Half-maximal extended Drinfel’d algebras
Abstract The extended Drinfel’d algebra (ExDA) is the underlying symmetry of non-Abelian duality in the low-energy effective theory of string theory. Non-Abelian U-dualities in maximal supergravities have been studied well, but there has been no study on non-Abelian dualities in half-maximal supergr...
Saved in:
Published in | Progress of theoretical and experimental physics Vol. 2022; no. 1 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Oxford
Oxford University Press
01.01.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 2050-3911 2050-3911 |
DOI | 10.1093/ptep/ptab166 |
Cover
Loading…
Abstract | Abstract
The extended Drinfel’d algebra (ExDA) is the underlying symmetry of non-Abelian duality in the low-energy effective theory of string theory. Non-Abelian U-dualities in maximal supergravities have been studied well, but there has been no study on non-Abelian dualities in half-maximal supergravities. We construct the ExDA for half-maximal supergravities in d ≥ 4. We also find an extension of the homogeneous classical Yang–Baxter equation in these theories. |
---|---|
AbstractList | The extended Drinfel’d algebra (ExDA) is the underlying symmetry of non-Abelian duality in the low-energy effective theory of string theory. Non-Abelian U-dualities in maximal supergravities have been studied well, but there has been no study on non-Abelian dualities in half-maximal supergravities. We construct the ExDA for half-maximal supergravities in d ≥ 4. We also find an extension of the homogeneous classical Yang–Baxter equation in these theories. Abstract The extended Drinfel’d algebra (ExDA) is the underlying symmetry of non-Abelian duality in the low-energy effective theory of string theory. Non-Abelian U-dualities in maximal supergravities have been studied well, but there has been no study on non-Abelian dualities in half-maximal supergravities. We construct the ExDA for half-maximal supergravities in d ≥ 4. We also find an extension of the homogeneous classical Yang–Baxter equation in these theories. |
Author | Sakatani, Yuho |
Author_xml | – sequence: 1 givenname: Yuho surname: Sakatani fullname: Sakatani, Yuho email: yuho@koto.kpu-m.ac.jp |
BookMark | eNp9kM9KxDAQxoOs4LruzQcoeBDE6kzTNu1R1j8rLHjRc0iaRLp025qksN58DV_PJzFL9yCCMjAzML_5hvmOyaTtWk3IKcIVQkmve6_7kITEPD8g0wQyiGmJOPnRH5G5c2sAQGAMUpySi6VoTLwR23ojmkhvvW6VVtGtrVujm6-PTxWJ5lVLK9wJOTSicXq-rzPycn_3vFjGq6eHx8XNKq7SHH1sQKVZkSrDlNaFMLIEycoCaWJChFmVUaMYSJmoIpMpxaLIcqGSSlDJmKAzcjbq9rZ7G7TzfN0Ntg0nOUWGaZkwhEBdjlRlO-esNry34Qf7zhH4zhC-M4TvDQl48guvai983bXeirr5a-l8XOqG_n_5b7vGdf8 |
CitedBy_id | crossref_primary_10_1007_JHEP08_2024_059 crossref_primary_10_1007_JHEP01_2024_028 |
Cites_doi | 10.1007/JHEP09(2020)151 10.1007/JHEP04(2017)123 10.1093/ptep/ptz172 10.1103/PhysRevD.104.046015 10.1142/S0219887817500074 10.1007/JHEP02(2012)108 10.1002/prop.202000063 10.1007/JHEP06(2011)030 10.1103/PhysRevD.47.5453 10.1007/JHEP10(2017)086 10.1088/1126-6708/2009/09/099 10.1016/j.nuclphysb.2008.11.010 10.1088/1126-6708/2009/04/075 10.1002/prop.201700048 10.1007/JHEP02(2019)189 10.1016/j.physletb.2020.135455 10.1093/ptep/ptaa188 10.1007/JHEP06(2011)096 10.1016/j.nuclphysb.2011.03.016 10.1103/PhysRevD.48.2826 10.1007/JHEP08(2010)008 10.1103/PhysRevD.89.066017 10.1002/prop.201700061 10.1007/JHEP01(2013)064 10.1093/ptep/ptz071 10.1007/JHEP06(2011)074 10.1007/JHEP04(2020)058 10.1007/JHEP09(2018)157 10.1093/ptep/ptaa063 10.1007/JHEP10(2020)002 10.1007/JHEP12(2012)068 10.1007/JHEP05(2017)028 10.1007/JHEP11(2011)116 10.1142/S0217751X02010571 10.1088/1126-6708/2006/05/034 10.1103/PhysRevD.90.066002 10.1002/prop.201200078 10.1103/PhysRevLett.125.201603 10.1103/PhysRevLett.111.231601 10.1016/0370-2693(95)00451-P 10.1103/PhysRevD.89.066016 10.1007/JHEP04(2012)020 10.1007/JHEP01(2021)020 10.1007/JHEP11(2011)052 |
