Deep Cascade of Convolutional Neural Networks for Quantification of Enlarged Perivascular Spaces in the Basal Ganglia in Magnetic Resonance Imaging

In this paper, we present a cascaded deep convolution neural network (CNN) for assessing enlarged perivascular space (ePVS) within the basal ganglia region using T2-weighted MRI. Enlarged perivascular spaces (ePVSs) are potential biomarkers for various neurodegenerative disorders, including dementia...

Full description

Saved in:
Bibliographic Details
Published inDiagnostics (Basel) Vol. 14; no. 14; p. 1504
Main Authors Chae, Seunghye, Yang, Ehwa, Moon, Won-Jin, Kim, Jae-Hun
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.07.2024
Subjects
Online AccessGet full text
ISSN2075-4418
2075-4418
DOI10.3390/diagnostics14141504

Cover

Loading…
Abstract In this paper, we present a cascaded deep convolution neural network (CNN) for assessing enlarged perivascular space (ePVS) within the basal ganglia region using T2-weighted MRI. Enlarged perivascular spaces (ePVSs) are potential biomarkers for various neurodegenerative disorders, including dementia and Parkinson’s disease. Accurate assessment of ePVS is crucial for early diagnosis and monitoring disease progression. Our approach first utilizes an ePVS enhancement CNN to improve ePVS visibility and then employs a quantification CNN to predict the number of ePVSs. The ePVS enhancement CNN selectively enhances the ePVS areas without the need for additional heuristic parameters, achieving a higher contrast-to-noise ratio (CNR) of 113.77 compared to Tophat, Clahe, and Laplacian-based enhancement algorithms. The subsequent ePVS quantification CNN was trained and validated using fourfold cross-validation on a dataset of 76 participants. The quantification CNN attained 88% accuracy at the image level and 94% accuracy at the subject level. These results demonstrate significant improvements over traditional algorithm-based methods, highlighting the robustness and reliability of our deep learning approach. The proposed cascaded deep CNN model not only enhances the visibility of ePVS but also provides accurate quantification, making it a promising tool for evaluating neurodegenerative disorders. This method offers a novel and significant advancement in the non-invasive assessment of ePVS, potentially aiding in early diagnosis and targeted treatment strategies.
AbstractList In this paper, we present a cascaded deep convolution neural network (CNN) for assessing enlarged perivascular space (ePVS) within the basal ganglia region using T2-weighted MRI. Enlarged perivascular spaces (ePVSs) are potential biomarkers for various neurodegenerative disorders, including dementia and Parkinson’s disease. Accurate assessment of ePVS is crucial for early diagnosis and monitoring disease progression. Our approach first utilizes an ePVS enhancement CNN to improve ePVS visibility and then employs a quantification CNN to predict the number of ePVSs. The ePVS enhancement CNN selectively enhances the ePVS areas without the need for additional heuristic parameters, achieving a higher contrast-to-noise ratio (CNR) of 113.77 compared to Tophat, Clahe, and Laplacian-based enhancement algorithms. The subsequent ePVS quantification CNN was trained and validated using fourfold cross-validation on a dataset of 76 participants. The quantification CNN attained 88% accuracy at the image level and 94% accuracy at the subject level. These results demonstrate significant improvements over traditional algorithm-based methods, highlighting the robustness and reliability of our deep learning approach. The proposed cascaded deep CNN model not only enhances the visibility of ePVS but also provides accurate quantification, making it a promising tool for evaluating neurodegenerative disorders. This method offers a novel and significant advancement in the non-invasive assessment of ePVS, potentially aiding in early diagnosis and targeted treatment strategies.
