Deep Cascade of Convolutional Neural Networks for Quantification of Enlarged Perivascular Spaces in the Basal Ganglia in Magnetic Resonance Imaging
In this paper, we present a cascaded deep convolution neural network (CNN) for assessing enlarged perivascular space (ePVS) within the basal ganglia region using T2-weighted MRI. Enlarged perivascular spaces (ePVSs) are potential biomarkers for various neurodegenerative disorders, including dementia...
Saved in:
Published in | Diagnostics (Basel) Vol. 14; no. 14; p. 1504 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
01.07.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2075-4418 2075-4418 |
DOI | 10.3390/diagnostics14141504 |
Cover
Loading…
Abstract | In this paper, we present a cascaded deep convolution neural network (CNN) for assessing enlarged perivascular space (ePVS) within the basal ganglia region using T2-weighted MRI. Enlarged perivascular spaces (ePVSs) are potential biomarkers for various neurodegenerative disorders, including dementia and Parkinson’s disease. Accurate assessment of ePVS is crucial for early diagnosis and monitoring disease progression. Our approach first utilizes an ePVS enhancement CNN to improve ePVS visibility and then employs a quantification CNN to predict the number of ePVSs. The ePVS enhancement CNN selectively enhances the ePVS areas without the need for additional heuristic parameters, achieving a higher contrast-to-noise ratio (CNR) of 113.77 compared to Tophat, Clahe, and Laplacian-based enhancement algorithms. The subsequent ePVS quantification CNN was trained and validated using fourfold cross-validation on a dataset of 76 participants. The quantification CNN attained 88% accuracy at the image level and 94% accuracy at the subject level. These results demonstrate significant improvements over traditional algorithm-based methods, highlighting the robustness and reliability of our deep learning approach. The proposed cascaded deep CNN model not only enhances the visibility of ePVS but also provides accurate quantification, making it a promising tool for evaluating neurodegenerative disorders. This method offers a novel and significant advancement in the non-invasive assessment of ePVS, potentially aiding in early diagnosis and targeted treatment strategies. |
---|---|
AbstractList | In this paper, we present a cascaded deep convolution neural network (CNN) for assessing enlarged perivascular space (ePVS) within the basal ganglia region using T2-weighted MRI. Enlarged perivascular spaces (ePVSs) are potential biomarkers for various neurodegenerative disorders, including dementia and Parkinson’s disease. Accurate assessment of ePVS is crucial for early diagnosis and monitoring disease progression. Our approach first utilizes an ePVS enhancement CNN to improve ePVS visibility and then employs a quantification CNN to predict the number of ePVSs. The ePVS enhancement CNN selectively enhances the ePVS areas without the need for additional heuristic parameters, achieving a higher contrast-to-noise ratio (CNR) of 113.77 compared to Tophat, Clahe, and Laplacian-based enhancement algorithms. The subsequent ePVS quantification CNN was trained and validated using fourfold cross-validation on a dataset of 76 participants. The