ContentType | Journal Article |
Copyright | The Author(s) 2021. Published by Oxford University Press on behalf of the Physical Society of Japan. 2021 The Author(s) 2021. Published by Oxford University Press on behalf of the Physical Society of Japan. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021. Published by Oxford University Press on behalf of the Physical Society of Japan. 2021 – notice: The Author(s) 2021. Published by Oxford University Press on behalf of the Physical Society of Japan. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | TOX AAYXX CITATION 3V. 7XB 88I 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ HCIFZ M2P PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI Q9U |
DOI | 10.1093/ptep/ptab166 |
DatabaseName | Oxford Journals Open Access Collection CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Science Database (ProQuest) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database (ProQuest) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 2050-3911 |
ExternalDocumentID | 10_1093_ptep_ptab166 10.1093/ptep/ptab166 |
GroupedDBID | .I3 0R~ 4.4 5VS AAFWJ AAMVS AAPPN AAPXW AAVAP ABPTD ABXVV ACGFS ADHZD AENEX AENZO AFPKN AFULF AIBLX ALMA_UNASSIGNED_HOLDINGS ALUQC BAYMD BTTYL CIDKT D~K EBS EJD ER. GROUPED_DOAJ H13 IAO ISR KQ8 KSI M~E O9- OAWHX OJQWA OK1 PEELM RHF ROL ROX RXO TOX ~D7 88I AAYXX ABEJV ABGNP ABUWG AFKRA AMNDL AZQEC BENPR CCPQU CITATION DWQXO GNUQQ HCIFZ ITC M2P PHGZM PHGZT PIMPY 3V. 7XB 8FK PKEHL PQEST PQQKQ PQUKI Q9U |
ID | FETCH-LOGICAL-c461t-f0d4584df7dee8afb90b798132f2f2d45c53fd70bb2d85b4318856ad2ca3b77a3 |
IEDL.DBID | BENPR |
ISSN | 2050-3911 |
IngestDate | Mon Jun 30 12:15:06 EDT 2025 Tue Jul 01 02:09:15 EDT 2025 Thu Apr 24 22:55:18 EDT 2025 Wed Aug 28 03:17:03 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | B20 B11 |
Language | English |
License | Funded by SCOAP3 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c461t-f0d4584df7dee8afb90b798132f2f2d45c53fd70bb2d85b4318856ad2ca3b77a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/3171492710?pq-origsite=%requestingapplication% |
PQID | 3171492710 |
PQPubID | 7121340 |
ParticipantIDs | proquest_journals_3171492710 crossref_primary_10_1093_ptep_ptab166 crossref_citationtrail_10_1093_ptep_ptab166 oup_primary_10_1093_ptep_ptab166 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Progress of theoretical and experimental physics |
PublicationYear | 2022 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Sakatani (2022031607010531100_bib37) Kosmann-Schwarzbach (2022031607010531100_bib43) Codina (2022031607010531100_bib20) 2020; 2010 Siegel (2022031607010531100_bib3) 1993; 48 Siegel (2022031607010531100_bib4) Siegel (2022031607010531100_bib2) 1993; 47 Hohm (2022031607010531100_bib12) 2014; 89 Sakatani (2022031607010531100_bib26) 2020; 2020 Berman (2022031607010531100_bib10) 2013; 1301 Aldazabal (2022031607010531100_bib44) 2011; 849 West (2022031607010531100_bib9) 2012; 1212 Hohm (2022031607010531100_bib11) 2013; 111 Grana (2022031607010531100_bib38) 2009; 0904 Blair (2022031607010531100_bib45) 