In this paper, we present a cascaded deep convolution neural network (CNN) for assessing enlarged perivascular space (ePVS) within the basal ganglia region using T2-weighted MRI. Enlarged perivascular spaces (ePVSs) are potential biomarkers for various neurodegenerative disorders, including dementia and Parkinson's disease. Accurate assessment of ePVS is crucial for early diagnosis and monitoring disease progression. Our approach first utilizes an ePVS enhancement CNN to improve ePVS visibility and then employs a quantification CNN to predict the number of ePVSs. The ePVS enhancement CNN selectively enhances the ePVS areas without the need for additional heuristic parameters, achieving a higher contrast-to-noise ratio (CNR) of 113.77 compared to Tophat, Clahe, and Laplacian-based enhancement algorithms. The subsequent ePVS quantification CNN was trained and validated using fourfold cross-validation on a dataset of 76 participants. The quantification CNN attained 88% accuracy at the image level and 94% accuracy at the subject level. These results demonstrate significant improvements over traditional algorithm-based methods, highlighting the robustness and reliability of our deep learning approach. The proposed cascaded deep CNN model not only enhances the visibility of ePVS but also provides accurate quantification, making it a promising tool for evaluating neurodegenerative disorders. This method offers a novel and significant advancement in the non-invasive assessment of ePVS, potentially aiding in early diagnosis and targeted treatment strategies.In this paper, we present a cascaded deep convolution neural network (CNN) for assessing enlarged perivascular space (ePVS) within the basal ganglia region using T2-weighted MRI. Enlarged perivascular spaces (ePVSs) are potential biomarkers for various neurodegenerative disorders, including dementia and Parkinson's disease. Accurate assessment of ePVS is crucial for early diagnosis and monitoring disease progression. Our approach first utilizes an ePVS enhancement CNN to improve ePVS visibility and then employs a quantification CNN to predict the number of ePVSs. The ePVS enhancement CNN selectively enhances the ePVS areas without the need for additional heuristic parameters, achieving a higher contrast-to-noise ratio (CNR) of 113.77 compared to Tophat, Clahe, and Laplacian-based enhancement algorithms. The subsequent ePVS quantification CNN was trained and validated using fourfold cross-validation on a dataset of 76 participants. The quantification CNN attained 88% accuracy at the image level and 94% accuracy at the subject level. These results demonstrate significant improvements over traditional algorithm-based methods, highlighting the robustness and reliability of our deep learning approach. The proposed cascaded deep CNN model not only enhances the visibility of ePVS but also provides accurate quantification, making it a promising tool for evaluating neurodegenerative disorders. This method offers a novel and significant advancement in the non-invasive assessment of ePVS, potentially aiding in early diagnosis and targeted treatment strategies.
Audience Academic
Author Yang, Ehwa
Kim, Jae-Hun
Chae, Seunghye
Moon, Won-Jin
Author_xml – sequence: 1
  givenname: Seunghye
  surname: Chae
  fullname: Chae, Seunghye
– sequence: 2
  givenname: Ehwa
  surname: Yang
  fullname: Yang, Ehwa
– sequence: 3
  givenname: Won-Jin
  surname: Moon
  fullname: Moon, Won-Jin
– sequence: 4
  givenname: Jae-Hun
  surname: Kim
  fullname: Kim, Jae-Hun
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39061641$$D View this record in MEDLINE/PubMed
BookMark eNptkstu1DAUQCNUREvpFyAhS2zYTIlfcbwsQykjlTesozvOdfCQ2FM7KeI7-GGcmVIVVHth--r4XD_u4-LAB49F8ZSWp5zr8mXroPMhjc4kKnKXpXhQHLFSyYUQtD64Mz8sTlLalLlpymsmHxWH2VDRStCj4vdrxC1ZQjLQIgmWLIO_Dv00uuChJ-9xirth_Bnij0RsiOTTBH501hmYoXnPue8hdtiSjxjddXZNeU2-bMFgIs6T8TuSV5Cy6AJ81zuYg-_yBTCfn3zGlHN5g2Q1QOd896R4aKFPeHIzHhff3px_Xb5dXH64WC3PLhdGVHRcIAWr0Ji11IwxMKCskratWC2wrWytJUpZo-CGUav0up3nrGR1q-paM-THxWrvbQNsmm10A8RfTQDX7AIhdg3EfMIeGxSgtYaKtgyFFDrLgYEWSlHU2Z1dL_aubQxXE6axGVwy2PfgMUyp4WUtaf4lzjP6_D90E6aYX3tHCaWz_w7VQc7vvA1jBDNLm7O65KpSVIpMnd5DwfyZgzO5ZKzL8X82PLtJPq0HbG9v_bciMsD3gIkhpYj2FqFlM5dec0_p8T-138zj
Cites_doi 10.1038/nrneurol.2010.4
10.1007/s00330-022-08649-y
10.3233/JAD-2010-100378
10.1007/978-3-319-24574-4_28
10.1093/brain/awx003
10.1002/brb3.1219
10.1007/s00330-023-10122-3
10.1109/IEMBS.2008.4650064
10.1007/s00330-008-1202-8
10.1111/ijs.12054
10.1049/el:20000873
10.1002/jmri.24047
10.1016/S0734-189X(87)80186-X
10.1093/cvr/cvy113
10.1006/cgip.1993.1034
10.1161/STROKEAHA.111.000620
10.1109/ACCESS.2019.2896911
10.1159/000375153
10.1016/j.ynirp.2023.100162
10.1016/j.procs.2016.07.011
10.1016/S1474-4422(13)70124-8
10.1177/0271678X211002279
10.1016/j.neuroimage.2016.03.076
10.3390/app11209398
10.2174/1567202611666140310102248
10.21037/qims-21-705
10.1007/s10571-016-0343-6
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
NPM
3V.