quantification CNN attained 88% accuracy at the image level and 94% accuracy at the subject level. These results demonstrate significant improvements over traditional algorithm-based methods, highlighting the robustness and reliability of our deep learning approach. The proposed cascaded deep CNN model not only enhances the visibility of ePVS but also provides accurate quantification, making it a promising tool for evaluating neurodegenerative disorders. This method offers a novel and significant advancement in the non-invasive assessment of ePVS, potentially aiding in early diagnosis and targeted treatment strategies. In this paper, we present a cascaded deep convolution neural network (CNN) for assessing enlarged perivascular space (ePVS) within the basal ganglia region using T2-weighted MRI. Enlarged perivascular spaces (ePVSs) are potential biomarkers for various neurodegenerative disorders, including dementia and Parkinson's disease. Accurate assessment of ePVS is crucial for early diagnosis and monitoring disease progression. Our approach first utilizes an ePVS enhancement CNN to improve ePVS visibility and then employs a quantification CNN to predict the number of ePVSs. The ePVS enhancement CNN selectively enhances the ePVS areas without the need for additional heuristic parameters, achieving a higher contrast-to-noise ratio (CNR) of 113.77 compared to Tophat, Clahe, and Laplacian-based enhancement algorithms. The subsequent ePVS quantification CNN was trained and validated using fourfold cross-validation on a dataset of 76 participants. The quantification CNN attained 88% accuracy at the image level and 94% accuracy at the subject level. These results demonstrate significant improvements over traditional algorithm-based methods, highlighting the robustness and reliability of our deep learning approach. The proposed cascaded deep CNN model not only enhances the visibility of ePVS but also provides accurate quantification, making it a promising tool for evaluating neurodegenerative disorders. This method offers a novel and significant advancement in the non-invasive assessment of ePVS, potentially aiding in early diagnosis and targeted treatment strategies.In this paper, we present a cascaded deep convolution neural network (CNN) for assessing enlarged perivascular space (ePVS) within the basal ganglia region using T2-weighted MRI. Enlarged perivascular spaces (ePVSs) are potential biomarkers for various neurodegenerative disorders, including dementia and Parkinson's disease. Accurate assessment of ePVS is crucial for early diagnosis and monitoring disease progression. Our approach first utilizes an ePVS enhancement CNN to improve ePVS visibility and then employs a quantification CNN to predict the number of ePVSs. The ePVS enhancement CNN selectively enhances the ePVS areas without the need for additional heuristic parameters, achieving a higher contrast-to-noise ratio (CNR) of 113.77 compared to Tophat, Clahe, and Laplacian-based enhancement algorithms. The subsequent ePVS quantification CNN was trained and validated using fourfold cross-validation on a dataset of 76 participants. The quantification CNN attained 88% accuracy at the image level and 94% accuracy at the subject level. These results