Electric-acoustic pitch comparisons in single-sided-deaf cochlear implant users: Frequency-place functions and rate pitch

Eight cochlear implant users with near-normal hearing in their non-implanted ear compared pitch percepts for pulsatile electric and acoustic pure-tone stimuli presented to the two ears. Six subjects were implanted with a 31-mm MED-EL FLEXSOFT electrode, and two with a 24-mm medium (M) electrode, wit...

Full description

Saved in:
Bibliographic Details
Published inHearing research Vol. 309; pp. 26 - 35
Main Authors Schatzer, Reinhold, Vermeire, Katrien, Visser, Daniel, Krenmayr, Andreas, Kals, Mathias, Voormolen, Maurits, Van de Heyning, Paul, Zierhofer, Clemens
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.03.2014
Subjects
Online AccessGet full text
ISSN0378-5955
1878-5891
1878-5891
DOI10.1016/j.heares.2013.11.003

Cover

Abstract Eight cochlear implant users with near-normal hearing in their non-implanted ear compared pitch percepts for pulsatile electric and acoustic pure-tone stimuli presented to the two ears. Six subjects were implanted with a 31-mm MED-EL FLEXSOFT electrode, and two with a 24-mm medium (M) electrode, with insertion angles of the most apical contacts ranging from 565° to 758°. In the first experiment, frequency-place functions were derived from pure-tone matches to 1500-pps unmodulated pulse trains presented to individual electrodes and compared to Greenwood's frequency position map along the organ of Corti. While the overall median downward shift of the obtained frequency-place functions (−0.16 octaves re. Greenwood) and the mean shifts in the basal (<240°; −0.33 octaves) and middle (−0.35 octaves) regions were statistically significant, the shift in the apical region (>480°; 0.26 octaves) was not. Standard deviations of frequency-place functions were approximately half an octave at electrode insertion angles below 480°, increasing to an octave at higher angular locations while individual functions were gradually leveling off. In a second experiment, subjects matched the rates of unmodulated pulse trains presented to individual electrodes in the apical half of the array to low-frequency pure tones between 100 Hz and 450 Hz. The aim was to investigate the influence of electrode place on the salience of temporal pitch cues, for coding strategies that present temporal fine structure information via rate modulations on select apical channels. Most subjects achieved reliable matches to tone frequencies from 100 Hz to 300 Hz only on electrodes at angular insertion depths beyond 360°, while rate-matches to 450-Hz tones were primarily achieved on electrodes at shallower insertion angles. Only for electrodes in the second turn the average slopes of rate-pitch functions did not differ significantly from the pure-tone references, suggesting their use for the encoding of within-channel fine frequency information via rate modulations in temporal fine structure stimulation strategies. •CI users with normal hearing in one ear compared electric and acoustic pitch.•Electrical frequency-place functions are more variable in the apical region.•Place-pitch functions in the basal turn are within half an octave around Greenwood.•Only electrodes in the second turn elicited low pitch percepts at low rates.•Low-frequency temporal cues may be stronger at more apical sites of stimulation.
AbstractList Eight cochlear implant users with near-normal hearing in their non-implanted ear compared pitch percepts for pulsatile electric and acoustic pure-tone stimuli presented to the two ears. Six subjects were implanted with a 31-mm MED-EL FLEX(SOFT) electrode, and two with a 24-mm medium (M) electrode, with insertion angles of the most apical contacts ranging from 565° to 758°. In the first experiment, frequency-place functions were derived from pure-tone matches to 1500-pps unmodulated pulse trains presented to individual electrodes and compared to Greenwood's frequency position map along the organ of Corti. While the overall median downward shift of the obtained frequency-place functions (-0.16 octaves re. Greenwood) and the mean shifts in the basal (<240°; -0.33 octaves) and middle (-0.35 octaves) regions were statistically significant, the shift in the apical region (>480°; 0.26 octaves) was not. Standard deviations of frequency-place functions were approximately half an octave at electrode insertion angles below 480°, increasing to an octave at higher angular locations while individual functions were gradually leveling off. In a second experiment, subjects matched the rates of unmodulated pulse trains presented to individual electrodes in the apical half of the array to low-frequency pure tones between 100 Hz and 450 Hz. The aim was to investigate the influence of electrode place on the salience of temporal pitch cues, for coding strategies that present temporal fine structure information via rate modulations on select apical channels. Most subjects achieved reliable matches to tone frequencies from 100 Hz to 300 Hz only on electrodes at angular insertion depths beyond 360°, while rate-matches to 450-Hz tones were primarily achieved on electrodes at shallower insertion angles. Only for electrodes in the second turn the average slopes of rate-pitch functions did not differ significantly from the pure-tone references, suggesting their use for the encoding of within-channel fine frequency information via rate modulations in temporal fine structure stimulation strategies.Eight cochlear implant users with near-normal hearing in their non-implanted ear compared pitch percepts for pulsatile electric and acoustic pure-tone stimuli presented to the two ears. Six subjects were implanted with a 31-mm MED-EL FLEX(SOFT) electrode, and two with a 24-mm medium (M) electrode, with insertion angles of the most apical contacts ranging from 565° to 758°. In the first experiment, frequency-place functions were derived from pure-tone matches to 1500-pps unmodulated pulse trains presented to individual electrodes and compared to Greenwood's frequency position map along the organ of Corti. While the overall median downward shift of the obtained frequency-place functions (-0.16 octaves re. Greenwood) and the mean shifts in the basal (<240°; -0.33 octaves) and middle (-0.35 octaves) regions were statistically significant, the shift in the apical region (>480°; 0.26 octaves) was not. Standard deviations of frequency-place functions were approximately half an octave at electrode insertion angles below 480°, increasing to an octave at higher angular locations while individual functions were gradually leveling off. In a second experiment, subjects matched the rates of unmodulated pulse trains presented to individual electrodes in the apical half of the array to low-frequency pure tones between 100 Hz and 450 Hz. The aim was to investigate the influence of electrode place on the salience of temporal pitch cues, for coding strategies that present temporal fine structure information via rate modulations on select apical channels. Most subjects achieved reliable matches to tone frequencies from 100 Hz to 300 Hz only on electrodes at angular insertion depths beyond 360°, while rate-matches to 450-Hz tones were primarily achieved on electrodes at shallower insertion angles. Only for electrodes in the second turn the average slopes of rate-pitch functions did not differ significantly from the pure-tone references, suggesting their use for the encoding of within-channel fine frequency information via rate modulations in temporal fine structure stimulation strategies.
