Exogenous melatonin enhances tomato heat resistance by regulating photosynthetic electron flux and maintaining ROS homeostasis

Heat stress reduces plant growth and reproduction and increases agricultural risks. As a natural compound, melatonin modulates broad aspects of the responses of plants to various biotic and abiotic stresses. However, regulation of the photosynthetic electron transfer, reactive oxygen species (ROS) h...

Full description

Saved in:
Bibliographic Details
Published inPlant physiology and biochemistry Vol. 196; pp. 197 - 209
Main Authors Sun, Cong, Meng, Sida, Wang, Baofeng, Zhao, Siting, Liu, Yulong, Qi, Mingfang, Wang, Zhenqi, Yin, Zepeng, Li, Tianlai
Format Journal Article
LanguageEnglish
Published France Elsevier Masson SAS 01.03.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Heat stress reduces plant growth and reproduction and increases agricultural risks. As a natural compound, melatonin modulates broad aspects of the responses of plants to various biotic and abiotic stresses. However, regulation of the photosynthetic electron transfer, reactive oxygen species (ROS) homeostasis and the redox state of redox-sensitive proteins in the tolerance to heat stress induced by melatonin remain largely unknown. The oxygen evolution complex activity on the electron-donating side of photosystem II (PSII) is inhibited, and the electron transfer process from QA to QB on the electron-accepting side of PSII is inhibited. In this case, heat stress decreased the chlorophyll content, carbon assimilation rate, PSII activity, and the proportion of light absorbed by tomato seedlings during electron transfer. The ROS burst led to the breakdown of the PSII core protein. However, exogenous melatonin increased the net photosynthetic rate by 11.3% compared with heat stress, substantially reducing the restriction of photosynthetic systems induced by heat stress. Additionally, melatonin reduces the oxidative damage to PSII by balancing electron transfer on the donor, reactive center, and acceptor sides. Melatonin was used under heat stress to increase the activity of the antioxidant enzyme and preserve ROS equilibrium. In addition, redox proteomics also showed that melatonin controls the redox levels of proteins involved in photosynthesis, and stress and defense processes, which enhances the expression of oxidative genes. In conclusion, melatonin via controlling the photosynthetic electron transport and antioxidant, melatonin increased tomato heat stress tolerance and aided plant growth. •MT alleviated the oxidative damage of PSII by balancing the electron transfer of the donor side, reaction center, and receptor side.•MT inhibited ROS accumulation by promoting the key enzyme activities of AsA-GSH cycle, and modulating redox state of redox-sensitive proteins.•MT regulates the redox proteins of heat resistant signaling pathway and increases the expression of oxidative genes in downstream.
AbstractList Heat stress reduces plant growth and reproduction and increases agricultural risks. As a natural compound, melatonin modulates broad aspects of the responses of plants to various biotic and abiotic stresses. However, regulation of the photosynthetic electron transfer, reactive oxygen species (ROS) homeostasis and the redox state of redox-sensitive proteins in the tolerance to heat stress induced by melatonin remain largely unknown. The oxygen evolution complex activity on the electron-donating side of photosystem II (PSII) is inhibited, and the electron transfer process from QA to QB on the electron-accepting side of PSII is inhibited. In this case, heat stress decreased the chlorophyll content, carbon assimilation rate, PSII activity, and the proportion of light absorbed by tomato seedlings during electron transfer. The ROS burst led to the breakdown of the PSII core protein. However, exogenous melatonin increased the net photosynthetic rate by 11.3% compared with heat stress, substantially reducing the restriction of photosynthetic systems induced by heat stress. Additionally, melatonin reduces the oxidative damage to PSII by balancing electron transfer on the donor, reactive center, and acceptor sides. Melatonin was used under heat stress to increase the activity of the antioxidant enzyme and preserve ROS equilibrium. In addition, redox proteomics also showed that melatonin controls the redox levels of proteins involved in photosynthesis, and stress and defense processes, which enhances the expression of oxidative genes. In conclusion, melatonin via controlling the photosynthetic electron transport and antioxidant, melatonin increased tomato heat stress tolerance and aided plant growth.Heat stress reduces plant growth and reproduction and increases agricultural risks. As a natural compound, melatonin modulates broad aspects of the responses of plants to various biotic and abiotic stresses. However, regulation of the photosynthetic electron transfer, reactive oxygen species (ROS) homeostasis and the redox state of redox-sensitive proteins in the tolerance to heat stress induced by melatonin remain largely unknown. The oxygen evolution complex activity on the electron-donating side of photosystem II (PSII) is inhibited, and the electron transfer process from QA to QB on the electron-accepting side of PSII is inhibited. In this case, heat stress decreased the chlorophyll content, carbon assimilation rate, PSII activity, and the proportion of light absorbed by tomato seedlings during electron transfer. The ROS burst led to the breakdown of the PSII core protein. However, exogenous melatonin increased the net photosynthetic rate by 11.3% compared with heat stress, substantially reducing the restriction of photosynthetic systems induced by heat stress. Additionally, melatonin reduces the oxidative damage to PSII by balancing electron transfer on the donor, reactive center, and acceptor sides. Melatonin was used under heat stress to increase the activity of the antioxidant enzyme and preserve ROS equilibrium. In addition, redox proteomics also showed that melatonin controls the redox levels of proteins involved in photosynthesis, and stress and defense processes, which enhances the expression of oxidative genes. In conclusion, melatonin via controlling the photosynthetic electron transport and antioxidant, melatonin increased tomato heat stress tolerance and aided plant growth.
Heat stress reduces plant growth and reproduction and increases agricultural risks. As a natural compound, melatonin modulates broad aspects of the responses of plants to various biotic and abiotic stresses. However, regulation of the photosynthetic electron transfer, reactive oxygen species (ROS) homeostasis and the redox state of redox-sensitive proteins in the tolerance to heat stress induced by melatonin remain largely unknown. The oxygen evolution complex activity on the electron-donating side of photosystem II (PSII) is inhibited, and the electron transfer process from QA to QB on the electron-accepting side of PSII is inhibited. In this case, heat stress decreased the chlorophyll content, carbon assimilation rate, PSII activity, and the proportion of light absorbed by tomato seedlings during electron transfer. The ROS burst led to the breakdown of the PSII core protein. However, exogenous melatonin increased the net photosynthetic rate by 11.3% compared with heat stress, substantially reducing the restriction of photosynthetic systems induced by heat stress. Additionally, melatonin reduces the oxidative damage to PSII by balancing electron transfer on the donor, reactive center, and acceptor sides. Melatonin was used under heat stress to increase the activity of the antioxidant enzyme and preserve ROS equilibrium. In addition, redox proteomics also showed that melatonin controls the redox levels of proteins involved in photosynthesis, and stress and defense processes, which enhances the expression of oxidative genes. In conclusion, melatonin via controlling the photosynthetic electron transport and antioxidant, melatonin increased tomato heat stress tolerance and aided plant growth.
Heat stress reduces plant growth and reproduction and increases agricultural risks. As a natural compound, melatonin modulates broad aspects of the responses of plants to various biotic and abiotic stresses. However, regulation of the photosynthetic electron transfer, reactive oxygen species (ROS) homeostasis and the redox state of redox-sensitive proteins in the tolerance to heat stress induced by melatonin remain largely unknown. The oxygen evolution complex activity on the electron-donating side of photosystem II (PSII) is inhibited, and the electron transfer process from QA to QB on the electron-accepting side of PSII is inhibited. In this case, heat stress decreased the chlorophyll content, carbon assimilation rate, PSII activity, and the proportion of light absorbed by tomato seedlings during electron transfer. The ROS burst led to the breakdown of the PSII core protein. However, exogenous melatonin increased the net photosynthetic rate by 11.3% compared with heat stress, substantially reducing the restriction of photosynthetic systems induced by heat stress. Additionally, melatonin reduces the oxidative damage to PSII by balancing electron transfer on the donor, reactive center, and acceptor sides. Melatonin was used under heat stress to increase the activity of the antioxidant enzyme and preserve ROS equilibrium. In addition, redox proteomics also showed that melatonin controls the redox levels of proteins involved in photosynthesis, and stress and defense processes, which enhances the expression of oxidative genes. In conclusion, melatonin via controlling the photosynthetic electron transport and antioxidant, melatonin increased tomato heat stress tolerance and aided plant growth. •MT alleviated the oxidative damage of PSII by balancing the electron transfer of the donor side, reaction center, and receptor side.•MT inhibited ROS accumulation by promoting the key enzyme activities of AsA-GSH cycle, and modulating redox state of redox-sensitive proteins.•MT regulates the redox proteins of heat resistant signaling pathway and increases the expression of oxidative genes in downstream.
