01.043_bib9) 2018; 1859 Lu (10.1016/j.plaphy.2023.01.043_bib31) 2020; 177 Jalal (10.1016/j.plaphy.2023.01.043_bib20) 2018; 161 Smertenko (10.1016/j.plaphy.2023.01.043_bib59) 1997; 20 Lu (10.1016/j.plaphy.2023.01.043_bib33) 2021; 28 Rodriguez-Heredia (10.1016/j.plaphy.2023.01.043_bib45) 2022; 188 Jahan (10.1016/j.plaphy.2023.01.043_bib19) 2021; 167 Foyer (10.1016/j.plaphy.2023.01.043_bib17) 2009; 11 Ding (10.1016/j.plaphy.2023.01.043_bib14) 2018; 177 Sun (10.1016/j.plaphy.2023.01.043_bib61) 2020; 68 Kaya (10.1016/j.plaphy.2023.01.043_bib22) 2020; 168 Mostofa (10.1016/j.plaphy.2023.01.043_bib36) 2015; 5 Poór (10.1016/j.plaphy.2023.01.043_bib39) 2022; 41 Ulhassan (10.1016/j.plaphy.2023.01.043_bib66) 2019; 19 Xu (10.1016/j.plaphy.2023.01.043_bib71) 2016; 61 Nishiyama (10.1016/j.plaphy.2023.01.043_bib37) 2011; 142 Yin (10.1016/j.plaphy.2023.01.043_bib75) 2019; 14 Yin (10.1016/j.plaphy.2023.01.043_bib76) 2017; 15 Raja (10.1016/j.plaphy.2023.01.043_bib43) 2020; 10 Arnao (10.1016/j.plaphy.2023.01.043_bib7) 2015; 59 Wada (10.1016/j.plaphy.2023.01.043_bib67) 2019; 20 Shi (10.1016/j.plaphy.2023.01.043_bib49) 2014; 57 Yang (10.1016/j.plaphy.2023.01.043_bib74) 2021; 303 Zhang (10.1016/j.plaphy.2023.01.043_bib80) 2017; 19 |
References_xml | – volume: 36 start-page: 126 year: 2004 end-page: 131 ident: bib25 article-title: Attenuation of cold-induced apoptosis by exogenous melatonin in carrot suspension cells: the possible involvement of polyamines publication-title: J. Pineal Res. – volume: 61 start-page: 457 year: 2016 end-page: 469 ident: bib71 article-title: Melatonin enhances thermotolerance by promoting cellular protein protection in tomato plants publication-title: J. Pineal Res. – volume: 15 start-page: 1 year: 2017 end-page: 16 ident: bib76 article-title: Water deficit mechanisms in perennial shrubs Cerasus humilis leaves revealed by physiological and proteomic analyses publication-title: Proteome Sci. – volume: 5 year: 2015 ident: bib36 article-title: Hydrogen sulfide modulates cadmium-induced physiological and biochemical responses to alleviate cadmium toxicity in rice publication-title: Sci. Rep. – volume: 143 start-page: 629 year: 2007 end-page: 638 ident: bib63 article-title: Heat stress induces an aggregation of the light-harvesting complex of photosystem II in spinach plants publication-title: Plant physiol – volume: 10 start-page: 1216 year: 2021 ident: bib16 article-title: Methyl jasmonate protects the PS II system by maintaining the stability of chloroplast D1 protein and accelerating enzymatic antioxidants in heat-stressed wheat plants publication-title: Antioxidants – volume: 21 year: 2021 ident: bib8 article-title: Melatonin against environmental plant stressors: a review publication-title: Curr. Protein Pept. Sci. – volume: 23 start-page: 1 year: 2018 end-page: 14 ident: bib42 article-title: Melatonin alleviates high temperature-induced pollen abortion in publication-title: Molecules – volume: 142 start-page: 35 year: 2011 end-page: 46 ident: bib37 article-title: Protein synthesis is the primary target of reactive oxygen species in the photoinhibition of photosystem II publication-title: Physiol. Plantarum – volume: 177 year: 2020 ident: bib31 article-title: Cyclic electron flow protects photosystem I donor side under low night temperature in tomato publication-title: Environ. Exp. Bot. – volume: 19 start-page: 735 year: 2017 end-page: 745 ident: bib80 article-title: Overexpression of 2-cys prx increased salt tolerance of photosystem II in tobacco publication-title: Int. J. Agric. Biol. – volume: 59 start-page: 133 year: 2015 end-page: 150 ident: bib7 article-title: Functions of melatonin in plants: a review publication-title: J. Pineal Res. – volume: 74 start-page: 139‐152 year: 2014 ident: bib65 article-title: The regulatory effect of melatonin on physiological, biochemical and molecular parameters in cold‐stressed wheat seedlings publication-title: Plant Growth Regul. – volume: 56 start-page: 365 year: 2012 end-page: 368 ident: bib81 article-title: Multiple effects of inhibition of mitochondrial alternative oxidase pathway on photosynthetic apparatus in Rumex K-1 leaves publication-title: Biol. Plant. (Prague) – volume: 1767 start-page: 838 year: 2007 end-page: 846 ident: bib24 article-title: Quality control of photosystem II: cleavage and aggregation of heat-damaged D1 protein in spinach thylakoids publication-title: Biochim. Biophys. Acta, Bioenerg. – volume: 149 start-page: 701 year: 2022 end-page: 711 ident: bib79 article-title: Calcium induced growth, physio-biochemical, antioxidants, osmolytes adjustments and phytoconstituents status in spinach under heat stress publication-title: South Afr. J. Bot. – volume: 22 start-page: 117 year: 2020 ident: bib83 article-title: Plant responses to heat stress: physiology, transcription, noncoding RNAs, and epigenetics publication-title: Int. J. Mol. Sci. – volume: 41 year: 2022 ident: bib3 article-title: Transcription factor BES1 interacts with HSFA1 to promote heat stress resistance of plants publication-title: EMBO J. – volume: 171 start-page: 49 year: 2022 end-page: 65 ident: bib57 article-title: Potassium and melatonin-mediated regulation of fructose-1, 6-bisphosphatase (FBPase) and sedoheptulose-1, 7-bisphosphatase (SBPase) activity improve photosynthetic efficiency, carbon assimilation and modulate glyoxalase system accompanying tolerance to cadmium stress in tomato seedlings publication-title: Plant Physiol. Biochem. – volume: 225 start-page: 627 year: 2019 end-page: 638 ident: bib23 article-title: Melatonin-mediated nitric oxide improves tolerance to cadmium toxicity