Eight cochlear implant users with near-normal hearing in their non-implanted ear compared pitch percepts for pulsatile electric and acoustic pure-tone stimuli presented to the two ears. Six subjects were implanted with a 31-mm MED-EL FLEX(SOFT) electrode, and two with a 24-mm medium (M) electrode, with insertion angles of the most apical contacts ranging from 565° to 758°. In the first experiment, frequency-place functions were derived from pure-tone matches to 1500-pps unmodulated pulse trains presented to individual electrodes and compared to Greenwood's frequency position map along the organ of Corti. While the overall median downward shift of the obtained frequency-place functions (-0.16 octaves re. Greenwood) and the mean shifts in the basal (<240°; -0.33 octaves) and middle (-0.35 octaves) regions were statistically significant, the shift in the apical region (>480°; 0.26 octaves) was not. Standard deviations of frequency-place functions were approximately half an octave at electrode insertion angles below 480°, increasing to an octave at higher angular locations while individual functions were gradually leveling off. In a second experiment, subjects matched the rates of unmodulated pulse trains presented to individual electrodes in the apical half of the array to low-frequency pure tones between 100 Hz and 450 Hz. The aim was to investigate the influence of electrode place on the salience of temporal pitch cues, for coding strategies that present temporal fine structure information via rate modulations on select apical channels. Most subjects achieved reliable matches to tone frequencies from 100 Hz to 300 Hz only on electrodes at angular insertion depths beyond 360°, while rate-matches to 450-Hz tones were primarily achieved on electrodes at shallower insertion angles. Only for electrodes in the second turn the average slopes of rate-pitch functions did not differ significantly from the pure-tone references, suggesting their use for the encoding of within-channel fine frequency information via rate modulations in temporal fine structure stimulation strategies.
Eight cochlear implant users with near-normal hearing in their non-implanted ear compared pitch percepts for pulsatile electric and acoustic pure-tone stimuli presented to the two ears. Six subjects were implanted with a 31-mm MED-EL FLEXSOFT electrode, and two with a 24-mm medium (M) electrode, with insertion angles of the most apical contacts ranging from 565 degree to 758 degree . In the first experiment, frequency-place functions were derived from pure-tone matches to 1500-pps unmodulated pulse trains presented to individual electrodes and compared to Greenwood's frequency position map along the organ of Corti. While the overall median downward shift of the obtained frequency-place functions (-0.16 octaves re. Greenwood) and the mean shifts in the basal (<240 degree -0.33 octaves) and middle (-0.35 octaves) regions were statistically significant, the shift in the apical region (>480 degree 0.26 octaves) was not. Standard deviations of frequency-place functions were approximately half an octave at electrode insertion angles below 480 degree , increasing to an octave at higher angular locations while individual functions were gradually leveling off.
Eight cochlear implant users with near-normal hearing in their non-implanted ear compared pitch percepts for pulsatile electric and acoustic pure-tone stimuli presented to the two ears. Six subjects were implanted with a 31-mm MED-EL FLEXSOFT electrode, and two with a 24-mm medium (M) electrode, with insertion angles of the most apical contacts ranging from 565° to 758°. In the first experiment, frequency-place functions were derived from pure-tone matches to 1500-pps unmodulated pulse trains presented to individual electrodes and compared to Greenwood's frequency position map along the organ of Corti. While the overall median downward shift of the obtained frequency-place functions (−0.16 octaves re. Greenwood) and the mean shifts in the basal (<240°; −0.33 octaves) and middle (−0.35 octaves) regions were statistically significant, the shift in the apical region (>480°; 0.26 octaves) was not. Standard deviations of frequency-place functions were approximately half an octave at electrode insertion angles below 480°, increasing to an octave at higher angular locations while individual functions were gradually leveling off. In a second experiment, subjects matched the rates of unmodulated pulse trains presented to individual electrodes in the apical half of the array to low-frequency pure tones between 100 Hz and 450 Hz. The aim was to investigate the influence of electrode place on the salience of temporal pitch cues, for coding strategies that present temporal fine structure information via rate modulations on select apical channels. Most subjects achieved reliable matches to tone frequencies from 100 Hz to 300 Hz only on electrodes at angular insertion depths beyond 360°, while rate-matches to 450-Hz tones were primarily achieved on electrodes at shallower insertion angles. Only for electrodes in the second turn the average slopes of rate-pitch functions did not differ significantly from the pure-tone references, suggesting their use for the encoding of within-channel fine frequency information via rate modulations in temporal fine structure stimulation strategies. •CI users with normal hearing in one ear compared electric and acoustic pitch.•Electrical frequency-place functions are more variable in the apical region.•Place-pitch functions in the basal turn are within half an octave around Greenwood.•Only electrodes in the second turn elicited low pitch percepts at low rates.•Low-frequency temporal cues may be stronger at more apical sites of stimulation.
