Implementing and Evaluating Variable Soil Thickness in the Community Land Model, Version 4.5 (CLM4.5)

One of the recognized weaknesses of land surface models as used in weather and climate models is the assumption of constant soil thickness because of the lack of global estimates of bedrock depth. Using a 30-arc-s global dataset for the thickness of relatively porous, unconsolidated sediments over b...

Full description

Saved in:
Bibliographic Details
Published inJournal of climate Vol. 29; no. 9; pp. 3441 - 3461
Main Authors Brunke, Michael A., Broxton, Patrick, Pelletier, Jon, Gochis, David, Hazenberg, Pieter, Lawrence, David M., Leung, L. Ruby, Niu, Guo-Yue, Troch, Peter A., Zeng, Xubin
Format Journal Article
LanguageEnglish
Published Boston American Meteorological Society 01.05.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract One of the recognized weaknesses of land surface models as used in weather and climate models is the assumption of constant soil thickness because of the lack of global estimates of bedrock depth. Using a 30-arc-s global dataset for the thickness of relatively porous, unconsolidated sediments over bedrock, spatial variation in soil thickness is included here in version 4.5 of the Community Land Model (CLM4.5). The number of soil layers for each grid cell is determined from the average soil depth for each 0.9° latitude × 1.25° longitude grid cell. The greatest changes in the simulation with variable soil thickness are to baseflow, with the annual minimum generally occurring earlier. Smaller changes are seen in latent heat flux and surface runoff primarily as a result of an increase in the annual cycle amplitude. These changes are related to soil moisture changes that are most substantial in locations with shallow bedrock. Total water storage (TWS) anomalies are not strongly affected over most river basins since most basins contain mostly deep soils, but TWS anomalies are substantially different for a river basin with more mountainous terrain. Additionally, the annual cycle in soil temperature is partially affected by including realistic soil thicknesses resulting from changes in the vertical profile of heat capacity and thermal conductivity. However, the largest changes to soil temperature are introduced by the soil moisture changes in the variable soil thickness simulation. This implementation of variable soil thickness represents a step forward in land surface model development.
AbstractList One of the recognized weaknesses of land surface models as used in weather and climate models is the assumption of constant soil thickness because of the lack of global estimates of bedrock depth. As such, using a 30-arc-s global dataset for the thickness of relatively porous, unconsolidated sediments over bedrock, spatial variation in soil thickness is included here in version 4.5 of the Community Land Model (CLM4.5). The number of soil layers for each grid cell is determined from the average soil depth for each 0.9° latitude × 1.25° longitude grid cell. The greatest changes in the simulation with variable soil thickness are to baseflow, with the annual minimum generally occurring earlier. Smaller changes are seen in latent heat flux and surface runoff primarily as a result of an increase in the annual cycle amplitude. These changes are related to soil moisture changes that are most substantial in locations with shallow bedrock. Total water storage (TWS) anomalies are not strongly affected over most river basins since most basins contain mostly deep soils, but TWS anomalies are substantially different for a river basin with more mountainous terrain. Additionally, the annual cycle in soil temperature is partially affected by including realistic soil thicknesses resulting from changes in the vertical profile of heat capacity and thermal conductivity. However, the largest changes to soil temperature are introduced by the soil moisture changes in the variable soil thickness simulation. This implementation of variable soil thickness represents a step forward in land surface model development.
One of the recognized weaknesses of land surface models as used in weather and climate models is the assumption of constant soil thickness because of the lack of global estimates of bedrock depth. Using a 30-arc-s global dataset for the thickness of relatively porous, unconsolidated sediments over bedrock, spatial variation in soil thickness is included here in version 4.5 of the Community Land Model (CLM4.5). The number of soil layers for each grid cell is determined from the average soil depth for each 0.9 degree latitude 1.25 degree longitude grid cell. The greatest changes in the simulation with variable soil thickness are to baseflow, with the annual minimum generally occurring earlier. Smaller changes are seen in latent heat flux and surface runoff primarily as a result of an increase in the annual cycle amplitude. These changes are related to soil moisture changes that are most substantial in locations with shallow bedrock. Total water storage (TWS) anomalies are not strongly affected over most river basins since most basins contain mostly deep soils, but TWS anomalies are substantially different for a river basin with more mountainous terrain. Additionally, the annual cycle in soil temperature is partially affected by including realistic soil thicknesses resulting from changes in the vertical profile of heat capacity and thermal conductivity. However, the largest changes to soil temperature are introduced by the soil moisture changes in the variable soil thickness simulation. This implementation of variable soil thickness represents a step forward in land surface model development.
One of the recognized weaknesses of land surface models as used in weather and climate models is the assumption of constant soil thickness because of the lack of global estimates of bedrock depth. Using a 30-arc-s global dataset for the thickness of relatively porous, unconsolidated sediments over bedrock, spatial variation in soil thickness is included here in version 4.5 of the Community Land Model (CLM4.5). The number of soil layers for each grid cell is determined from the average soil depth for each 0.9° latitude × 1.25° longitude grid cell. The greatest changes in the simulation with variable soil thickness are to baseflow, with the annual minimum generally occurring earlier. Smaller changes are seen in latent heat flux and surface runoff primarily as a result of an increase in the annual cycle amplitude. These changes are related to soil moisture changes that are most substantial in locations with shallow bedrock. Total water storage (TWS) anomalies are not strongly affected over most river basins since most basins contain mostly deep soils, but TWS anomalies are substantially different for a river basin with more mountainous terrain. Additionally, the annual cycle in soil temperature is partially affected by including realistic soil thicknesses resulting from changes in the vertical profile of heat capacity and thermal conductivity. However, the largest changes to soil temperature are introduced by the soil moisture changes in the variable soil thickness simulation. This implementation of variable soil thickness represents a step forward in land surface model development.