7XB
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
M2O
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOA
DOI 10.3390/diagnostics14141504
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Student
Research Library Prep
Research Library
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef

PubMed
Publicly Available Content Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2075-4418
ExternalDocumentID oai_doaj_org_article_e4a999a61d2e4549895a2a94771e979b
A803767154
39061641
10_3390_diagnostics14141504
Genre Journal Article
GeographicLocations South Korea
GeographicLocations_xml – name: South Korea
GroupedDBID 53G
5VS
8G5
AADQD
AAFWJ
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BCNDV
BENPR
BPHCQ
CCPQU
CITATION
DWQXO
EBD
ESX
GNUQQ
GROUPED_DOAJ
GUQSH
HYE
IAO
IHR
ITC
KQ8
M2O
M48
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RPM
3V.
NPM
PMFND
7XB
8FK
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
ID FETCH-LOGICAL-c461t-e1af7eccb59222aca7f75fd6284ed6f895e558e43c21f79bd8e432028d78892e3
IEDL.DBID M48
ISSN 2075-4418
IngestDate Wed Aug 27 01:24:09 EDT 2025
Thu Sep 04 15:40:48 EDT 2025
Mon Jun 30 17:27:00 EDT 2025
Tue Jun 17 22:07:25 EDT 2025
Tue Jun 10 21:00:14 EDT 2025
Thu Jan 02 22:29:12 EST 2025
Tue Jul 01 03:44:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords deep learning
image enhancement
quantification
enlarged perivascular spaces
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c461t-e1af7eccb59222aca7f75fd6284ed6f895e558e43c21f79bd8e432028d78892e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/diagnostics14141504
PMID 39061641
PQID 3084795493
PQPubID 2032410
ParticipantIDs doaj_primary_oai_doaj_org_article_e4a999a61d2e4549895a2a94771e979b
proquest_miscellaneous_3085115033
proquest_journals_3084795493
gale_infotracmisc_A803767154
gale_infotracacademiconefile_A803767154
pubmed_primary_39061641
crossref_primary_10_3390_diagnostics14141504
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Diagnostics (Basel)
PublicationTitleAlternate Diagnostics (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Liu (ref_9) 2022; 12
Zhu (ref_14) 2010; 22
Wang (ref_11) 2022; 32
Potter (ref_3) 2015; 10
Zhang (ref_15) 2023; 34
Rashid (ref_21) 2023; 3
Adams (ref_19) 2013; 44
Huijts (ref_12) 2014; 11
Piper (ref_16) 2013; 38
Zhang (ref_1) 1990; 170
Brown (ref_2) 2018; 114
Ramirez (ref_5) 2016; 36
Ballerini (ref_25) 2016; 90
ref_23
Wardlaw (ref_20) 2013; 12
ref_22
Blennow (ref_7) 2010; 6
Potter (ref_17) 2015; 39
Pizer (ref_29) 1987; 39
Braffman (ref_4) 1988; 9
Wan (ref_10) 2019; 9
Selvarajah (ref_8) 2009; 19
Neycenssac (ref_30) 1993; 55
Banerjee (ref_13) 2017; 140
ref_27
Yim (ref_6) 2022; 83
Huang (ref_18) 2021; 41
Park (ref_24) 2016; 134
Jung (ref_26) 2019; 7
Jackway (ref_28) 2000; 36
References_xml – volume: 6
  start-page: 131
  year: 2010
  ident: ref_7
  article-title: Cerebrospinal fluid and plasma biomarkers in Alzheimer disease
  publication-title: Nat. Rev. Neurol.