Author Voormolen, Maurits
Vermeire, Katrien
Schatzer, Reinhold
Visser, Daniel
Zierhofer, Clemens
Van de Heyning, Paul
Krenmayr, Andreas
Kals, Mathias
Author_xml – sequence: 1
  givenname: Reinhold
  surname: Schatzer
  fullname: Schatzer, Reinhold
  email: reinhold.schatzer@uibk.ac.at
  organization: Institute of Mechatronics, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
– sequence: 2
  givenname: Katrien
  orcidid: 0000-0003-1404-3055
  surname: Vermeire
  fullname: Vermeire, Katrien
  organization: C. Doppler Laboratory for Active Implantable Systems, Institute of Ion Physics and Applied Physics, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
– sequence: 3
  givenname: Daniel
  surname: Visser
  fullname: Visser, Daniel
  organization: C. Doppler Laboratory for Active Implantable Systems, Institute of Ion Physics and Applied Physics, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
– sequence: 4
  givenname: Andreas
  surname: Krenmayr
  fullname: Krenmayr, Andreas
  organization: C. Doppler Laboratory for Active Implantable Systems, Institute of Ion Physics and Applied Physics, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
– sequence: 5
  givenname: Mathias
  surname: Kals
  fullname: Kals, Mathias
  organization: C. Doppler Laboratory for Active Implantable Systems, Institute of Ion Physics and Applied Physics, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
– sequence: 6
  givenname: Maurits
  orcidid: 0000-0001-8146-2052
  surname: Voormolen
  fullname: Voormolen, Maurits
  organization: Univ. Dept. of Radiology, University Hospital Antwerp, University of Antwerp, Wilrijkstraat 10, 2650 Edegem, Belgium
– sequence: 7
  givenname: Paul
  surname: Van de Heyning
  fullname: Van de Heyning, Paul
  organization: Univ. Dept. of Otorhinolaryngology, Head and Neck Surgery, University Hospital Antwerp, University of Antwerp, Wilrijkstraat 10, 2650 Edegem, Belgium
– sequence: 8
  givenname: Clemens
  surname: Zierhofer
  fullname: Zierhofer, Clemens
  organization: Institute of Mechatronics, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24252455$$D View this record in MEDLINE/PubMed
BookMark eNqFUU1v1TAQtFARfS38A4R85JLgTeJ89ICEqhaQKnGBs-WsNzw_JU6wHaT37-so7YUDvdiWNTM7O3PFLtzsiLH3IHIQUH865UfSnkJeCChzgFyI8hU7QNu0mWw7uGAHUW7vTspLdhXCSQiQZVW8YZdFVciikvLAzncjYfQWM43zGqJFvtiIR47ztGhvw-wCt44H636PlAVryGSG9JAAeByTA26nZdQu8jWQDzf83tOflRyes_SNxIfVYbSbjHaGex1pn_CWvR70GOjd033Nft3f_bz9lj38-Pr99stDhlUNMRugr6UWPQ0DyQFqA6IrZIOYDtGmLUTR9G0FXdMTUlsDCil1XaIWouoGU16zj7vu4udkLEQ12YA0Js-UNlYgoW4ktLJ-GVp1HRRSiA364Qm69hMZtXg7aX9Wz8kmwM0OQD-H4GlQaKPegohe21GBUFuN6qT2GtVWowJQqcZErv4hP-u_QPu80yjl-deSVwFtqoKM9allZWb7f4FHoxy5wQ
CitedBy_id crossref_primary_10_1044_2017_AJA_17_0046
crossref_primary_10_1002_lary_29853
crossref_primary_10_1016_j_heares_2016_11_005
crossref_primary_10_1121_10_0000511
crossref_primary_10_1371_journal_pone_0120148
crossref_primary_10_3389_fnins_2019_01119
crossref_primary_10_1371_journal_pone_0257568
crossref_primary_10_1177_23312165221142689
crossref_primary_10_1371_journal_pcbi_1004860
crossref_primary_10_1097_AUD_0000000000000250
crossref_primary_10_1097_AUD_0000000000000690
crossref_primary_10_1016_j_heares_2016_06_013
crossref_primary_10_1097_AUD_0000000000000252
crossref_primary_10_1080_14670100_2021_1973208
crossref_primary_10_1177_23312165211020645
crossref_primary_10_1159_000452123
crossref_primary_10_1177_2331216521997324
crossref_primary_10_1097_AUD_0000000000001423
crossref_primary_10_1177_23312165221108259
crossref_primary_10_1177_23312165251317006
crossref_primary_10_1097_AUD_0000000000000738
crossref_primary_10_1097_MAO_0000000000003070
crossref_primary_10_1016_j_wjorl_2017_12_007
crossref_primary_10_1179_1467010015Z_000000000246
crossref_primary_10_1016_j_heares_2015_03_011
crossref_primary_10_1371_journal_pone_0286986
crossref_primary_10_1080_14992027_2018_1516048
crossref_primary_10_1097_MAO_0000000000002304
crossref_primary_10_1097_MAO_0000000000003956
crossref_primary_10_1159_000478649
crossref_primary_10_1007_s00106_023_01417_4
crossref_primary_10_1097_MAO_0000000000002864
crossref_primary_10_1097_AUD_0000000000000864
crossref_primary_10_1159_000499154
crossref_primary_10_1002_lary_28949
crossref_primary_10_1371_journal_pone_0235504
crossref_primary_10_1016_j_heares_2018_10_015
crossref_primary_10_1097_MAO_0000000000001428
crossref_primary_10_1177_2331216516643085
crossref_primary_10_1080_14670100_2023_2239512
crossref_primary_10_1016_j_heares_2014_08_006
crossref_primary_10_1007_s00106_024_01461_8
crossref_primary_10_1007_s10162_021_00811_5
crossref_primary_10_1121_10_0012763
crossref_primary_10_1097_AUD_0000000000000998
crossref_primary_10_1007_s10162_018_00707_x
crossref_primary_10_1016_j_heares_2022_108583
crossref_primary_10_1523_JNEUROSCI_0359_21_2021
crossref_primary_10_1177_0003489416660111
crossref_primary_10_1007_s00106_020_00969_z
crossref_primary_10_1097_AUD_0000000000001094
crossref_primary_10_1177_0003489415616130
crossref_primary_10_1016_j_heares_2016_10_009
crossref_primary_10_1159_000381936
crossref_primary_10_1016_j_heares_2017_12_019
crossref_primary_10_3389_fnins_2018_00660
crossref_primary_10_1016_j_heares_2014_10_006
crossref_primary_10_1007_s00106_020_00968_0
crossref_primary_10_1044_2019_JSLHR_H_18_0409
crossref_primary_10_1177_2331216518765514
crossref_primary_10_1080_17434440_2020_1781614
Cites_doi 10.1016/S0196-0709(00)80112-X
10.1007/s10162-007-0076-9
10.1121/1.420088
10.1121/1.389620
10.1121/1.1623786
10.1121/1.1579009
10.1097/MAO.0b013e31817fe00f
10.1038/352236a0
10.1007/s10162-007-0071-1
10.1121/1.399052
10.1159/000206489
10.1007/s10162-005-0027-2
10.1007/s10162-007-0077-8
10.1121/1.1912375
10.1016/S0378-5955(96)00095-0
10.1007/s10162-010-0222-7
10.1016/0378-5955(79)90025-X
10.1121/1.408558
10.1073/pnas.0306958101
10.1121/1.1914448
10.1037/h0075002
10.1016/j.heares.2005.12.010
10.1038/416087a
10.1121/1.1908437
10.1097/mao.0b013e31815aedf4
10.1121/1.3372711
10.1097/01.aud.0000179688.87621.48
10.1159/000337089
10.3109/00016481003591731
10.1016/j.heares.2008.09.003
10.1177/0003489400109S1221
10.1121/1.3372713
10.1177/000348940811700903
10.1121/1.395554
10.1097/AUD.0b013e31821a4800
ContentType Journal Article
Copyright 2013 Elsevier B.V.