by reducing oxidative stress in wheat plants publication-title: Chemosphere – volume: 68 year: 2020 ident: bib61 article-title: Melatonin ameliorates aluminum toxicity through enhancing aluminum exclusion and reestablishing redox homeostasis in roots of wheat publication-title: J. Pineal Res. – volume: 19 start-page: 507 year: 2019 ident: bib66 article-title: Protective mechanisms of melatonin against selenium toxicity in brassica napus: insights into physiological traits, thiol biosynthesis and antioxidant machinery publication-title: BMC Plant Biol. – volume: 167 start-page: 309 year: 2021 end-page: 320 ident: bib19 article-title: Melatonin-mediated photosynthetic performance of tomato seedlings under high-temperature stress publication-title: Plant Physiol. Biochem. – volume: 8 start-page: 8735 year: 2018 ident: bib21 article-title: 28-homobrassinolide regulates antioxidant enzyme activities and gene expression in response to salt- and temperature-induced oxidative stress in publication-title: Brassica juncea – volume: 201 year: 2020 ident: bib4 article-title: Exogenous melatonin mitigates boron toxicity in wheat publication-title: Ecotoxicol. Environ. Saf. – volume: 407 start-page: 125 year: 2011 end-page: 137 ident: bib58 article-title: Structural investigation of PsbO from plant and cyanobacterial photosystem II publication-title: J. Mol. Biol. – volume: 72 start-page: 248 year: 1976 end-page: 254 ident: bib11 article-title: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding publication-title: Anal. Biochem. – volume: 53 start-page: 11‐20 year: 2012 ident: bib69 article-title: Delayed senescence of apple leaves by exogenous melatonin treatment: toward regulating the ascorbate‐glutathione cycle publication-title: J. Pineal Res. – volume: 2 start-page: 1 year: 2015 end-page: 12 ident: bib10 article-title: Redox proteomics of tomato in response to publication-title: Hortic. Res. – volume: 1859 start-page: 394 year: 2018 end-page: 399 ident: bib9 article-title: Location of the extrinsic subunit PsbP in photosystem II studied by pulsed electron-electron double resonance publication-title: Biochim. Biophys. Acta Bioenerg. – volume: 23 start-page: 797 year: 2021 end-page: 805 ident: bib55 article-title: Exogenous melatonin‐mediated regulation of K publication-title: Plant Bio – volume: 73 start-page: 149 year: 2002 end-page: 156 ident: bib40 article-title: The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b publication-title: Photosynth. Res. – volume: 283 start-page: 28380 year: 2008 end-page: 28391 ident: bib72 article-title: Quality control of photosystem II: reactive oxygen species are responsible for the damage to photosystem II under moderate heat stress publication-title: J. Biol. Chem. – volume: 292 year: 2020 ident: bib32 article-title: Cyclic electron flow modulate the linear electron flow and reactive oxygen species in tomato leaves under high temperature publication-title: Plant Sci. – volume: 80 start-page: 16 year: 2012 end-page: 26 ident: bib15 article-title: Enhanced sensitivity of the photosynthetic apparatus to heat stress in digalactosyl-diacylglycerol deficient Arabidopsis publication-title: Environ. Exp. Bot. – volume: 28 start-page: 262 year: 2021 end-page: 279 ident: bib33 article-title: Protective roles of D1 protein turnover and the xanthophyll cycle in tomato ( publication-title: Front. Agric. Sci. Eng. – volume: 33 start-page: 35 year: 2020 end-page: 57 ident: bib78 article-title: Plant chloroplast stress response: insights from thiol redox proteomics publication-title: Antioxidants Redox Signal. – volume: 59 start-page: 3781 year: 2008 end-page: 3801 ident: bib44 article-title: Redox proteomics: basic principles and future perspectives for the detection of protein oxidation in plants publication-title: J. Exp. Bot. – volume: 45 start-page: 24 year: 2008 end-page: 31 ident: bib41 article-title: Presowing seed treatment with melatonin protects red cabbage seedlings against toxic copper ion concentrations publication-title: J. Pineal Res. – volume: 177 start-page: 633 year: 2018 end-page: 651 ident: bib14 article-title: The tomato mitogen-activated protein kinase SLMPK1 is as a negative regulator of the high-temperature stress response publication-title: Plant Physiol. – volume: 69 start-page: 963 year: 2018 end-page: 974 ident: bib70 article-title: Phytomelatonin: a universal abiotic stress regulator publication-title: J. Exp. Bot. – volume: 133 start-page: 481 year: 2008 end-page: 489 ident: bib34 article-title: Reactive oxygen signaling and abiotic stress publication-title: Physiol. Plantarum – volume: 398 year: 2020 ident: bib54 article-title: Melatonin and calcium function synergistically to promote the resilience through ROS metabolism under arsenic-induced stress publication-title: J. Hazard Mater. – volume: 11 start-page: 669 year: 2020 ident: bib68 article-title: PGR5/PGRL1 and NDH mediate far-red light-induced photoprotection in response to chilling stress in tomato publication-title: Front. Plant Sci. – volume: 28 start-page: 683 year: 2009 end-page: 693 ident: bib27 article-title: Functional analysis of an Arabidopsis transcription factor WRKY25 in heat stress publication-title: Plant Cell Rep. – volume: 58 start-page: 335‐342 year: 2015 ident: bib51 article-title: Melatonin induces class A1 heat‐shock factors (HSFA1s) and their possible involvement of thermotolerance in Arabidopsis publication-title: J. Pineal Res. – volume: 180 start-page: 656 year: 2019 end-page: 667 ident: bib53 article-title: Potential roles of melatonin and sulfur in alleviation of lanthanum toxicity