Author Wang, Zhenqi
Meng, Sida
Yin, Zepeng
Sun, Cong
Zhao, Siting
Qi, Mingfang
Liu, Yulong
Li, Tianlai
Wang, Baofeng
Author_xml – sequence: 1
  givenname: Cong
  surname: Sun
  fullname: Sun, Cong
  organization: Key Laboratory of Fruit Postharvest Biology, Shenyang, 110866, China
– sequence: 2
  givenname: Sida
  surname: Meng
  fullname: Meng, Sida
  organization: Key Laboratory of Fruit Postharvest Biology, Shenyang, 110866, China
– sequence: 3
  givenname: Baofeng
  surname: Wang
  fullname: Wang, Baofeng
  organization: Key Laboratory of Fruit Postharvest Biology, Shenyang, 110866, China
– sequence: 4
  givenname: Siting
  surname: Zhao
  fullname: Zhao, Siting
  organization: Key Laboratory of Fruit Postharvest Biology, Shenyang, 110866, China
– sequence: 5
  givenname: Yulong
  surname: Liu
  fullname: Liu, Yulong
  organization: Mudanjiang Forest Ecosystem Positioning Observation and Research Station, Heilongjiang Ecological Institute, Harbin 150081, China
– sequence: 6
  givenname: Mingfang
  surname: Qi
  fullname: Qi, Mingfang
  organization: Key Laboratory of Fruit Postharvest Biology, Shenyang, 110866, China
– sequence: 7
  givenname: Zhenqi
  surname: Wang
  fullname: Wang, Zhenqi
  organization: Guizhou Aerospace Intelligent Agriculture Co., Ltd., Guizhou, 550000, China
– sequence: 8
  givenname: Zepeng
  orcidid: 0000-0002-5123-8321
  surname: Yin
  fullname: Yin, Zepeng
  email: yinzp@syau.edu.cn
  organization: Key Laboratory of Fruit Postharvest Biology, Shenyang, 110866, China
– sequence: 9
  givenname: Tianlai
  surname: Li
  fullname: Li, Tianlai
  email: ltl@syau.edu.cn
  organization: Key Laboratory of Fruit Postharvest Biology, Shenyang, 110866, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36724704$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtv1DAUhS1URKeFf4CQl2wS_Mg4MQskVBVaqVIlHmvrjnMz8Sixg-1BnQ2_HY-msGBBF5btq-8c6Z5zQc588EjIa85qzrh6t6uXCZbxUAsmZM14zRr5jKx418pKKM3OyIrpjle6Ed05uUhpxxgTTStfkHOp2vJizYr8un4IW_Rhn-iME-TgnafoR_AWE81hLiM6ImQaMbmUj3O6OZTfdl9w57d0GUMO6eDziNlZihPaHIOnw7R_oOB7OoPzuZwj_OX-Kx3DjKFYFb-X5PkAU8JXj_cl-f7p-tvVTXV3__n26uNdZRvFczWA6Cy3PQLqBphSfaM2gxiUaBXqDXTcIl_DwEBb1XNgCKJnvRUa7LDWQl6StyffJYYfe0zZzC5ZnCbwWHY3kq8l77iW-klUtC3XDZdtV9A3j-h-M2NvluhmiAfzJ94CNCfAxpBSxOEvwpk5tmh25tSiObZoGDdFVWTv_5FZl0vYwecIbnpK_OEkxpLnT4fRJOuw1Na7WJoxfXD_N_gNF5q-xg
CitedBy_id crossref_primary_10_1016_j_scienta_2023_112445
crossref_primary_10_1007_s00344_024_11582_7
crossref_primary_10_1016_j_plaphy_2025_109665
crossref_primary_10_1016_j_plaphy_2024_109055
crossref_primary_10_1079_cabireviews_2024_0027
crossref_primary_10_1186_s12870_024_05289_w
crossref_primary_10_3390_plants12162948
crossref_primary_10_21926_obm_genet_2402242
crossref_primary_10_1080_00380768_2024_2405834
crossref_primary_10_1016_j_stress_2025_100789
crossref_primary_10_1111_jpi_70018
crossref_primary_10_3390_nano14151253
crossref_primary_10_1016_j_plaphy_2023_107698
crossref_primary_10_1111_ppl_14188
crossref_primary_10_1016_j_indcrop_2024_118888
crossref_primary_10_1016_j_jhazmat_2024_133829
crossref_primary_10_1016_j_hpj_2023_12_006
crossref_primary_10_1016_j_plaphy_2024_108736
crossref_primary_10_1111_ppl_14267
Cites_doi 10.1111/jpi.12155
10.1111/jpi.12219
10.3390/molecules23020386
10.1371/journal.ppat.1005811
10.1111/plb.13296
10.1080/17429145.2019.1645895
10.1111/ppl.12976
10.1111/j.1365-3040.2007.01710.x
10.1016/j.envexpbot.2018.06.012
10.1111/jpi.12253
10.1038/hortres.2015.43
10.1111/j.1399-3054.2011.01457.x
10.1093/jxb/ern252
10.1016/j.jhazmat.2020.122882
10.1042/BST20170299
10.3389/fpls.2020.00669
10.1007/s00344-020-10273-3
10.1016/j.plantsci.2019.110387
10.1111/j.1600-079X.2008.00625.x
10.1093/jxb/erab090
10.1111/jpi.12258
10.3389/fpls.2020.599111
10.1007/s00299-008-0666-y
10.1016/j.scienta.2018.10.058
10.3390/molecules26144157
10.1016/j.plantsci.2019.110371
10.3390/plants9030363
10.1016/j.sajb.2022.06.065
10.1007/s10725-014-9905-0
10.1111/jpi.12359
10.1016/j.envexpbot.2020.104151
10.1093/jxb/erj191
10.1007/s00299-022-02843-4
10.1089/ars.2019.7823
10.1111/j.1399-3054.2008.01090.x
10.1074/jbc.M602896200
10.1016/j.chemosphere.2019.03.026
10.1074/jbc.M710465200
10.1093/jxb/eru373
10.1046/j.1600-079X.2003.00106.x
10.1186/s12870-019-2110-6
10.1007/s10535-012-0100-8
10.1016/j.plaphy.2021.08.002
10.1016/j.plantsci.2022.111305
10.1016/j.bbabio.2007.05.001
10.1111/nph.13621
10.1016/j.jmb.2011.01.013
10.1089/ars.2008.2177
10.1111/j.1600-079X.2011.00966.x
10.1046/j.1365-3040.1997.d01-44.x
10.1007/s00299-021-02675-8
10.1023/A:1020470224740
10.1016/j.ecoenv.2020.110822
10.15252/embj.2021108664
10.1016/j.bbabio.2018.03.002
10.1038/s41598-018-27032-w
10.17957/IJAB/15.0348
10.1111/j.1365-3040.2005.01289.x
10.1016/0003-2697(76)90527-3
10.1111/j.1600-079X.2007.00552.x
10.1038/srep14078
10.1016/j.envexpbot.2011.12.022
10.1016/j.plaphy.2021.12.018
10.1104/pp.18.00067
10.1093/plphys/kiab550
10.1016/j.plantsci.2020.110795
10.1104/pp.106.090712
10.3390/antiox10081216
10.1111/tpj.13317
10.1093/jxb/erx473
10.1016/j.envexpbot.2017.07.007
10.3390/ijms20092068
10.3390/ijms22010117
10.1111/jpi.12642
10.1016/j.ecoenv.2019.05.043
ContentType Journal Article
Copyright 2023 Elsevier Masson SAS
Copyright © 2023 Elsevier Masson SAS. All rights reserved.
Copyright_xml – notice: 2023 Elsevier Masson SAS
– notice: Copyright © 2023 Elsevier Masson SAS. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.plaphy.2023.01.043
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Botany
EISSN 1873-2690
EndPage 209
ExternalDocumentID 36724704
10_1016_j_plaphy_2023_01_043
S0981942823000475
Genre Journal Article
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABFNM
ABFRF
ABGRD
ABGSF
ABJNI
ABLJU
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFO
ACIUM
ACRLP
ADBBV
ADEZE
ADQTV
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPCBC
SSA
SSU
SSZ
T5K
TN5
UNMZH
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c461t-fa28c1cdeae94a066d46bf2f6276e9ba81ce15af0a9c6d1a0ea2d0dc29acf5923
IEDL.DBID .~1
ISSN 0981-9428
1873-2690
IngestDate Fri Aug 22 20:33:50 EDT 2025
Fri Jul 11 11:29:40 EDT 2025
Sat Aug 02 01:41:09 EDT 2025
Thu Apr 24 22:56:20 EDT 2025
Tue Jul 01 04:26:01 EDT 2025
Fri Feb 23 02:36:36 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Melatonin
Redox proteomics
Photosynthetic electron transfer
Antioxidant
Solanum lycopersicum
ROS
Language English
License Copyright © 2023 Elsevier Masson SAS. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c461t-fa28c1cdeae94a066d46bf2f6276e9ba81ce15af0a9c6d1a0ea2d0dc29acf5923
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5123-8321
PMID 36724704
PQID 2771941378
PQPubID 23479
PageCount 13
ParticipantIDs proquest_miscellaneous_3153181939
proquest_miscellaneous_2771941378
pubmed_primary_36724704
crossref_primary_10_1016_j_plaphy_2023_01_043
crossref_citationtrail_10_1016_j_plaphy_2023_01_043
elsevier_sciencedirect_doi_10_1016_j_plaphy_2023_01_043
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2023
2023-03-00
2023-Mar
20230301
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: March 2023
PublicationDecade 2020
PublicationPlace France
PublicationPlace_xml – name: France
PublicationTitle Plant physiology and biochemistry
PublicationTitleAlternate Plant Physiol Biochem
PublicationYear 2023
Publisher Elsevier Masson SAS
Publisher_xml – name: Elsevier Masson SAS
References Tracy, Silvère (bib64) 2018; 221
Caspy, Nelson (bib12) 2018; 46
Yu, Li, Qin, Guo, Li, Miao, Song, Chen, Dai (bib78) 2020; 33
Sperdouli, Moustaka, Ouzounidou, Moustakas (bib60) 2021; 26
Tan, Yang, Liu, Zhang, Huang (bib62) 2020; 292
Zhang, Gao, Zhang, Xue, Meng (bib81) 2012; 56
Moore, Meacham-Hensold, Lemonnier, Slattery, Benjamin, Bernacchi, Lawson, Cavanagh (bib35) 2021; 72
Alamri, Siddiqui, Al-Khaishany, Khan, Ali, Alakeel (bib2) 2019; 161
Wada, Takagi, Miyake, Makino, Suzuki (bib67) 2019; 20
Slowik, Rossmann, Konarev, Irrgang, Saenger (bib58) 2011; 407
Li, Ahammed, Zhou, Xia, Zhou, Shi, Yu, Zhou (bib26) 2016; 7
Arnao, Hernández‐Ruiz (bib6) 2009; 46
Yin, Lu, Meng, Liu, Mostafa, Qi, Li (bib75) 2019; 14
Siddiqui, Khan, Singh (bib56) 2022; 41
Poór, Nawaz, Gupta, Ashfaque, Khan (bib39) 2022; 41
Ali, Kamran, Abbasi, Saleem, Ahmad, Parveen, Malik, Afzal, Ahmar, Dawar, Ali, Alamri, Siddiqui, Akbar, Fahad (bib5) 2021; 40
Jalal, Wen, Liu, Chen (bib20) 2018; 161
Shi, Li, Zhang, Zhang, Liu, Zhou, Xia, Chen, Yu (bib52) 2015; 208
Arnao, Hernández-Ruiz (bib7) 2015; 59
Röth, Mirus, Bublak, Scharf, Schleiff (bib46) 2017; 89