2020; 2009 Sakatani (2022031607010531100_bib24) Malek (2022031607010531100_bib32) 2017; 65 Lee (2022031607010531100_bib39) 2017; 65 Dibitetto (2022031607010531100_bib35) 2012; 60 Sakatani (2022031607010531100_bib46) 2017; 1704 Hassler (2022031607010531100_bib15) 2020; 807 Schon (2022031607010531100_bib40) 2006; 0605 Aldazabal (2022031607010531100_bib34) 2011; 1111 Sakatani (2022031607010531100_bib21) 2020; 2020 Dibitetto (2022031607010531100_bib31) 2011; 1106 Berman (2022031607010531100_bib7) 2011; 1106 Malek (2022031607010531100_bib22) 2020; 2004 Sakatani (2022031607010531100_bib17) 2019 Hohm (2022031607010531100_bib14) 2014; 90 Le Diffon (2022031607010531100_bib41) 2009; 811 Hull (2022031607010531100_bib5) 2009; 0909 Hassler (2022031607010531100_bib18) 2020; 68 Sakamoto (2022031607010531100_bib47) 2017; 2017 Snobl (2022031607010531100_bib48) 2002; 17 Grana (2022031607010531100_bib29) 2012; 1204 FernÁndez-Melgarejo (2022031607010531100_bib36) Musaev (2022031607010531100_bib25) Klimcik (2022031607010531100_bib1) 1995; 351 Demulder (2022031607010531100_bib16) 2019; 1902 Geissbuhler (2022031607010531100_bib28) 2011; 1111 Blair (2022031607010531100_bib33) 2018; 1809 Malek (2022031607010531100_bib23) 2021; 2101 Hohm (2022031607010531100_bib49) 2017; 1710 Borsato (2022031607010531100_bib19) 2020; 125 Rezaei-Aghdam (2022031607010531100_bib42) 2016 Berman (2022031607010531100_bib8) 2012; 1202 Hohm (2022031607010531100_bib6) 2010; 1008 Ciceri (2022031607010531100_bib30) 2017; 1705 Hohm (2022031607010531100_bib27) 2011; 1106 Hohm (2022031607010531100_bib13) 2014; 89 |
References_xml | – volume: 2009 start-page: 151 year: 2020 ident: 2022031607010531100_bib45 publication-title: J. High Energy Phys. doi: 10.1007/JHEP09(2020)151 – volume: 1704 start-page: 123 year: 2017 ident: 2022031607010531100_bib46 publication-title: J. High Energy Phys. doi: 10.1007/JHEP04(2017)123 – volume: 2020 start-page: 023B08 year: 2020 ident: 2022031607010531100_bib21 publication-title: Prog. Theor. Exp. Phys. doi: 10.1093/ptep/ptz172 – ident: 2022031607010531100_bib25 doi: 10.1103/PhysRevD.104.046015 – start-page: 1750007 volume-title: Int. J. Geom. Methods Mod. Phys. year: 2016 ident: 2022031607010531100_bib42 doi: 10.1142/S0219887817500074 – volume: 1202 start-page: 108 year: 2012 ident: 2022031607010531100_bib8 publication-title: J. High Energy Phys. doi: 10.1007/JHEP02(2012)108 – volume: 68 start-page: 2000063 year: 2020 ident: 2022031607010531100_bib18 publication-title: Fortsch. Phys. doi: 10.1002/prop.202000063 – volume: 1106 start-page: 030 year: 2011 ident: 2022031607010531100_bib31 publication-title: J. High Energy Phys. doi: 10.1007/JHEP06(2011)030 – volume: 47 start-page: 5453 year: 1993 ident: 2022031607010531100_bib2 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.47.5453 – volume: 1710 start-page: 086 year: 2017 ident: 2022031607010531100_bib49 publication-title: J. High Energy Phys. doi: 10.1007/JHEP10(2017)086 – volume: 0909 start-page: 099 year: 2009 ident: 2022031607010531100_bib5 publication-title: J. High Energy Phys. doi: 10.1088/1126-6708/2009/09/099 – volume: 811 start-page: 1 year: 2009 ident: 2022031607010531100_bib41 publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2008.11.010 – volume: 2017 start-page: 053B07 year: 2017 ident: 2022031607010531100_bib47 publication-title: Prog. Theor. Exp. Phys. – volume: 0904 start-page: 075 year: 2009 ident: 2022031607010531100_bib38 