Copyright © 2013 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2013 Elsevier B.V.
– notice: Copyright © 2013 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
DOI 10.1016/j.heares.2013.11.003
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitleList MEDLINE - Academic
MEDLINE
Neurosciences Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1878-5891
EndPage 35
ExternalDocumentID 24252455
10_1016_j_heares_2013_11_003
S0378595513002761
Genre Research Support, Non-U.S. Gov't
Journal Article
Comparative Study
GroupedDBID ---
--K
--M
--Z
.GJ
.~1
0R~
1B1
1RT
1~.
1~5
29I
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXLA
AAXUO
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
C45
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HMQ
HVGLF
HZ~
IHE
J1W
KOM
M2V
M41
MO0
MOBAO
N9A
NCXOZ
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SNS
SPCBC
SSN
SSZ
T5K
TEORI
TN5
UNMZH
WUQ
ZGI
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
EFKBS
7TK
ID FETCH-LOGICAL-c461t-f1b65a0beffe5f16d109257cc25708524027b84197bece861c055a63ca0049fd3
IEDL.DBID AIKHN
ISSN 0378-5955
1878-5891
IngestDate Fri Sep 05 02:59:23 EDT 2025
Thu Sep 04 17:49:49 EDT 2025
Wed Feb 19 01:54:43 EST 2025
Thu Apr 24 23:05:43 EDT 2025
Tue Jul 01 04:15:37 EDT 2025
Fri Feb 23 02:14:50 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords pps
SE
PSE
CI
2I-2AFC
RIB
PTA
Language English
License Copyright © 2013 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c461t-f1b65a0beffe5f16d109257cc25708524027b84197bece861c055a63ca0049fd3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ORCID 0000-0003-1404-3055
0000-0001-8146-2052
PMID 24252455
PQID 1499125006
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_1516751856
proquest_miscellaneous_1499125006
pubmed_primary_24252455
crossref_citationtrail_10_1016_j_heares_2013_11_003
crossref_primary_10_1016_j_heares_2013_11_003
elsevier_sciencedirect_doi_10_1016_j_heares_2013_11_003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-03-01
PublicationDateYYYYMMDD 2014-03-01
PublicationDate_xml – month: 03
  year: 2014
  text: 2014-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Hearing research
PublicationTitleAlternate Hear Res
PublicationYear 2014
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Baumann, Rader, Helbig, Bahmer (bib2) 2011; 32
Van de Heyning, Vermeire, Diebl, Nopp, Anderson, De Ridder (bib32) 2008; 117
Stakhovskaya, Sridhar, Bonham, Leake (bib28) 2007; 8
Goldstein (bib11) 1973; 54
Dorman, Spahr, Gifford, Loiselle, McKarns, Holden, Skinner, Finley (bib8) 2007; 8
Wever, Bray (bib36) 1930; 37
Blamey, Dooley, Parisi, Clark (bib3) 1996; 99
Reiss, Gantz, Turner (bib23) 2008; 29
Smith, Delgutte, Oxenham (bib27) 2002; 416
Qin, Oxenham (bib22) 2003; 114
Baumann, Nobbe (bib1) 2006; 213
Boëx, Baud, Cosendai, Sigrist, Kós (bib4) 2006; 7
Schatzer, Krenmayr, Au, Kals, Zierhofer (bib26) 2010; 130
Oxenham, Bernstein, Penagos (bib20) 2004; 101
McDermott, Sucher, Simpson (bib17) 2009; 14
Fearn, Wolfe (bib9) 2000; 185
Loeb (bib16) 2005; 26
Frijns, Kalkman, Briaire (bib10) 2011
Reiss, Turner, Erenberg, Gantz (bib24) 2007; 8
Kong, Carlyon (bib13) 2010; 127
Tong, Blamey, Dowell, Clark (bib30) 1983; 74
Townshend, Cotter, Van Compernolle, White (bib31) 1987; 82
Dorman, Smith, Smith, Parkin (bib7) 1994; 95
Vermeire, Nobbe, Schleich, Nopp, Voormolen, Van de Heyning (bib33) 2008; 245
Wilson, Finley, Lawson, Wolford, Eddington, Rabinowitz (bib37) 1991; 352
Greenwood (bib12) 1961; 33
Xu, Pfingst (bib40) 2003; 114
Meddis, O'Mard (bib18) 1997; 102
von Helmholtz (bib34) 1863
Plomp, Steeneken (bib21) 1971; vol. 3
Müller, Brill, Hagen, Moeltner, Brockmeier, Stark, Helbig, Maurer, Zahnert, Zierhofer, Nopp, Anderson (bib19) 2012; 74
Carlyon, Lynch, Deeks (bib5) 2010; 127
Carlyon, Macherey, Frijns, Axon, Kalkman, Boyle, Baguley, Briggs, Deeks, Briaire, Barreau, Dauman (bib6) 2010; 11
Xu, Xu, Cohen, Clark (bib39) 2000; 21
Wundt (bib38) 1880
Levitt (bib14) 1971; 49
Licklider (bib15) 1959; vol. 1
Riss, Arnoldner, Baumgartner, Kaider, Hamzavi (bib25) 2008; 29
Terhardt (bib29) 1979; 1
Greenwood (bib41) 1990; 87
Wever (bib35) 1940
Wundt (10.1016/j.heares.2013.11.003_bib38) 1880
Stakhovskaya (10.1016/j.heares.2013.11.003_bib28) 2007; 8
Goldstein (10.1016/j.heares.2013.11.003_bib11) 1973; 54
Oxenham (10.1016/j.heares.2013.11.003_bib20) 2004; 101
Xu (10.1016/j.heares.2013.11.003_bib40) 2003; 114
Baumann (10.1016/j.heares.2013.11.003_bib1) 2006; 213
Xu (10.1016/j.heares.2013.11.003_bib39) 2000; 21
Dorman (10.1016/j.heares.2013.11.003_bib8) 2007; 8
Meddis (10.1016/j.heares.2013.11.003_bib18) 1997; 102
Plomp (10.1016/j.heares.2013.11.003_bib21) 1971; vol. 3
Carlyon (10.1016/j.heares.2013.11.003_bib6) 2010; 11
Smith (10.1016/j.heares.2013.11.003_bib27) 2002; 416
Blamey (10.1016/j.heares.2013.11.003_bib3) 1996; 99
Vermeire (10.1016/j.heares.2013.11.003_bib33) 2008; 245
Baumann (10.1016/j.heares.2013.11.003_bib2) 2011; 32
McDermott (10.1016/j.heares.2013.11.003_bib17) 2009; 14
Levitt (10.1016/j.heares.2013.11.003_bib14) 1971; 49
Greenwood (10.1016/j.heares.2013.11.003_bib41) 1990; 87
Licklider (10.1016/j.heares.2013.11.003_bib15) 1959; vol. 1
von Helmholtz (10.1016/j.heares.2013.11.003_bib34) 1863