demonstrate significant improvements over traditional algorithm-based methods, highlighting the robustness and reliability of our deep learning approach. The proposed cascaded deep CNN model not only enhances the visibility of ePVS but also provides accurate quantification, making it a promising tool for evaluating neurodegenerative disorders. This method offers a novel and significant advancement in the non-invasive assessment of ePVS, potentially aiding in early diagnosis and targeted treatment strategies. |
Audience | Academic |
Author | Yang, Ehwa Kim, Jae-Hun Chae, Seunghye Moon, Won-Jin |
Author_xml | – sequence: 1 givenname: Seunghye surname: Chae fullname: Chae, Seunghye – sequence: 2 givenname: Ehwa surname: Yang fullname: Yang, Ehwa – sequence: 3 givenname: Won-Jin surname: Moon fullname: Moon, Won-Jin – sequence: 4 givenname: Jae-Hun surname: Kim fullname: Kim, Jae-Hun |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39061641$$D View this record in MEDLINE/PubMed |
BookMark | eNptkstu1DAUQCNUREvpFyAhS2zYTIlfcbwsQykjlTesozvOdfCQ2FM7KeI7-GGcmVIVVHth--r4XD_u4-LAB49F8ZSWp5zr8mXroPMhjc4kKnKXpXhQHLFSyYUQtD64Mz8sTlLalLlpymsmHxWH2VDRStCj4vdrxC1ZQjLQIgmWLIO_Dv00uuChJ-9xirth_Bnij0RsiOTTBH501hmYoXnPue8hdtiSjxjddXZNeU2-bMFgIs6T8TuSV5Cy6AJ81zuYg-_yBTCfn3zGlHN5g2Q1QOd896R4aKFPeHIzHhff3px_Xb5dXH64WC3PLhdGVHRcIAWr0Ji11IwxMKCskratWC2wrWytJUpZo-CGUav0up3nrGR1q-paM-THxWrvbQNsmm10A8RfTQDX7AIhdg3EfMIeGxSgtYaKtgyFFDrLgYEWSlHU2Z1dL_aubQxXE6axGVwy2PfgMUyp4WUtaf4lzjP6_D90E6aYX3tHCaWz_w7VQc7vvA1jBDNLm7O65KpSVIpMnd5DwfyZgzO5ZKzL8X82PLtJPq0HbG9v_bciMsD3gIkhpYj2FqFlM5dec0_p8T-138zj |
Cites_doi | 10.1038/nrneurol.2010.4 10.1007/s00330-022-08649-y 10.3233/JAD-2010-100378 10.1007/978-3-319-24574-4_28 10.1093/brain/awx003 10.1002/brb3.1219 10.1007/s00330-023-10122-3 10.1109/IEMBS.2008.4650064 10.1007/s00330-008-1202-8 10.1111/ijs.12054 10.1049/el:20000873 10.1002/jmri.24047 10.1016/S0734-189X(87)80186-X 10.1093/cvr/cvy113 10.1006/cgip.1993.1034 10.1161/STROKEAHA.111.000620 10.1109/ACCESS.2019.2896911 10.1159/000375153 10.1016/j.ynirp.2023.100162 10.1016/j.procs.2016.07.011 10.1016/S1474-4422(13)70124-8 10.1177/0271678X211002279 10.1016/j.neuroimage.2016.03.076 10.3390/app11209398 10.2174/1567202611666140310102248 10.21037/qims-21-705 10.1007/s10571-016-0343-6 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION NPM 3V. 7XB 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH M2O MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U 7X8 DOA |
DOI | 10.3390/diagnostics14141504 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Student Research Library Prep Research Library Research Library (Corporate) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2075-4418 |
ExternalDocumentID | oai_doaj_org_article_e4a999a61d2e4549895a2a94771e979b A803767154 39061641 10_3390_diagnostics14141504 |
Genre | Journal Article |
GeographicLocations | South Korea |
GeographicLocations_xml | – name: South Korea |
GroupedDBID | 53G 5VS 8G5 AADQD AAFWJ AAYXX ABDBF ABUWG ACUHS ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BCNDV BENPR BPHCQ CCPQU CITATION DWQXO EBD ESX GNUQQ GROUPED_DOAJ GUQSH HYE IAO IHR ITC KQ8 M2O M48 MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RPM 3V. NPM PMFND 7XB 8FK MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO |
ID | FETCH-LOGICAL-c461t-e1af7eccb59222aca7f75fd6284ed6f895e558e43c21f79bd8e432028d78892e3 |
IEDL.DBID | M48 |
ISSN | 2075-4418 |
IngestDate | Wed Aug 27 01:24:09 EDT 2025 Thu Sep 04 15:40:48 EDT 2025 Mon Jun 30 17:27:00 EDT 2025 Tue Jun 17 22:07:25 EDT 2025 Tue Jun 10 21:00:14 EDT 2025 Thu Jan 02 22:29:12 EST 2025 Tue Jul 01 03:44:56 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Keywords | deep learning image enhancement quantification enlarged perivascular spaces |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c461t-e1af7eccb59222aca7f75fd6284ed6f895e558e43c21f79bd8e432028d78892e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/diagnostics14141504 |
PMID | 39061641 |
PQID | 3084795493 |
PQPubID | 2032410 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e4a999a61d2e4549895a2a94771e979b proquest_miscellaneous_3085115033 proquest_journals_3084795493 gale_infotracmisc_A803767154 gale_infotracacademiconefile_A803767154 pubmed_primary_39061641 crossref_primary_10_3390_diagnostics14141504 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-07-01 |
PublicationDateYYYYMMDD | 2024-07-01 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Diagnostics (Basel) |
PublicationTitleAlternate | Diagnostics (Basel) |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Liu (ref_9) 2022; 12 Zhu (ref_14) 2010; 22 Wang (ref_11) 2022; 32 Potter (ref_3) 2015; 10 Zhang (ref_15) 2023; 34 Rashid (ref_21) 2023; 3 Adams (ref_19) 2013; 44 Huijts (ref_12) 2014; 11 Piper (ref_16) 2013; 38 Zhang (ref_1) 1990; 170 Brown (ref_2) 2018; 114 Ramirez (ref_5) 2016; 36 Ballerini (ref_25) 2016; 90 ref_23 Wardlaw (ref_20) 2013; 12 ref_22 Blennow (ref_7) 2010; 6 Potter (ref_17) 2015; 39 Pizer (ref_29) 1987; 39 Braffman (ref_4) 1988; 9 Wan (ref_10) 2019; 9 Selvarajah (ref_8) 2009; 19 Neycenssac (ref_30) 1993; 55 Banerjee (ref_13) 2017; 140 ref_27 Yim (ref_6) 2022; 83 Huang (ref_18) 2021; 41 Park (ref_24) 2016; 134 Jung (ref_26) 2019; 7 Jackway (ref_28) 2000; 36 |
References_xml | – volume: 6 start-page: 131 year: 2010 ident: ref_7 article-title: Cerebrospinal fluid and plasma biomarkers in Alzheimer disease publication-title: Nat. Rev. Neurol. doi: 10.1038/nrneurol.2010.4 – volume: 32 start-page: 5446 year: 2022 ident: ref_11 article-title: MRI-visible enlarged perivascular spaces: Imaging marker to predict cognitive impairment in older chronic insomnia patients publication-title: Eur. Radiol. doi: 10.1007/s00330-022-08649-y – volume: 22 start-page: 663 year: 2010 ident: ref_14 article-title: High Degree of Dilated Virchow-Robin Spaces on MRI is Associated with Increased Risk of Dementia publication-title: J. Alzheimer’s Dis. doi: 10.3233/JAD-2010-100378 – ident: ref_27 doi: 10.1007/978-3-319-24574-4_28 – volume: 83 start-page: 538 year: 2022 ident: ref_6 article-title: An Enlarged Perivascular Space: Clinical Relevance and the Role of Imaging in Aging and Neurologic Disorders publication-title: Taehan Yongsang Uihakhoe Chi – volume: 140 start-page: 1107 year: 2017 ident: ref_13 article-title: MRI-visible perivascular space location is associated with Alzheimer’s disease independently of amyloid burden publication-title: Brain doi: 10.1093/brain/awx003 – volume: 170 start-page: 111 year: 1990 ident: ref_1 article-title: Interrelationships of the pia mater and the perivascular (Virchow-Robin) spaces in the human cerebrum publication-title: J. Anat. – volume: 9 start-page: 621 year: 1988 ident: ref_4 article-title: Brain MR: Pathologic Correlation with Gross and Histopathology. 