in tomato seedlings publication-title: Ecotoxicol. Environ. Saf. – volume: 1–3 year: 2019 ident: bib1 article-title: Revisiting the role of ROS and RNS in plants under changing environment publication-title: Environ. Exp. Bot. – volume: 188 start-page: 1028 year: 2022 end-page: 1042 ident: bib45 article-title: Protection of photosystem I during sudden light stress depends on ferredoxin: NADP (H) reductase abundance and interactions publication-title: Plant Physiol. – volume: 141 start-page: 132 year: 2017 end-page: 144 ident: bib47 article-title: Heat responsive proteome changes reveal molecular mechanisms underlying heat tolerance in chickpea publication-title: Environ. Exp. Bot. – volume: 20 start-page: 1 year: 2019 end-page: 16 ident: bib67 article-title: Responses of the photosynthetic electron transport reactions stimulate the oxidation of the reaction center chlorophyll of photosystem I, P700, under drought and high temperatures in rice publication-title: Int. J. Mol. Sci. – volume: 7 start-page: 1 year: 2016 end-page: 15 ident: bib26 article-title: Unraveling main limiting sites of photosynthesis under below- and above-ground heat stress in cucumber and the alleviatory role of luffa rootstock publication-title: Front. Plant Sci. – volume: 57 start-page: 185 year: 2014 end-page: 191 ident: bib49 article-title: The cysteine2/histidine2-type transcription factor ZINC FINGER of ARABIDOPSIS THALIANA 6-activated C-REPEAT-BINDING FACTOR pathway is essential for melatonin-mediated freezing stress resistance in Arabidopsis publication-title: J. Pineal Res. – volume: 11 year: 2021 ident: bib30 article-title: Exogenous DA-6 improves the low night temperature tolerance of tomato through regulating cytokinin publication-title: Front. Plant Sci. – volume: 28 start-page: 302 year: 2005 end-page: 317 ident: bib18 article-title: Growth at moderately elevated temperature alters the physiological response of the photosynthetic apparatus to heat stress in pea ( publication-title: Plant Cell Environ. – volume: 30 start-page: 1035 year: 2007 end-page: 1040 ident: bib48 article-title: Fitting photosynthetic carbon dioxide response curves for C3 leaves publication-title: Plant Cell Environ. – volume: 14 start-page: 453 year: 2019 end-page: 463 ident: bib75 article-title: Exogenous melatonin improves salt tolerance in tomato by regulating photosynthetic electron flux and the ascorbate–glutathione cycle publication-title: J. Plant Interact. – volume: 168 start-page: 256 year: 2020 end-page: 277 ident: bib22 article-title: Integrative roles of nitric oxide and hydrogen sulfide in melatonin-induced tolerance of pepper ( publication-title: Physiol. Plantarum – volume: 10 start-page: 1 year: 2020 end-page: 18 ident: bib43 article-title: Impact of drought and heat stress individually and in combination on physio-biochemical parameters, antioxidant responses, and gene expression in publication-title: Biotech – volume: 20 start-page: 1534 year: 1997 end-page: 1542 ident: bib59 article-title: Heat stress affects the organization of microtubules and cell division in publication-title: Plant Cell Environ. – volume: 40 start-page: 2236 year: 2021 end-page: 2248 ident: bib5 article-title: Melatonin-induced salinity tolerance by ameliorating osmotic and oxidative stress in the seedlings of two tomato ( publication-title: J. Plant Growth Regul. – volume: 321 year: 2022 ident: bib28 article-title: SlSnRK2. 3 interacts with SlSUI1 to modulate high temperature tolerance via Abscisic acid (ABA) controlling stomatal movement in tomato publication-title: Plant Sci. – volume: 89 start-page: 31 year: 2017 end-page: 44 ident: bib46 article-title: DNA-binding and repressor function are prerequisites for the turnover of the tomato heat stress transcription factor HsfB1 publication-title: Plant J. – volume: 221 start-page: 93 year: 2018 end-page: 98 ident: bib64 article-title: Speedy stomata, photosynthesis and plant water use efficiency publication-title: New Phytol. – volume: 57 start-page: 1747 year: 2006 ident: bib38 article-title: Antioxidative enzymes from chloroplasts, mitochondria, and peroxisomes during leaf senescence of nodulated pea plants publication-title: J. Exp. Bot. – volume: 246 start-page: 34 year: 2019 end-page: 43 ident: bib29 article-title: Exogenous melatonin promotes biomass accumulation and photosynthesis of kiwifruit seedlings under drought stress publication-title: Sci. Hortic. (Amst.) – volume: 292 year: 2020 ident: bib62 article-title: Responses of photosystem I compared with photosystem II to combination of heat stress and fluctuating light in tobacco leaves publication-title: Plant Sci. – volume: 9 start-page: 363 year: 2020 ident: bib73 article-title: Photosynthetic response mechanism of soil salinity-induced cross-tolerance to subsequent drought stress in tomato plants publication-title: Plants – volume: 66 start-page: 681 year: 2015 end-page: 694 ident: bib50 article-title: Comparative physiological, metabolomic, and transcriptomic analyses reveal mechanisms of improved abiotic stress resistance in bermudagrass [ publication-title: J. Exp. Bot. – volume: 11 start-page: 861 year: 2009 end-page: 905 ident: bib17 article-title: Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications publication-title: Antioxidants Redox Signal. – volume: 281 start-page: 21660 year: 2006 end-page: 21669 ident: bib77 article-title: Quality control of photosystem II: cleavage of reaction center D1 protein in spinach thylakoids by FtsH protease under moderate heat stress publication-title: J. Biol. Chem. – volume: 161 start-page: 303 year: 2018 end-page: 