  doi: 10.1038/nrneurol.2010.4
– volume: 32
  start-page: 5446
  year: 2022
  ident: ref_11
  article-title: MRI-visible enlarged perivascular spaces: Imaging marker to predict cognitive impairment in older chronic insomnia patients
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-022-08649-y
– volume: 22
  start-page: 663
  year: 2010
  ident: ref_14
  article-title: High Degree of Dilated Virchow-Robin Spaces on MRI is Associated with Increased Risk of Dementia
  publication-title: J. Alzheimer’s Dis.
  doi: 10.3233/JAD-2010-100378
– ident: ref_27
  doi: 10.1007/978-3-319-24574-4_28
– volume: 83
  start-page: 538
  year: 2022
  ident: ref_6
  article-title: An Enlarged Perivascular Space: Clinical Relevance and the Role of Imaging in Aging and Neurologic Disorders
  publication-title: Taehan Yongsang Uihakhoe Chi
– volume: 140
  start-page: 1107
  year: 2017
  ident: ref_13
  article-title: MRI-visible perivascular space location is associated with Alzheimer’s disease independently of amyloid burden
  publication-title: Brain
  doi: 10.1093/brain/awx003
– volume: 170
  start-page: 111
  year: 1990
  ident: ref_1
  article-title: Interrelationships of the pia mater and the perivascular (Virchow-Robin) spaces in the human cerebrum
  publication-title: J. Anat.
– volume: 9
  start-page: 621
  year: 1988
  ident: ref_4
  article-title: Brain MR: Pathologic Correlation with Gross and Histopathology. 1. Lacunar Infarction and Virchow-Robin Spaces
  publication-title: Am. J. Neuroradiol.
– volume: 9
  start-page: e01219
  year: 2019
  ident: ref_10
  article-title: Exploring the association between Cerebral small-vessel diseases and motor symptoms in Parkinson’s disease
  publication-title: Brain Behav.
  doi: 10.1002/brb3.1219
– volume: 34
  start-page: 1314
  year: 2023
  ident: ref_15
  article-title: Glymphatic system impairment in Alzheimer’s disease: Associations with perivascular space volume and cognitive function
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-023-10122-3
– ident: ref_22
  doi: 10.1109/IEMBS.2008.4650064
– volume: 19
  start-page: 1011
  year: 2009
  ident: ref_8
  article-title: Potential surrogate markers of cerebral microvascular angiopathy in asymptomatic subjects at risk of stroke
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-008-1202-8
– volume: 10
  start-page: 376
  year: 2015
  ident: ref_3
  article-title: Enlarged Perivascular Spaces and Cerebral Small Vessel Disease
  publication-title: Int. J. Stroke
  doi: 10.1111/ijs.12054
– volume: 36
  start-page: 1194
  year: 2000
  ident: ref_28
  article-title: Improved morphological top-hat
  publication-title: Electron. Lett.
  doi: 10.1049/el:20000873
– volume: 38
  start-page: 774
  year: 2013
  ident: ref_16
  article-title: Towards the automatic computational assessment of enlarged perivascular spaces on brain magnetic resonance images: A systematic review
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.24047
– volume: 39
  start-page: 355
  year: 1987
  ident: ref_29
  article-title: Adaptive histogram equalization and its variations
  publication-title: Comput. Vis. Graph. Image Process.
  doi: 10.1016/S0734-189X(87)80186-X
– volume: 114
  start-page: 1462
  year: 2018
  ident: ref_2
  article-title: Understanding the role of the perivascular space in cerebral small vessel disease
  publication-title: Cardiovasc. Res.
  doi: 10.1093/cvr/cvy113
– volume: 55
  start-page: 447
  year: 1993
  ident: ref_30
  article-title: Contrast Enhancement Using the Laplacian-of-a-Gaussian Filter
  publication-title: CVGIP Graph. Models Image Process.
  doi: 10.1006/cgip.1993.1034
– volume: 44
  start-page: 1732
  year: 2013
  ident: ref_19
  article-title: Rating Method for Dilated Virchow–Robin Spaces on Magnetic Resonance Imaging
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.111.000620
– volume: 7
  start-page: 18382
  year: 2019
  ident: ref_26
  article-title: Enhancement of Perivascular Spaces Using Densely Connected Deep Convolutional Neural Network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2896911
– volume: 39
  start-page: 224
  year: 2015
  ident: ref_17
  article-title: Cerebral perivascular spaces visible on magnetic resonance imaging: Development of a qualitative rating scale and its observer reliability
  publication-title: Cerebrovasc. Dis.