1. Lacunar Infarction and Virchow-Robin Spaces publication-title: Am. J. Neuroradiol. – volume: 9 start-page: e01219 year: 2019 ident: ref_10 article-title: Exploring the association between Cerebral small-vessel diseases and motor symptoms in Parkinson’s disease publication-title: Brain Behav. doi: 10.1002/brb3.1219 – volume: 34 start-page: 1314 year: 2023 ident: ref_15 article-title: Glymphatic system impairment in Alzheimer’s disease: Associations with perivascular space volume and cognitive function publication-title: Eur. Radiol. doi: 10.1007/s00330-023-10122-3 – ident: ref_22 doi: 10.1109/IEMBS.2008.4650064 – volume: 19 start-page: 1011 year: 2009 ident: ref_8 article-title: Potential surrogate markers of cerebral microvascular angiopathy in asymptomatic subjects at risk of stroke publication-title: Eur. Radiol. doi: 10.1007/s00330-008-1202-8 – volume: 10 start-page: 376 year: 2015 ident: ref_3 article-title: Enlarged Perivascular Spaces and Cerebral Small Vessel Disease publication-title: Int. J. Stroke doi: 10.1111/ijs.12054 – volume: 36 start-page: 1194 year: 2000 ident: ref_28 article-title: Improved morphological top-hat publication-title: Electron. Lett. doi: 10.1049/el:20000873 – volume: 38 start-page: 774 year: 2013 ident: ref_16 article-title: Towards the automatic computational assessment of enlarged perivascular spaces on brain magnetic resonance images: A systematic review publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.24047 – volume: 39 start-page: 355 year: 1987 ident: ref_29 article-title: Adaptive histogram equalization and its variations publication-title: Comput. Vis. Graph. Image Process. doi: 10.1016/S0734-189X(87)80186-X – volume: 114 start-page: 1462 year: 2018 ident: ref_2 article-title: Understanding the role of the perivascular space in cerebral small vessel disease publication-title: Cardiovasc. Res. doi: 10.1093/cvr/cvy113 – volume: 55 start-page: 447 year: 1993 ident: ref_30 article-title: Contrast Enhancement Using the Laplacian-of-a-Gaussian Filter publication-title: CVGIP Graph. Models Image Process. doi: 10.1006/cgip.1993.1034 – volume: 44 start-page: 1732 year: 2013 ident: ref_19 article-title: Rating Method for Dilated Virchow–Robin Spaces on Magnetic Resonance Imaging publication-title: Stroke doi: 10.1161/STROKEAHA.111.000620 – volume: 7 start-page: 18382 year: 2019 ident: ref_26 article-title: Enhancement of Perivascular Spaces Using Densely Connected Deep Convolutional Neural Network publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2896911 – volume: 39 start-page: 224 year: 2015 ident: ref_17 article-title: Cerebral perivascular spaces visible on magnetic resonance imaging: Development of a qualitative rating scale and its observer reliability publication-title: Cerebrovasc. Dis. doi: 10.1159/000375153 – volume: 3 start-page: 100162 year: 2023 ident: ref_21 article-title: Deep learning based detection of enlarged perivascular spaces on brain MRI publication-title: Neuroimage Rep. doi: 