311 ident: bib20 article-title: Endogenous melatonin deficiency aggravates high temperature-induced oxidative stress in publication-title: Environ. Exp. Bot. – volume: 208 start-page: 342 year: 2015 end-page: 353 ident: bib52 article-title: Guard cell hydrogen peroxide and nitric oxide mediate elevated CO publication-title: New Phytol. – volume: 72 start-page: 2822 year: 2021 end-page: 2844 ident: bib35 article-title: The effect of increasing temperature on crop photosynthesis: from enzymes to ecosystems publication-title: J. Exp. Bot. – volume: 161 start-page: 290 year: 2019 end-page: 302 ident: bib2 article-title: Nitric oxide-mediated cross-talk of proline and heat shock proteins induce thermotolerance in publication-title: Environ. Exp. Bot. – volume: 46 start-page: 58‐63 year: 2009 ident: bib6 article-title: Protective effect of melatonin against chlorophyll degradation during the senescence of barley leaves publication-title: J. Pineal Res. – volume: 41 start-page: 675 year: 2022 end-page: 698 ident: bib39 article-title: Ethylene involvement in the regulation of heat stress tolerance in plants publication-title: Plant Cell Rep. – volume: 59 start-page: 255 year: 2015 end-page: 266 ident: bib82 article-title: Unveiling the mechanism of melatonin impacts on maize seedling growth: sugar metabolism as a case publication-title: J. Pineal Res. – volume: 41 start-page: 497 year: 2022 end-page: 499 ident: bib56 article-title: Hot and dry: how plants can thrive in future climates publication-title: Plant Cell Rep. – volume: 12 year: 2016 ident: bib13 article-title: The publication-title: PLoS Pathog. – volume: 26 start-page: 4157 year: 2021 ident: bib60 article-title: Leaf age-dependent photosystem II photochemistry and oxidative stress responses to drought stress in publication-title: Molecules – volume: 303 year: 2021 ident: bib74 article-title: Photosystem I is tolerant to fluctuating light under moderate heat stress in two orchids dendrobium officinale and Bletilla striata publication-title: Plant Sci. – volume: 46 start-page: 285 year: 2018 end-page: 294 ident: bib12 article-title: Structure of the plant photosystem I publication-title: Biochem. Soc. Trans. – volume: 57 start-page: 185 year: 2014 ident: 10.1016/j.plaphy.2023.01.043_bib49 article-title: The cysteine2/histidine2-type transcription factor ZINC FINGER of ARABIDOPSIS THALIANA 6-activated C-REPEAT-BINDING FACTOR pathway is essential for melatonin-mediated freezing stress resistance in Arabidopsis publication-title: J. Pineal Res. doi: 10.1111/jpi.12155 – volume: 58 start-page: 335‐342 year: 2015 ident: 10.1016/j.plaphy.2023.01.043_bib51 article-title: Melatonin induces class A1 heat‐shock factors (HSFA1s) and their possible involvement of thermotolerance in Arabidopsis publication-title: J. Pineal Res. doi: 10.1111/jpi.12219 – volume: 23 start-page: 1 year: 2018 ident: 10.1016/j.plaphy.2023.01.043_bib42 article-title: Melatonin alleviates high temperature-induced pollen abortion in Solanum lycopersicum publication-title: Molecules doi: 10.3390/molecules23020386 – volume: 12 issue: 8 year: 2016 ident: 10.1016/j.plaphy.2023.01.043_bib13 article-title: The Arabidopsis protein phosphatase PP2C38 negatively regulates the central immune kinase BIK1 publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1005811 – volume: 23 start-page: 797 issue: 5 year: 2021 ident: 10.1016/j.plaphy.2023.01.043_bib55 article-title: Exogenous melatonin‐mediated regulation of K+/Na+ transport, H+-ATPase activity and enzymatic antioxidative defence operate through endogenous hydrogen sulphide signalling in NaCl‐stressed tomato seedling roots publication-title: Plant Bio doi: 10.1111/plb.13296 – volume: 14 start-page: 453 issue: 1 year: 2019 ident: 10.1016/j.plaphy.2023.01.043_bib75 article-title: Exogenous melatonin improves salt tolerance in tomato by regulating photosynthetic electron flux and the ascorbate–glutathione cycle publication-title: J. Plant Interact. doi: 10.1080/17429145.2019.1645895 – volume: 168 start-page: 256 issue: 2 year: 2020 ident: 10.1016/j.plaphy.2023.01.043_bib22 article-title: Integrative roles of nitric oxide and hydrogen sulfide in melatonin-induced tolerance of pepper (Capsicum annuum l.) plants to iron deficiency and salt stress alone or in combination publication-title: Physiol. Plantarum doi: 10.1111/ppl.12976 – volume: 30 start-page: 1035 year: 2007 ident: 10.1016/j.plaphy.2023.01.043_bib48 article-title: Fitting photosynthetic carbon dioxide response curves for C3 leaves publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.2007.01710.x – volume: 1–3 year: 2019 ident: 10.1016/j.plaphy.2023.01.043_bib1 article-title: Revisiting the role of ROS and RNS in plants under changing environment publication-title: Environ. Exp. Bot. – volume: 161 start-page: 290 year: 2019 ident: 10.1016/j.plaphy.2023.01.043_bib2 article-title: Nitric oxide-mediated cross-talk of proline and heat shock proteins induce thermotolerance in Vicia faba L publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2018.06.012 – volume: 161 start-page: 303 year: 2018 ident: 10.1016/j.plaphy.2023.01.043_bib20 article-title: Endogenous melatonin deficiency aggravates high temperature-induced oxidative stress in Solanum lycopersicum L publication-title: Environ. Exp. Bot. – volume: 15 start-page: 1 year: 2017 ident: 10.1016/j.plaphy.2023.01.043_bib76 article-title: Water deficit mechanisms in perennial shrubs Cerasus humilis leaves revealed by physiological and proteomic analyses publication-title: Proteome Sci. – volume: 59 start-page: 133 year: 2015 ident: 10.1016/j.plaphy.2023.01.043_bib7 