Abstract One of the recognized weaknesses of land surface models as used in weather and climate models is the assumption of constant soil thickness because of the lack of global estimates of bedrock depth. Using a 30-arc-s global dataset for the thickness of relatively porous, unconsolidated sediments over bedrock, spatial variation in soil thickness is included here in version 4.5 of the Community Land Model (CLM4.5). The number of soil layers for each grid cell is determined from the average soil depth for each 0.9° latitude × 1.25° longitude grid cell. The greatest changes in the simulation with variable soil thickness are to baseflow, with the annual minimum generally occurring earlier. Smaller changes are seen in latent heat flux and surface runoff primarily as a result of an increase in the annual cycle amplitude. These changes are related to soil moisture changes that are most substantial in locations with shallow bedrock. Total water storage (TWS) anomalies are not strongly affected over most river basins since most basins contain mostly deep soils, but TWS anomalies are substantially different for a river basin with more mountainous terrain. Additionally, the annual cycle in soil temperature is partially affected by including realistic soil thicknesses resulting from changes in the vertical profile of heat capacity and thermal conductivity. However, the largest changes to soil temperature are introduced by the soil moisture changes in the variable soil thickness simulation. This implementation of variable soil thickness represents a step forward in land surface model development.
Author Broxton, Patrick
Hazenberg, Pieter
Niu, Guo-Yue
Lawrence, David M.
Leung, L. Ruby
Pelletier, Jon
Brunke, Michael A.
Gochis, David
Troch, Peter A.
Zeng, Xubin
Author_xml – sequence: 1
  givenname: Michael A.
  surname: Brunke
  fullname: Brunke, Michael A.
  organization: Department of Atmospheric Sciences, The University of Arizona, Tucson, Arizona
– sequence: 2
  givenname: Patrick
  surname: Broxton
  fullname: Broxton, Patrick
  organization: Department of Atmospheric Sciences, The University of Arizona, Tucson, Arizona
– sequence: 3
  givenname: Jon
  surname: Pelletier
  fullname: Pelletier, Jon
  organization: Department of Geosciences, The University of Arizona, Tucson, Arizona
– sequence: 4
  givenname: David
  surname: Gochis
  fullname: Gochis, David
  organization: National Center for Atmospheric Research, Boulder, Colorado
– sequence: 5
  givenname: Pieter
  surname: Hazenberg
  fullname: Hazenberg, Pieter
  organization: Department of Atmospheric Sciences, The University of Arizona, Tucson, Arizona
– sequence: 6
  givenname: David M.
  surname: Lawrence
  fullname: Lawrence, David M.
  organization: National Center for Atmospheric Research, Boulder, Colorado
– sequence: 7
  givenname: L. Ruby
  surname: Leung
  fullname: Leung, L. Ruby
  organization: Pacific Northwest National Laboratory, Richland, Washington
– sequence: 8
  givenname: Guo-Yue
  surname: Niu
  fullname: Niu, Guo-Yue
  organization: Department of Hydrology and Water Resources, The University of Arizona, Tucson, Arizona
– sequence: 9
  givenname: Peter A.
  surname: Troch
  fullname: Troch, Peter A.
  organization: Department of Hydrology and Water Resources, The University of Arizona, Tucson, Arizona
– sequence: 10
  givenname: Xubin
  surname: Zeng
  fullname: Zeng, Xubin
  organization: Department of Atmospheric Sciences, The University of Arizona, Tucson, Arizona
BackLink https://www.osti.gov/servlets/purl/1327090$$D View this record in Osti.gov
BookMark eNpdkUFv1DAUhC1UJLYLdy5IFlxaiSzPjh07RxRaWJSKA6VXy-u8sF4ce4kTpP57siziwGk00jej9zSX5CKmiIS8ZLBhTMl3Bxd80RVMFlCC2rAnZMUkhwKE4BdkBboWhVZSPiOXOR8AGK8AVgS3wzHggHHy8Tu1saM3v2yY7R_7YEdvdwHp1-QDvd979yNiztRHOu2RNmkY5uinR9qegnepw_CWPuCYfYpUbCS9atq7Ra-fk6e9DRlf_NU1-XZ7c998KtovH7fN-7ZwomJTgVaw3Q5Ep_sOlWBVh30FqFzvRF2VggHnfa01asutsrLTutZ2xyzTSlRlX67J63NvypM32fkJ3d6lGNFNhpVcQQ0LdHWGjmP6OWOezOCzwxBsxDRns5QpLQRUfEHf_Ice0jzG5QXDlFYMtCjlQsGZcmPKecTeHEc_2PHRMDCnccznpt2aD4ZJcxpnuWRNXp0jhzyl8R_Pq1JLIevyN2jZi0I
CitedBy_id crossref_primary_10_1029_2018WR023903
crossref_primary_10_1029_2021WR030800
crossref_primary_10_1029_2021EF002083
crossref_primary_10_1007_s00704_023_04487_0
crossref_primary_10_1029_2018MS001583
crossref_primary_10_1016_j_aosl_2024_100485
crossref_primary_10_1175_JHM_D_18_0025_1
crossref_primary_10_5194_soil_5_137_2019
crossref_primary_10_5194_gmd_15_3405_2022
crossref_primary_10_3390_cli8060077
crossref_primary_10_1029_2023MS003822
crossref_primary_10_5194_hess_24_4971_2020
crossref_primary_10_1175_JCLI_D_18_0611_1