Ahmad, Tripathi, Deshmukh, Singh, Corpas (bib1) 2019; 1–3
Al-Huqail, Khan, Ali, Siddiqui, Al-Huqail, AlZuaibr, Al-Muwayhi, Marraiki, Al-Humaid (bib4) 2020; 201
Fatma, Iqbal, Sehar, Alyemeni, Kaushik, Khan, Ahmad (bib16) 2021; 10
Bradford (bib11) 1976; 72
Foyer, Noctor (bib17) 2009; 11
Turk, Erdal, Genisel, Atici, Demir, Yanmis (bib65) 2014; 74
Zhao, Lu, Wang, Jin (bib83) 2020; 22
Rodriguez-Heredia, Saccon, Wilson, Finazzi, Ruban, Hanke (bib45) 2022; 188
Shi, Chan (bib49) 2014; 57
Zhao, Su, Huo, Wei, Jiang, Xu, Ma (bib82) 2015; 59
Liang, Ni, Xia, Xie, Lv, Wang, Lin, Deng, Luo (bib29) 2019; 246
Raja, Qadir, Alyemeni, Ahmad (bib43) 2020; 10
Siddiqui, Alamri, Khan, Corpas, Al-Amri, Alsubaie, Ali, Kalaji, Ahmad (bib54) 2020; 398
Yang, Li, Chen, Huang, Zhang, Qi, Liu, Li (bib73) 2020; 9
Yin, Ren, Zhou, Sun, Wang, Liu, Song (bib76) 2017; 15
Couto, Niebergall, Liang, Bücherl, Sklenar, Macho, Ntoukakis, Derbyshire, Altenbach, Maclean, Robatzek, Uhrig, Menke, Zhou, Zipfel (bib13) 2016; 12
Lu, Wang, Yang, Wang, Qi, Li, Liu (bib31) 2020; 177
Sharkey, Bernacchi, Farquhar, Singsaas (bib48) 2007; 30
Wang, Reiter, Chan (bib70) 2018; 69
Essemine, Govindachary, Ammar, Bouzid, Carpentier (bib15) 2012; 80
Lu, Lu, Qi, Sun, Liu, Li (bib33) 2021; 28
Shi, Tan, Reiter, Ye, Yang, Chan (bib51) 2015; 58
Yoshioka, Uchida, Mori, Komayama, Ohira, Morita, Nakanishi, Yamamoto (bib77) 2006; 281
Tang, Wen, Lu, Yang, Cheng, Lu (bib63) 2007; 143
Xu, Cai, Zhang, Wang, Ahammed, Xia, Shi, Zhou, Yu, Reiter, Zhou (bib71) 2016; 61
Albertos, Dündar, Schenk, Carrera, Cavelius, Sieberer, Poppenberger (bib3) 2022; 41
Kaur, Sirhindi, Bhardwaj, Alyemeni, Siddique, Ahmad (bib21) 2018; 8
Siddiqui, Khan, Mukherjee, Basahi, Alamri, Al-Amri, Alsubaie, Ali, Al-Munqedhi, Almohisen (bib55) 2021; 23
Asada, Nishimura, Ifuku, Mino (bib9) 2018; 1859
Shi, Jiang, Ye, Tan, Reiter, Zhang, Liu, Chan (bib50) 2015; 66
Ding, He, Wu, Wu, Ge, Wang, Zhong, Peiter, Liang, Xu (bib14) 2018; 177
Lei, Zhu, Zhang, Dai (bib25) 2004; 36
Mostofa, Rahman, Ansary, Watanabe, Fujita, Tran (bib36) 2015; 5
Lu, Yin, Lu, Yang, Wang, Qi, Li, Liu (bib32) 2020; 292
Smertenko, Dráber, Viklický, Opatrný (bib59) 1997; 20
Arnao, Hernández-Ruiz (bib8) 2021; 21
Santisree, Bhatnagar-Mathur, Sharma (bib47) 2017; 141
Siddiqui, Mukherjee, Kumar, Alansi, Shah, Kalaji, Javed, Raza (bib57) 2022; 171
Palma, Río (bib38) 2006; 57
Rinalducci, Murgiano, Zolla (bib44) 2008; 59
Qi, Wang, Yan, Kanwar, Li, Wijaya, Alyemeni, Ahmad, Zhou (bib42) 2018; 23
Zhang, Xu, Li, Jin, Tian, Gu (bib80) 2017; 19
Balmant, Parker, Yoo, Zhu, Dufresne, Chen (bib10) 2015; 2
Siddiqui, Alamri, Alsubaie, Ali, Ibrahim, Alsadon (bib53) 2019; 180
Wang, Yan, Ahammed, Wang, Bu, Xiang, Li, Lu, Liu, Qi, Qi, Li (bib68) 2020; 11
Kaya, Higgs, Ashraf, Alyemeni, Ahmad (bib22) 2020; 168
Sun, Lv, Huang, Liu, Jin, Lin (bib61) 2020; 68
Wang, Yin, Liang, Li, Ma, Yue (bib69) 2012; 53
Porra (bib40) 2002; 73
Haldimann, Feller (bib18) 2005; 28
Li, Gao, Lu, Wei, Qi, Yin, Li (bib28) 2022; 321
Yang, Tan, Sun, Huang, Huang, Zhang (bib74) 2021; 303
Jahan, Guo, Sun, Shu, Wang, Abou El-Yazied, Alabdallah, Hikal, Mohamed, Ibrahim, Hasan (bib19) 2021; 167
Zaman, Abbasi, Tabassum, Ashraf, Ahmad, Siddiqui, Alamri, Maqsood, Sultan (bib79) 2022; 149
Kaya, Okant, Ugurlar, Alyemeni, Ashraf, Ahmad (bib23) 2019; 225
Posmyk, Kuran, Marciniak, Janas (bib41) 2008; 45
Lu, Guan, Gu, Yang, Wang, Qi, Li, Liu (bib30) 2021; 11
Nishiyama, Allakhverdiev, Murata (bib37) 2011; 142
Miller, Shulaev, Mittler (bib34) 2008; 133
Yamashita, Nijo, Pospĺšil, Morita, Takenaka, Aminaka, Yamamoto, Yamamoto (bib72) 2008; 283
Komayama, Khatoon, Takenaka, Horie, Yamashita, Yoshioka, Ohira, Morita, Velitchkova, Enami, Yamamoto (bib24) 2007; 1767
Ulhassan, Huang, Gill, Ali, Zhou (bib66) 2019; 19
Li, Fu, Huang, Yu (bib27) 2009; 28
Lei (10.1016/j.plaphy.2023.01.043_bib25) 2004; 36
Komayama (10.1016/j.plaphy.2023.01.043_bib24) 2007; 1767
Wang (10.1016/j.plaphy.2023.01.043_bib70) 2018; 69
Ahmad (10.1016/j.plaphy.2023.01.043_bib1) 2019; 1–3
Lu (10.1016/j.plaphy.2023.01.043_bib30) 2021; 11
Moore (10.1016/j.plaphy.2023.01.043_bib35) 2021; 72
Shi (10.1016/j.plaphy.2023.01.043_bib50) 2015; 66
Albertos (10.1016/j.plaphy.2023.01.043_bib3) 2022; 41
Zhang (10.1016/j.plaphy.2023.01.043_bib81) 2012; 56
Arnao (10.1016/j.plaphy.2023.01.043_bib8) 2021; 21
Posmyk (10.1016/j.plaphy.2023.01.043_bib41) 2008; 45
Slowik (10.1016/j.plaphy.2023.01.043_bib58) 2011; 407
Palma (10.1016/j.plaphy.2023.01.043_bib38) 2006; 57
Zaman (10.1016/j.plaphy.2023.01.043_bib79) 2022; 149
Wang (10.1016/j.plaphy.2023.01.043_bib68) 2020; 11
Al-Huqail (10.1016/j.plaphy.2023.01.043_bib4) 2020; 201
Lu (10.1016/j.plaphy.2023.01.043_bib32) 2020; 292
Couto (10.1016/j.plaphy.2023.01.043_bib13) 2016; 12
Alamri (10.1016/j.plaphy.2023.01.043_bib2) 2019; 161
Röth (10.1016/j.plaphy.2023.01.043_bib46) 2017; 89
Santisree (10.1016/j.plaphy.2023.01.043_bib47) 2017; 141
Liang (10.1016/j.plaphy.2023.01.043_bib29) 2019; 246
Caspy (10.1016/j.plaphy.2023.01.043_bib12) 2018; 46
Tan (10.1016/j.plaphy.2023.01.043_bib62) 2020; 292
Balmant (10.1016/j.plaphy.2023.01.043_bib10) 2015; 2
Li (10.1016/j.plaphy.2023.01.043_bib27) 2009; 28
Porra (10.1016/j.plaphy.2023.01.043_bib40) 2002; 73
Li (10.1016/j.plaphy.2023.01.043_bib26) 2016; 7
Siddiqui (10.1016/j.plaphy.2023.01.043_bib55) 2021; 23
Miller (10.1016/j.plaphy.2023.01.043_bib34) 2008; 133
Yang (10.1016/j.plaphy.2023.01.043_bib73) 2020; 9
Yu (10.1016/j.plaphy.2023.01.043_bib78) 2020; 33
Sharkey (10.1016/j.plaphy.2023.01.043_bib48) 2007; 30
Zhao (10.1016/j.plaphy.2023.01.043_bib83) 2020; 22
Tracy (10.1016/j.plaphy.2023.01.043_bib64) 2018; 221
Siddiqui (10.1016/j.plaphy.2023.01.043_bib56) 2022; 41
Rinalducci (10.1016/j.plaphy.2023.01.043_bib44) 2008; 59
Kaya (10.1016/j.plaphy.2023.01.043_bib23) 2019; 225
Tang (10.1016/j.plaphy.2023.01.043_bib63) 2007; 143
Arnao (10.1016/j.plaphy.2023.01.043_bib6) 2009; 46
Haldimann (10.1016/j.plaphy.2023.01.043_bib18) 2005; 28
Yamashita (10.1016/j.plaphy.2023.01.043_bib72) 2008; 283
Zhao (10.1016/j.plaphy.2023.01.043_bib82) 2015; 59
Bradford (10.1016/j.plaphy.2023.01.043_bib11) 1976; 72
Wang (10.1016/j.plaphy.2023.01.043_bib69) 2012; 53
Shi (10.1016/j.plaphy.2023.01.043_bib51) 2015; 58
Li (10.1016/j.plaphy.2023.01.043_bib28) 2022; 321
Yoshioka (10.1016/j.plaphy.2023.01.043_bib77) 2006; 281
Sperdouli (10.1016/j.plaphy.2023.01.043_bib60) 2021; 26
Siddiqui (10.1016/j.plaphy.2023.01.043_bib53) 2019; 180
Siddiqui (10.1016/j.plaphy.2023.01.043_bib57) 2022; 171
Essemine (10.1016/j.plaphy.2023.01.043_bib15) 2012; 80
Kaur (10.1016/j.plaphy.2023.01.043_bib21) 2018; 8
Qi (10.1016/j.plaphy.2023.01.043_bib42) 2018; 23
Turk (10.1016/j.plaphy.2023.01.043_bib65) 2014; 74
Fatma (10.1016/j.plaphy.2023.01.043_bib16) 2021; 10
Siddiqui (10.1016/j.plaphy.2023.01.043_bib54) 2020; 398
Shi (10.1016/j.plaphy.2023.01.043_bib52) 2015; 208
Ali (10.1016/j.plaphy.2023.01.043_bib5) 2021; 40
Asada (10.1016/j.plaphy.2023.01.043_bib9) 2018; 1859
Lu (10.1016/j.plaphy.2023.01.043_bib31) 2020; 177
Jalal (10.1016/j.plaphy.2023.01.043_bib20) 2018; 161
Smertenko (10.1016/j.plaphy.2023.01.043_bib59) 1997; 20
Lu (10.1016/j.plaphy.2023.01.043_bib33) 2021; 28
Rodriguez-Heredia (10.1016/j.plaphy.2023.01.043_bib45) 2022; 188
Jahan (10.1016/j.plaphy.2023.01.043_bib19) 2021; 167
Foyer (10.1016/j.plaphy.2023.01.043_bib17) 2009; 11
Ding (10.1016/j.plaphy.2023.01.043_bib14) 2018; 177
Sun (10.1016/j.plaphy.2023.01.043_bib61) 2020; 68
Kaya (10.1016/j.plaphy.2023.01.043_bib22) 2020; 168
Mostofa (10.1016/j.plaphy.2023.01.043_bib36) 2015; 5
Poór (10.1016/j.plaphy.2023.01.043_bib39) 2022; 41
Ulhassan (10.1016/j.plaphy.2023.01.043_bib66) 2019; 19
Xu (10.1016/j.plaphy.2023.01.043_bib71) 2016; 61
Nishiyama (10.1016/j.plaphy.2023.01.043_bib37) 2011; 142
Yin (10.1016/j.plaphy.2023.01.043_bib75) 2019; 14
Yin (10.1016/j.plaphy.2023.01.043_bib76) 2017; 15
Raja (10.1016/j.plaphy.2023.01.043_bib43) 2020; 10
Arnao (10.1016/j.plaphy.2023.01.043_bib7) 2015; 59
Wada (10.1016/j.plaphy.2023.01.043_bib67) 2019; 20
Shi (10.1016/j.plaphy.2023.01.043_bib49) 2014; 57
Yang (10.1016/j.plaphy.2023.01.043_bib74) 2021; 303
Zhang (10.1016/j.plaphy.2023.01.043_bib80) 2017; 19
References_xml – volume: 36
  start-page: 126
  year: 2004
  end-page: 131
  ident: bib25
  article-title: Attenuation of cold-induced apoptosis by exogenous melatonin in carrot suspension cells: the possible involvement of polyamines
  publication-title: J. Pineal Res.