article-title: Functions of melatonin in plants: a review publication-title: J. Pineal Res. doi: 10.1111/jpi.12253 – volume: 2 start-page: 1 year: 2015 ident: 10.1016/j.plaphy.2023.01.043_bib10 article-title: Redox proteomics of tomato in response to Pseudomonas syringae infection publication-title: Hortic. Res. doi: 10.1038/hortres.2015.43 – volume: 142 start-page: 35 year: 2011 ident: 10.1016/j.plaphy.2023.01.043_bib37 article-title: Protein synthesis is the primary target of reactive oxygen species in the photoinhibition of photosystem II publication-title: Physiol. Plantarum doi: 10.1111/j.1399-3054.2011.01457.x – volume: 59 start-page: 3781 year: 2008 ident: 10.1016/j.plaphy.2023.01.043_bib44 article-title: Redox proteomics: basic principles and future perspectives for the detection of protein oxidation in plants publication-title: J. Exp. Bot. doi: 10.1093/jxb/ern252 – volume: 398 year: 2020 ident: 10.1016/j.plaphy.2023.01.043_bib54 article-title: Melatonin and calcium function synergistically to promote the resilience through ROS metabolism under arsenic-induced stress publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2020.122882 – volume: 46 start-page: 285 issue: 2 year: 2018 ident: 10.1016/j.plaphy.2023.01.043_bib12 article-title: Structure of the plant photosystem I publication-title: Biochem. Soc. Trans. doi: 10.1042/BST20170299 – volume: 11 start-page: 669 year: 2020 ident: 10.1016/j.plaphy.2023.01.043_bib68 article-title: PGR5/PGRL1 and NDH mediate far-red light-induced photoprotection in response to chilling stress in tomato publication-title: Front. Plant Sci. doi: 10.3389/fpls.2020.00669 – volume: 10 start-page: 1 issue: 5 year: 2020 ident: 10.1016/j.plaphy.2023.01.043_bib43 article-title: Impact of drought and heat stress individually and in combination on physio-biochemical parameters, antioxidant responses, and gene expression in Solanum lycopersicum publication-title: Biotech – volume: 40 start-page: 2236 issue: 5 year: 2021 ident: 10.1016/j.plaphy.2023.01.043_bib5 article-title: Melatonin-induced salinity tolerance by ameliorating osmotic and oxidative stress in the seedlings of two tomato (Solanum lycopersicum L.) cultivars publication-title: J. Plant Growth Regul. doi: 10.1007/s00344-020-10273-3 – volume: 292 year: 2020 ident: 10.1016/j.plaphy.2023.01.043_bib32 article-title: Cyclic electron flow modulate the linear electron flow and reactive oxygen species in tomato leaves under high temperature publication-title: Plant Sci. doi: 10.1016/j.plantsci.2019.110387 – volume: 46 start-page: 58‐63 year: 2009 ident: 10.1016/j.plaphy.2023.01.043_bib6 article-title: Protective effect of melatonin against chlorophyll degradation during the senescence of barley leaves publication-title: J. Pineal Res. doi: 10.1111/j.1600-079X.2008.00625.x – volume: 72 start-page: 2822 issue: 8 year: 2021 ident: 10.1016/j.plaphy.2023.01.043_bib35 article-title: The effect of increasing temperature on crop photosynthesis: from enzymes to ecosystems publication-title: J. Exp. Bot. doi: 10.1093/jxb/erab090 – volume: 59 start-page: 255 year: 2015 ident: 10.1016/j.plaphy.2023.01.043_bib82 article-title: Unveiling the mechanism of melatonin impacts on maize seedling growth: sugar metabolism as a case publication-title: J. Pineal Res. doi: 10.1111/jpi.12258 – volume: 11 year: 2021 ident: 10.1016/j.plaphy.2023.01.043_bib30 article-title: Exogenous DA-6 improves the low night temperature tolerance of tomato through regulating cytokinin publication-title: Front. Plant Sci. doi: 10.3389/fpls.2020.599111 – volume: 28 start-page: 683 year: 2009 ident: 10.1016/j.plaphy.2023.01.043_bib27 article-title: Functional analysis of an Arabidopsis transcription factor WRKY25 in heat stress publication-title: Plant Cell Rep. doi: 10.1007/s00299-008-0666-y – volume: 246 start-page: 34 year: 2019 ident: 10.1016/j.plaphy.2023.01.043_bib29 article-title: Exogenous melatonin promotes biomass accumulation and photosynthesis of kiwifruit seedlings under drought stress publication-title: Sci. Hortic. (Amst.) doi: 10.1016/j.scienta.2018.10.058 – volume: 26 start-page: 4157 issue: 14 year: 2021 ident: 10.1016/j.plaphy.2023.01.043_bib60 article-title: Leaf age-dependent photosystem II photochemistry and oxidative stress responses to drought stress in Arabidopsis thaliana are modulated by flavonoid accumulation publication-title: Molecules doi: 10.3390/molecules26144157 – volume: 292 year: 2020 ident: 10.1016/j.plaphy.2023.01.043_bib62 article-title: Responses of photosystem I compared with photosystem II to combination of heat stress and fluctuating light in tobacco leaves publication-title: Plant Sci. doi: 10.1016/j.plantsci.2019.110371 – volume: 9 start-page: 363 issue: 3 year: 2020 ident: 10.1016/j.plaphy.2023.01.043_bib73 article-title: Photosynthetic response mechanism of soil salinity-induced cross-tolerance to subsequent drought stress in tomato plants publication-title: Plants doi: 10.3390/plants9030363 – volume: 149 start-page: 701 year: 2022 ident: 10.1016/j.plaphy.2023.01.043_bib79 article-title: Calcium induced growth, physio-biochemical, antioxidants, osmolytes adjustments and phytoconstituents status in spinach under heat stress publication-title: South Afr. J. Bot. doi: 10.1016/j.sajb.2022.06.065 – volume: 74 start-page: 139‐152 year: 2014 ident: 10.1016/j.plaphy.2023.01.043_bib65 article-title: The regulatory effect of melatonin on physiological, biochemical and molecular parameters in cold‐stressed wheat seedlings publication-title: Plant Growth Regul. doi: 10.1007/s10725-014-9905-0 – volume: 61 start-page: 457 issue: 4 year: 2016 