  doi: 10.1159/000375153
– volume: 3
  start-page: 100162
  year: 2023
  ident: ref_21
  article-title: Deep learning based detection of enlarged perivascular spaces on brain MRI
  publication-title: Neuroimage Rep.
  doi: 10.1016/j.ynirp.2023.100162
– volume: 90
  start-page: 61
  year: 2016
  ident: ref_25
  article-title: Application of the Ordered Logit Model to Optimising Frangi Filter Parameters for Segmentation of Perivascular Spaces
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2016.07.011
– volume: 12
  start-page: 822
  year: 2013
  ident: ref_20
  article-title: Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(13)70124-8
– volume: 41
  start-page: 2370
  year: 2021
  ident: ref_18
  article-title: Deep white matter hyperintensity is associated with the dilation of perivascular space
  publication-title: J. Cereb. Blood Flow Metab.
  doi: 10.1177/0271678X211002279
– volume: 134
  start-page: 223
  year: 2016
  ident: ref_24
  article-title: Segmentation of perivascular spaces in 7T MR image using auto-context model with orientation-normalized features
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.03.076
– ident: ref_23
  doi: 10.3390/app11209398
– volume: 11
  start-page: 136
  year: 2014
  ident: ref_12
  article-title: Basal Ganglia Enlarged Perivascular Spaces are Linked to Cognitive Function in Patients with Cerebral Small Vessel Disease
  publication-title: Curr. Neurovasc. Res.
  doi: 10.2174/1567202611666140310102248
– volume: 12
  start-page: 1004
  year: 2022
  ident: ref_9
  article-title: Perivascular space is associated with brain atrophy in patients with multiple sclerosis
  publication-title: Quant. Imaging Med. Surg.
  doi: 10.21037/qims-21-705
– volume: 36
  start-page: 289
  year: 2016
  ident: ref_5
  article-title: Imaging the Perivascular Space as a Potential Biomarker of Neurovascular and Neurodegenerative Diseases
  publication-title: Cell. Mol. Neurobiol.
  doi: 10.1007/s10571-016-0343-6
SSID ssj0000913825
Score 2.281696
Snippet In this paper, we present a cascaded deep convolution neural network (CNN) for assessing enlarged perivascular space (ePVS) within the basal ganglia region...
SourceID doaj
proquest
gale
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 1504
SubjectTerms Algorithms
Automation
Biomarkers
Cerebrospinal fluid
Cognitive ability
Datasets
Deep learning
Dementia
Efficiency
enlarged perivascular spaces
image enhancement
Magnetic resonance imaging
Medical imaging equipment
Medical research
Nervous system diseases
Neural networks
Neurological disorders