– volume: 61
  start-page: 457
  year: 2016
  end-page: 469
  ident: bib71
  article-title: Melatonin enhances thermotolerance by promoting cellular protein protection in tomato plants
  publication-title: J. Pineal Res.
– volume: 15
  start-page: 1
  year: 2017
  end-page: 16
  ident: bib76
  article-title: Water deficit mechanisms in perennial shrubs Cerasus humilis leaves revealed by physiological and proteomic analyses
  publication-title: Proteome Sci.
– volume: 5
  year: 2015
  ident: bib36
  article-title: Hydrogen sulfide modulates cadmium-induced physiological and biochemical responses to alleviate cadmium toxicity in rice
  publication-title: Sci. Rep.
– volume: 143
  start-page: 629
  year: 2007
  end-page: 638
  ident: bib63
  article-title: Heat stress induces an aggregation of the light-harvesting complex of photosystem II in spinach plants
  publication-title: Plant physiol
– volume: 10
  start-page: 1216
  year: 2021
  ident: bib16
  article-title: Methyl jasmonate protects the PS II system by maintaining the stability of chloroplast D1 protein and accelerating enzymatic antioxidants in heat-stressed wheat plants
  publication-title: Antioxidants
– volume: 21
  year: 2021
  ident: bib8
  article-title: Melatonin against environmental plant stressors: a review
  publication-title: Curr. Protein Pept. Sci.
– volume: 23
  start-page: 1
  year: 2018
  end-page: 14
  ident: bib42
  article-title: Melatonin alleviates high temperature-induced pollen abortion in
  publication-title: Molecules
– volume: 142
  start-page: 35
  year: 2011
  end-page: 46
  ident: bib37
  article-title: Protein synthesis is the primary target of reactive oxygen species in the photoinhibition of photosystem II
  publication-title: Physiol. Plantarum
– volume: 177
  year: 2020
  ident: bib31
  article-title: Cyclic electron flow protects photosystem I donor side under low night temperature in tomato
  publication-title: Environ. Exp. Bot.
– volume: 19
  start-page: 735
  year: 2017
  end-page: 745
  ident: bib80
  article-title: Overexpression of 2-cys prx increased salt tolerance of photosystem II in tobacco
  publication-title: Int. J. Agric. Biol.
– volume: 59
  start-page: 133
  year: 2015
  end-page: 150
  ident: bib7
  article-title: Functions of melatonin in plants: a review
  publication-title: J. Pineal Res.
– volume: 74
  start-page: 139‐152
  year: 2014
  ident: bib65
  article-title: The regulatory effect of melatonin on physiological, biochemical and molecular parameters in cold‐stressed wheat seedlings
  publication-title: Plant Growth Regul.
– volume: 56
  start-page: 365
  year: 2012
  end-page: 368
  ident: bib81
  article-title: Multiple effects of inhibition of mitochondrial alternative oxidase pathway on photosynthetic apparatus in Rumex K-1 leaves
  publication-title: Biol. Plant. (Prague)
– volume: 1767
  start-page: 838
  year: 2007
  end-page: 846
  ident: bib24
  article-title: Quality control of photosystem II: cleavage and aggregation of heat-damaged D1 protein in spinach thylakoids
  publication-title: Biochim. Biophys. Acta, Bioenerg.
– volume: 149
  start-page: 701
  year: 2022
  end-page: 711
  ident: bib79
  article-title: Calcium induced growth, physio-biochemical, antioxidants, osmolytes adjustments and phytoconstituents status in spinach under heat stress
  publication-title: South Afr. J. Bot.
– volume: 22
  start-page: 117
  year: 2020
  ident: bib83
  article-title: Plant responses to heat stress: physiology, transcription, noncoding RNAs, and epigenetics
  publication-title: Int. J. Mol. Sci.
– volume: 41
  year: 2022
  ident: bib3
  article-title: Transcription factor BES1 interacts with HSFA1 to promote heat stress resistance of plants
  publication-title: EMBO J.
– volume: 171
  start-page: 49
  year: 2022
  end-page: 65
  ident: bib57
  article-title: Potassium and melatonin-mediated regulation of fructose-1, 6-bisphosphatase (FBPase) and sedoheptulose-1, 7-bisphosphatase (SBPase) activity improve photosynthetic efficiency, carbon assimilation and modulate glyoxalase system accompanying tolerance to cadmium stress in tomato seedlings
  publication-title: Plant Physiol. Biochem.
– volume: 225
  start-page: 627
  year: 2019
  end-page: 638
  ident: bib23
  article-title: Melatonin-mediated nitric oxide improves tolerance to cadmium toxicity by reducing oxidative stress in wheat plants
  publication-title: Chemosphere
– volume: 68
  year: 2020
  ident: bib61
  article-title: Melatonin ameliorates aluminum toxicity through enhancing aluminum exclusion and reestablishing redox homeostasis in roots of wheat
  publication-title: J. Pineal Res.
– volume: 19
  start-page: 507
  year: 2019
  ident: bib66
  article-title: Protective mechanisms of melatonin against selenium toxicity in brassica napus: insights into physiological traits, thiol biosynthesis and antioxidant machinery
  publication-title: BMC Plant Biol.
– volume: 167
  start-page: 309
  year: 2021
  end-page: 320
  ident: bib19
  article-title: Melatonin-mediated photosynthetic performance of tomato seedlings under high-temperature stress
  publication-title: Plant Physiol. Biochem.
– volume: 8
  start-page: 8735
  year: 2018
  ident: bib21
  article-title: 28-homobrassinolide regulates antioxidant enzyme activities and gene expression in response to salt- and temperature-induced oxidative stress in
  publication-title: Brassica juncea
– volume: 201
  year: 2020
  ident: bib4
  article-title: Exogenous melatonin mitigates boron toxicity in wheat
  publication-title: Ecotoxicol. Environ. Saf.
– volume: 407
  start-page: 125
  year: 2011
  end-page: 137
  ident: bib58
  article-title: Structural investigation of PsbO from plant and cyanobacterial photosystem II
  publication-title: J. Mol. Biol.
– volume: 72
  start-page: 248
  year: 1976
  end-page: 254
  ident: bib11
  article-title: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding
  publication-title: Anal. Biochem.
– volume: 53
  start-page: 11‐20
  year: 2012
  ident: bib69
  article-title: Delayed senescence of apple leaves by exogenous melatonin treatment: toward regulating the ascorbate‐glutathione cycle
  publication-title: J. Pineal Res.
– volume: 2
  start-page: 1
  year: 2015
  end-page: 12
  ident: bib10
  article-title: Redox proteomics of tomato in response to
  publication-title: Hortic. Res.
– volume: 1859
  start-page: 394
  year: 2018
  end-page: 399
  ident: bib9
  article-title: Location of the extrinsic subunit PsbP in photosystem II studied by pulsed electron-electron double resonance
  publication-title: Biochim. Biophys. Acta Bioenerg.
– volume: 23
  start-page: 797
  year: 2021
  end-page: 805
  ident: bib55
  article-title: Exogenous melatonin‐mediated regulation of K
  publication-title: Plant Bio
– volume: 73
  start-page: 149
  year: 2002
  end-page: 156
  ident: bib40
  article-title: The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b
  publication-title: Photosynth. Res.
– volume: 283
  start-page: 28380
  year: 2008
  end-page: 28391
  ident: bib72
  article-title: Quality control of photosystem II: reactive oxygen species are responsible for the damage to photosystem II under moderate heat stress
  publication-title: J. Biol. Chem.