ident: 10.1016/j.plaphy.2023.01.043_bib71 article-title: Melatonin enhances thermotolerance by promoting cellular protein protection in tomato plants publication-title: J. Pineal Res. doi: 10.1111/jpi.12359 – volume: 177 year: 2020 ident: 10.1016/j.plaphy.2023.01.043_bib31 article-title: Cyclic electron flow protects photosystem I donor side under low night temperature in tomato publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2020.104151 – volume: 57 start-page: 1747 year: 2006 ident: 10.1016/j.plaphy.2023.01.043_bib38 article-title: Antioxidative enzymes from chloroplasts, mitochondria, and peroxisomes during leaf senescence of nodulated pea plants publication-title: J. Exp. Bot. doi: 10.1093/jxb/erj191 – volume: 41 start-page: 497 issue: 3 year: 2022 ident: 10.1016/j.plaphy.2023.01.043_bib56 article-title: Hot and dry: how plants can thrive in future climates publication-title: Plant Cell Rep. doi: 10.1007/s00299-022-02843-4 – volume: 33 start-page: 35 issue: 1 year: 2020 ident: 10.1016/j.plaphy.2023.01.043_bib78 article-title: Plant chloroplast stress response: insights from thiol redox proteomics publication-title: Antioxidants Redox Signal. doi: 10.1089/ars.2019.7823 – volume: 133 start-page: 481 year: 2008 ident: 10.1016/j.plaphy.2023.01.043_bib34 article-title: Reactive oxygen signaling and abiotic stress publication-title: Physiol. Plantarum doi: 10.1111/j.1399-3054.2008.01090.x – volume: 281 start-page: 21660 issue: 31 year: 2006 ident: 10.1016/j.plaphy.2023.01.043_bib77 article-title: Quality control of photosystem II: cleavage of reaction center D1 protein in spinach thylakoids by FtsH protease under moderate heat stress publication-title: J. Biol. Chem. doi: 10.1074/jbc.M602896200 – volume: 225 start-page: 627 year: 2019 ident: 10.1016/j.plaphy.2023.01.043_bib23 article-title: Melatonin-mediated nitric oxide improves tolerance to cadmium toxicity by reducing oxidative stress in wheat plants publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.03.026 – volume: 283 start-page: 28380 issue: 42 year: 2008 ident: 10.1016/j.plaphy.2023.01.043_bib72 article-title: Quality control of photosystem II: reactive oxygen species are responsible for the damage to photosystem II under moderate heat stress publication-title: J. Biol. Chem. doi: 10.1074/jbc.M710465200 – volume: 66 start-page: 681 year: 2015 ident: 10.1016/j.plaphy.2023.01.043_bib50 article-title: Comparative physiological, metabolomic, and transcriptomic analyses reveal mechanisms of improved abiotic stress resistance in bermudagrass [Cynodon dactylon (L). Pers.] by exogenous melatonin publication-title: J. Exp. Bot. doi: 10.1093/jxb/eru373 – volume: 36 start-page: 126 year: 2004 ident: 10.1016/j.plaphy.2023.01.043_bib25 article-title: Attenuation of cold-induced apoptosis by exogenous melatonin in carrot suspension cells: the possible involvement of polyamines publication-title: J. Pineal Res. doi: 10.1046/j.1600-079X.2003.00106.x – volume: 19 start-page: 507 issue: 1 year: 2019 ident: 10.1016/j.plaphy.2023.01.043_bib66 article-title: Protective mechanisms of melatonin against selenium toxicity in brassica napus: insights into physiological traits, thiol biosynthesis and antioxidant machinery publication-title: BMC Plant Biol. doi: 10.1186/s12870-019-2110-6 – volume: 56 start-page: 365 year: 2012 ident: 10.1016/j.plaphy.2023.01.043_bib81 article-title: Multiple effects of inhibition of mitochondrial alternative oxidase pathway on photosynthetic apparatus in Rumex K-1 leaves publication-title: Biol. Plant. (Prague) doi: 10.1007/s10535-012-0100-8 – volume: 167 start-page: 309 year: 2021 ident: 10.1016/j.plaphy.2023.01.043_bib19 article-title: Melatonin-mediated photosynthetic performance of tomato seedlings under high-temperature stress publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2021.08.002 – volume: 321 year: 2022 ident: 10.1016/j.plaphy.2023.01.043_bib28 article-title: SlSnRK2. 3 interacts with SlSUI1 to modulate high temperature tolerance via Abscisic acid (ABA) controlling stomatal movement in tomato publication-title: Plant Sci. doi: 10.1016/j.plantsci.2022.111305 – volume: 1767 start-page: 838 issue: 6 year: 2007 ident: 10.1016/j.plaphy.2023.01.043_bib24 article-title: Quality control of photosystem II: cleavage and aggregation of heat-damaged D1 protein in spinach thylakoids publication-title: Biochim. Biophys. Acta, Bioenerg. doi: 10.1016/j.bbabio.2007.05.001 – volume: 208 start-page: 342 year: 2015 ident: 10.1016/j.plaphy.2023.01.043_bib52 article-title: Guard cell hydrogen peroxide and nitric oxide mediate elevated CO2-induced stomatal movement in tomato publication-title: New Phytol. doi: 10.1111/nph.13621 – volume: 407 start-page: 125 issue: 1 year: 2011 ident: 10.1016/j.plaphy.2023.01.043_bib58 article-title: Structural investigation of PsbO from plant and cyanobacterial photosystem II publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2011.01.013 – volume: 11 start-page: 861 issue: 4 year: 2009 ident: 10.1016/j.plaphy.2023.01.043_bib17 article-title: Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications publication-title: Antioxidants Redox Signal. doi: 10.1089/ars.2008.2177 – volume: 53 start-page: 11‐20 year: 2012 ident: 10.1016/j.plaphy.2023.01.043_bib69 article-title: Delayed senescence of apple leaves by exogenous melatonin treatment: toward regulating the ascorbate‐glutathione cycle publication-title: J. Pineal Res. doi: 10.1111/j.1600-079X.2011.00966.x – volume: 20 start-page: 1534 year: 1997 ident: 10.1016/j.plaphy.2023.01.043_bib59 article-title: Heat stress affects the organization of microtubules and