crossref_primary_10_1029_2022JD037218
crossref_primary_10_1007_s00477_023_02386_4
crossref_primary_10_1038_s41561_020_0596_z
crossref_primary_10_3390_rs10122038
crossref_primary_10_1029_2018GB006141
crossref_primary_10_5194_gmd_11_4085_2018
crossref_primary_10_5194_gmd_13_1663_2020
crossref_primary_10_5194_gmd_15_5021_2022
crossref_primary_10_1073_pnas_1800141115
crossref_primary_10_1175_JHM_D_22_0051_1
crossref_primary_10_5194_gmd_17_143_2024
crossref_primary_10_5194_hess_22_3295_2018
crossref_primary_10_3390_land11010126
crossref_primary_10_1002_2016MS000686
crossref_primary_10_1002_hyp_11627
crossref_primary_10_1016_j_earscirev_2020_103419
crossref_primary_10_5194_nhess_20_2791_2020
crossref_primary_10_1029_2019JD030893
crossref_primary_10_1007_s12040_020_1340_1
crossref_primary_10_1029_2020MS002440
crossref_primary_10_1002_hyp_13568
crossref_primary_10_1029_2019MS001916
crossref_primary_10_1016_S2095_3119_21_63692_4
crossref_primary_10_1029_2018MS001334
crossref_primary_10_1016_j_rse_2017_06_026
crossref_primary_10_1175_JHM_D_19_0280_1
crossref_primary_10_1002_2016WR020283
crossref_primary_10_5194_bg_19_3395_2022
Cites_doi 10.1029/2008WR007319
10.5067/TELND-NC005
10.1175/2008JHM1011.1
10.1007/s00382-010-0746-x
10.1029/1998GL900216
10.1016/S0309-1708(01)00021-5
10.1029/2008WR007474
10.1175/JHM540.1
10.1007/BF00329030
10.1016/j.jhydrol.2004.04.019
10.1002/hyp.3360090311
10.1088/0022-3727/33/6/311
10.1130/B26283.1
10.1002/2014WR016842
10.1175/1087-3562(1998)002<0001:ACUSMS>2.3.CO;2
10.1029/2006JD007522
10.1007/s00382-007-0278-1
10.1029/2002JD003090
10.1061/(ASCE)1084-0699(2006)11:2(123)
10.1029/2001JD000392
10.1016/0165-232X(81)90041-0
10.3894/JAMES.2009.1.5
10.1029/2012WR012452
10.1029/2007JD009087
10.1073/pnas.0508785102
10.1029/2012JD017539
10.1029/2006JD008112
10.1175/JCLI3330.1
10.1029/1998WR900071
10.1002/2015MS000526
10.1029/2008JD010756
10.1029/2005JD006111
10.1029/2011WR011453
10.1016/j.jaridenv.2009.11.002
10.1029/2007GL029804
10.1029/2005GL025285
10.1002/2013JD020398
10.1029/98JD01721
10.3732/ajb.92.3.443
10.1029/2005GL022964
10.1016/j.envexpbot.2011.11.025
10.1038/372666a0
10.1029/2011RG000383
10.1126/science.1229881
10.1175/1525-7541(2001)002<0525:GVRDFL>2.0.CO;2
ContentType Journal Article
Copyright 2016 American Meteorological Society
Copyright American Meteorological Society May 1, 2016
Copyright_xml – notice: 2016 American Meteorological Society
– notice: Copyright American Meteorological Society May 1, 2016
CorporateAuthor Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
CorporateAuthor_xml – name: Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
DBID AAYXX
CITATION
3V.
7QH
7TG
7UA
7X2
7XB
88F
88I
8AF
8FE
8FG
8FH
8FK
8G5
ABUWG
AFKRA
ARAPS
ATCPS
AZQEC
BEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
GUQSH
H96
HCIFZ
KL.
L.G
M0K
M1Q
M2O
M2P
MBDVC
P5Z
P62
PATMY
PCBAR
PQEST
PQQKQ
PQUKI
PYCSY
Q9U
S0X
OIOZB
OTOTI
DOI 10.1175/jcli-d-15-0307.1
DatabaseName CrossRef
ProQuest Central (Corporate)
Aqualine
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Agricultural Science Collection
ProQuest Central (purchase pre-March 2016)
Military Database (Alumni Edition)
Science Database (Alumni Edition)
STEM Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
eLibrary
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Research Library Prep
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Agriculture Science Database
Military Database
Proquest Research Library
Science Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
ProQuest Central Basic
SIRS Editorial
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
Agricultural Science Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Research Library Prep
ProQuest Central Student
Technology Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SIRS Editorial
elibrary
ProQuest AP Science
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Military Collection
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Research Library
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Technology Collection
ProQuest Military Collection (Alumni Edition)
ProQuest SciTech Collection
Aqualine
Environmental Science Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Science Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Central (Alumni)
DatabaseTitleList
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Agricultural Science Database
CrossRef

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Environmental Sciences
EISSN 1520-0442
EndPage 3461
ExternalDocumentID 1327090
4046697281
10_1175_JCLI_D_15_0307_1
26385459
Genre Feature
GroupedDBID -~X
29K
2WC
3V.