– volume: 292
  year: 2020
  ident: bib32
  article-title: Cyclic electron flow modulate the linear electron flow and reactive oxygen species in tomato leaves under high temperature
  publication-title: Plant Sci.
– volume: 80
  start-page: 16
  year: 2012
  end-page: 26
  ident: bib15
  article-title: Enhanced sensitivity of the photosynthetic apparatus to heat stress in digalactosyl-diacylglycerol deficient Arabidopsis
  publication-title: Environ. Exp. Bot.
– volume: 28
  start-page: 262
  year: 2021
  end-page: 279
  ident: bib33
  article-title: Protective roles of D1 protein turnover and the xanthophyll cycle in tomato (
  publication-title: Front. Agric. Sci. Eng.
– volume: 33
  start-page: 35
  year: 2020
  end-page: 57
  ident: bib78
  article-title: Plant chloroplast stress response: insights from thiol redox proteomics
  publication-title: Antioxidants Redox Signal.
– volume: 59
  start-page: 3781
  year: 2008
  end-page: 3801
  ident: bib44
  article-title: Redox proteomics: basic principles and future perspectives for the detection of protein oxidation in plants
  publication-title: J. Exp. Bot.
– volume: 45
  start-page: 24
  year: 2008
  end-page: 31
  ident: bib41
  article-title: Presowing seed treatment with melatonin protects red cabbage seedlings against toxic copper ion concentrations
  publication-title: J. Pineal Res.
– volume: 177
  start-page: 633
  year: 2018
  end-page: 651
  ident: bib14
  article-title: The tomato mitogen-activated protein kinase SLMPK1 is as a negative regulator of the high-temperature stress response
  publication-title: Plant Physiol.
– volume: 69
  start-page: 963
  year: 2018
  end-page: 974
  ident: bib70
  article-title: Phytomelatonin: a universal abiotic stress regulator
  publication-title: J. Exp. Bot.
– volume: 133
  start-page: 481
  year: 2008
  end-page: 489
  ident: bib34
  article-title: Reactive oxygen signaling and abiotic stress
  publication-title: Physiol. Plantarum
– volume: 398
  year: 2020
  ident: bib54
  article-title: Melatonin and calcium function synergistically to promote the resilience through ROS metabolism under arsenic-induced stress
  publication-title: J. Hazard Mater.
– volume: 11
  start-page: 669
  year: 2020
  ident: bib68
  article-title: PGR5/PGRL1 and NDH mediate far-red light-induced photoprotection in response to chilling stress in tomato
  publication-title: Front. Plant Sci.
– volume: 28
  start-page: 683
  year: 2009
  end-page: 693
  ident: bib27
  article-title: Functional analysis of an Arabidopsis transcription factor WRKY25 in heat stress
  publication-title: Plant Cell Rep.
– volume: 58
  start-page: 335‐342
  year: 2015
  ident: bib51
  article-title: Melatonin induces class A1 heat‐shock factors (HSFA1s) and their possible involvement of thermotolerance in Arabidopsis
  publication-title: J. Pineal Res.
– volume: 180
  start-page: 656
  year: 2019
  end-page: 667
  ident: bib53
  article-title: Potential roles of melatonin and sulfur in alleviation of lanthanum toxicity in tomato seedlings
  publication-title: Ecotoxicol. Environ. Saf.
– volume: 1–3
  year: 2019
  ident: bib1
  article-title: Revisiting the role of ROS and RNS in plants under changing environment
  publication-title: Environ. Exp. Bot.
– volume: 188
  start-page: 1028
  year: 2022
  end-page: 1042
  ident: bib45
  article-title: Protection of photosystem I during sudden light stress depends on ferredoxin: NADP (H) reductase abundance and interactions
  publication-title: Plant Physiol.
– volume: 141
  start-page: 132
  year: 2017
  end-page: 144
  ident: bib47
  article-title: Heat responsive proteome changes reveal molecular mechanisms underlying heat tolerance in chickpea
  publication-title: Environ. Exp. Bot.
– volume: 20
  start-page: 1
  year: 2019
  end-page: 16
  ident: bib67
  article-title: Responses of the photosynthetic electron transport reactions stimulate the oxidation of the reaction center chlorophyll of photosystem I, P700, under drought and high temperatures in rice
  publication-title: Int. J. Mol. Sci.
– volume: 7
  start-page: 1
  year: 2016
  end-page: 15
  ident: bib26
  article-title: Unraveling main limiting sites of photosynthesis under below- and above-ground heat stress in cucumber and the alleviatory role of luffa rootstock
  publication-title: Front. Plant Sci.
– volume: 57
  start-page: 185
  year: 2014
  end-page: 191
  ident: bib49
  article-title: The cysteine2/histidine2-type transcription factor ZINC FINGER of ARABIDOPSIS THALIANA 6-activated C-REPEAT-BINDING FACTOR pathway is essential for melatonin-mediated freezing stress resistance in Arabidopsis
  publication-title: J. Pineal Res.
– volume: 11
  year: 2021
  ident: bib30
  article-title: Exogenous DA-6 improves the low night temperature tolerance of tomato through regulating cytokinin
  publication-title: Front. Plant Sci.
– volume: 28
  start-page: 302
  year: 2005
  end-page: 317
  ident: bib18
  article-title: Growth at moderately elevated temperature alters the physiological response of the photosynthetic apparatus to heat stress in pea (
  publication-title: Plant Cell Environ.
– volume: 30
  start-page: 1035
  year: 2007
  end-page: 1040
  ident: bib48
  article-title: Fitting photosynthetic carbon dioxide response curves for C3 leaves
  publication-title: Plant Cell Environ.
– volume: 14
  start-page: 453
  year: 2019
  end-page: 463
  ident: bib75
  article-title: Exogenous melatonin improves salt tolerance in tomato by regulating photosynthetic electron flux and the ascorbate–glutathione cycle
  publication-title: J. Plant Interact.
– volume: 168
  start-page: 256
  year: 2020
  end-page: 277
  ident: bib22
  article-title: Integrative roles of nitric oxide and hydrogen sulfide in melatonin-induced tolerance of pepper (
  publication-title: Physiol. Plantarum
– volume: 10
  start-page: 1
  year: 2020
  end-page: 18
  ident: bib43
  article-title: Impact of drought and heat stress individually and in combination on physio-biochemical parameters, antioxidant responses, and gene expression in
  publication-title: Biotech
– volume: 20
  start-page: 1534
  year: 1997
  end-page: 1542
  ident: bib59
  article-title: Heat stress affects the organization of microtubules and cell division in
  publication-title: Plant Cell Environ.
– volume: 40
  start-page: 2236
  year: 2021
  end-page: 2248
  ident: bib5
  article-title: Melatonin-induced salinity tolerance by ameliorating osmotic and oxidative stress in the seedlings of two tomato (
  publication-title: J. Plant Growth Regul.
– volume: 321
  year: 2022
  ident: bib28
  article-title: SlSnRK2. 3 interacts with SlSUI1 to modulate high temperature tolerance via Abscisic acid (ABA) controlling stomatal movement in tomato
  publication-title: Plant Sci.
– volume: 89
  start-page: 31
  year: 2017
  end-page: 44
  ident: bib46
  article-title: DNA-binding and repressor function are prerequisites for the turnover of the tomato heat stress transcription factor HsfB1
  publication-title: Plant J.
– volume: 221
  start-page: 93
  year: 2018
  end-page: 98
  ident: bib64
  article-title: Speedy stomata, photosynthesis and plant water use efficiency
  publication-title: New Phytol.
– volume: 57
  start-page: 1747
  year: 2006
  ident: bib38
  article-title: Antioxidative enzymes from chloroplasts, mitochondria, and peroxisomes during leaf senescence of nodulated pea plants
  publication-title: J. Exp. Bot.
– volume: 246
  start-page: 34
  year: 2019
  end-page: 43
  ident: bib29
  article-title: Exogenous melatonin promotes biomass accumulation and photosynthesis of kiwifruit seedlings under drought stress
  publication-title: Sci. Hortic. (Amst.)
– volume: 292
  year: 2020
  ident: bib62
  article-title: Responses of photosystem I compared with photosystem II to combination of heat stress and fluctuating light in tobacco leaves
  publication-title: Plant Sci.
– volume: 9
  start-page: 363
  year: 2020
  ident: bib73
  article-title: Photosynthetic response mechanism of soil salinity-induced cross-tolerance to subsequent drought stress in tomato plants
  publication-title: Plants
– volume: 66
  start-page: 681
  year: 2015
  end-page: 694
  ident: bib50
  article-title: Comparative physiological, metabolomic, and transcriptomic analyses reveal mechanisms of improved abiotic stress resistance in bermudagrass [
  publication-title: J. Exp. Bot.
– volume: 11
  start-page: 861
  year: 2009
  end-page: 905
  ident: bib17
  article-title: Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications
  publication-title: Antioxidants Redox Signal.
– volume: 281
  start-page: 21660
  year: 2006
  end-page: 21669
  ident: bib77
  article-title: Quality control of photosystem II: cleavage of reaction center D1 protein in spinach thylakoids by FtsH protease under moderate heat stress
  publication-title: J. Biol. Chem.
– volume: 161
  start-page: 303
  year: 2018
  end-page: 311
  ident: bib20
  article-title: Endogenous melatonin deficiency aggravates high temperature-induced oxidative stress in
  publication-title: Environ. Exp. Bot.
– volume: 208
  start-page: 342
  year: 2015
  end-page: 353
  ident: bib52
  article-title: Guard cell hydrogen peroxide and nitric oxide mediate elevated CO
  publication-title: New Phytol.
– volume: 72
  start-page: 2822
  year: 2021
  end-page: 2844
  ident: bib35
  article-title: The effect of increasing temperature on crop photosynthesis: from enzymes to ecosystems
  publication-title: J. Exp. Bot.
– volume: 161
  start-page: 290
  year: 2019
  end-page: 302
  ident: bib2
  article-title: Nitric oxide-mediated cross-talk of proline and heat shock proteins induce thermotolerance in
  publication-title: Environ. Exp. Bot.
– volume: 46
  start-page: 58‐63
  year: 2009
  ident: bib6
  article-title: Protective effect of melatonin against chlorophyll degradation during the senescence of barley leaves
  publication-title: J. Pineal Res.
– volume: 41
  start-page: 675
  year: 2022
  end-page: 698
  ident: bib39
  article-title: Ethylene involvement in the regulation of heat stress tolerance in plants
  publication-title: Plant Cell Rep.