cell division in Nicotiana tabacum cells publication-title: Plant Cell Environ. doi: 10.1046/j.1365-3040.1997.d01-44.x – volume: 41 start-page: 675 issue: 3 year: 2022 ident: 10.1016/j.plaphy.2023.01.043_bib39 article-title: Ethylene involvement in the regulation of heat stress tolerance in plants publication-title: Plant Cell Rep. doi: 10.1007/s00299-021-02675-8 – volume: 73 start-page: 149 issue: 1 year: 2002 ident: 10.1016/j.plaphy.2023.01.043_bib40 article-title: The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b publication-title: Photosynth. Res. doi: 10.1023/A:1020470224740 – volume: 201 year: 2020 ident: 10.1016/j.plaphy.2023.01.043_bib4 article-title: Exogenous melatonin mitigates boron toxicity in wheat publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2020.110822 – volume: 28 start-page: 262 issue: 2 year: 2021 ident: 10.1016/j.plaphy.2023.01.043_bib33 article-title: Protective roles of D1 protein turnover and the xanthophyll cycle in tomato (Solanum lycopersicum) under sub-high temperature and high light publication-title: Front. Agric. Sci. Eng. – volume: 41 issue: 3 year: 2022 ident: 10.1016/j.plaphy.2023.01.043_bib3 article-title: Transcription factor BES1 interacts with HSFA1 to promote heat stress resistance of plants publication-title: EMBO J. doi: 10.15252/embj.2021108664 – volume: 1859 start-page: 394 year: 2018 ident: 10.1016/j.plaphy.2023.01.043_bib9 article-title: Location of the extrinsic subunit PsbP in photosystem II studied by pulsed electron-electron double resonance publication-title: Biochim. Biophys. Acta Bioenerg. doi: 10.1016/j.bbabio.2018.03.002 – volume: 8 start-page: 8735 issue: 1 year: 2018 ident: 10.1016/j.plaphy.2023.01.043_bib21 article-title: 28-homobrassinolide regulates antioxidant enzyme activities and gene expression in response to salt- and temperature-induced oxidative stress in publication-title: Brassica juncea. Sci. Rep. doi: 10.1038/s41598-018-27032-w – volume: 19 start-page: 735 year: 2017 ident: 10.1016/j.plaphy.2023.01.043_bib80 article-title: Overexpression of 2-cys prx increased salt tolerance of photosystem II in tobacco publication-title: Int. J. Agric. Biol. doi: 10.17957/IJAB/15.0348 – volume: 28 start-page: 302 year: 2005 ident: 10.1016/j.plaphy.2023.01.043_bib18 article-title: Growth at moderately elevated temperature alters the physiological response of the photosynthetic apparatus to heat stress in pea (Pisum sativum L.) leaves publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.2005.01289.x – volume: 21 year: 2021 ident: 10.1016/j.plaphy.2023.01.043_bib8 article-title: Melatonin against environmental plant stressors: a review publication-title: Curr. Protein Pept. Sci. – volume: 72 start-page: 248 year: 1976 ident: 10.1016/j.plaphy.2023.01.043_bib11 article-title: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding publication-title: Anal. Biochem. doi: 10.1016/0003-2697(76)90527-3 – volume: 45 start-page: 24 year: 2008 ident: 10.1016/j.plaphy.2023.01.043_bib41 article-title: Presowing seed treatment with melatonin protects red cabbage seedlings against toxic copper ion concentrations publication-title: J. Pineal Res. doi: 10.1111/j.1600-079X.2007.00552.x – volume: 5 year: 2015 ident: 10.1016/j.plaphy.2023.01.043_bib36 article-title: Hydrogen sulfide modulates cadmium-induced physiological and biochemical responses to alleviate cadmium toxicity in rice publication-title: Sci. Rep. doi: 10.1038/srep14078 – volume: 80 start-page: 16 year: 2012 ident: 10.1016/j.plaphy.2023.01.043_bib15 article-title: Enhanced sensitivity of the photosynthetic apparatus to heat stress in digalactosyl-diacylglycerol deficient Arabidopsis publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2011.12.022 – volume: 171 start-page: 49 year: 2022 ident: 10.1016/j.plaphy.2023.01.043_bib57 publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2021.12.018 – volume: 7 start-page: 1 year: 2016 ident: 10.1016/j.plaphy.2023.01.043_bib26 article-title: Unraveling main limiting sites of photosynthesis under below- and above-ground heat stress in cucumber and the alleviatory role of luffa rootstock publication-title: Front. Plant Sci. – volume: 221 start-page: 93 year: 2018 ident: 10.1016/j.plaphy.2023.01.043_bib64 article-title: Speedy stomata, photosynthesis and plant water use efficiency publication-title: New Phytol. – volume: 177 start-page: 633 year: 2018 ident: 10.1016/j.plaphy.2023.01.043_bib14 article-title: The tomato mitogen-activated protein kinase SLMPK1 is as a negative regulator of the high-temperature stress response publication-title: Plant Physiol. doi: 10.1104/pp.18.00067 – volume: 188 start-page: 1028 issue: 2 year: 2022 ident: 10.1016/j.plaphy.2023.01.043_bib45 article-title: Protection of photosystem I during sudden light stress depends on ferredoxin: NADP (H) reductase abundance and interactions publication-title: Plant Physiol. doi: 10.1093/plphys/kiab550 – volume: 303 year: 2021 ident: 10.1016/j.plaphy.2023.01.043_bib74 article-title: Photosystem I is tolerant to fluctuating light under moderate heat stress in two orchids dendrobium officinale and Bletilla striata publication-title: Plant Sci. doi: 10.1016/j.plantsci.2020.110795 – volume: 143 start-page: 629 issue: 2 year: 2007 ident: 10.1016/j.plaphy.2023.01.043_bib63 article-title: Heat stress induces an aggregation of the light-harvesting complex of photosystem II in spinach plants publication-title: Plant physiol doi: 10.1104/pp.106.090712 – volume: 10 start-page: 1216 issue: 8 year: 2021 ident: 10.1016/j.plaphy.2023.01.043_bib16 article-title: Methyl jasmonate protects the PS II system by