Semi-Supervised Facial Acne Segmentation Using Bidirectional Copy–Paste

Facial acne is a prevalent dermatological condition regularly observed in the general population. However, it is important to detect acne early as the condition can worsen if not treated. For this purpose, deep-learning-based methods have been proposed to automate detection, but acquiring acne train...

Full description

Saved in:
Bibliographic Details
Published inDiagnostics (Basel) Vol. 14; no. 10; p. 1040
Main Authors Kim, Semin, Yoon, Huisu, Lee, Jongha
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.05.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Facial acne is a prevalent dermatological condition regularly observed in the general population. However, it is important to detect acne early as the condition can worsen if not treated. For this purpose, deep-learning-based methods have been proposed to automate detection, but acquiring acne training data is not easy. Therefore, this study proposes a novel deep learning model for facial acne segmentation utilizing a semi-supervised learning method known as bidirectional copy–paste, which synthesizes images by interchanging foreground and background parts between labeled and unlabeled images during the training phase. To overcome the lower performance observed in the labeled image training part compared to the previous methods, a new framework was devised to directly compute the training loss based on labeled images. The effectiveness of the proposed method was evaluated against previous semi-supervised learning methods using images cropped from facial images at acne sites. The proposed method achieved a Dice score of 0.5205 in experiments utilizing only 3% of labels, marking an improvement of 0.0151 to 0.0473 in Dice score over previous methods. The proposed semi-supervised learning approach for facial acne segmentation demonstrated an improvement in performance, offering a novel direction for future acne analysis.
AbstractList Facial acne is a prevalent dermatological condition regularly observed in the general population. However, it is important to detect acne early as the condition can worsen if not treated. For this purpose, deep-learning-based methods have been proposed to automate detection, but acquiring acne training data is not easy. Therefore, this study proposes a novel deep learning model for facial acne segmentation utilizing a semi-supervised learning method known as bidirectional copy-paste, which synthesizes images by interchanging foreground and background parts between labeled and unlabeled images during the training phase. To overcome the lower performance observed in the labeled image training part compared to the previous methods, a new framework was devised to directly compute the training loss based on labeled images. The effectiveness of the proposed method was evaluated against previous semi-supervised learning methods using images cropped from facial images at acne sites. The proposed method achieved a Dice score of 0.5205 in experiments utilizing only 3% of labels, marking an improvement of 0.0151 to 0.0473 in Dice score over previous methods. The proposed semi-supervised learning approach for facial acne segmentation demonstrated an improvement in performance, offering a novel direction for future acne analysis.Facial acne is a prevalent dermatological condition regularly observed in the general population. However, it is important to detect acne early as the condition can worsen if not treated. For this purpose, deep-learning-based methods have been proposed to automate detection, but acquiring acne training data is not easy. Therefore, this study proposes a novel deep learning model for facial acne segmentation utilizing a semi-supervised learning method known as bidirectional copy-paste, which synthesizes images by interchanging foreground and background parts between labeled and unlabeled images during the training phase. To overcome the lower performance observed in the labeled image training part compared to the previous methods, a new framework was devised to directly compute the training loss based on labeled images. The effectiveness of the proposed method was evaluated against previous semi-supervised learning methods using images cropped from facial images at acne sites. The proposed method achieved a Dice score of 0.5205 in experiments utilizing only 3% of labels, marking an improvement of 0.0151 to 0.0473 in Dice score over previous methods. The proposed semi-supervised learning approach for facial acne segmentation demonstrated an improvement in performance, offering a novel direction for future acne analysis.
Facial acne is a prevalent dermatological condition regularly observed in the general population. However, it is important to detect acne early as the condition can worsen if not treated. For this purpose, deep-learning-based methods have been proposed to automate detection, but acquiring acne training data is not easy. Therefore, this study proposes a novel deep learning model for facial acne segmentation utilizing a semi-supervised learning method known as bidirectional copy–paste, which synthesizes images by interchanging foreground and background parts between labeled and unlabeled images during the training phase. To overcome the lower performance observed in the labeled image training part compared to the previous methods, a new framework was devised to directly compute the training loss based on labeled images. The effectiveness of the proposed method was evaluated against previous semi-supervised learning methods using images cropped from facial images at acne sites. The proposed method achieved a Dice score of 0.5205 in experiments utilizing only 3% of labels, marking an improvement of 0.0151 to 0.0473 in Dice score over previous methods. The proposed semi-supervised learning approach for facial acne segmentation demonstrated an improvement in performance, offering a novel direction for future acne analysis.