Carlyon (10.1016/j.heares.2013.11.003_bib5) 2010; 127
Riss (10.1016/j.heares.2013.11.003_bib25) 2008; 29
Boëx (10.1016/j.heares.2013.11.003_bib4) 2006; 7
Townshend (10.1016/j.heares.2013.11.003_bib31) 1987; 82
Qin (10.1016/j.heares.2013.11.003_bib22) 2003; 114
Tong (10.1016/j.heares.2013.11.003_bib30) 1983; 74
Terhardt (10.1016/j.heares.2013.11.003_bib29) 1979; 1
Dorman (10.1016/j.heares.2013.11.003_bib7) 1994; 95
Reiss (10.1016/j.heares.2013.11.003_bib23) 2008; 29
Kong (10.1016/j.heares.2013.11.003_bib13) 2010; 127
Loeb (10.1016/j.heares.2013.11.003_bib16) 2005; 26
Müller (10.1016/j.heares.2013.11.003_bib19) 2012; 74
Schatzer (10.1016/j.heares.2013.11.003_bib26) 2010; 130
Wever (10.1016/j.heares.2013.11.003_bib36) 1930; 37
Wilson (10.1016/j.heares.2013.11.003_bib37) 1991; 352
Fearn (10.1016/j.heares.2013.11.003_bib9) 2000; 185
Wever (10.1016/j.heares.2013.11.003_bib35) 1940
Reiss (10.1016/j.heares.2013.11.003_bib24) 2007; 8
Frijns (10.1016/j.heares.2013.11.003_bib10) 2011
Van de Heyning (10.1016/j.heares.2013.11.003_bib32) 2008; 117
Greenwood (10.1016/j.heares.2013.11.003_bib12) 1961; 33
References_xml – volume: 29
  start-page: 784
  year: 2008
  end-page: 788
  ident: bib25
  article-title: A new fine structure speech coding strategy: speech perception at a reduced number of channels
  publication-title: Otol. Neurotol.
– volume: 245
  start-page: 98
  year: 2008
  end-page: 106
  ident: bib33
  article-title: Neural tonotopy in cochlear implants: an evaluation in unilateral cochlear implant patients with unilateral deafness and tinnitus
  publication-title: Hear. Res.
– volume: 114
  start-page: 3024
  year: 2003
  end-page: 3027
  ident: bib40
  article-title: Relative importance of temporal envelope and fine structure in lexical-tone perception
  publication-title: J. Acoust. Soc. Am.
– volume: 185
  start-page: 51
  year: 2000
  end-page: 53
  ident: bib9
  article-title: Relative importance of rate and place: experiments using pitch scaling techniques with cochlear implants recipients
  publication-title: Ann. Otol. Rhinol. Laryngol. Suppl.
– year: 1940
  ident: bib35
  article-title: Theory of Hearing
– volume: 213
  start-page: 34
  year: 2006
  end-page: 42
  ident: bib1
  article-title: The cochlear implant electrode-pitch function
  publication-title: Hear. Res.
– volume: 49
  start-page: 467
  year: 1971
  end-page: 477
  ident: bib14
  article-title: Transformed up-down methods in psychoacoustics
  publication-title: J. Acoust. Soc. Am.
– volume: 37
  start-page: 365
  year: 1930
  end-page: 380
  ident: bib36
  article-title: Present possibilities for auditory theory
  publication-title: Psychol. Rev.
– volume: 8
  start-page: 234
  year: 2007
  end-page: 240
  ident: bib8
  article-title: An electric frequency-to-place map for a cochlear implant patient with hearing in the nonimplanted ear
  publication-title: J. Assoc. Res. Otolaryngol.
– volume: 87
  start-page: 2592
  year: 1990
  end-page: 2605
  ident: bib41
  article-title: A cochlear frequency-position function for several species–29 years later
  publication-title: J. Acoust. Soc. Am.
– volume: 74
  start-page: 73
  year: 1983
  end-page: 80
  ident: bib30
  article-title: Psychophysical studies evaluating the feasibility of a speech processing strategy for a multiple-channel cochlear implant
  publication-title: J. Acoust. Soc. Am.
– volume: 127
  start-page: 2997
  year: 2010
  end-page: 3008
  ident: bib5
  article-title: Effect of stimulus level and place of stimulation on temporal pitch perception by cochlear implant users
  publication-title: J. Acoust. Soc. Am.
– volume: 127
  start-page: 3114
  year: 2010
  end-page: 3123
  ident: bib13
  article-title: Temporal pitch perception at high rates in cochlear implants
  publication-title: J. Acoust. Soc. Am.
– volume: 102
  start-page: 1811
  year: 1997
  end-page: 1820
  ident: bib18
  article-title: A unitary model of pitch perception
  publication-title: J. Acoust. Soc. Am.
– volume: 7
  start-page: 110
  year: 2006
  end-page: 124
  ident: bib4
  article-title: Acoustic to electric pitch comparisons in cochlear implant subjects with residual hearing
  publication-title: J. Assoc. Res. Otolaryngol.
– volume: 54
  start-page: 1496
  year: 1973
  end-page: 1516
  ident: bib11
  article-title: An optimum processor theory for the central formation of the pitch of complex tones
  publication-title: J. Acoust. Soc. Am.
– volume: 8
  start-page: 241
  year: 2007
  end-page: 257
  ident: bib24
  article-title: Changes in pitch with a cochlear implant over time
  publication-title: J. Assoc. Res. Otolaryngol.
– volume: 99
  start-page: 139
  year: 1996
  end-page: 150
  ident: bib3
  article-title: Pitch comparisons of acoustically and electrically evoked auditory sensations
  publication-title: Hear. Res.
– volume: 14
  start-page: 2
  year: 2009
  end-page: 7
  ident: bib17
  article-title: Electro-acoustic stimulation. Acoustic and electric pitch comparisons
  publication-title: Audiol. Neurootol.
– volume: 82
  start-page: 106
  year: 1987
  end-page: 115
  ident: bib31
  article-title: Pitch perception by cochlear implant subjects
  publication-title: J. Acoust. Soc. Am.
