Semi-Supervised Facial Acne Segmentation Using Bidirectional Copy–Paste
Facial acne is a prevalent dermatological condition regularly observed in the general population. However, it is important to detect acne early as the condition can worsen if not treated. For this purpose, deep-learning-based methods have been proposed to automate detection, but acquiring acne train...
Saved in:
Published in | Diagnostics (Basel) Vol. 14; no. 10; p. 1040 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
01.05.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Facial acne is a prevalent dermatological condition regularly observed in the general population. However, it is important to detect acne early as the condition can worsen if not treated. For this purpose, deep-learning-based methods have been proposed to automate detection, but acquiring acne training data is not easy. Therefore, this study proposes a novel deep learning model for facial acne segmentation utilizing a semi-supervised learning method known as bidirectional copy–paste, which synthesizes images by interchanging foreground and background parts between labeled and unlabeled images during the training phase. To overcome the lower performance observed in the labeled image training part compared to the previous methods, a new framework was devised to directly compute the training loss based on labeled images. The effectiveness of the proposed method was evaluated against previous semi-supervised learning methods using images cropped from facial images at acne sites. The proposed method achieved a Dice score of 0.5205 in experiments utilizing only 3% of labels, marking an improvement of 0.0151 to 0.0473 in Dice score over previous methods. The proposed semi-supervised learning approach for facial acne segmentation demonstrated an improvement in performance, offering a novel direction for future acne analysis. |
---|---|
AbstractList | Facial acne is a prevalent dermatological condition regularly observed in the general population. However, it is important to detect acne early as the condition can worsen if not treated. For this purpose, deep-learning-based methods have been proposed to automate detection, but acquiring acne training data is not easy. Therefore, this study proposes a novel deep learning model for facial acne segmentation utilizing a semi-supervised learning method known as bidirectional copy-paste, which synthesizes images by interchanging foreground and background parts between labeled and unlabeled images during the training phase. To overcome the lower performance observed in the labeled image training part compared to the previous methods, a new framework was devised to directly compute the training loss based on labeled images. The effectiveness of the proposed method was evaluated against previous semi-supervised learning methods using images cropped from facial images at acne sites. The proposed method achieved a Dice score of 0.5205 in experiments utilizing only 3% of labels, marking an improvement of 0.0151 to 0.0473 in Dice score over previous methods. The proposed semi-supervised learning approach for facial acne segmentation demonstrated an improvement in performance, offering a novel direction for future acne analysis.Facial acne is a prevalent dermatological condition regularly observed in the general population. However, it is important to detect acne early as the condition can worsen if not treated. For this purpose, deep-learning-based methods have been proposed to automate detection, but acquiring acne training