Audience Academic
Author Lee, Jongha
Kim, Semin
Yoon, Huisu
Author_xml – sequence: 1
  givenname: Semin
  orcidid: 0000-0003-3746-0863
  surname: Kim
  fullname: Kim, Semin
– sequence: 2
  givenname: Huisu
  orcidid: 0009-0004-4980-1092
  surname: Yoon
  fullname: Yoon, Huisu
– sequence: 3
  givenname: Jongha
  surname: Lee
  fullname: Lee, Jongha
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38786338$$D View this record in MEDLINE/PubMed
BookMark eNptkstu1DAUhi1UREvpEyChSGzYpNjxLV4OIwojVQJp6Npy7OPIoyQe7KRSd7wDb8iT4GFKuaj2wtavz__xuTxHJ1OcAKGXBF9SqvBbF0w_xTwHmwkjmGCGn6CzBkteM0bak7_up-gi5x0uSxHaNvwZOqWtbAWl7RnabGEM9XbZQ7oNGVx1ZWwwQ7WyE1Rb6EeYZjOHOFU3OUx99S64kMAelEKt4_7ux7fvn02e4QV66s2Q4eL-PEc3V--_rD_W158-bNar69oyQebaM8ca64zgsgFGoMXSd0wpap11zHVd2wovGHAQpHMeC9MqSj03WBouyq_P0ebo66LZ6X0Ko0l3Opqgfwkx9dqkUpcBNHaOECq8U84y7lRHsWh4owwRsuOEFa83R699il8XyLMeQ7YwDGaCuGRdeEyl4EIW9PV_6C4uqRThQHHFGtxI9YfqTYkfJh_nZOzBVK-k4gwzxg8pXD5Cle1KM2xptA9F_-fBq_vgSzeCe8j6dx8LQI-ATTHnBP4BIVgfBkY_MjD0J2uMsxE
Cites_doi 10.1111/jocd.16218
10.9717/kmms.2024.27.2.241
10.1109/EIT.2016.7535331
10.1109/CVPR52729.2023.00699
10.20944/preprints202206.0384.v1
10.1109/CBMS58004.2023.00299
10.1145/3421558.3421566
10.1109/CBMS55023.2022.00075
10.1109/TPAMI.2016.2577031
10.1109/CVPR42600.2020.00813
10.1109/ASYU56188.2022.9925323
10.1111/exsy.12760
10.3390/diagnostics11040685
10.1109/CVPR52729.2023.01108
10.3390/biomedinformatics4020059
10.1016/j.artmed.2023.102679
10.1109/CVPR52729.2023.00729
10.1109/ICSIIT.2017.62
10.3390/diagnostics13111894
10.1109/SMC52423.2021.9659243
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
NPM
3V.
7XB
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
M2O
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOA
DOI 10.3390/diagnostics14101040
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
ProQuest Central Student
ProQuest Research Library
Research Library
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Publicly Available Content Database

PubMed

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2075-4418
ExternalDocumentID oai_doaj_org_article_0dd1136fd9dc45d9b3062529a167b514
A795404456
38786338
10_3390_diagnostics14101040
Genre Journal Article
GeographicLocations South Korea
GeographicLocations_xml – name: South Korea
GroupedDBID 53G
5VS
8G5
AADQD
AAFWJ
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BCNDV
BENPR
BPHCQ
CCPQU
CITATION
DWQXO
EBD
ESX
GNUQQ
GROUPED_DOAJ
GUQSH
HYE
IAO
IHR
ITC
KQ8
M2O
M48
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RPM
NPM
PMFND
3V.