– volume: 59
  start-page: 255
  year: 2015
  end-page: 266
  ident: bib82
  article-title: Unveiling the mechanism of melatonin impacts on maize seedling growth: sugar metabolism as a case
  publication-title: J. Pineal Res.
– volume: 41
  start-page: 497
  year: 2022
  end-page: 499
  ident: bib56
  article-title: Hot and dry: how plants can thrive in future climates
  publication-title: Plant Cell Rep.
– volume: 12
  year: 2016
  ident: bib13
  article-title: The
  publication-title: PLoS Pathog.
– volume: 26
  start-page: 4157
  year: 2021
  ident: bib60
  article-title: Leaf age-dependent photosystem II photochemistry and oxidative stress responses to drought stress in
  publication-title: Molecules
– volume: 303
  year: 2021
  ident: bib74
  article-title: Photosystem I is tolerant to fluctuating light under moderate heat stress in two orchids dendrobium officinale and Bletilla striata
  publication-title: Plant Sci.
– volume: 46
  start-page: 285
  year: 2018
  end-page: 294
  ident: bib12
  article-title: Structure of the plant photosystem I
  publication-title: Biochem. Soc. Trans.
– volume: 57
  start-page: 185
  year: 2014
  ident: 10.1016/j.plaphy.2023.01.043_bib49
  article-title: The cysteine2/histidine2-type transcription factor ZINC FINGER of ARABIDOPSIS THALIANA 6-activated C-REPEAT-BINDING FACTOR pathway is essential for melatonin-mediated freezing stress resistance in Arabidopsis
  publication-title: J. Pineal Res.
  doi: 10.1111/jpi.12155
– volume: 58
  start-page: 335‐342
  year: 2015
  ident: 10.1016/j.plaphy.2023.01.043_bib51
  article-title: Melatonin induces class A1 heat‐shock factors (HSFA1s) and their possible involvement of thermotolerance in Arabidopsis
  publication-title: J. Pineal Res.
  doi: 10.1111/jpi.12219
– volume: 23
  start-page: 1
  year: 2018
  ident: 10.1016/j.plaphy.2023.01.043_bib42
  article-title: Melatonin alleviates high temperature-induced pollen abortion in Solanum lycopersicum
  publication-title: Molecules
  doi: 10.3390/molecules23020386
– volume: 12
  issue: 8
  year: 2016
  ident: 10.1016/j.plaphy.2023.01.043_bib13
  article-title: The Arabidopsis protein phosphatase PP2C38 negatively regulates the central immune kinase BIK1
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1005811
– volume: 23
  start-page: 797
  issue: 5
  year: 2021
  ident: 10.1016/j.plaphy.2023.01.043_bib55
  article-title: Exogenous melatonin‐mediated regulation of K+/Na+ transport, H+-ATPase activity and enzymatic antioxidative defence operate through endogenous hydrogen sulphide signalling in NaCl‐stressed tomato seedling roots
  publication-title: Plant Bio
  doi: 10.1111/plb.13296
– volume: 14
  start-page: 453
  issue: 1
  year: 2019
  ident: 10.1016/j.plaphy.2023.01.043_bib75
  article-title: Exogenous melatonin improves salt tolerance in tomato by regulating photosynthetic electron flux and the ascorbate–glutathione cycle
  publication-title: J. Plant Interact.
  doi: 10.1080/17429145.2019.1645895
– volume: 168
  start-page: 256
  issue: 2
  year: 2020
  ident: 10.1016/j.plaphy.2023.01.043_bib22
  article-title: Integrative roles of nitric oxide and hydrogen sulfide in melatonin-induced tolerance of pepper (Capsicum annuum l.) plants to iron deficiency and salt stress alone or in combination
  publication-title: Physiol. Plantarum
  doi: 10.1111/ppl.12976
– volume: 30
  start-page: 1035
  year: 2007
  ident: 10.1016/j.plaphy.2023.01.043_bib48
  article-title: Fitting photosynthetic carbon dioxide response curves for C3 leaves
  publication-title: Plant Cell Environ.
  doi: 10.1111/j.1365-3040.2007.01710.x
– volume: 1–3
  year: 2019
  ident: 10.1016/j.plaphy.2023.01.043_bib1
  article-title: Revisiting the role of ROS and RNS in plants under changing environment
  publication-title: Environ. Exp. Bot.
– volume: 161
  start-page: 290
  year: 2019
  ident: 10.1016/j.plaphy.2023.01.043_bib2
  article-title: Nitric oxide-mediated cross-talk of proline and heat shock proteins induce thermotolerance in Vicia faba L
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2018.06.012
– volume: 161
  start-page: 303
  year: 2018
  ident: 10.1016/j.plaphy.2023.01.043_bib20
  article-title: Endogenous melatonin deficiency aggravates high temperature-induced oxidative stress in Solanum lycopersicum L
  publication-title: Environ. Exp. Bot.
– volume: 15
  start-page: 1
  year: 2017
  ident: 10.1016/j.plaphy.2023.01.043_bib76
  article-title: Water deficit mechanisms in perennial shrubs Cerasus humilis leaves revealed by physiological and proteomic analyses
  publication-title: Proteome Sci.
– volume: 59
  start-page: 133
  year: 2015
  ident: 10.1016/j.plaphy.2023.01.043_bib7
  article-title: Functions of melatonin in plants: a review
  publication-title: J. Pineal Res.
  doi: 10.1111/jpi.12253
– volume: 2
  start-page: 1
  year: 2015
  ident: 10.1016/j.plaphy.2023.01.043_bib10
  article-title: Redox proteomics of tomato in response to Pseudomonas syringae infection
  publication-title: Hortic. Res.
  doi: 10.1038/hortres.2015.43
– volume: 142
  start-page: 35
  year: 2011
  ident: 10.1016/j.plaphy.2023.01.043_bib37
  article-title: Protein synthesis is the primary target of reactive oxygen species in the photoinhibition of photosystem II
  publication-title: Physiol. Plantarum
  doi: 10.1111/j.1399-3054.2011.01457.x
– volume: 59
  start-page: 3781
  year: 2008
  ident: 10.1016/j.plaphy.2023.01.043_bib44
  article-title: Redox proteomics: basic principles and future perspectives for the detection of protein oxidation in plants
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/ern252
– volume: 398
  year: 2020
  ident: 10.1016/j.plaphy.2023.01.043_bib54
  article-title: Melatonin and calcium function synergistically to promote the resilience through ROS metabolism under arsenic-induced stress
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2020.122882
– volume: 46
  start-page: 285
  issue: 2
  year: 2018
  ident: 10.1016/j.plaphy.2023.01.043_bib12
  article-title: Structure of the plant photosystem I
  publication-title: Biochem. Soc. Trans.
  doi: 10.1042/BST20170299
– volume: 11
  start-page: 669
  year: 2020
  ident: 10.1016/j.plaphy.2023.01.043_bib68
  article-title: PGR5/PGRL1 and NDH mediate far-red light-induced photoprotection in response to chilling stress in tomato
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2020.00669
– volume: 10
  start-page: 1
  issue: 5
  year: 2020
  ident: 10.1016/j.plaphy.2023.01.043_bib43
  article-title: Impact of drought and heat stress individually and in combination on physio-biochemical parameters, antioxidant responses, and gene expression in Solanum lycopersicum
  publication-title: Biotech
– volume: 40
  start-page: 2236
  issue: 5
  year: 2021
  ident: 10.1016/j.plaphy.2023.01.043_bib5
  article-title: Melatonin-induced salinity tolerance by ameliorating osmotic and oxidative stress in the seedlings of two tomato (Solanum lycopersicum L.) cultivars
  publication-title: J. Plant Growth Regul.
  doi: 10.1007/s00344-020-10273-3
– volume: 292
  year: 2020
  ident: 10.1016/j.plaphy.2023.01.043_bib32
  article-title: Cyclic electron flow modulate the linear electron flow and reactive oxygen species in tomato leaves under high temperature
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2019.110387
– volume: 46
  start-page: 58‐63
  year: 2009
  ident: 10.1016/j.plaphy.2023.01.043_bib6
  article-title: Protective effect of melatonin against chlorophyll degradation during the senescence of barley leaves
  publication-title: J. Pineal Res.
  doi: 10.1111/j.1600-079X.2008.00625.x
– volume: 72
  start-page: 2822
  issue: 8
  year: 2021
  ident: 10.1016/j.plaphy.2023.01.043_bib35
  article-title: The effect of increasing temperature on crop photosynthesis: from enzymes to ecosystems
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erab090
– volume: 59
  start-page: 255
  year: 2015
  ident: 10.1016/j.plaphy.2023.01.043_bib82
  article-title: Unveiling the mechanism of melatonin impacts on maize seedling growth: sugar metabolism as a case
  publication-title: J. Pineal Res.
  doi: 10.1111/jpi.12258
– volume: 11
  year: 2021
  ident: 10.1016/j.plaphy.2023.01.043_bib30
  article-title: Exogenous DA-6 improves the low night temperature tolerance of tomato through regulating cytokinin
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2020.599111
– volume: 28
  start-page: 683
  year: 2009
  ident: 10.1016/j.plaphy.2023.01.043_bib27
  article-title: Functional analysis of an Arabidopsis transcription factor WRKY25 in heat stress
  publication-title: Plant Cell Rep.
  doi: 10.1007/s00299-008-0666-y
– volume: 246
  start-page: 34
  year: 2019
  ident: 10.1016/j.plaphy.2023.01.043_bib29
  article-title: Exogenous melatonin promotes biomass accumulation and photosynthesis of kiwifruit seedlings under drought stress
  publication-title: Sci. Hortic. (Amst.)
  doi: 10.1016/j.scienta.2018.10.058
– volume: 26
  start-page: 4157
  issue: 14
  year: 2021
  ident: 10.1016/j.plaphy.2023.01.043_bib60
  article-title: Leaf age-dependent photosystem II photochemistry and oxidative stress responses to drought stress in Arabidopsis thaliana are modulated by flavonoid accumulation
  publication-title: Molecules
  doi: 10.3390/molecules26144157
– volume: 292
  year: 2020
  ident: 10.1016/j.plaphy.2023.01.043_bib62
  article-title: Responses of photosystem I compared with photosystem II to combination of heat stress and fluctuating light in tobacco leaves
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2019.110371
– volume: 9
  start-page: 363
  issue: 3
  year: 2020
  ident: 10.1016/j.plaphy.2023.01.043_bib73
  article-title: Photosynthetic response mechanism of soil salinity-induced cross-tolerance to subsequent drought stress in tomato plants
  publication-title: Plants
  doi: 10.3390/plants9030363
– volume: 149
  start-page: 701
  year: 2022
  ident: 10.1016/j.plaphy.2023.01.043_bib79
  article-title: Calcium induced growth, physio-biochemical, antioxidants, osmolytes adjustments and phytoconstituents status in spinach under heat stress
  publication-title: South Afr. J. Bot.