10.1016/j.ynirp.2023.100162 – volume: 90 start-page: 61 year: 2016 ident: ref_25 article-title: Application of the Ordered Logit Model to Optimising Frangi Filter Parameters for Segmentation of Perivascular Spaces publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2016.07.011 – volume: 12 start-page: 822 year: 2013 ident: ref_20 article-title: Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(13)70124-8 – volume: 41 start-page: 2370 year: 2021 ident: ref_18 article-title: Deep white matter hyperintensity is associated with the dilation of perivascular space publication-title: J. Cereb. Blood Flow Metab. doi: 10.1177/0271678X211002279 – volume: 134 start-page: 223 year: 2016 ident: ref_24 article-title: Segmentation of perivascular spaces in 7T MR image using auto-context model with orientation-normalized features publication-title: NeuroImage doi: 10.1016/j.neuroimage.2016.03.076 – ident: ref_23 doi: 10.3390/app11209398 – volume: 11 start-page: 136 year: 2014 ident: ref_12 article-title: Basal Ganglia Enlarged Perivascular Spaces are Linked to Cognitive Function in Patients with Cerebral Small Vessel Disease publication-title: Curr. Neurovasc. Res. doi: 10.2174/1567202611666140310102248 – volume: 12 start-page: 1004 year: 2022 ident: ref_9 article-title: Perivascular space is associated with brain atrophy in patients with multiple sclerosis publication-title: Quant. Imaging Med. Surg. doi: 10.21037/qims-21-705 – volume: 36 start-page: 289 year: 2016 ident: ref_5 article-title: Imaging the Perivascular Space as a Potential Biomarker of Neurovascular and Neurodegenerative Diseases publication-title: Cell. Mol. Neurobiol. doi: 10.1007/s10571-016-0343-6 |
SSID | ssj0000913825 |
Score | 2.281696 |
Snippet | In this paper, we present a cascaded deep convolution neural network (CNN) for assessing enlarged perivascular space (ePVS) within the basal ganglia region... |
SourceID | doaj proquest gale pubmed crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 1504 |
SubjectTerms | Algorithms Automation Biomarkers Cerebrospinal fluid Cognitive ability Datasets Deep learning Dementia Efficiency enlarged perivascular spaces image enhancement Magnetic resonance imaging Medical imaging equipment Medical research Nervous system diseases Neural networks Neurological disorders quantification |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fi9QwEA5yD-KL-NvqKREEXyy3TZNm83i33nkKK4oe3FtI2wkI2l1ud_1H7h--b5LucqeCL7IPXdqkdDKTzDdk8o0Qr03t6tCRKSnYScnsL2WAly6pcS0MKk7aVKZz_qk5PdMfz835tVJfnBOW6YHzwB2QDsAw6N8r0ghmps4EFZy2tiJnXcurL3zetWAqrcGOufVMphmqEdcf9DlzjbmPK42fGUuzbV1RYuz_c13-DW0mr3NyT9wd4aI8zJ95X9yi4YG4PR83xB-Ky3dESzkLK05zl4soZ4vh12hN6MfUG-mScr1XEghVftmEnCCUdMJ9jocfnA_ey88wx21qqvy65Gwt-X2QwIjyKKzwoveBT_0GvjmHoHwAUvIGALN2kPzwM5U8eiTOTo6_zU7Lsc5C2emmWpdUhWihytY4oIXQBRutiX0Dz0V9EzHiZMyUdN2pKmLIe_6vAEx6xM9OUf1Y7A2LgZ4KqXUPRKQUAddosnbaAXB1unJRRQRWqhBvt0Pul5lOwyMMYQ35v2ioEEesll1T5sJON2AhfrQQ_y8LKcQbVqrnGbu-gHjjwQN8MXNf-cPphCltgCULsX-jJWZad_Px1iz8ONNXvp7Av_NeaV2IV7vH3JOz1wZabFIbw8i7Rpsn2Zx2IkHyBiFr9ex_iPpc3IFedE4n3hd764sNvQBoWrcv0_y4AsIFE14 