– volume: 21
  start-page: 49
  year: 2000
  end-page: 56
  ident: bib39
  article-title: Cochlear view: postoperative radiography for cochlear implantation
  publication-title: Am. J. Otol
– volume: 416
  start-page: 87
  year: 2002
  end-page: 90
  ident: bib27
  article-title: Chimaeric sounds reveal dichotomies in auditory perception
  publication-title: Nature
– volume: 32
  start-page: 656
  year: 2011
  end-page: 662
  ident: bib2
  article-title: Pitch matching psychometrics in electric acoustic stimulation
  publication-title: Ear. Hear.
– volume: 130
  start-page: 1031
  year: 2010
  end-page: 1039
  ident: bib26
  article-title: Temporal fine structure in cochlear implants: preliminary speech perception results in Cantonese-speaking implant users
  publication-title: Acta Otolaryngol.
– volume: 114
  start-page: 446
  year: 2003
  end-page: 454
  ident: bib22
  article-title: Effects of simulated cochlear-implant processing on speech reception in fluctuating maskers
  publication-title: J. Acoust. Soc. Am.
– volume: 117
  start-page: 645
  year: 2008
  end-page: 652
  ident: bib32
  article-title: Incapacitating unilateral tinnitus in single-sided deafness treated by cochlear implantation
  publication-title: Ann. Otol. Rhinol. Laryngol.
– volume: 352
  start-page: 236
  year: 1991
  end-page: 238
  ident: bib37
  article-title: Better speech recognition with cochlear implants
  publication-title: Nature
– year: 2011
  ident: bib10
  article-title: The ideal extent of apical stimulation: where to stop?
  publication-title: Symposium on the Apex of the Cochlea: from Neuroanatomy to Electrical Stimulation, Paris, France
– volume: 26
  start-page: 435
  year: 2005
  end-page: 450
  ident: bib16
  article-title: Are cochlear implant patients suffering from perceptual dissonance?
  publication-title: Ear. Hear.
– year: 1880
  ident: bib38
  article-title: Grundzüge der physiologischen Psychologie
– volume: 8
  start-page: 220
  year: 2007
  end-page: 233
  ident: bib28
  article-title: Frequency map for the human cochlear spiral ganglion: implications for cochlear implants
  publication-title: J. Assoc. Res. Otolaryngol.
– volume: 95
  start-page: 1677
  year: 1994
  end-page: 1679
  ident: bib7
  article-title: The pitch of electrically presented sinusoids
  publication-title: J. Acoust. Soc. Am.
– volume: vol. 3
  start-page: 377
  year: 1971
  end-page: 380
  ident: bib21
  article-title: Pitch versus timbre
  publication-title: Proc. 7th Internat. Congr. Acoustics
– volume: 1
  start-page: 155
  year: 1979
  end-page: 182
  ident: bib29
  article-title: Calculating virtual pitch
  publication-title: Hear. Res.
– volume: 11
  start-page: 625
  year: 2010
  end-page: 640
  ident: bib6
  article-title: Pitch comparisons between electrical stimulation of a cochlear implant and acoustic stimuli presented to a normal-hearing contralateral ear
  publication-title: J. Assoc. Res. Otolaryngol.
– volume: 101
  start-page: 1421
  year: 2004
  end-page: 1425
  ident: bib20
  article-title: Correct tonotopic representation is necessary for complex pitch perception
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 33
  start-page: 1344
  year: 1961
  end-page: 1356
  ident: bib12
  article-title: Critical bandwidth and the frequency coordinates of the basilar membrane
  publication-title: J. Acoust. Soc. Am.
– volume: vol. 1
  start-page: 41
  year: 1959
  end-page: 144
  ident: bib15
  article-title: Three auditory theories
  publication-title: Psychology: a Study of a Science
– year: 1863
  ident: bib34
  article-title: Die Lehre von den Tonempfindungen als physiologische Grundlage für die Theorie der Musik Friedrich Vieweg und Sohn, Braunschweig, Germany
– volume: 74
  start-page: 185
  year: 2012
  end-page: 198
  ident: bib19
  article-title: Clinical trial results with the MED-EL fine structure processing coding strategy in experienced cochlear implant users
  publication-title: ORL J. Otorhinolaryngol. Relat. Spec.
– volume: 29
  start-page: 160
  year: 2008
  end-page: 167
  ident: bib23
  article-title: Cochlear implant speech processor frequency allocations may influence pitch perception
  publication-title: Otol. Neurotol.
– volume: 21
  start-page: 49
  year: 2000
  ident: 10.1016/j.heares.2013.11.003_bib39
  article-title: Cochlear view: postoperative radiography for cochlear implantation
  publication-title: Am. J. Otol
  doi: 10.1016/S0196-0709(00)80112-X
– volume: 8
  start-page: 220
  year: 2007
  ident: 10.1016/j.heares.2013.11.003_bib28
  article-title: Frequency map for the human cochlear spiral ganglion: implications for cochlear implants
  publication-title: J. Assoc. Res. Otolaryngol.
  doi: 10.1007/s10162-007-0076-9
– volume: 102
  start-page: 1811
  year: 1997
  ident: 10.1016/j.heares.2013.11.003_bib18
  article-title: A unitary model of pitch perception
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.420088
– volume: 74
  start-page: 73
  year: 1983
  ident: 10.1016/j.heares.2013.11.003_bib30
  article-title: Psychophysical studies evaluating the feasibility of a speech processing strategy for a multiple-channel cochlear implant
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.389620
– volume: 114
  start-page: 3024
  year: 2003
  ident: 10.1016/j.heares.2013.11.003_bib40
  article-title: Relative importance of temporal envelope and fine structure in lexical-tone perception
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.1623786
– volume: 114
  start-page: 446
  year: 2003
  ident: 10.1016/j.heares.2013.11.003_bib22
  article-title: Effects of simulated cochlear-implant processing on speech reception in fluctuating maskers
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.1579009
– volume: 29
  start-page: 784
  year: 2008
  ident: 10.1016/j.heares.2013.11.003_bib25
  article-title: A new fine structure speech coding strategy: speech perception at a reduced number of channels
  publication-title: Otol. Neurotol.