publication-title: J. High Energy Phys. doi: 10.1088/1126-6708/2009/04/075 – volume: 65 start-page: 1700048 year: 2017 ident: 2022031607010531100_bib39 publication-title: Fortsch. Phys. doi: 10.1002/prop.201700048 – volume: 1902 start-page: 189 year: 2019 ident: 2022031607010531100_bib16 publication-title: J. High Energy Phys. doi: 10.1007/JHEP02(2019)189 – ident: 2022031607010531100_bib36 – volume: 807 start-page: 135455 year: 2020 ident: 2022031607010531100_bib15 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2020.135455 – ident: 2022031607010531100_bib24 doi: 10.1093/ptep/ptaa188 – ident: 2022031607010531100_bib37 – ident: 2022031607010531100_bib43 – ident: 2022031607010531100_bib4 – volume: 1106 start-page: 096 year: 2011 ident: 2022031607010531100_bib27 publication-title: J. High Energy Phys. doi: 10.1007/JHEP06(2011)096 – volume: 849 start-page: 80 year: 2011 ident: 2022031607010531100_bib44 publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2011.03.016 – volume: 48 start-page: 2826 year: 1993 ident: 2022031607010531100_bib3 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.48.2826 – volume: 1008 start-page: 008 year: 2010 ident: 2022031607010531100_bib6 publication-title: J. High Energy Phys. doi: 10.1007/JHEP08(2010)008 – volume: 89 start-page: 066017 year: 2014 ident: 2022031607010531100_bib13 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.89.066017 – volume: 65 start-page: 1700061 year: 2017 ident: 2022031607010531100_bib32 publication-title: Fortsch. Phys. doi: 10.1002/prop.201700061 – volume: 1301 start-page: 064 year: 2013 ident: 2022031607010531100_bib10 publication-title: J. High Energy Phys. doi: 10.1007/JHEP01(2013)064 – start-page: 073B04 volume-title: Prog. Theor. Exp. Phys. year: 2019 ident: 2022031607010531100_bib17 doi: 10.1093/ptep/ptz071 – volume: 1106 start-page: 074 year: 2011 ident: 2022031607010531100_bib7 publication-title: J. High Energy Phys. doi: 10.1007/JHEP06(2011)074 – volume: 2004 start-page: 058 year: 2020 ident: 2022031607010531100_bib22 publication-title: J. High Energy Phys. doi: 10.1007/JHEP04(2020)058 – volume: 1809 start-page: 157 year: 2018 ident: 2022031607010531100_bib33 publication-title: J. High Energy Phys. doi: 10.1007/JHEP09(2018)157 – volume: 2020 start-page: 073B01 year: 2020 ident: 2022031607010531100_bib26 publication-title: Prog. Theor. Exp. Phys. doi: 10.1093/ptep/ptaa063 – volume: 2010 start-page: 002 year: 2020 ident: 2022031607010531100_bib20 publication-title: J. High Energy Phys. doi: 10.1007/JHEP10(2020)002 – volume: 1212 start-page: 068 year: 2012 ident: 2022031607010531100_bib9 publication-title: J. High Energy Phys. doi: 10.1007/JHEP12(2012)068 – volume: 1705 start-page: 028 year: 2017 ident: 2022031607010531100_bib30 publication-title: J. High Energy Phys. doi: 10.1007/JHEP05(2017)028 – volume: 1111 start-page: 116 year: 2011 ident: 2022031607010531100_bib28 publication-title: J. High Energy Phys. doi: 10.1007/JHEP11(2011)116 – volume: 17 start-page: 4043 year: 2002 ident: 2022031607010531100_bib48 publication-title: Int. J. Mod. Phys. A doi: 10.1142/S0217751X02010571 – volume: 0605 start-page: 034 year: 2006 ident: 2022031607010531100_bib40 publication-title: J. High Energy Phys. doi: 10.1088/1126-6708/2006/05/034 – volume: 90 start-page: 066002 year: 2014 ident: 2022031607010531100_bib14 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.90.066002 – volume: 60 start-page: 1123 year: 2012 ident: 