7XB
8FK
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
ID FETCH-LOGICAL-c461t-f4d42cda6572e41e807fb4993cdcd4dbb886f64e5e61bdf06a8933f5a07a56863
IEDL.DBID M48
ISSN 2075-4418
IngestDate Wed Aug 27 01:12:36 EDT 2025
Fri Jul 11 16:37:52 EDT 2025
Mon Jun 30 14:50:04 EDT 2025
Tue Jun 17 22:09:05 EDT 2025
Tue Jun 10 21:09:02 EDT 2025
Thu Apr 03 06:56:57 EDT 2025
Tue Jul 01 03:44:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords deep learning
acne segmentation
bidirectional copy–paste
semantic segmentation
semi-supervised learning
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c461t-f4d42cda6572e41e807fb4993cdcd4dbb886f64e5e61bdf06a8933f5a07a56863
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3746-0863
0009-0004-4980-1092
OpenAccessLink https://doaj.org/article/0dd1136fd9dc45d9b3062529a167b514
PMID 38786338
PQID 3059420279
PQPubID 2032410
ParticipantIDs doaj_primary_oai_doaj_org_article_0dd1136fd9dc45d9b3062529a167b514
proquest_miscellaneous_3060376567
proquest_journals_3059420279
gale_infotracmisc_A795404456
gale_infotracacademiconefile_A795404456
pubmed_primary_38786338
crossref_primary_10_3390_diagnostics14101040
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-05-01
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Diagnostics (Basel)
PublicationTitleAlternate Diagnostics (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Kim (ref_21) 2024; 27
Ren (ref_10) 2017; 39
Kim (ref_24) 2023; 145
ref_14
ref_13
ref_12
ref_11
Sankar (ref_20) 2024; 4
ref_30
ref_19
ref_18
Sohn (ref_26) 2020; 33
ref_17
ref_16
ref_15
ref_23
ref_22
Yadav (ref_7) 2022; 39
ref_1
Kang (ref_25) 2016; 15
ref_3
ref_2
ref_29
ref_28
ref_27
ref_9
ref_8
ref_5
ref_4
ref_6
References_xml – ident: ref_28
– ident: ref_30
– ident: ref_4
  doi: 10.1111/jocd.16218
– ident: ref_11
– volume: 27
  start-page: 241
  year: 2024
  ident: ref_21
  article-title: Improving Facial Acne Segmentation through Semi-Supervised Learning with Synthetic Images
  publication-title: J. Korea Multimed. Soc.
  doi: 10.9717/kmms.2024.27.2.241
– ident: ref_6
  doi: 10.1109/EIT.2016.7535331
– ident: ref_16
– ident: ref_29
  doi: 10.1109/CVPR52729.2023.00699
– ident: ref_9
  doi: 10.20944/preprints202206.0384.v1
– ident: ref_14
  doi: 10.1109/CBMS58004.2023.00299
– ident: ref_8
  doi: 10.1145/3421558.3421566
– ident: ref_23
  doi: 10.1109/CBMS55023.2022.00075
– volume: 33
  start-page: 596
  year: 2020
  ident: ref_26
  article-title: FixMatch: Simplifying Semi-Supervised Learning with Consistency and Confidence
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 39
  start-page: 1137
  year: 2017
  ident: ref_10
  article-title: Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2577031
– volume: 15
  start-page: 693
  year: 2016
  ident: ref_25
  article-title: New Atrophic Acne Scar Classification: Reliability of Assessments Based on Size, Shape, and Number
  publication-title: J. Drugs Dermatol. JDD
– ident: ref_18
  doi: 10.1109/CVPR42600.2020.00813
– ident: ref_2
– ident: ref_13
  doi: 10.1109/ASYU56188.2022.9925323
– volume: 39
  start-page: e12760
  year: 2022
  ident: ref_7
  article-title: HSV model-based segmentation driven facial acne detection using deep learning
  publication-title: Expert Syst.
  doi: 10.1111/exsy.12760
– ident: ref_15
– ident: ref_1
  doi: 10.3390/diagnostics11040685
– ident: ref_17
  doi: 10.1109/CVPR52729.2023.01108
– volume: 4
  start-page: 1059
  year: 2024
  ident: ref_20
  article-title: Utilizing Generative Adversarial Networks for Acne Dataset Generation in Dermatology
  publication-title: BioMedInformatics
  doi: 10.3390/biomedinformatics4020059
– ident: ref_19
– ident: ref_22
– volume: 145
  start-page: 102679
  year: 2023
  ident: ref_24
  article-title: Facial wrinkle segmentation using weighted deep supervision and semi-automatic labeling
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2023.102679
– ident: ref_27
  doi: 10.1109/CVPR52729.2023.00729
– ident: ref_5
  doi: 10.1109/ICSIIT.2017.62
– ident: ref_3
  doi: 10.3390/diagnostics13111894
– ident: ref_12
  doi: 10.1109/SMC52423.2021.9659243
SSID ssj0000913825
Score 2.26913
Snippet Facial acne is a prevalent dermatological condition regularly observed in the general population. However, it is important to detect acne early as the...