data is not easy. Therefore, this study proposes a novel deep learning model for facial acne segmentation utilizing a semi-supervised learning method known as bidirectional copy-paste, which synthesizes images by interchanging foreground and background parts between labeled and unlabeled images during the training phase. To overcome the lower performance observed in the labeled image training part compared to the previous methods, a new framework was devised to directly compute the training loss based on labeled images. The effectiveness of the proposed method was evaluated against previous semi-supervised learning methods using images cropped from facial images at acne sites. The proposed method achieved a Dice score of 0.5205 in experiments utilizing only 3% of labels, marking an improvement of 0.0151 to 0.0473 in Dice score over previous methods. The proposed semi-supervised learning approach for facial acne segmentation demonstrated an improvement in performance, offering a novel direction for future acne analysis. Facial acne is a prevalent dermatological condition regularly observed in the general population. However, it is important to detect acne early as the condition can worsen if not treated. For this purpose, deep-learning-based methods have been proposed to automate detection, but acquiring acne training data is not easy. Therefore, this study proposes a novel deep learning model for facial acne segmentation utilizing a semi-supervised learning method known as bidirectional copy–paste, which synthesizes images by interchanging foreground and background parts between labeled and unlabeled images during the training phase. To overcome the lower performance observed in the labeled image training part compared to the previous methods, a new framework was devised to directly compute the training loss based on labeled images. The effectiveness of the proposed method was evaluated against previous semi-supervised learning methods using images cropped from facial images at acne sites. The proposed method achieved a Dice score of 0.5205 in experiments utilizing only 3% of labels, marking an improvement of 0.0151 to 0.0473 in Dice score over previous methods. The proposed semi-supervised learning approach for facial acne segmentation demonstrated an improvement in performance, offering a novel direction for future acne analysis. |
Audience | Academic |
Author | Lee, Jongha Kim, Semin Yoon, Huisu |
Author_xml | – sequence: 1 givenname: Semin orcidid: 0000-0003-3746-0863 surname: Kim fullname: Kim, Semin – sequence: 2 givenname: Huisu orcidid: 0009-0004-4980-1092 surname: Yoon fullname: Yoon, Huisu – sequence: 3 givenname: Jongha surname: Lee fullname: Lee, Jongha |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38786338$$D View this record in MEDLINE/PubMed |
BookMark | eNptkstu1DAUhi1UREvpEyChSGzYpNjxLV4OIwojVQJp6Npy7OPIoyQe7KRSd7wDb8iT4GFKuaj2wtavz__xuTxHJ1OcAKGXBF9SqvBbF0w_xTwHmwkjmGCGn6CzBkteM0bak7_up-gi5x0uSxHaNvwZOqWtbAWl7RnabGEM9XbZQ7oNGVx1ZWwwQ7WyE1Rb6EeYZjOHOFU3OUx99S64kMAelEKt4_7ux7fvn02e4QV66s2Q4eL-PEc3V--_rD_W158-bNar69oyQebaM8ca64zgsgFGoMXSd0wpap11zHVd2wovGHAQpHMeC9MqSj03WBouyq_P0ebo66LZ6X0Ko0l3Opqgfwkx9dqkUpcBNHaOECq8U84y7lRHsWh4owwRsuOEFa83R699il8XyLMeQ7YwDGaCuGRdeEyl4EIW9PV_6C4uqRThQHHFGtxI9YfqTYkfJh_nZOzBVK-k4gwzxg8pXD5Cle1KM2xptA9F_-fBq_vgSzeCe8j6dx8LQI-ATTHnBP4BIVgfBkY_MjD0J2uMsxE |