2022031607010531100_bib35 publication-title: Fortsch. Phys. doi: 10.1002/prop.201200078 – volume: 125 start-page: 201603 year: 2020 ident: 2022031607010531100_bib19 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.125.201603 – volume: 111 start-page: 231601 year: 2013 ident: 2022031607010531100_bib11 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.231601 – volume: 351 start-page: 455 year: 1995 ident: 2022031607010531100_bib1 publication-title: Phys. Lett. B doi: 10.1016/0370-2693(95)00451-P – volume: 89 start-page: 066016 year: 2014 ident: 2022031607010531100_bib12 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.89.066016 – volume: 1204 start-page: 020 year: 2012 ident: 2022031607010531100_bib29 publication-title: J. High Energy Phys. doi: 10.1007/JHEP04(2012)020 – volume: 2101 start-page: 020 year: 2021 ident: 2022031607010531100_bib23 publication-title: J. High Energy Phys. doi: 10.1007/JHEP01(2021)020 – volume: 1111 start-page: 052 year: 2011 ident: 2022031607010531100_bib34 publication-title: J. High Energy Phys. doi: 10.1007/JHEP11(2011)052 |
SSID | ssj0001077041 |
Score | 2.2385561 |
Snippet | Abstract
The extended Drinfel’d algebra (ExDA) is the underlying symmetry of non-Abelian duality in the low-energy effective theory of string theory.... The extended Drinfel’d algebra (ExDA) is the underlying symmetry of non-Abelian duality in the low-energy effective theory of string theory. Non-Abelian... |
SourceID | proquest crossref oup |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Algebra |
Title | Half-maximal extended Drinfel’d algebras |
URI | https://www.proquest.com/docview/3171492710 |
Volume | 2022 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3LSgMxFA3abtz4Fqu1zEI3Smg6k5kkK_HRUgSrSAvdDXmC0MfYGcGlv-Hv-SUm04zFhcpANrmrm7mvc5N7ADhlRLGoYzQkMjQQiwRDRmNr7iGWmBmmqHGA_v0g6Y_w3Tgee8At99cqK59YOmo1lw4jb0eOqZuFNiBeZi_QsUa57qqn0FgHdeuCaVwD9evu4PFphbIgQhDu-BvvtnpvZ4XO7MJFpxyMuIpFP963VQ65jDK9bbDp08PganmeO2BNz3bBlk8VA2-I-R447_OJgVP-9jy14hWSHdwu3OWqyef7hwocgYcthfN9MOp1hzd96GkPoMRJp4AGKde8VIYorSk3giFBGLVlo7Gf3ZNxZBRBQoSKxsJmAJTGCVeh5JEghEcHoDabz_QhCKRmDCNpEGcG8ygRCUk0Zm4oGUJGkAa4qBSQSj8T3FFTTNJlbzpKnbpSr64GOPuWzpazMH6RC6wu_xFpVopOvdHk6eqIj_7ePgYboXuFUCIhTVArFq_6xOYGhWj5H6BV1tZ2HT6MvwCIG75h |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8JAEJ4gHPTi2_hA7UEumsal3Xa7B2NUMKhIjIHEW91nYoKAgFFv_g3_hD_KX-IubCUe1JNp0stOevg6s_OeAdihRNKwrJVPRKB9zGPs0yQy4h5ggammMtE2oH_ZiGstfH4T3eTgPeuFsWWV2Z04uqhlV9gY-X5oN3XTwCjEw96Db7dG2exqtkJjzBYX6uXJuGyDg7OK-b-lIDitNk9qvtsq4Ascl4e-RtLmBqUmUqmEaU4RJzQxXpk2jzkTUaglQZwHMom4UbBJEsVMBoKFnBAWmu9OQcGYGdRIUeG42ri6nkR1ECEIl12FPaLhfm-oeubFeHk0iHGi-77102UKYKTVTudh1pmj3tGYfxYgpzqLMOdMU88J_mAJdmusrf179nx3b8izyLlX6dtirvbH65v07MIQ43oPlqH1L4CsQL7T7ahV8ISiFCOhEaMaszDmMYkVpnYIGkKakzXYywBIhZtBbldhtNNxLjxMLVypg2sNSl_UvfHsjR_oPIPlHyTFDOjUCekgnbDU-u_H2zBda17W0_pZ42IDZgLbATGKwhQhP-w_qk1jlwz5lmMGD27_m_8-AfMb-jE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Half-maximal+extended+Drinfel%E2%80%99d+algebras&rft.jtitle=Progress+of+theoretical+and+experimental+physics&rft.au=Sakatani%2C+Yuho&rft.date=2022-01-01&rft.pub=Oxford+University+Press&rft.eissn=2050-3911&rft.volume=2022&rft.issue=1&rft_id=info:doi/10.1093%2Fptep%2Fptab166&rft.externalDocID=10.1093%2Fptep%2Fptab166 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-3911&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-3911&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-3911&client=summon |