4.4
5GY
7X2
7XC
85S
88I
8AF
8FE
8FG
8FH
8G5
8R4
8R5
ABBHK
ABDBF
ABDNZ
ABUWG
ABXSQ
ACGFO
ACGOD
ACIHN
ADACV
ADULT
AEAQA
AEKFB
AENEX
AEUPB
AFKRA
AFRAH
AIFVT
ALMA_UNASSIGNED_HOLDINGS
ALQLQ
APEBS
ARAPS
ATCPS
AZQEC
BCU
BEC
BENPR
BES
BGLVJ
BHPHI
BKSAR
BLC
BPHCQ
CCPQU
CS3
D-I
D1K
DU5
DWQXO
E3Z
EAD
EAP
EAS
EAU
EBS
EDH
EJD
EMK
EPL
EQZMY
EST
ESX
F5P
F8P
FRP
GNUQQ
GUQSH
H13
HCIFZ
H~9
I-F
IZHOT
JAAYA
JENOY
JKQEH
JLEZI
JLXEF
JPL
JSODD
JST
K6-
LK5
M0K
M1Q
M2O
M2P
M2Q
M7R
MV1
OK1
P2P
P62
PATMY
PCBAR
PQQKQ
PROAC
PYCSY
Q2X
QF4
QM9
QN7
QO4
RWA
RWE
RWL
RXW
S0X
SA0
SJFOW
SWMRO
TAE
TN5
TR2
TUS
U5U
UNMZH
XJT
~02
AAYXX
CITATION
7QH
7TG
7UA
7XB
8FK
C1K
F1W
H96
KL.
L.G
MBDVC
PQEST
PQUKI
Q9U
ABPTK
ABQIS
ADBSO
AIRJO
OIOZB
OTOTI
ID FETCH-LOGICAL-c461t-ea41bb04d8fde7416def60e7cfc496341022f988e8a2a7a5d8898ab1a187463f3
IEDL.DBID 8FG
ISSN 0894-8755
IngestDate Fri May 19 00:52:34 EDT 2023
Fri Oct 25 00:06:01 EDT 2024
Fri Nov 08 08:07:41 EST 2024
Fri Aug 23 01:02:50 EDT 2024
Sun Oct 13 11:57:26 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c461t-ea41bb04d8fde7416def60e7cfc496341022f988e8a2a7a5d8898ab1a187463f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
National Aeronautics and Space Administration (NASA)
National Science Foundation (NSF)
AC05-76RL01830; SC0006773; NNX13AK82A; AGS-0944101
PNNL-SA-109797
USDOE Office of Science (SC), Biological and Environmental Research (BER)
OpenAccessLink https://www.osti.gov/servlets/purl/1327090
PQID 1787108435
PQPubID 32902
PageCount 21
ParticipantIDs osti_scitechconnect_1327090
proquest_miscellaneous_1877844062
proquest_journals_1787108435
crossref_primary_10_1175_JCLI_D_15_0307_1
jstor_primary_26385459
PublicationCentury 2000
PublicationDate 2016-05-01
PublicationDateYYYYMMDD 2016-05-01
PublicationDate_xml – month: 05
  year: 2016
  text: 2016-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Boston
PublicationPlace_xml – name: Boston
– name: United States
PublicationTitle Journal of climate
PublicationYear 2016
Publisher American Meteorological Society
Publisher_xml – name: American Meteorological Society
References Woolhiser (2020061923074508200_bib35) 2006; 11
Hazenberg (2020061923074508200_bib12) 2015; 51
Anyah (2020061923074508200_bib1) 2008; 113
Pelletier (2020061923074508200_bib27) 2013; 49
Clauser (2020061923074508200_bib4) 1995
Fan (2020061923074508200_bib48) 2013; 339
Shabbir (2020061923074508200_bib45) 2000; 33D
Rossatto (2020061923074508200_bib32) 2012; 77
Yeh (2020061923074508200_bib36) 2005; 18
Nepstad (2020061923074508200_bib23) 1994; 372
Jiang (2020061923074508200_bib13) 2009; 114
Miguez-Macho (2020061923074508200_bib21) 2007; 112
Canadell (2020061923074508200_bib2) 1996; 108
Miller (2020061923074508200_bib22) 1998; 2
York (2020061923074508200_bib38) 2002; 25
Miguez-Macho (2020061923074508200_bib20) 2012; 117
Pelletier (2020061923074508200_bib28) 2009; 45
Gulden (2020061923074508200_bib10) 2007; 34
Niu (2020061923074508200_bib24) 2007; 112
Qian (2020061923074508200_bib29) 2006; 7
Tesfa (2020061923074508200_bib34) 2009; 45
Chen (2020061923074508200_bib44) 2005; 32
Koirala (2020061923074508200_bib14) 2014; 119
Lawrence (2020061923074508200_bib16) 2008; 30
Orellana (2020061923074508200_bib26) 2012; 50
Leung (2020061923074508200_bib18) 2011; 36
Niu (2020061923074508200_bib43) 2005; 110
Landerer (2020061923074508200_bib15) 2012; 48
Zeng (2020061923074508200_bib40) 2009; 10
Lee (2020061923074508200_bib17) 2005; 102
Swenson (2020061923074508200_bib33) 2006; 33
Swenson (2020061923074508200_bib46) 2012
Decker (2020061923074508200_bib5) 2009; 1
Eltahir (2020061923074508200_bib7) 1999; 35
Gutowski (2020061923074508200_bib11) 2002; 107
Yeh (2020061923074508200_bib37) 1998; 103
Pelletier (2020061923074508200_bib42) 2016
Romero-Saltos (2020061923074508200_bib31) 2005; 92
Chen (2020061923074508200_bib3) 2004; 297
Dietrich (2020061923074508200_bib6) 1995; 9
Liang (2020061923074508200_bib19) 2003; 108
Zeng (2020061923074508200_bib39) 2001; 2
Oleson (2020061923074508200_bib25) 2013
Roering (2020061923074508200_bib30) 2008; 120
Zeng (2020061923074508200_bib41) 1998; 25
Farouki (2020061923074508200_bib8) 1981; 5
Gochis (2020061923074508200_bib9) 2010; 74
References_xml – year: 2013
  ident: 2020061923074508200_bib25
  contributor:
    fullname: Oleson
– volume: 45
  start-page: W09417
  year: 2009
  ident: 2020061923074508200_bib28
  article-title: Geomorphically based predictive mapping of soil thickness in upland watersheds
  publication-title: Water Resour. Res.