quantification
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fi9QwEA5yD-KL-NvqKREEXyy3TZNm83i33nkKK4oe3FtI2wkI2l1ud_1H7h--b5LucqeCL7IPXdqkdDKTzDdk8o0Qr03t6tCRKSnYScnsL2WAly6pcS0MKk7aVKZz_qk5PdMfz835tVJfnBOW6YHzwB2QDsAw6N8r0ghmps4EFZy2tiJnXcurL3zetWAqrcGOufVMphmqEdcf9DlzjbmPK42fGUuzbV1RYuz_c13-DW0mr3NyT9wd4aI8zJ95X9yi4YG4PR83xB-Ky3dESzkLK05zl4soZ4vh12hN6MfUG-mScr1XEghVftmEnCCUdMJ9jocfnA_ey88wx21qqvy65Gwt-X2QwIjyKKzwoveBT_0GvjmHoHwAUvIGALN2kPzwM5U8eiTOTo6_zU7Lsc5C2emmWpdUhWihytY4oIXQBRutiX0Dz0V9EzHiZMyUdN2pKmLIe_6vAEx6xM9OUf1Y7A2LgZ4KqXUPRKQUAddosnbaAXB1unJRRQRWqhBvt0Pul5lOwyMMYQ35v2ioEEesll1T5sJON2AhfrQQ_y8LKcQbVqrnGbu-gHjjwQN8MXNf-cPphCltgCULsX-jJWZad_Px1iz8ONNXvp7Av_NeaV2IV7vH3JOz1wZabFIbw8i7Rpsn2Zx2IkHyBiFr9ex_iPpc3IFedE4n3hd764sNvQBoWrcv0_y4AsIFE14
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELagkxAvE78JDGQkJF6I1iR2Ej-htXQMpE7jx6S9RU5ymZAg6ZqWf4R_mO8cp2iAUB9SJXZk587n7-zzd0K81IlJbEU6JJtNQ2Z_CS1m6ZBSU0Khmmnp0nQuT9OTc_XhQl_4Bbfeh1WONtEZ6rqreI38MJnCjvKeVPJmdRVy1ijeXfUpNG6KPZjgXE_E3mxxevZpt8rCrJfwgQa6oQT-_WE9RLAxB3Kk8NM-Rds4JTnm_r_t8x-o080-x3fEvoeN8miQ811xg9p74tbSb4zfFz_fEq3k3PYc7i67Rs679ofXKtRjCg53cTHfvQRSlR-3dggUcrLhOov2G8eF1_IMajmGqMrPK47akl9bCawoZ7bHi95ZPv1r-eYSHeWDkJI3Api9g-T77y710QNxfrz4Mj8Jfb6FsFJptAkpsk0GkZbaADXYymZNpps6xQxGddrkRpPWOamkiqMmM2XN_2MAlBp-tIkpeSgmbdfSYyGVqoGM4piAbxRlWV4BeFUqMk3cwMGKA_F6_OTFaqDVKOCOsISKf0goEDMWy64oc2K7G936svBDrCBlgXahaXVMCoqC9trYGpVlERk0NxCvWKgFj9zNGt3zBxDQYubAKo7yKVPbAFMG4uBaSYy46vrjUS0KP-L74rd-BuLF7jHX5Ci2lrqtK6MZgSco82hQp12X0PMUrmv05P8vfypu44urIWD4QEw26y09AyzalM-97v8Cb7QNGQ
  priority: 102
  providerName: ProQuest
Title Deep Cascade of Convolutional Neural Networks for Quantification of Enlarged Perivascular Spaces in the Basal Ganglia in Magnetic Resonance Imaging
URI https://www.ncbi.nlm.nih.gov/pubmed/39061641
https://www.proquest.com/docview/3084795493
https://www.proquest.com/docview/3085115033
https://doaj.org/article/e4a999a61d2e4549895a2a94771e979b
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3bjtMwELVWuxLiBXEnsFRGQuKFQOPYSfyA0LZ0WZC6Wi6V9i1yk8kKaUlKLwi-gx_mjJNUKiwoD40SO7E948yZenxGiKcmtrEryITk0mHI7C-hg5UOKbFzKFQ1nPs0ndPT5GSm35-b8z3RZ0XtBnB1pWvH-aRmy8sXP779fI0J_4o9TrjsL8s2KI1pjSONwzA_6AFMU8JqPu3wvv80W6bc47BGBVMZAgpkLRPRv56zY608qf_fn-4_AKk3TMc3xY0OUcqjVgVuiT2qb4tr027N_I749YZoIcduxZHwsqnkuKm_dwqHeszO4X98OPhKAsTKDxvXxhB5sXGdSX3JIeOlPIPG9tGr8tOCA7rkl1oCRsqRW-FBbx1vDHZ8cYqO8h5JyWsETOxB8t1XnxXprpgdTz6PT8IuFUNY6CRahxS5KoW058YCULjCpVVqqjKBcaMyqTJryJiMdFyoqErtvORzBexSwsW2iuJ7Yr9uanogpNYlQJNSBOijKU2zApis0JGtVAXfSwXieT_k-aJl3MjhqbCE8iskFIgRi2VblOmy_YVmeZF3sy8n7QCEoYSlIg2PGO11ylmdphFZNDcQz1ioOavZeonudXsT0GKmx8qPsiGz3gBuBuJwpyQmY7F7u1eLvNflPB4CAvByahyIJ9vbXJMD3GpqNr6MYXAeo8z9Vp22XULPE3i10cP_v_uRuI4R120s8aHYXy839BiIaT0fiIPR5PTs48D_4zDwc-I3TZgVXA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VVgIuiDeBAkYCcSFq4jjJ-oBQd7tll3ZXBVqpN9dJJggJkmUfIH4H_4PfyIyTLCogbtUeskpsy868vonHMwBP40hHNsfYR5sGPmd_8S1ZaR8TnRFDlUHmynROpsnoRL05jU834Gd3FobDKjud6BR1Uef8jXwnCkiP8p5U9Gr2xeeqUby72pXQaNjiAL9_I5dt8XK8R_R9JuX-8Hgw8tuqAn6uknDpY2jLlCaexZpso81tWqZxWSSkp7FIyp6OMY57qKJchmWqs4L_SzLDBXmLWmJE416CLYIZmqRoqz-cHr1bf9XhLJvkczXpjaJIBztFEzHHOZdDRb-4LQnXmUBXKeBve_AHynXWbv86XGthqtht-OoGbGB1Ey5P2o34W_BjD3EmBnbB4fWiLsWgrr62XEz9OOWHu7gY84UgZCzermwTmOR4gfsMq08ch16IIxKDLiRWvJ9xlJj4WAnCpqJvFzTQa8unjS3fnNBC-eCl4I0HzhaCYvzZlVq6DScXQok7sFnVFd4DoVRBSExKJDylME17OQG9XIW6lCU5dNKDF90rN7MmjYch94cpZP5BIQ_6TJZ1U87B7W7U8w-mFWmDyhK6Js4uJCpiTJqvlVarNA1R03Q9eM5ENawplnNaXnvggWbMObfMbi_gVDqEYT3YPteSJDw__7hjC9NqmIX5LQ8ePFk_5p4cNVdhvXJtYkb8EbW527DTekm08oRc5fD-_wd_DFdGx5NDczieHjyAq_T2VROsvA2by_kKHxIkW2aPWjkQcHbRovcL2TBKeg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEB6VVKp4Qdy4FFgkEC9Ysdfr6wGh5qKhJApHpb65a3sWIRU7xAmI38G_4dcx4yOogHir8uDI3l3tem7vtzMAT3wv9nSGvo06dGzO_mJrstI2BnFKDGWctC7TOZsHRyfq9al_ugM_u7MwDKvsdGKtqPMy42_kfc8hPcp7Ul7ftLCIxWjycvnF5gpSvNPaldNoWOQYv3-j8K16MR0RrZ9KORl_GB7ZbYUBO1OBu7bR1SakRaR-THZSZzo0oW_ygHQ25oGJYh99P0LlZdI1YZzm_F-SSc4pcowlejTuFdgNySpGPdgdjOeLd9svPJxxk-KvJtWR58VOP2_Qc5x_2VX089vycJ05rKsG_G0b_vB4a8s3uQ7XWpdVHDY8dgN2sLgJe7N2U_4W_BghLsVQVwy1F6URw7L42nI09eP0H_WlxptXgrxk8XajG5BSzRfcZ1ycMyY9FwsSiQ4eK94vGTEmPhWC_FQx0BUN9ErzyWPNN2e0UD6EKXgTgjOHoJh-rssu3YaTS6HEHegVZYH3QCiVk1cmJZJvpTAMo4ycvky5sZGGgjtpwfPulSfLJqVHQqEQUyj5B4UsGDBZtk05H3d9o1x9TFrxTlBp8rSJy3OJipiU5quljlUYuhjTdC14xkRNWGusV7S89vADzZjzbyWHkcNpdcifteDgQkuS9uzi444tklbbVMlv2bDg8fYx92QEXYHlpm7js_fvUZu7DTttl0QrDyhsdvf_P_gj2CORS95M58f34Sq9fNXglg-gt15t8AF5Z-v0YSsGAs4uW_J-Af_WTqY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Cascade+of+Convolutional+Neural+Networks+for+Quantification+of+Enlarged+Perivascular+Spaces+in+the+Basal+Ganglia+in+Magnetic+Resonance+Imaging&rft.jtitle=Diagnostics+%28Basel%29&rft.au=Chae%2C+Seunghye&rft.au=Yang%2C+Ehwa&rft.au=Moon%2C+Won-Jin&rft.au=Kim%2C+Jae-Hun&rft.date=2024-07-01&rft.pub=MDPI+AG&rft.issn=2075-4418&rft.eissn=2075-4418&rft.volume=14&rft.issue=14&rft_id=info:doi/10.3390%2Fdiagnostics14141504&rft.externalDocID=A803767154
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-4418&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-4418&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-4418&client=summon