Cites_doi | 10.1111/jocd.16218 10.9717/kmms.2024.27.2.241 10.1109/EIT.2016.7535331 10.1109/CVPR52729.2023.00699 10.20944/preprints202206.0384.v1 10.1109/CBMS58004.2023.00299 10.1145/3421558.3421566 10.1109/CBMS55023.2022.00075 10.1109/TPAMI.2016.2577031 10.1109/CVPR42600.2020.00813 10.1109/ASYU56188.2022.9925323 10.1111/exsy.12760 10.3390/diagnostics11040685 10.1109/CVPR52729.2023.01108 10.3390/biomedinformatics4020059 10.1016/j.artmed.2023.102679 10.1109/CVPR52729.2023.00729 10.1109/ICSIIT.2017.62 10.3390/diagnostics13111894 10.1109/SMC52423.2021.9659243 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION NPM 3V. 7XB 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH M2O MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U 7X8 DOA |
DOI | 10.3390/diagnostics14101040 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea ProQuest Central Student ProQuest Research Library Research Library Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database PubMed CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2075-4418 |
ExternalDocumentID | oai_doaj_org_article_0dd1136fd9dc45d9b3062529a167b514 A795404456 38786338 10_3390_diagnostics14101040 |
Genre | Journal Article |
GeographicLocations | South Korea |
GeographicLocations_xml | – name: South Korea |
GroupedDBID | 53G 5VS 8G5 AADQD AAFWJ AAYXX ABDBF ABUWG ACUHS ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BCNDV BENPR BPHCQ CCPQU CITATION DWQXO EBD ESX GNUQQ GROUPED_DOAJ GUQSH HYE IAO IHR ITC KQ8 M2O M48 MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RPM NPM PMFND 3V. 7XB 8FK MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO |
ID | FETCH-LOGICAL-c461t-f4d42cda6572e41e807fb4993cdcd4dbb886f64e5e61bdf06a8933f5a07a56863 |
IEDL.DBID | M48 |
ISSN | 2075-4418 |
IngestDate | Wed Aug 27 01:12:36 EDT 2025 Fri Jul 11 16:37:52 EDT 2025 Mon Jun 30 14:50:04 EDT 2025 Tue Jun 17 22:09:05 EDT 2025 Tue Jun 10 21:09:02 EDT 2025 Thu Apr 03 06:56:57 EDT 2025 Tue Jul 01 03:44:53 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | deep learning acne segmentation bidirectional copy–paste semantic segmentation semi-supervised learning |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c461t-f4d42cda6572e41e807fb4993cdcd4dbb886f64e5e61bdf06a8933f5a07a56863 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3746-0863 0009-0004-4980-1092 |
OpenAccessLink | https://doaj.org/article/0dd1136fd9dc45d9b3062529a167b514 |
PMID | 38786338 |
PQID | 3059420279 |
PQPubID | 2032410 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0dd1136fd9dc45d9b3062529a167b514 proquest_miscellaneous_3060376567 proquest_journals_3059420279 gale_infotracmisc_A795404456 gale_infotracacademiconefile_A795404456 pubmed_primary_38786338 crossref_primary_10_3390_diagnostics14101040 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-05-01 |
PublicationDateYYYYMMDD | 2024-05-01 |
PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Diagnostics (Basel) |
PublicationTitleAlternate | Diagnostics (Basel) |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Kim (ref_21) 2024; 27 Ren (ref_10) 2017; 39 Kim (ref_24) 2023; 145 ref_14 ref_13 ref_12 ref_11 Sankar (ref_20) 2024; 4 ref_30 ref_19 ref_18 Sohn (ref_26) 2020; 33 ref_17 ref_16 ref_15 ref_23 ref_22 Yadav (ref_7) 2022; 39 ref_1 Kang (ref_25) 2016; 15 ref_3 ref_2 ref_29 ref_28 ref_27 ref_9 ref_8 ref_5 ref_4 ref_6 |