  doi: 10.1029/2008WR007319
  contributor:
    fullname: Pelletier
– year: 2012
  ident: 2020061923074508200_bib46
  doi: 10.5067/TELND-NC005
  contributor:
    fullname: Swenson
– volume: 10
  start-page: 308
  year: 2009
  ident: 2020061923074508200_bib40
  article-title: Improving the numerical solution of soil moisture–based Richards equation for land models with a deep or a shallow water table
  publication-title: J. Hydrometeor.
  doi: 10.1175/2008JHM1011.1
  contributor:
    fullname: Zeng
– volume: 36
  start-page: 57
  year: 2011
  ident: 2020061923074508200_bib18
  article-title: Climate–soil–vegetation control on groundwater table dynamics and its feedbacks in a climate model
  publication-title: Climate Dyn.
  doi: 10.1007/s00382-010-0746-x
  contributor:
    fullname: Leung
– volume: 25
  start-page: 4533
  year: 1998
  ident: 2020061923074508200_bib41
  article-title: The role of root distribution for climate simulation over land
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/1998GL900216
  contributor:
    fullname: Zeng
– volume: 25
  start-page: 221
  year: 2002
  ident: 2020061923074508200_bib38
  article-title: Putting aquifers into atmospheric simulation models: An example from the Mill Creek Watershed, northeastern Kansas
  publication-title: Adv. Water Resour.
  doi: 10.1016/S0309-1708(01)00021-5
  contributor:
    fullname: York
– volume: 45
  start-page: W10438
  year: 2009
  ident: 2020061923074508200_bib34
  article-title: Modeling soil depth from topographic and land cover attributes
  publication-title: Water Resour. Res.
  doi: 10.1029/2008WR007474
  contributor:
    fullname: Tesfa
– volume: 7
  start-page: 953
  year: 2006
  ident: 2020061923074508200_bib29
  article-title: Simulation of global land surface conditions from 1948 to 2004. Part I: Forcing data and evaluations
  publication-title: J. Hydrometeor.
  doi: 10.1175/JHM540.1
  contributor:
    fullname: Qian
– volume: 108
  start-page: 583
  year: 1996
  ident: 2020061923074508200_bib2
  article-title: Maximum rooting depth of vegetation types at the global scale
  publication-title: Oecologia
  doi: 10.1007/BF00329030
  contributor:
    fullname: Canadell
– volume: 297
  start-page: 285
  year: 2004
  ident: 2020061923074508200_bib3
  article-title: Groundwater influences on soil moisture and surface evaporation
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2004.04.019
  contributor:
    fullname: Chen
– volume: 9
  start-page: 383
  year: 1995
  ident: 2020061923074508200_bib6
  article-title: A process-based model for colluvial soil depth and shallow landsliding using digital elevation data
  publication-title: Hydrol. Processes
  doi: 10.1002/hyp.3360090311
  contributor:
    fullname: Dietrich
– volume: 33D
  start-page: 658
  year: 2000
  ident: 2020061923074508200_bib45
  article-title: Thermophysical properties of consolidated porous rocks
  publication-title: J. Phys.
  doi: 10.1088/0022-3727/33/6/311
  contributor:
    fullname: Shabbir
– volume: 120
  start-page: 1248
  year: 2008
  ident: 2020061923074508200_bib30
  article-title: How well can hillslope evolution models “explain” topography? Simulating soil transport and production with high-resolution topographic data
  publication-title: Geol. Soc. Amer. Bull.
  doi: 10.1130/B26283.1
  contributor:
    fullname: Roering
– volume: 51
  start-page: 8218
  year: 2015
  ident: 2020061923074508200_bib12
  article-title: A hybrid-3D hillslope hydrological model for use in Earth system models
  publication-title: Water Resour. Res.
  doi: 10.1002/2014WR016842
  contributor:
    fullname: Hazenberg
– volume: 2
  start-page: 1
  year: 1998
  ident: 2020061923074508200_bib22
  article-title: A conterminous United States multilayer soil characteristics dataset for regional climate and hydrology modeling
  publication-title: Earth Interact.