  doi: 10.1097/MAO.0b013e31817fe00f
– volume: 352
  start-page: 236
  year: 1991
  ident: 10.1016/j.heares.2013.11.003_bib37
  article-title: Better speech recognition with cochlear implants
  publication-title: Nature
  doi: 10.1038/352236a0
– year: 1880
  ident: 10.1016/j.heares.2013.11.003_bib38
– volume: 8
  start-page: 234
  year: 2007
  ident: 10.1016/j.heares.2013.11.003_bib8
  article-title: An electric frequency-to-place map for a cochlear implant patient with hearing in the nonimplanted ear
  publication-title: J. Assoc. Res. Otolaryngol.
  doi: 10.1007/s10162-007-0071-1
– volume: 87
  start-page: 2592
  year: 1990
  ident: 10.1016/j.heares.2013.11.003_bib41
  article-title: A cochlear frequency-position function for several species–29 years later
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.399052
– volume: 14
  start-page: 2
  issue: Suppl. 1
  year: 2009
  ident: 10.1016/j.heares.2013.11.003_bib17
  article-title: Electro-acoustic stimulation. Acoustic and electric pitch comparisons
  publication-title: Audiol. Neurootol.
  doi: 10.1159/000206489
– volume: 7
  start-page: 110
  year: 2006
  ident: 10.1016/j.heares.2013.11.003_bib4
  article-title: Acoustic to electric pitch comparisons in cochlear implant subjects with residual hearing
  publication-title: J. Assoc. Res. Otolaryngol.
  doi: 10.1007/s10162-005-0027-2
– volume: 8
  start-page: 241
  year: 2007
  ident: 10.1016/j.heares.2013.11.003_bib24
  article-title: Changes in pitch with a cochlear implant over time
  publication-title: J. Assoc. Res. Otolaryngol.
  doi: 10.1007/s10162-007-0077-8
– volume: 49
  start-page: 467
  year: 1971
  ident: 10.1016/j.heares.2013.11.003_bib14
  article-title: Transformed up-down methods in psychoacoustics
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.1912375
– volume: 99
  start-page: 139
  year: 1996
  ident: 10.1016/j.heares.2013.11.003_bib3
  article-title: Pitch comparisons of acoustically and electrically evoked auditory sensations
  publication-title: Hear. Res.
  doi: 10.1016/S0378-5955(96)00095-0
– volume: 11
  start-page: 625
  year: 2010
  ident: 10.1016/j.heares.2013.11.003_bib6
  article-title: Pitch comparisons between electrical stimulation of a cochlear implant and acoustic stimuli presented to a normal-hearing contralateral ear
  publication-title: J. Assoc. Res. Otolaryngol.
  doi: 10.1007/s10162-010-0222-7
– volume: 1
  start-page: 155
  year: 1979
  ident: 10.1016/j.heares.2013.11.003_bib29
  article-title: Calculating virtual pitch
  publication-title: Hear. Res.
  doi: 10.1016/0378-5955(79)90025-X
– volume: 95
  start-page: 1677
  year: 1994
  ident: 10.1016/j.heares.2013.11.003_bib7
  article-title: The pitch of electrically presented sinusoids
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.408558
– volume: 101
  start-page: 1421
  year: 2004
  ident: 10.1016/j.heares.2013.11.003_bib20
  article-title: Correct tonotopic representation is necessary for complex pitch perception
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0306958101
– volume: 54
  start-page: 1496
  year: 1973
  ident: 10.1016/j.heares.2013.11.003_bib11
  article-title: An optimum processor theory for the central formation of the pitch of complex tones
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.1914448
– volume: 37
  start-page: 365
  year: 1930
  ident: 10.1016/j.heares.2013.11.003_bib36
  article-title: Present possibilities for auditory theory
  publication-title: Psychol. Rev.
  doi: 10.1037/h0075002
– volume: 213
  start-page: 34
  year: 2006
  ident: 10.1016/j.heares.2013.11.003_bib1
  article-title: The cochlear implant electrode-pitch function
  publication-title: Hear. Res.
  doi: 10.1016/j.heares.2005.12.010
– volume: vol. 3
  start-page: 377
  year: 1971
  ident: 10.1016/j.heares.2013.11.003_bib21
  article-title: Pitch versus timbre
– volume: 416
  start-page: 87
  year: 2002
  ident: 10.1016/j.heares.2013.11.003_bib27
  article-title: Chimaeric sounds reveal dichotomies in auditory perception
  publication-title: Nature
  doi: 10.1038/416087a
– volume: 33
  start-page: 1344
  year: 1961
  ident: 10.1016/j.heares.2013.11.003_bib12
  article-title: Critical bandwidth and the frequency coordinates of the basilar membrane
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.1908437
– volume: 29
  start-page: 160
  year: 2008
  ident: 10.1016/j.heares.2013.11.003_bib23
  article-title: Cochlear implant speech processor frequency allocations may influence pitch perception
  publication-title: Otol. Neurotol.
  doi: 10.1097/mao.0b013e31815aedf4
– year: 2011
  ident: 10.1016/j.heares.2013.11.003_bib10
  article-title: The ideal extent of apical stimulation: where to stop?
– volume: 127
  start-page: 2997
  year: 2010
  ident: 10.1016/j.heares.2013.11.003_bib5
  article-title: Effect of stimulus level and place of stimulation on temporal pitch perception by cochlear implant users
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.3372711
– volume: vol. 1
  start-page: 41
  year: 1959
  ident: 10.1016/j.heares.2013.11.003_bib15
  article-title: Three auditory theories
– volume: 26
  start-page: 435
  year: 2005
  ident: 10.1016/j.heares.2013.11.003_bib16
  article-title: Are cochlear implant patients suffering from perceptual dissonance?
  publication-title: Ear. Hear.
  doi: 10.1097/01.aud.0000179688.87621.48
– volume: 74
  start-page: 185
  year: 2012
  ident: 10.1016/j.heares.2013.11.003_bib19
  article-title: Clinical trial results with the MED-EL fine structure processing coding strategy in experienced cochlear implant users
  publication-title: ORL J. Otorhinolaryngol. Relat. Spec.
  doi: 10.1159/000337089
– volume: 130
  start-page: 1031
  year: 2010
  ident: 10.1016/j.heares.2013.11.003_bib26
  article-title: Temporal fine structure in cochlear implants: preliminary speech perception results in Cantonese-speaking implant users
  publication-title: Acta Otolaryngol.
  doi: 10.3109/00016481003591731
– year: 1940
  ident: 10.1016/j.heares.2013.11.003_bib35
– volume: 245
  start-page: 98
  year: 2008
  ident: 10.1016/j.heares.2013.11.003_bib33
  article-title: Neural tonotopy in cochlear implants: an evaluation in unilateral cochlear implant patients with unilateral deafness and tinnitus
  publication-title: Hear. Res.