  doi: 10.1016/j.sajb.2022.06.065
– volume: 74
  start-page: 139‐152
  year: 2014
  ident: 10.1016/j.plaphy.2023.01.043_bib65
  article-title: The regulatory effect of melatonin on physiological, biochemical and molecular parameters in cold‐stressed wheat seedlings
  publication-title: Plant Growth Regul.
  doi: 10.1007/s10725-014-9905-0
– volume: 61
  start-page: 457
  issue: 4
  year: 2016
  ident: 10.1016/j.plaphy.2023.01.043_bib71
  article-title: Melatonin enhances thermotolerance by promoting cellular protein protection in tomato plants
  publication-title: J. Pineal Res.
  doi: 10.1111/jpi.12359
– volume: 177
  year: 2020
  ident: 10.1016/j.plaphy.2023.01.043_bib31
  article-title: Cyclic electron flow protects photosystem I donor side under low night temperature in tomato
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2020.104151
– volume: 57
  start-page: 1747
  year: 2006
  ident: 10.1016/j.plaphy.2023.01.043_bib38
  article-title: Antioxidative enzymes from chloroplasts, mitochondria, and peroxisomes during leaf senescence of nodulated pea plants
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erj191
– volume: 41
  start-page: 497
  issue: 3
  year: 2022
  ident: 10.1016/j.plaphy.2023.01.043_bib56
  article-title: Hot and dry: how plants can thrive in future climates
  publication-title: Plant Cell Rep.
  doi: 10.1007/s00299-022-02843-4
– volume: 33
  start-page: 35
  issue: 1
  year: 2020
  ident: 10.1016/j.plaphy.2023.01.043_bib78
  article-title: Plant chloroplast stress response: insights from thiol redox proteomics
  publication-title: Antioxidants Redox Signal.
  doi: 10.1089/ars.2019.7823
– volume: 133
  start-page: 481
  year: 2008
  ident: 10.1016/j.plaphy.2023.01.043_bib34
  article-title: Reactive oxygen signaling and abiotic stress
  publication-title: Physiol. Plantarum
  doi: 10.1111/j.1399-3054.2008.01090.x
– volume: 281
  start-page: 21660
  issue: 31
  year: 2006
  ident: 10.1016/j.plaphy.2023.01.043_bib77
  article-title: Quality control of photosystem II: cleavage of reaction center D1 protein in spinach thylakoids by FtsH protease under moderate heat stress
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M602896200
– volume: 225
  start-page: 627
  year: 2019
  ident: 10.1016/j.plaphy.2023.01.043_bib23
  article-title: Melatonin-mediated nitric oxide improves tolerance to cadmium toxicity by reducing oxidative stress in wheat plants
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2019.03.026
– volume: 283
  start-page: 28380
  issue: 42
  year: 2008
  ident: 10.1016/j.plaphy.2023.01.043_bib72
  article-title: Quality control of photosystem II: reactive oxygen species are responsible for the damage to photosystem II under moderate heat stress
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M710465200
– volume: 66
  start-page: 681
  year: 2015
  ident: 10.1016/j.plaphy.2023.01.043_bib50
  article-title: Comparative physiological, metabolomic, and transcriptomic analyses reveal mechanisms of improved abiotic stress resistance in bermudagrass [Cynodon dactylon (L). Pers.] by exogenous melatonin
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/eru373
– volume: 36
  start-page: 126
  year: 2004
  ident: 10.1016/j.plaphy.2023.01.043_bib25
  article-title: Attenuation of cold-induced apoptosis by exogenous melatonin in carrot suspension cells: the possible involvement of polyamines
  publication-title: J. Pineal Res.
  doi: 10.1046/j.1600-079X.2003.00106.x
– volume: 19
  start-page: 507
  issue: 1
  year: 2019
  ident: 10.1016/j.plaphy.2023.01.043_bib66
  article-title: Protective mechanisms of melatonin against selenium toxicity in brassica napus: insights into physiological traits, thiol biosynthesis and antioxidant machinery
  publication-title: BMC Plant Biol.
  doi: 10.1186/s12870-019-2110-6
– volume: 56
  start-page: 365
  year: 2012
  ident: 10.1016/j.plaphy.2023.01.043_bib81
  article-title: Multiple effects of inhibition of mitochondrial alternative oxidase pathway on photosynthetic apparatus in Rumex K-1 leaves
  publication-title: Biol. Plant. (Prague)
  doi: 10.1007/s10535-012-0100-8
– volume: 167
  start-page: 309
  year: 2021
  ident: 10.1016/j.plaphy.2023.01.043_bib19
  article-title: Melatonin-mediated photosynthetic performance of tomato seedlings under high-temperature stress
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2021.08.002
– volume: 321
  year: 2022
  ident: 10.1016/j.plaphy.2023.01.043_bib28
  article-title: SlSnRK2. 3 interacts with SlSUI1 to modulate high temperature tolerance via Abscisic acid (ABA) controlling stomatal movement in tomato
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2022.111305
– volume: 1767
  start-page: 838
  issue: 6
  year: 2007
  ident: 10.1016/j.plaphy.2023.01.043_bib24
  article-title: Quality control of photosystem II: cleavage and aggregation of heat-damaged D1 protein in spinach thylakoids
  publication-title: Biochim. Biophys. Acta, Bioenerg.
  doi: 10.1016/j.bbabio.2007.05.001
– volume: 208
  start-page: 342
  year: 2015
  ident: 10.1016/j.plaphy.2023.01.043_bib52
  article-title: Guard cell hydrogen peroxide and nitric oxide mediate elevated CO2-induced stomatal movement in tomato
  publication-title: New Phytol.
  doi: 10.1111/nph.13621
– volume: 407
  start-page: 125
  issue: 1
  year: 2011
  ident: 10.1016/j.plaphy.2023.01.043_bib58
  article-title: Structural investigation of PsbO from plant and cyanobacterial photosystem II
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2011.01.013
– volume: 11
  start-page: 861
  issue: 4
  year: 2009
  ident: 10.1016/j.plaphy.2023.01.043_bib17
  article-title: Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications
  publication-title: Antioxidants Redox Signal.
  doi: 10.1089/ars.2008.2177
– volume: 53
  start-page: 11‐20
  year: 2012
  ident: 10.1016/j.plaphy.2023.01.043_bib69
  article-title: Delayed senescence of apple leaves by exogenous melatonin treatment: toward regulating the ascorbate‐glutathione cycle
  publication-title: J. Pineal Res.
  doi: 10.1111/j.1600-079X.2011.00966.x
– volume: 20
  start-page: 1534
  year: 1997
  ident: 10.1016/j.plaphy.2023.01.043_bib59
  article-title: Heat stress affects the organization of microtubules and cell division in Nicotiana tabacum cells
  publication-title: Plant Cell Environ.
  doi: 10.1046/j.1365-3040.1997.d01-44.x
– volume: 41
  start-page: 675
  issue: 3
  year: 2022
  ident: 10.1016/j.plaphy.2023.01.043_bib39
  article-title: Ethylene involvement in the regulation of heat stress tolerance in plants
  publication-title: Plant Cell Rep.
  doi: 10.1007/s00299-021-02675-8
– volume: 73
  start-page: 149
  issue: 1
  year: 2002
  ident: 10.1016/j.plaphy.2023.01.043_bib40
  article-title: The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b
  publication-title: Photosynth. Res.
  doi: 10.1023/A:1020470224740
– volume: 201
  year: 2020
  ident: 10.1016/j.plaphy.2023.01.043_bib4
  article-title: Exogenous melatonin mitigates boron toxicity in wheat
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2020.110822
– volume: 28
  start-page: 262
  issue: 2
  year: 2021
  ident: 10.1016/j.plaphy.2023.01.043_bib33
  article-title: Protective roles of D1 protein turnover and the xanthophyll cycle in tomato (Solanum lycopersicum) under sub-high temperature and high light
  publication-title: Front. Agric. Sci. Eng.
– volume: 41
  issue: 3
  year: 2022
  ident: 10.1016/j.plaphy.2023.01.043_bib3
  article-title: Transcription factor BES1 interacts with HSFA1 to promote heat stress resistance of plants
  publication-title: EMBO J.
  doi: 10.15252/embj.2021108664
– volume: 1859
  start-page: 394
  year: 2018
  ident: 10.1016/j.plaphy.2023.01.043_bib9
  article-title: Location of the extrinsic subunit PsbP in photosystem II studied by pulsed electron-electron double resonance
  publication-title: Biochim. Biophys. Acta Bioenerg.
  doi: 10.1016/j.bbabio.2018.03.002
– volume: 8
  start-page: 8735
  issue: 1
  year: 2018
  ident: 10.1016/j.plaphy.2023.01.043_bib21
  article-title: 28-homobrassinolide regulates antioxidant enzyme activities and gene expression in response to salt- and temperature-induced oxidative stress in
  publication-title: Brassica juncea. Sci. Rep.
  doi: 10.1038/s41598-018-27032-w
– volume: 19
  start-page: 735
  year: 2017
  ident: 10.1016/j.plaphy.2023.01.043_bib80
  article-title: Overexpression of 2-cys prx increased salt tolerance of photosystem II in tobacco
  publication-title: Int. J. Agric. Biol.
  doi: 10.17957/IJAB/15.0348
– volume: 28
  start-page: 302
  year: 2005
  ident: 10.1016/j.plaphy.2023.01.043_bib18
  article-title: Growth at moderately elevated temperature alters the physiological response of the photosynthetic apparatus to heat stress in pea (Pisum sativum L.) leaves
  publication-title: Plant Cell Environ.
  doi: 10.1111/j.1365-3040.2005.01289.x
– volume: 21
  year: 2021
  ident: 10.1016/j.plaphy.2023.01.043_bib8
  article-title: Melatonin against environmental plant stressors: a review
  publication-title: Curr. Protein Pept. Sci.