  doi: 10.1175/1087-3562(1998)002<0001:ACUSMS>2.3.CO;2
  contributor:
    fullname: Miller
– volume: 112
  start-page: D07103
  year: 2007
  ident: 2020061923074508200_bib24
  article-title: Development of a simple groundwater model for use in climate models and evaluation with Gravity Recovery and Climate Experiment data
  publication-title: J. Geophys. Res.
  doi: 10.1029/2006JD007522
  contributor:
    fullname: Niu
– volume: 30
  start-page: 145
  year: 2008
  ident: 2020061923074508200_bib16
  article-title: Incorporating organic soil into a global climate model
  publication-title: Climate Dyn.
  doi: 10.1007/s00382-007-0278-1
  contributor:
    fullname: Lawrence
– volume: 108
  year: 2003
  ident: 2020061923074508200_bib19
  article-title: A new parameterization for surface and groundwater interactions and its impact on water budgets with the Variable Infiltration Capacity (VIC) land surface model
  publication-title: J. Geophys. Res.
  doi: 10.1029/2002JD003090
  contributor:
    fullname: Liang
– volume: 11
  start-page: 123
  year: 2006
  ident: 2020061923074508200_bib35
  article-title: Estimating infiltration in the Upper Split Wash Watershed, Yucca Mountain, Nevada
  publication-title: J. Hydrol. Eng.
  doi: 10.1061/(ASCE)1084-0699(2006)11:2(123)
  contributor:
    fullname: Woolhiser
– volume: 107
  year: 2002
  ident: 2020061923074508200_bib11
  article-title: A coupled land-atmosphere simulation program (CLASP): Calibration and validation
  publication-title: J. Geophys. Res.
  doi: 10.1029/2001JD000392
  contributor:
    fullname: Gutowski
– volume: 5
  start-page: 67
  year: 1981
  ident: 2020061923074508200_bib8
  article-title: The thermal properties of soils in cold regions
  publication-title: Cold Reg. Sci. Technol.
  doi: 10.1016/0165-232X(81)90041-0
  contributor:
    fullname: Farouki
– volume: 1
  start-page: 5
  year: 2009
  ident: 2020061923074508200_bib5
  article-title: Impact of modified Richards equation on global soil moisture simulation in the Community Land Model (CLM3.5)
  publication-title: J. Adv. Model. Earth Syst.
  doi: 10.3894/JAMES.2009.1.5
  contributor:
    fullname: Decker
– volume: 49
  start-page: 75
  year: 2013
  ident: 2020061923074508200_bib27
  article-title: A robust, two-parameter method for the extraction of drainage networks from high-resolution digital elevation models (DEMs): Evaluation using synthetic and real-world DEMs
  publication-title: Water Resour. Res.
  doi: 10.1029/2012WR012452
  contributor:
    fullname: Pelletier
– volume: 113
  start-page: D07103
  year: 2008
  ident: 2020061923074508200_bib1
  article-title: Incorporating water table dynamics in climate modeling: 3. Simulated groundwater influence on coupled land-atmosphere variability
  publication-title: J. Geophys. Res.
  doi: 10.1029/2007JD009087
  contributor:
    fullname: Anyah
– volume: 102
  start-page: 17 576
  year: 2005
  ident: 2020061923074508200_bib17
  article-title: Root functioning modifies seasonal climate
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0508785102
  contributor:
    fullname: Lee
– volume: 117
  start-page: D15113
  year: 2012
  ident: 2020061923074508200_bib20
  article-title: The role of groundwater in the Amazon water cycle: 1. Influence on seasonal streamflow, flooding and wetlands
  publication-title: J. Geophys. Res.
  doi: 10.1029/2012JD017539
  contributor:
    fullname: Miguez-Macho
– volume: 112
  start-page: D13108
  year: 2007
  ident: 2020061923074508200_bib21
  article-title: Incorporating water table dynamics in climate modeling: 1. Water table observations and equilibrium water table simulations
  publication-title: J. Geophys. Res.
  doi: 10.1029/2006JD008112
  contributor:
    fullname: Miguez-Macho
– volume: 18
  start-page: 1861
  year: 2005
  ident: 2020061923074508200_bib36
  article-title: Representation of water table dynamics in a land surface scheme. Part I: Model development
  publication-title: J. Climate
  doi: 10.1175/JCLI3330.1
  contributor:
    fullname: Yeh
– volume: 35
  start-page: 1199
  year: 1999
  ident: 2020061923074508200_bib7
  article-title: On the assymetric response of aquifer water level to floods and droughts in Illinois
  publication-title: Water Resour. Res.
  doi: 10.1029/1998WR900071
  contributor:
    fullname: Eltahir
– year: 2016
  ident: 2020061923074508200_bib42
  article-title: A gridded global data set of soil, immobile regolith, and sedimentary deposit thicknesses for regional and global land surface modeling
  publication-title: J. Adv. Model. Earth Syst.
  doi: 10.1002/2015MS000526
  contributor:
    fullname: Pelletier
– volume: 114
  start-page: D06109
  year: 2009
  ident: 2020061923074508200_bib13
  article-title: Impacts of vegetation and groundwater dynamics on warm season precipitation over the central United States
  publication-title: J. Geophys. Res.