  doi: 10.1016/j.heares.2008.09.003
– volume: 185
  start-page: 51
  year: 2000
  ident: 10.1016/j.heares.2013.11.003_bib9
  article-title: Relative importance of rate and place: experiments using pitch scaling techniques with cochlear implants recipients
  publication-title: Ann. Otol. Rhinol. Laryngol. Suppl.
  doi: 10.1177/0003489400109S1221
– volume: 127
  start-page: 3114
  year: 2010
  ident: 10.1016/j.heares.2013.11.003_bib13
  article-title: Temporal pitch perception at high rates in cochlear implants
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.3372713
– volume: 117
  start-page: 645
  year: 2008
  ident: 10.1016/j.heares.2013.11.003_bib32
  article-title: Incapacitating unilateral tinnitus in single-sided deafness treated by cochlear implantation
  publication-title: Ann. Otol. Rhinol. Laryngol.
  doi: 10.1177/000348940811700903
– volume: 82
  start-page: 106
  year: 1987
  ident: 10.1016/j.heares.2013.11.003_bib31
  article-title: Pitch perception by cochlear implant subjects
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.395554
– year: 1863
  ident: 10.1016/j.heares.2013.11.003_bib34
– volume: 32
  start-page: 656
  year: 2011
  ident: 10.1016/j.heares.2013.11.003_bib2
  article-title: Pitch matching psychometrics in electric acoustic stimulation
  publication-title: Ear. Hear.
  doi: 10.1097/AUD.0b013e31821a4800
SSID ssj0015342
Score 2.3468485
Snippet Eight cochlear implant users with near-normal hearing in their non-implanted ear compared pitch percepts for pulsatile electric and acoustic pure-tone stimuli...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 26
SubjectTerms Acoustic Stimulation
Adult
Audiometry, Pure-Tone
Cochlear Implantation - instrumentation
Cochlear Implants
Correction of Hearing Impairment - instrumentation
Hearing Disorders - psychology
Hearing Disorders - therapy
Humans
Middle Aged
Persons With Hearing Impairments - psychology
Persons With Hearing Impairments - rehabilitation
Pitch Perception
Prosthesis Design
Signal Processing, Computer-Assisted
Young Adult
Title Electric-acoustic pitch comparisons in single-sided-deaf cochlear implant users: Frequency-place functions and rate pitch
URI https://dx.doi.org/10.1016/j.heares.2013.11.003
https://www.ncbi.nlm.nih.gov/pubmed/24252455
https://www.proquest.com/docview/1499125006
https://www.proquest.com/docview/1516751856
Volume 309
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7SDYReSh5NmqYJKpTclLUsS7Z7W0KWbUtyaQK5GUuWiMvGXZLtYS_97Z2R7IUSmkCPNhIWnofm04zmA_hki8KhIjRo3y7nmbeSm8QbbnNpasS4pfYEFC-v9Owm-3qrbjfgfLgLQ2WVve-PPj146_7NuP-b40Xbjr8nMqfmXIoSMmlOEGgzlaVWI9icfPk2u1onE5TMYjIBARNNGG7QhTKvwBtNfbuFPKN2ngN71tMd6l8RaNiJptvwpg8h2SSucgc2XLcLe5MO4fP9ip2yUNQZTst3Yeuyz53vweoiMN60lqMTDBxebNGizJhdUxE-srZjdHgwd5xoPBveuNrjAHtH7BKsvV_MURKMTjYeP7PpQ6zDXvFQ2cVojwxqzOquYdSDIn7hLdxML67PZ7wnXuA202LJvTBa1YmhkhLlhW5EUqJpW0uUd4WihExuikyUOWqAK7SwiVK1lrYmwOEbuQ-j7mfn3gErEPD5PEXgI8qscLUxvmhMqm3jEqNKcwhy-NmV7buSEznGvBrKz35UUUQViQgBC3UzPQS-nrWIXTleGJ8Pcqz-0q4KN44XZn4cxF6h4VE2pe4cSgkxE4bWGEAm-pkxSmjKaykccxB1Zr1ewnppptT7_17bEbzGpyxWxH2A0fLhlzvGEGlpTuDV2W9x0hvCHzsAEXU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQSKWXimehPOpKiJvZeONHwg0hVtvCcilI3KLYsUXQElawPeylv50ZO1kJIUDimkwUK-Ox5_N8mY-QA5tlDiZCBfHtNBPepswk3jCrU1MCxs2VR6A4ulTDa_HnRt4skNPuXxikVbZrf1zTw2rdXum1X7M3qeve3yTV2JxLYkGmrxECLQmZauT1Hf2f8zwgokUsJQBcQvPu_7lA8gqq0di1m6dH2Myz0856vT-9lX-GfWiwQr61CSQ9iWNcJQuuWSPrJw2A5_sZPaSB0hnOytfIl1FbOV8ns7Ogd1NbBktgUPCikxo8Ru1ciPCJ1g3Fo4OxYyjiWbHKlR4M7C1qS9D6fjIGP1A813g6poPHyMKescDrorhDhklMy6ai2IEivmGDXA_Ork6HrJVdYFYoPmWeGyXLxCChRHquKp7kENjWouBdJrEco00meK7B_y5T3CZSliq1JcINX6WbZLF5aNwWoRnAPa_7AHt4LjJXGuOzyvSVrVxiZG62Sdp97MK2PclRGmNcdOSzuyK6qEAXAVzBXqbbhM2fmsSeHB_Y686PxYu5VcC28cGTvzq3FxB2WEspGwdeAsQEiTWkj4l6x0ZyhVUtCTbf45yZjxeRXl9I-ePTY_tJlodXo4vi4vfl-Q75CndE5MbtksXp4z-3B8nS1OyHYHgGkF4SQA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electric-acoustic+pitch+comparisons+in+single-sided-deaf+cochlear+implant+users%3A+frequency-place+functions+and+rate+pitch&rft.jtitle=Hearing+research&rft.au=Schatzer%2C+Reinhold&rft.au=Vermeire%2C+Katrien&rft.au=Visser%2C+Daniel&rft.au=Krenmayr%2C+Andreas&rft.date=2014-03-01&rft.issn=1878-5891&rft.eissn=1878-5891&rft.volume=309&rft.spage=26&rft_id=info:doi/10.1016%2Fj.heares.2013.11.003&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-5955&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-5955&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-5955&client=summon