maintaining the stability of chloroplast D1 protein and accelerating enzymatic antioxidants in heat-stressed wheat plants publication-title: Antioxidants doi: 10.3390/antiox10081216 – volume: 89 start-page: 31 year: 2017 ident: 10.1016/j.plaphy.2023.01.043_bib46 article-title: DNA-binding and repressor function are prerequisites for the turnover of the tomato heat stress transcription factor HsfB1 publication-title: Plant J. doi: 10.1111/tpj.13317 – volume: 69 start-page: 963 year: 2018 ident: 10.1016/j.plaphy.2023.01.043_bib70 article-title: Phytomelatonin: a universal abiotic stress regulator publication-title: J. Exp. Bot. doi: 10.1093/jxb/erx473 – volume: 141 start-page: 132 year: 2017 ident: 10.1016/j.plaphy.2023.01.043_bib47 article-title: Heat responsive proteome changes reveal molecular mechanisms underlying heat tolerance in chickpea publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2017.07.007 – volume: 20 start-page: 1 year: 2019 ident: 10.1016/j.plaphy.2023.01.043_bib67 article-title: Responses of the photosynthetic electron transport reactions stimulate the oxidation of the reaction center chlorophyll of photosystem I, P700, under drought and high temperatures in rice publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms20092068 – volume: 22 start-page: 117 issue: 1 year: 2020 ident: 10.1016/j.plaphy.2023.01.043_bib83 article-title: Plant responses to heat stress: physiology, transcription, noncoding RNAs, and epigenetics publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms22010117 – volume: 68 year: 2020 ident: 10.1016/j.plaphy.2023.01.043_bib61 article-title: Melatonin ameliorates aluminum toxicity through enhancing aluminum exclusion and reestablishing redox homeostasis in roots of wheat publication-title: J. Pineal Res. doi: 10.1111/jpi.12642 – volume: 180 start-page: 656 year: 2019 ident: 10.1016/j.plaphy.2023.01.043_bib53 article-title: Potential roles of melatonin and sulfur in alleviation of lanthanum toxicity in tomato seedlings publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2019.05.043 |
SSID | ssj0002473 |
Score | 2.4859366 |
Snippet | Heat stress reduces plant growth and reproduction and increases agricultural risks. As a natural compound, melatonin modulates broad aspects of the responses... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 197 |
SubjectTerms | Antioxidant antioxidant enzymes Antioxidants - pharmacology carbon dioxide fixation chlorophyll Chlorophyll - metabolism Electron Transport - drug effects heat stress heat tolerance Homeostasis Melatonin Melatonin - pharmacology Oxidative Stress - drug effects oxygen production Photosynthesis - drug effects Photosynthetic electron transfer photosynthetic electron transport photosystem II Photosystem II Protein Complex - metabolism plant growth proteomics reactive oxygen species Reactive Oxygen Species - metabolism Redox proteomics reproduction ROS Solanum lycopersicum Solanum lycopersicum - drug effects Solanum lycopersicum - growth & development stress tolerance Thermotolerance - drug effects tomatoes |
Title | Exogenous melatonin enhances tomato heat resistance by regulating photosynthetic electron flux and maintaining ROS homeostasis |
URI | https://dx.doi.org/10.1016/j.plaphy.2023.01.043 https://www.ncbi.nlm.nih.gov/pubmed/36724704 https://www.proquest.com/docview/2771941378 https://www.proquest.com/docview/3153181939 |
Volume | 196 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB5CWmgvpU1f20dQoVdnLVm2rGO6JGxbSKFpIDchyzK7YddaGgeyl_z2zlh2Sg9LoAcfJEay0DfWfLJGMwCfSy0qh2Y50Y6CameIRSlkjrsUJwvhvMaHvC3OivmF_HaZX-7BbLwLQ26Vw9of1_R-tR5qpsNsTjfL5fQ81WjNkD0jiaaYh3TRXEpFWn5099fNQ8h4yozCCUmP1-d6H6_NioJCH1EK8T54p8x2madd9LM3Q6fP4dnAH9lxHOIL2PPtATz-EpDjbQ_gyWzM3_YS7k5uQ4zAytbk8Ub_XZlvFwTzNesCUtXAaClmuOMmFon1rNpiqc9OjyaNbRahC9fbFkkivo6NKXNYs7q5Zbat2dou2y7mmGA_f5yzRVj7gF1hf6_g4vTk12yeDNkWEkSFd0ljRem4q731WlpkIrUsqkY0hVCF15UtufM8t01qEdaa29RbUae1E9q6Jkee-Br229D6t8CslTl-545X3EuraqvRUPoqV54CBjZ8Atk4ycYNocgpI8bKjD5nVyZCYwgak3KD0EwguW-1iaE4HpBXI37mH5UyaC0eaPlphNsgaHSEYluPeBmhFOocz1S5WyZDI4K8SWd6Am-irtyPNysUKmQq3_332N7DUypFN7gPsN_9vvEfkRd11WGv-Ifw6Pjr9_nZH9YxEC4 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqglQuCMqjy9NIcEw3dpyHDxygtNrSUiTaSr0Zx3G6i3btFZuK7qV_ij_ITBIXcVhVQuphD5vNY9bfZOZzPPmGkLeF5KWBtBxJg6LaCWBRcJHCLMWIjBsr4YPVFkfZ6FR8PkvP1sjv8C4MllX2sb-L6W207rcM-9EczieT4XEsIZsBewYSjZqHobLywC5_wbxt8X7_E4D8jvO93ZOdUdS3FojABNZEteaFYaay2kqhIe1WIitrXmc8z6wsdcGMZamuYw3_oWI6tppXcWW41KZOJaodQNy_IyBcYNuE7au_dSVcdMvaYF2E5oX39dqisvkUVai3sWd5qxYqklX5cBXfbfPe3gNyvyes9EM3Jg_JmnWb5O5HD6RyuUk2dkLDuEfkavfSd5KvdIYldvigl1o3Rr9a0MYDN_YUYz-FKT7SVthOyyV8O297iLlzOh_7xi-WDlgpXI6GHj20nl5cUu0qOtMT13RNLei3r8d07GfWw6ngfI_J6a1g8ISsO-_sFqFaixQCi2Els0LnlZaQmW2Z5hYVCms2IEkYZGV67XNswTFVocjth-qgUQiNipkCaAYkuj5q3ml_3LB_HvBT__iwgvR0w5FvAtwKQMM1G-0s4KV4noOTsyQvVu-TQNYCoiYTOSBPO1-5tjfJcnDIWDz7b9tek43RyZdDdbh_dPCc3MNfuhq8F2S9-XlhXwIpa8pX7U1Ayffbvuv-AL0eTnA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exogenous+melatonin+enhances+tomato+heat+resistance+by+regulating+photosynthetic+electron+flux+and+maintaining+ROS+homeostasis&rft.jtitle=Plant+physiology+and+biochemistry&rft.au=Sun%2C+Cong&rft.au=Meng%2C+Sida&rft.au=Wang%2C+Baofeng&rft.au=Zhao%2C+Siting&rft.date=2023-03-01&rft.issn=0981-9428&rft.volume=196&rft.spage=197&rft.epage=209&rft_id=info:doi/10.1016%2Fj.plaphy.2023.01.043&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_plaphy_2023_01_043 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0981-9428&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0981-9428&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0981-9428&client=summon |