  doi: 10.1029/2008JD010756
  contributor:
    fullname: Jiang
– volume: 110
  start-page: D21106
  year: 2005
  ident: 2020061923074508200_bib43
  article-title: A simple TOPMODEL-based runoff parameterization (SIMTOP) for use in global climate models
  publication-title: J. Geophys. Res.
  doi: 10.1029/2005JD006111
  contributor:
    fullname: Niu
– volume: 48
  start-page: W04531
  year: 2012
  ident: 2020061923074508200_bib15
  article-title: Accuracy of scaled GRACE terrestrial water storage estimates
  publication-title: Water Resour. Res.
  doi: 10.1029/2011WR011453
  contributor:
    fullname: Landerer
– volume: 74
  start-page: 564
  year: 2010
  ident: 2020061923074508200_bib9
  article-title: The impact of soil depth on land surface energy and water fluxes in the North American monsoon region
  publication-title: J. Arid Environ.
  doi: 10.1016/j.jaridenv.2009.11.002
  contributor:
    fullname: Gochis
– volume: 34
  start-page: L09402
  year: 2007
  ident: 2020061923074508200_bib10
  article-title: Improving land-surface model hydrology: Is an explicit aquifer model better than a deeper soil profile?
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2007GL029804
  contributor:
    fullname: Gulden
– volume: 33
  start-page: L08402
  year: 2006
  ident: 2020061923074508200_bib33
  article-title: Post-processing removal of correlated errors in GRACE data
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2005GL025285
  contributor:
    fullname: Swenson
– volume: 119
  start-page: 75
  year: 2014
  ident: 2020061923074508200_bib14
  article-title: Global-scale land surface hydrologic modeling with the representation of water table dynamics
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1002/2013JD020398
  contributor:
    fullname: Koirala
– volume: 103
  start-page: 19 823
  year: 1998
  ident: 2020061923074508200_bib37
  article-title: Hydroclimatology of Illinois: A comparison of monthly evaporation estimates based on atmospheric water balance and soil water balance
  publication-title: J. Geophys. Res.
  doi: 10.1029/98JD01721
  contributor:
    fullname: Yeh
– volume: 92
  start-page: 443
  year: 2005
  ident: 2020061923074508200_bib31
  article-title: Rainfall exclusion in an eastern Amazonian forest alters soil water movement and depth of water uptake
  publication-title: Amer. J. Bot.
  doi: 10.3732/ajb.92.3.443
  contributor:
    fullname: Romero-Saltos
– volume: 32
  start-page: L14405
  year: 2005
  ident: 2020061923074508200_bib44
  article-title: Low degree spherical harmonic influences on Gravity Recovery and Climate Experiment (GRACE) water storage estimates
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2005GL022964
  contributor:
    fullname: Chen
– volume: 77
  start-page: 259
  year: 2012
  ident: 2020061923074508200_bib32
  article-title: Depth of water uptake in woody plants relates to groundwater level and vegetation structure along a topographic gradient in a neotropical savanna
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2011.11.025
  contributor:
    fullname: Rossatto
– year: 1995
  ident: 2020061923074508200_bib4
  contributor:
    fullname: Clauser
– volume: 372
  start-page: 666
  year: 1994
  ident: 2020061923074508200_bib23
  article-title: The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures
  publication-title: Nature
  doi: 10.1038/372666a0
  contributor:
    fullname: Nepstad
– volume: 50
  start-page: RG2003
  year: 2012
  ident: 2020061923074508200_bib26
  article-title: Monitoring and modeling water-vegetation interactions in groundwater-dependent ecosystems
  publication-title: Rev. Geophys.
  doi: 10.1029/2011RG000383
  contributor:
    fullname: Orellana
– volume: 339
  start-page: 940
  year: 2013
  ident: 2020061923074508200_bib48
  article-title: Global patterns of groundwater table depth
  publication-title: Science
  doi: 10.1126/science.1229881
  contributor:
    fullname: Fan
– volume: 2
  start-page: 525
  year: 2001
  ident: 2020061923074508200_bib39
  article-title: Global vegetation root distribution for land modeling
  publication-title: J. Hydrometeor.
  doi: 10.1175/1525-7541(2001)002<0525:GVRDFL>2.0.CO;2
  contributor:
    fullname: Zeng
SSID ssj0012600
Score 2.465868
Snippet One of the recognized weaknesses of land surface models as used in weather and climate models is the assumption of constant soil thickness because of the lack...
Abstract One of the recognized weaknesses of land surface models as used in weather and climate models is the assumption of constant soil thickness because of...