References_xml | – ident: ref_28 – ident: ref_30 – ident: ref_4 doi: 10.1111/jocd.16218 – ident: ref_11 – volume: 27 start-page: 241 year: 2024 ident: ref_21 article-title: Improving Facial Acne Segmentation through Semi-Supervised Learning with Synthetic Images publication-title: J. Korea Multimed. Soc. doi: 10.9717/kmms.2024.27.2.241 – ident: ref_6 doi: 10.1109/EIT.2016.7535331 – ident: ref_16 – ident: ref_29 doi: 10.1109/CVPR52729.2023.00699 – ident: ref_9 doi: 10.20944/preprints202206.0384.v1 – ident: ref_14 doi: 10.1109/CBMS58004.2023.00299 – ident: ref_8 doi: 10.1145/3421558.3421566 – ident: ref_23 doi: 10.1109/CBMS55023.2022.00075 – volume: 33 start-page: 596 year: 2020 ident: ref_26 article-title: FixMatch: Simplifying Semi-Supervised Learning with Consistency and Confidence publication-title: Adv. Neural Inf. Process. Syst. – volume: 39 start-page: 1137 year: 2017 ident: ref_10 article-title: Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2577031 – volume: 15 start-page: 693 year: 2016 ident: ref_25 article-title: New Atrophic Acne Scar Classification: Reliability of Assessments Based on Size, Shape, and Number publication-title: J. Drugs Dermatol. JDD – ident: ref_18 doi: 10.1109/CVPR42600.2020.00813 – ident: ref_2 – ident: ref_13 doi: 10.1109/ASYU56188.2022.9925323 – volume: 39 start-page: e12760 year: 2022 ident: ref_7 article-title: HSV model-based segmentation driven facial acne detection using deep learning publication-title: Expert Syst. doi: 10.1111/exsy.12760 – ident: ref_15 – ident: ref_1 doi: 10.3390/diagnostics11040685 – ident: ref_17 doi: 10.1109/CVPR52729.2023.01108 – volume: 4 start-page: 1059 year: 2024 ident: ref_20 article-title: Utilizing Generative Adversarial Networks for Acne Dataset Generation in Dermatology publication-title: BioMedInformatics doi: 10.3390/biomedinformatics4020059 – ident: ref_19 – ident: ref_22 – volume: 145 start-page: 102679 year: 2023 ident: ref_24 article-title: Facial wrinkle segmentation using weighted deep supervision and semi-automatic labeling publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2023.102679 – ident: ref_27 doi: 10.1109/CVPR52729.2023.00729 – ident: ref_5 doi: 10.1109/ICSIIT.2017.62 – ident: ref_3 doi: 10.3390/diagnostics13111894 – ident: ref_12 doi: 10.1109/SMC52423.2021.9659243 |
SSID | ssj0000913825 |
Score | 2.26913 |
Snippet | Facial acne is a prevalent dermatological condition regularly observed in the general population. However, it is important to detect acne early as the... |
SourceID | doaj proquest gale pubmed crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 1040 |
SubjectTerms | Ablation Acne acne segmentation bidirectional copy–paste Deep learning Diagnosis Image segmentation Machine learning Medical research Methods Neural networks semantic segmentation Semantics semi-supervised learning |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQD4gL4p-UgoKExIWoSfx_3FasClIR0lKpN8uxx6iHZlft7oEb78Ab8iTM2OmqC0hcuMaO5Mx4PN9Mxt8w9oaSYwlM14RB9o1IJjU2RNN4ATKkyCHlhP7pJ3VyJj6ey_Nbrb6oJqzQAxfBHbYxUtuRFG0MQkY7IMbtZW99p_QgcwvrHn3erWAqn8GWuPVkoRniGNcfxlK5RtzHVNqIUUi744oyY_-f5_JvaDN7nfkDdn-Ci_WsLPMhuwPjI3b3dPoh_ph9WMDlRbPYrMjkryHWc0858HoWRqgX8PVyulo01rk2oD66KD4sJwDr4-Xq28_vPz57VPUTdjZ__-X4pJm6IzRBqG7dJBFFH6JXUvcgOjCtTgPGLzzEEEUcBmNUUihyUN0QU6s8QhOepG-1l8oo_pTtjcsRnrM6aZuS7UBHy4VJYBMHDFUMgpOACAkq9u5GUG5VSDAcBg8kV_cXuVbsiIS5nUoM1vkB6tVNenX_0mvF3pIqHNnZ-soHP10XwBUTY5WbaYtgUyD-q9jBzky0j7A7fKNMN9nnteNEU0N5H1ux19thepNqzkZYbmiOavH4lUpX7FnZBNtP4kajBLnZ_x-f-oLdw6WIUkZ5wPbWVxt4iVBnPbzKu_oXBW77SA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELaglRAXVJ4NLShISFyImsTvE9qtuipIrSqWSr1Zjh9VD02WfRy48R_4h_wSZhLvoi0Vp0ixEyUznvH3jcdjQt5jcCwGVRWu4XXBooqFdl4VlgXuoqch9gH9s3Nxesm-XPGrFHBbpLTKtU_sHbXvHMbIjygWFkGmrj_Nvhd4ahSurqYjNB6SXXDBCsjX7vjk_OLrJsqCVS-BAw3lhijw-yM_ZLBhDWRMcQQ2Um5NSX3l_n_98x3U2c8-kz3yJMHGfDTo-Sl5ENpn5NFZWhh_Tj5Pw-1NMV3N0PQXwecTi7HwfOTakE_D9W3aYtTmfY5APr4Z5rI-EJgfd7Mfv3_-urCg8hfkcnLy7fi0SKckFI6JallE5lntvBVc1oFVQZUyNsBjqPPOM980SokoQPRBVI2PpbAAUWjktpSWCyXoS7LTdm3YJ3mUOkZdBek1ZSoGHWkAyqIApDhASiEjH9eCMrOhGIYBEoFyNffINSNjFOamK1ay7m9082uTDMOU3uOxMtFr7xj3ugEOU_Na20rIBtBcRj6gKgza23JunU3bBuCLsXKVGUkNoJMBDszI4VZPsBO33bxWpkl2ujB_R1VG3m2a8UnMPWtDt8I-ogQ3zIXMyKthEGx-iSoJEqTq9f9ffkAew5UNiZKHZGc5X4U3AGaWzds0Yv8AQDr04Q priority: 102 providerName: ProQuest |