SourceID doaj
proquest
gale
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 1040
SubjectTerms Ablation
Acne
acne segmentation
bidirectional copy–paste
Deep learning
Diagnosis
Image segmentation
Machine learning
Medical research
Methods
Neural networks
semantic segmentation
Semantics
semi-supervised learning
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQD4gL4p-UgoKExIWoSfx_3FasClIR0lKpN8uxx6iHZlft7oEb78Ab8iTM2OmqC0hcuMaO5Mx4PN9Mxt8w9oaSYwlM14RB9o1IJjU2RNN4ATKkyCHlhP7pJ3VyJj6ey_Nbrb6oJqzQAxfBHbYxUtuRFG0MQkY7IMbtZW99p_QgcwvrHn3erWAqn8GWuPVkoRniGNcfxlK5RtzHVNqIUUi744oyY_-f5_JvaDN7nfkDdn-Ci_WsLPMhuwPjI3b3dPoh_ph9WMDlRbPYrMjkryHWc0858HoWRqgX8PVyulo01rk2oD66KD4sJwDr4-Xq28_vPz57VPUTdjZ__-X4pJm6IzRBqG7dJBFFH6JXUvcgOjCtTgPGLzzEEEUcBmNUUihyUN0QU6s8QhOepG-1l8oo_pTtjcsRnrM6aZuS7UBHy4VJYBMHDFUMgpOACAkq9u5GUG5VSDAcBg8kV_cXuVbsiIS5nUoM1vkB6tVNenX_0mvF3pIqHNnZ-soHP10XwBUTY5WbaYtgUyD-q9jBzky0j7A7fKNMN9nnteNEU0N5H1ux19thepNqzkZYbmiOavH4lUpX7FnZBNtP4kajBLnZ_x-f-oLdw6WIUkZ5wPbWVxt4iVBnPbzKu_oXBW77SA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELaglRAXVJ4NLShISFyImsTvE9qtuipIrSqWSr1Zjh9VD02WfRy48R_4h_wSZhLvoi0Vp0ixEyUznvH3jcdjQt5jcCwGVRWu4XXBooqFdl4VlgXuoqch9gH9s3Nxesm-XPGrFHBbpLTKtU_sHbXvHMbIjygWFkGmrj_Nvhd4ahSurqYjNB6SXXDBCsjX7vjk_OLrJsqCVS-BAw3lhijw-yM_ZLBhDWRMcQQ2Um5NSX3l_n_98x3U2c8-kz3yJMHGfDTo-Sl5ENpn5NFZWhh_Tj5Pw-1NMV3N0PQXwecTi7HwfOTakE_D9W3aYtTmfY5APr4Z5rI-EJgfd7Mfv3_-urCg8hfkcnLy7fi0SKckFI6JallE5lntvBVc1oFVQZUyNsBjqPPOM980SokoQPRBVI2PpbAAUWjktpSWCyXoS7LTdm3YJ3mUOkZdBek1ZSoGHWkAyqIApDhASiEjH9eCMrOhGIYBEoFyNffINSNjFOamK1ay7m9082uTDMOU3uOxMtFr7xj3ugEOU_Na20rIBtBcRj6gKgza23JunU3bBuCLsXKVGUkNoJMBDszI4VZPsBO33bxWpkl2ujB_R1VG3m2a8UnMPWtDt8I-ogQ3zIXMyKthEGx-iSoJEqTq9f9ffkAew5UNiZKHZGc5X4U3AGaWzds0Yv8AQDr04Q
  priority: 102
  providerName: ProQuest
Title Semi-Supervised Facial Acne Segmentation Using Bidirectional Copy–Paste
URI https://www.ncbi.nlm.nih.gov/pubmed/38786338
https://www.proquest.com/docview/3059420279
https://www.proquest.com/docview/3060376567
https://doaj.org/article/0dd1136fd9dc45d9b3062529a167b514
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1ZaxsxEB5CAiEvpXe3Tc0GCn2p2j20Oh5KsUOcUHAIdQ15W7Q6QiBZu44Nzb_vzB6muV5XWrEajTTfNzuaAfhEzrHgVcpsVWSMBxWYtk4xw31hg8t9aBz6k1NxMuM_z4vzLeironYCvHmU2lE9qdny6uvfP7c_cMN_J8aJlP2ba4PSKK0xRS0iwUAOv4OmSdJOnXR4vzmaNaXco7DGDE0lQyig2kxET42zB7u5kkrkdH_lP8PV5Pd_eIrfw6aNjRo_h2cduIyHrTa8gC1fv4TdSff7_BUcT_31JZuuF3RA3HgXjw15zOOhrX089RfX3UWkOm4iCeLRZWvxGndhfDhf3LIzg2rxGmbjo9-HJ6yrpMAsF-mKBe54Zp0Rhcw8T71KZKiQ6-TWWcddVSklgsDl8SKtXEiEQRiTh8Ik0hQCp_8Gtut57d9BHKQOQadeOp1zFbwOuUdaoxDIWERTPoIvvZjKRZswo0SiQQIuHxFwBCMS5aYrZbtuHsyXF2W3ecrEOSo9E5x2lhdOV8hzsiLTJhWyQsQXwWdaiJK0ZLU01nRXC_CLKbtVOZQagSlHrBjB_p2euJfs3eZ-KcteFcucUtqQj0hHcLBppjcpPq328zX1EQke1YWQEbxtVWAzpV6B3j_Z8gH2cHzexlHuw_ZqufYfEeusqgHsjI5Oz34NGl_BoNHmf6Lf-5M