SourceID osti
proquest
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 3441
SubjectTerms Aquifers
Base flow
Bedrock
Climate models
ENVIRONMENTAL SCIENCES
Freshwater
General circulation models
GEOSCIENCES
Groundwater
Herbivores
Laboratories
Land surface model
Latent heat
Models and modeling
River basins
Rivers
Soil depth
Soil moisture
Soil temperature
Surface runoff
Thermal conductivity
Topography
Water storage
Title Implementing and Evaluating Variable Soil Thickness in the Community Land Model, Version 4.5 (CLM4.5)
URI https://www.jstor.org/stable/26385459
https://www.proquest.com/docview/1787108435
https://search.proquest.com/docview/1877844062
https://www.osti.gov/servlets/purl/1327090
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5Be-GCeFWElspICFEJt3Fsx84JwXaXUu1WCFrUm-V1HFixSkqbHvj3zHizixASp8iKk8N4ZvzNG-Bl0ZQm17niQUrPEd9W3MpIvGyDl7JWXlPt8OysPLlQp5f6cnC43QxplWudmBR13QXykR8J5CyRW7zd31795DQ1iqKrwwiNu7AtCmPI-LKTD5soAjVfTyiyUij1Wm_ClProdDT9yI-50Jy4_FD8dS2tMhNRSXcoZv8o6XTzTB7A_QEysnerM34Id2L7CLIZot3uOjnF2Ss2Wi4QeqbVY4ip5W_KA2q_Md_WbDz09MblVzSOqVyKfekWS3b-fRF-kLZji5YhFmRDwUj_i03pQxqVtnzDBq8aU4eavR5NZ_g8eAIXk_H56IQP4xR4UKXoefRKzOe5qm1TRwJidWzKPJrQBIViqMj2aypro_WFN17X1lbWz4WnsX2lbOQObLVdG58Cs1Z5FOSIHOCVkU2lVJPrWhYyll6VRQYHa2q6q1XXDJesDaMdUd4dO6EdUd6JDHYSuTcbC1QJiOuqDHaJ_g6hAPWzDZT4E3qH5rPJqzyDvfWxuEHsbtwfJsngxeY1CgxFQXwbu1vcY42xCnFM8ez_v9iFe4iOylV24x5s9de38TkikH6-n9hsH7bfj88-ff4NUe3XNw
link.rule.ids 230,315,783,787,888,12777,21400,27936,27937,33385,33386,33756,33757,43612,43817,74369,74636
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BOcCl4lURWsBICFEJt3FsJ84JoW2Xbcn2whb1Znkdp6y6SkqbHvj3zHizixASp8iKk8N4Ht94XgDvsiYvUp0q7qV0HPFtyY0MxMvGOylr5TTVDk_P8sm5Or3QF8OF2-2QVrnWiVFR152nO_JDgZwlUoPW_dP1T05Toyi6OozQuA8PlERbTZXi4y-bKAI1X48oslQo9VpvwpT68HRUnfAjLjQnLj8Qf5mlVWYiKukOxewfJR0tz_gxbA-QkX1enfETuBfap5BMEe12N_FSnL1no-UCoWdcPYMQW_7GPKD2krm2ZsdDT29cfkfnmMql2LdusWSzHwt_RdqOLVqGWJANBSP9L1bRhzQqbfmRDbdqTB1o9mFUTfG5_xzOx8ez0YQP4xS4V7noeXBKzOepqk1TBwJidWjyNBS-8QrFUJHv15TGBOMyVzhdG1MaNxeOxvblspE7sNV2bXgBzBjlUJADcoBThWxKpZpU1zKTIXcqzxLYX1PTXq-6ZtjobRTaEuXtkRXaEuWtSGAnknuzMUOVgLiuTGCX6G8RClA_W0-JP7636D4XaZkmsLc-FjuI3a39wyQJvN28RoGhKIhrQ3eHe0xRGIU4Jnv5_1-8gYeT2bSy1cnZ1114hEgpX2U67sFWf3MXXiEa6eevI8v9BrFv2H8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxQxEA9aQXwp9aO4ba0RRCyY3mbzsdmnInc923pXBFvpW8jtJnp47NZ2-9D_3plc7kQEn5aw2X2Y_Gbml8xkhpC3RdBlrnLJaiEcA35bMSM8YtnUTohGOoV3h6fn-uRSnl2pq5T_dJvSKlc2MRrqpqvxjHzAAVk8N-DdByGlRXwZjY-ufzHsIIWR1tRO4yF5BF5RI8LN-NM6ooCF2COjrCRYAKXWIUs1OBtOTtmIccUQ8Yf8Lxe1zFIEg92Byv1jsKMXGm-RzUQf6cflej8lD3z7jGRTYL7dTTwgp-_ocDEHGhpHz4mP5X9jTlD7nbq2ocepvjcMv8FGGa9O0a_dfEEvfszrn2j56LylwAtpujzS39MJfoht0xYfaDpho_JQ0ffDyRSeBy_I5fj4YnjCUmsFVkvNe-ad5LNZLhsTGo-krPFB576sQy1BJSXuA0NljDeucKVTjTGVcTPusIWfFkFsk422a_1LQo2RDpTaAxqcLEWopAy5akQhvHZSFxk5WEnTXi8raNi48yiVRcnbkeXKouQtz8h2FPd6YgHmAThelZFdlL8FWoC1bWtMAqp7C1vpMq_yjOytlsUmFby1fwCTkTfr16A8GBFxre_uYI4pSyOB0xQ7___Fa_IY0GYnp-efd8kTIE16mfS4Rzb6mzv_CohJP9uPiPsNDWLcvQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Implementing+and+Evaluating+Variable+Soil+Thickness+in+the+Community+Land+Model%2C+Version+4.5+%28CLM4.5%29&rft.jtitle=Journal+of+climate&rft.au=Brunke%2C+Michael+A&rft.au=Broxton%2C+Patrick&rft.au=Pelletier%2C+Jon&rft.au=Gochis%2C+David&rft.date=2016-05-01&rft.issn=0894-8755&rft.eissn=1520-0442&rft.volume=29&rft.issue=9&rft.spage=3441&rft.epage=3461&rft_id=info:doi/10.1175%2FJCLI-D-15-0307.1&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0894-8755&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0894-8755&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0894-8755&client=summon