Title | Semi-Supervised Facial Acne Segmentation Using Bidirectional Copy–Paste |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38786338 https://www.proquest.com/docview/3059420279 https://www.proquest.com/docview/3060376567 https://doaj.org/article/0dd1136fd9dc45d9b3062529a167b514 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1ZaxsxEB5CAiEvpXe3Tc0GCn2p2j20Oh5KsUOcUHAIdQ15W7Q6QiBZu44Nzb_vzB6muV5XWrEajTTfNzuaAfhEzrHgVcpsVWSMBxWYtk4xw31hg8t9aBz6k1NxMuM_z4vzLeironYCvHmU2lE9qdny6uvfP7c_cMN_J8aJlP2ba4PSKK0xRS0iwUAOv4OmSdJOnXR4vzmaNaXco7DGDE0lQyig2kxET42zB7u5kkrkdH_lP8PV5Pd_eIrfw6aNjRo_h2cduIyHrTa8gC1fv4TdSff7_BUcT_31JZuuF3RA3HgXjw15zOOhrX089RfX3UWkOm4iCeLRZWvxGndhfDhf3LIzg2rxGmbjo9-HJ6yrpMAsF-mKBe54Zp0Rhcw8T71KZKiQ6-TWWcddVSklgsDl8SKtXEiEQRiTh8Ik0hQCp_8Gtut57d9BHKQOQadeOp1zFbwOuUdaoxDIWERTPoIvvZjKRZswo0SiQQIuHxFwBCMS5aYrZbtuHsyXF2W3ecrEOSo9E5x2lhdOV8hzsiLTJhWyQsQXwWdaiJK0ZLU01nRXC_CLKbtVOZQagSlHrBjB_p2euJfs3eZ-KcteFcucUtqQj0hHcLBppjcpPq328zX1EQke1YWQEbxtVWAzpV6B3j_Z8gH2cHzexlHuw_ZqufYfEeusqgHsjI5Oz34NGl_BoNHmf6Lf-5M |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VrQRcEP8ECgQJxIWoSew49gGh3dLVLu2uKraVeksT_1Q9NFn2R6g33oH34KF4EmaS7KIFxK1X27Gc8cz4m_F4BuA1OceclVGgiyQOuJMuUNrIIOc20c4w62qH_mgsBif802lyugU_Vm9hKKxypRNrRW0qTT7yXUaJRchSVx-mXwKqGkW3q6sSGg1bHNirr2iyzd8PP-L-vonj_v7x3iBoqwoEmotoEThueKxNLpI0tjyyMkxdgbifaaMNN0UhpXACl2pFVBgXipwq0rskD9M8EVIwnPcGbHOGpkwHtnv746PPa68OZdlEm6tJb8SYCndNEzFHOZcppBKtn3DjCKwrBfx9HvyBcuvTrn8X7rQw1e82fHUPtmx5H26O2ov4BzCc2MuLYLKckqqZW-P3c_K9-11dWn9izy_bJ02lX8ck-L2L5uysHY_-XjW9-vnt-1GOLPYQTq6Ffo-gU1alfQK-S5VzKrKpUYxLZ5VjFk0kiaBIIzKzHrxbESqbNsk3MjRaiK7ZP-jqQY-IuR5KmbPrhmp2nrWCmIXGUBkbZ5TRPDGqQJspTmKVRyItED168Ja2IiP5XsxynbfPFHDFlCkr66YKQS5H3OnBzsZIlEu92b3azKzVC_PsNxd78GrdTV9SrFtpqyWNESGq_USkHjxumGD9S0ymSEEmn_5_8pdwa3A8OswOh-ODZ3Ab23gTpLkDncVsaZ8jkFoUL1ru9eHsugXmF1ozMn8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VrVRxQfwTWiBIIC5Em8SOYx8Q2m276lK6WrFU6i0k_ql6aLLdH6HeeAfehsfhSZhJsosWELdebcdyxjOe-cbjGYBX5BxzVkaBLpI44E66QGkjg5zbRDvDrKsd-icjcXTKP5wlZ1vwY_UWhsIqV2difVCbSpOPvMsosQghddV1bVjE-GDwfnoVUAUpumldldNoWOTYXn9F-DZ_NzzAvX4dx4PDz_tHQVthINBcRIvAccNjbXKRpLHlkZVh6grEAEwbbbgpCimFE7hsK6LCuFDkVJ3eJXmY5omQguG8t2A7RVQUdmC7fzgaf1p7eCjjJuKvJtURYyrsmiZ6jvIvU3glIqFwQx3WVQP-1g1_WLy15hvchTutyer3Gh67B1u2vA87J-2l_AMYTuzlRTBZTunYmVvjD3Lyw_s9XVp_Ys8v2-dNpV_HJ_j9i0aP1k5If7-aXv_89n2cI7s9hNMbod8j6JRVaZ-A71LlnIpsahTj0lnlmEW4JNFA0milWQ_ergiVTZtEHBkCGKJr9g-6etAnYq6HUhbtuqGanWetUGahMVTSxhllNE-MKhA_xUms8kikBVqSHryhrchI1hezXOftkwVcMWXNynqpQoOXow3qwd7GSJRRvdm92sysPSPm2W-O9uDlupu-pLi30lZLGiNCVAGJSD143DDB-peYTJGCTD79_-QvYAcFJfs4HB3vwm1s4k285h50FrOlfYY21aJ43jKvD19uWl5-AXEoNrQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semi-Supervised+Facial+Acne+Segmentation+Using+Bidirectional+Copy-Paste&rft.jtitle=Diagnostics+%28Basel%29&rft.au=Kim%2C+Semin&rft.au=Yoon%2C+Huisu&rft.au=Lee%2C+Jongha&rft.date=2024-05-01&rft.issn=2075-4418&rft.eissn=2075-4418&rft.volume=14&rft.issue=10&rft_id=info:doi/10.3390%2Fdiagnostics14101040&rft_id=info%3Apmid%2F38786338&rft.externalDocID=38786338 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-4418&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-4418&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-4418&client=summon |