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VrQRcEP8ECgQJxIWoSew49gGh3dLVLu2uKraVeksT_1Q9NFn2R6g33oH34KF4EmaS7KIFxK1X27Gc8cz4m_F4BuA1OceclVGgiyQOuJMuUNrIIOc20c4w62qH_mgsBif802lyugU_Vm9hKKxypRNrRW0qTT7yXUaJRchSVx-mXwKqGkW3q6sSGg1bHNirr2iyzd8PP-L-vonj_v7x3iBoqwoEmotoEThueKxNLpI0tjyyMkxdgbifaaMNN0UhpXACl2pFVBgXipwq0rskD9M8EVIwnPcGbHOGpkwHtnv746PPa68OZdlEm6tJb8SYCndNEzFHOZcppBKtn3DjCKwrBfx9HvyBcuvTrn8X7rQw1e82fHUPtmx5H26O2ov4BzCc2MuLYLKckqqZW-P3c_K9-11dWn9izy_bJ02lX8ck-L2L5uysHY_-XjW9-vnt-1GOLPYQTq6Ffo-gU1alfQK-S5VzKrKpUYxLZ5VjFk0kiaBIIzKzHrxbESqbNsk3MjRaiK7ZP-jqQY-IuR5KmbPrhmp2nrWCmIXGUBkbZ5TRPDGqQJspTmKVRyItED168Ja2IiP5XsxynbfPFHDFlCkr66YKQS5H3OnBzsZIlEu92b3azKzVC_PsNxd78GrdTV9SrFtpqyWNESGq_USkHjxumGD9S0ymSEEmn_5_8pdwa3A8OswOh-ODZ3Ab23gTpLkDncVsaZ8jkFoUL1ru9eHsugXmF1ozMn8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VrVRxQfwTWiBIIC5Em8SOYx8Q2m276lK6WrFU6i0k_ql6aLLdH6HeeAfehsfhSZhJsosWELdebcdyxjOe-cbjGYBX5BxzVkaBLpI44E66QGkjg5zbRDvDrKsd-icjcXTKP5wlZ1vwY_UWhsIqV2difVCbSpOPvMsosQghddV1bVjE-GDwfnoVUAUpumldldNoWOTYXn9F-DZ_NzzAvX4dx4PDz_tHQVthINBcRIvAccNjbXKRpLHlkZVh6grEAEwbbbgpCimFE7hsK6LCuFDkVJ3eJXmY5omQguG8t2A7RVQUdmC7fzgaf1p7eCjjJuKvJtURYyrsmiZ6jvIvU3glIqFwQx3WVQP-1g1_WLy15hvchTutyer3Gh67B1u2vA87J-2l_AMYTuzlRTBZTunYmVvjD3Lyw_s9XVp_Ys8v2-dNpV_HJ_j9i0aP1k5If7-aXv_89n2cI7s9hNMbod8j6JRVaZ-A71LlnIpsahTj0lnlmEW4JNFA0milWQ_ergiVTZtEHBkCGKJr9g-6etAnYq6HUhbtuqGanWetUGahMVTSxhllNE-MKhA_xUms8kikBVqSHryhrchI1hezXOftkwVcMWXNynqpQoOXow3qwd7GSJRRvdm92sysPSPm2W-O9uDlupu-pLi30lZLGiNCVAGJSD143DDB-peYTJGCTD79_-QvYAcFJfs4HB3vwm1s4k285h50FrOlfYY21aJ43jKvD19uWl5-AXEoNrQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semi-Supervised+Facial+Acne+Segmentation+Using+Bidirectional+Copy-Paste&rft.jtitle=Diagnostics+%28Basel%29&rft.au=Kim%2C+Semin&rft.au=Yoon%2C+Huisu&rft.au=Lee%2C+Jongha&rft.date=2024-05-01&rft.issn=2075-4418&rft.eissn=2075-4418&rft.volume=14&rft.issue=10&rft_id=info:doi/10.3390%2Fdiagnostics14101040&rft_id=info%3Apmid%2F38786338&rft.externalDocID=38786338
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-4418&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-4418&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-4418&client=summon