– volume: 72
  start-page: 248
  year: 1976
  ident: 10.1016/j.plaphy.2023.01.043_bib11
  article-title: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding
  publication-title: Anal. Biochem.
  doi: 10.1016/0003-2697(76)90527-3
– volume: 45
  start-page: 24
  year: 2008
  ident: 10.1016/j.plaphy.2023.01.043_bib41
  article-title: Presowing seed treatment with melatonin protects red cabbage seedlings against toxic copper ion concentrations
  publication-title: J. Pineal Res.
  doi: 10.1111/j.1600-079X.2007.00552.x
– volume: 5
  year: 2015
  ident: 10.1016/j.plaphy.2023.01.043_bib36
  article-title: Hydrogen sulfide modulates cadmium-induced physiological and biochemical responses to alleviate cadmium toxicity in rice
  publication-title: Sci. Rep.
  doi: 10.1038/srep14078
– volume: 80
  start-page: 16
  year: 2012
  ident: 10.1016/j.plaphy.2023.01.043_bib15
  article-title: Enhanced sensitivity of the photosynthetic apparatus to heat stress in digalactosyl-diacylglycerol deficient Arabidopsis
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2011.12.022
– volume: 171
  start-page: 49
  year: 2022
  ident: 10.1016/j.plaphy.2023.01.043_bib57
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2021.12.018
– volume: 7
  start-page: 1
  year: 2016
  ident: 10.1016/j.plaphy.2023.01.043_bib26
  article-title: Unraveling main limiting sites of photosynthesis under below- and above-ground heat stress in cucumber and the alleviatory role of luffa rootstock
  publication-title: Front. Plant Sci.
– volume: 221
  start-page: 93
  year: 2018
  ident: 10.1016/j.plaphy.2023.01.043_bib64
  article-title: Speedy stomata, photosynthesis and plant water use efficiency
  publication-title: New Phytol.
– volume: 177
  start-page: 633
  year: 2018
  ident: 10.1016/j.plaphy.2023.01.043_bib14
  article-title: The tomato mitogen-activated protein kinase SLMPK1 is as a negative regulator of the high-temperature stress response
  publication-title: Plant Physiol.
  doi: 10.1104/pp.18.00067
– volume: 188
  start-page: 1028
  issue: 2
  year: 2022
  ident: 10.1016/j.plaphy.2023.01.043_bib45
  article-title: Protection of photosystem I during sudden light stress depends on ferredoxin: NADP (H) reductase abundance and interactions
  publication-title: Plant Physiol.
  doi: 10.1093/plphys/kiab550
– volume: 303
  year: 2021
  ident: 10.1016/j.plaphy.2023.01.043_bib74
  article-title: Photosystem I is tolerant to fluctuating light under moderate heat stress in two orchids dendrobium officinale and Bletilla striata
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2020.110795
– volume: 143
  start-page: 629
  issue: 2
  year: 2007
  ident: 10.1016/j.plaphy.2023.01.043_bib63
  article-title: Heat stress induces an aggregation of the light-harvesting complex of photosystem II in spinach plants
  publication-title: Plant physiol
  doi: 10.1104/pp.106.090712
– volume: 10
  start-page: 1216
  issue: 8
  year: 2021
  ident: 10.1016/j.plaphy.2023.01.043_bib16
  article-title: Methyl jasmonate protects the PS II system by maintaining the stability of chloroplast D1 protein and accelerating enzymatic antioxidants in heat-stressed wheat plants
  publication-title: Antioxidants
  doi: 10.3390/antiox10081216
– volume: 89
  start-page: 31
  year: 2017
  ident: 10.1016/j.plaphy.2023.01.043_bib46
  article-title: DNA-binding and repressor function are prerequisites for the turnover of the tomato heat stress transcription factor HsfB1
  publication-title: Plant J.
  doi: 10.1111/tpj.13317
– volume: 69
  start-page: 963
  year: 2018
  ident: 10.1016/j.plaphy.2023.01.043_bib70
  article-title: Phytomelatonin: a universal abiotic stress regulator
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erx473
– volume: 141
  start-page: 132
  year: 2017
  ident: 10.1016/j.plaphy.2023.01.043_bib47
  article-title: Heat responsive proteome changes reveal molecular mechanisms underlying heat tolerance in chickpea
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2017.07.007
– volume: 20
  start-page: 1
  year: 2019
  ident: 10.1016/j.plaphy.2023.01.043_bib67
  article-title: Responses of the photosynthetic electron transport reactions stimulate the oxidation of the reaction center chlorophyll of photosystem I, P700, under drought and high temperatures in rice
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms20092068
– volume: 22
  start-page: 117
  issue: 1
  year: 2020
  ident: 10.1016/j.plaphy.2023.01.043_bib83
  article-title: Plant responses to heat stress: physiology, transcription, noncoding RNAs, and epigenetics
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms22010117
– volume: 68
  year: 2020
  ident: 10.1016/j.plaphy.2023.01.043_bib61
  article-title: Melatonin ameliorates aluminum toxicity through enhancing aluminum exclusion and reestablishing redox homeostasis in roots of wheat
  publication-title: J. Pineal Res.
  doi: 10.1111/jpi.12642
– volume: 180
  start-page: 656
  year: 2019
  ident: 10.1016/j.plaphy.2023.01.043_bib53
  article-title: Potential roles of melatonin and sulfur in alleviation of lanthanum toxicity in tomato seedlings
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2019.05.043
SSID ssj0002473
Score 2.4859366
Snippet Heat stress reduces plant growth and reproduction and increases agricultural risks. As a natural compound, melatonin modulates broad aspects of the responses...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 197
SubjectTerms Antioxidant
antioxidant enzymes
Antioxidants - pharmacology
carbon dioxide fixation
chlorophyll
Chlorophyll - metabolism
Electron Transport - drug effects
heat stress
heat tolerance
Homeostasis
Melatonin
Melatonin - pharmacology
Oxidative Stress - drug effects
oxygen production
Photosynthesis - drug effects
Photosynthetic electron transfer
photosynthetic electron transport
photosystem II
Photosystem II Protein Complex - metabolism
plant growth
proteomics
reactive oxygen species
Reactive Oxygen Species - metabolism
Redox proteomics
reproduction
ROS
Solanum lycopersicum
Solanum lycopersicum - drug effects
Solanum lycopersicum - growth & development
stress tolerance
Thermotolerance - drug effects
tomatoes
Title Exogenous melatonin enhances tomato heat resistance by regulating photosynthetic electron flux and maintaining ROS homeostasis
URI https://dx.doi.org/10.1016/j.plaphy.2023.01.043
https://www.ncbi.nlm.nih.gov/pubmed/36724704
https://www.proquest.com/docview/2771941378
https://www.proquest.com/docview/3153181939
Volume 196
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB5CWmgvpU1f20dQoVdnLVm2rGO6JGxbSKFpIDchyzK7YddaGgeyl_z2zlh2Sg9LoAcfJEay0DfWfLJGMwCfSy0qh2Y50Y6CameIRSlkjrsUJwvhvMaHvC3OivmF_HaZX-7BbLwLQ26Vw9of1_R-tR5qpsNsTjfL5fQ81WjNkD0jiaaYh3TRXEpFWn5099fNQ8h4yozCCUmP1-d6H6_NioJCH1EK8T54p8x2madd9LM3Q6fP4dnAH9lxHOIL2PPtATz-EpDjbQ_gyWzM3_YS7k5uQ4zAytbk8Ub_XZlvFwTzNesCUtXAaClmuOMmFon1rNpiqc9OjyaNbRahC9fbFkkivo6NKXNYs7q5Zbat2dou2y7mmGA_f5yzRVj7gF1hf6_g4vTk12yeDNkWEkSFd0ljRem4q731WlpkIrUsqkY0hVCF15UtufM8t01qEdaa29RbUae1E9q6Jkee-Br229D6t8CslTl-545X3EuraqvRUPoqV54CBjZ8Atk4ycYNocgpI8bKjD5nVyZCYwgak3KD0EwguW-1iaE4HpBXI37mH5UyaC0eaPlphNsgaHSEYluPeBmhFOocz1S5WyZDI4K8SWd6Am-irtyPNysUKmQq3_332N7DUypFN7gPsN_9vvEfkRd11WGv-Ifw6Pjr9_nZH9YxEC4
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqglQuCMqjy9NIcEw3dpyHDxygtNrSUiTaSr0Zx3G6i3btFZuK7qV_ij_ITBIXcVhVQuphD5vNY9bfZOZzPPmGkLeF5KWBtBxJg6LaCWBRcJHCLMWIjBsr4YPVFkfZ6FR8PkvP1sjv8C4MllX2sb-L6W207rcM-9EczieT4XEsIZsBewYSjZqHobLywC5_wbxt8X7_E4D8jvO93ZOdUdS3FojABNZEteaFYaay2kqhIe1WIitrXmc8z6wsdcGMZamuYw3_oWI6tppXcWW41KZOJaodQNy_IyBcYNuE7au_dSVcdMvaYF2E5oX39dqisvkUVai3sWd5qxYqklX5cBXfbfPe3gNyvyes9EM3Jg_JmnWb5O5HD6RyuUk2dkLDuEfkavfSd5KvdIYldvigl1o3Rr9a0MYDN_YUYz-FKT7SVthOyyV8O297iLlzOh_7xi-WDlgpXI6GHj20nl5cUu0qOtMT13RNLei3r8d07GfWw6ngfI_J6a1g8ISsO-_sFqFaixQCi2Els0LnlZaQmW2Z5hYVCms2IEkYZGV67XNswTFVocjth-qgUQiNipkCaAYkuj5q3ml_3LB_HvBT__iwgvR0w5FvAtwKQMM1G-0s4KV4noOTsyQvVu-TQNYCoiYTOSBPO1-5tjfJcnDIWDz7b9tek43RyZdDdbh_dPCc3MNfuhq8F2S9-XlhXwIpa8pX7U1Ayffbvuv-AL0eTnA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exogenous+melatonin+enhances+tomato+heat+resistance+by+regulating+photosynthetic+electron+flux+and+maintaining+ROS+homeostasis&rft.jtitle=Plant+physiology+and+biochemistry&rft.au=Sun%2C+Cong&rft.au=Meng%2C+Sida&rft.au=Wang%2C+Baofeng&rft.au=Zhao%2C+Siting&rft.date=2023-03-01&rft.issn=0981-9428&rft.volume=196&rft.spage=197&rft.epage=209&rft_id=info:doi/10.1016%2Fj.plaphy.2023.01.043&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_plaphy_2023_01_043
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0981-9428&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0981-9428&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0981-9428&client=summon