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELagkxAvE78JDGQkJF6I1iR2Ej-htXQMpE7jx6S9RU5ymZAg6ZqWf4R_mO8cp2iAUB9SJXZk587n7-zzd0K81IlJbEU6JJtNQ2Z_CS1m6ZBSU0Khmmnp0nQuT9OTc_XhQl_4Bbfeh1WONtEZ6rqreI38MJnCjvKeVPJmdRVy1ijeXfUpNG6KPZjgXE_E3mxxevZpt8rCrJfwgQa6oQT-_WE9RLAxB3Kk8NM-Rds4JTnm_r_t8x-o080-x3fEvoeN8miQ811xg9p74tbSb4zfFz_fEq3k3PYc7i67Rs679ofXKtRjCg53cTHfvQRSlR-3dggUcrLhOov2G8eF1_IMajmGqMrPK47akl9bCawoZ7bHi95ZPv1r-eYSHeWDkJI3Api9g-T77y710QNxfrz4Mj8Jfb6FsFJptAkpsk0GkZbaADXYymZNpps6xQxGddrkRpPWOamkiqMmM2XN_2MAlBp-tIkpeSgmbdfSYyGVqoGM4piAbxRlWV4BeFUqMk3cwMGKA_F6_OTFaqDVKOCOsISKf0goEDMWy64oc2K7G936svBDrCBlgXahaXVMCoqC9trYGpVlERk0NxCvWKgFj9zNGt3zBxDQYubAKo7yKVPbAFMG4uBaSYy46vrjUS0KP-L74rd-BuLF7jHX5Ci2lrqtK6MZgSco82hQp12X0PMUrmv05P8vfypu44urIWD4QEw26y09AyzalM-97v8Cb7QNGQ priority: 102 providerName: ProQuest |
Title | Deep Cascade of Convolutional Neural Networks for Quantification of Enlarged Perivascular Spaces in the Basal Ganglia in Magnetic Resonance Imaging |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39061641 https://www.proquest.com/docview/3084795493 https://www.proquest.com/docview/3085115033 https://doaj.org/article/e4a999a61d2e4549895a2a94771e979b |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3bjtMwELVWuxLiBXEnsFRGQuKFQOPYSfyA0LZ0WZC6Wi6V9i1yk8kKaUlKLwi-gx_mjJNUKiwoD40SO7E948yZenxGiKcmtrEryITk0mHI7C-hg5UOKbFzKFQ1nPs0ndPT5GSm35-b8z3RZ0XtBnB1pWvH-aRmy8sXP779fI0J_4o9TrjsL8s2KI1pjSONwzA_6AFMU8JqPu3wvv80W6bc47BGBVMZAgpkLRPRv56zY608qf_fn-4_AKk3TMc3xY0OUcqjVgVuiT2qb4tr027N_I749YZoIcduxZHwsqnkuKm_dwqHeszO4X98OPhKAsTKDxvXxhB5sXGdSX3JIeOlPIPG9tGr8tOCA7rkl1oCRsqRW-FBbx1vDHZ8cYqO8h5JyWsETOxB8t1XnxXprpgdTz6PT8IuFUNY6CRahxS5KoW058YCULjCpVVqqjKBcaMyqTJryJiMdFyoqErtvORzBexSwsW2iuJ7Yr9uanogpNYlQJNSBOijKU2zApis0JGtVAXfSwXieT_k-aJl3MjhqbCE8iskFIgRi2VblOmy_YVmeZF3sy8n7QCEoYSlIg2PGO11ylmdphFZNDcQz1ioOavZeonudXsT0GKmx8qPsiGz3gBuBuJwpyQmY7F7u1eLvNflPB4CAvByahyIJ9vbXJMD3GpqNr6MYXAeo8z9Vp22XULPE3i10cP_v_uRuI4R120s8aHYXy839BiIaT0fiIPR5PTs48D_4zDwc-I3TZgVXA |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VVgIuiDeBAkYCcSFq4jjJ-oBQd7tll3ZXBVqpN9dJJggJkmUfIH4H_4PfyIyTLCogbtUeskpsy868vonHMwBP40hHNsfYR5sGPmd_8S1ZaR8TnRFDlUHmynROpsnoRL05jU834Gd3FobDKjud6BR1Uef8jXwnCkiP8p5U9Gr2xeeqUby72pXQaNjiAL9_I5dt8XK8R_R9JuX-8Hgw8tuqAn6uknDpY2jLlCaexZpso81tWqZxWSSkp7FIyp6OMY57qKJchmWqs4L_SzLDBXmLWmJE416CLYIZmqRoqz-cHr1bf9XhLJvkczXpjaJIBztFEzHHOZdDRb-4LQnXmUBXKeBve_AHynXWbv86XGthqtht-OoGbGB1Ey5P2o34W_BjD3EmBnbB4fWiLsWgrr62XEz9OOWHu7gY84UgZCzermwTmOR4gfsMq08ch16IIxKDLiRWvJ9xlJj4WAnCpqJvFzTQa8unjS3fnNBC-eCl4I0HzhaCYvzZlVq6DScXQok7sFnVFd4DoVRBSExKJDylME17OQG9XIW6lCU5dNKDF90rN7MmjYch94cpZP5BIQ_6TJZ1U87B7W7U8w-mFWmDyhK6Js4uJCpiTJqvlVarNA1R03Q9eM5ENawplnNaXnvggWbMObfMbi_gVDqEYT3YPteSJDw__7hjC9NqmIX5LQ8ePFk_5p4cNVdhvXJtYkb8EbW527DTekm08oRc5fD-_wd_DFdGx5NDczieHjyAq_T2VROsvA2by_kKHxIkW2aPWjkQcHbRovcL2TBKeg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEB6VVKp4Qdy4FFgkEC9Ysdfr6wGh5qKhJApHpb65a3sWIRU7xAmI38G_4dcx4yOogHir8uDI3l3tem7vtzMAT3wv9nSGvo06dGzO_mJrstI2BnFKDGWctC7TOZsHRyfq9al_ugM_u7MwDKvsdGKtqPMy42_kfc8hPcp7Ul7ftLCIxWjycvnF5gpSvNPaldNoWOQYv3-j8K16MR0RrZ9KORl_GB7ZbYUBO1OBu7bR1SakRaR-THZSZzo0oW_ygHQ25oGJYh99P0LlZdI1YZzm_F-SSc4pcowlejTuFdgNySpGPdgdjOeLd9svPJxxk-KvJtWR58VOP2_Qc5x_2VX089vycJ05rKsG_G0b_vB4a8s3uQ7XWpdVHDY8dgN2sLgJe7N2U_4W_BghLsVQVwy1F6URw7L42nI09eP0H_WlxptXgrxk8XajG5BSzRfcZ1ycMyY9FwsSiQ4eK94vGTEmPhWC_FQx0BUN9ErzyWPNN2e0UD6EKXgTgjOHoJh-rssu3YaTS6HEHegVZYH3QCiVk1cmJZJvpTAMo4ycvky5sZGGgjtpwfPulSfLJqVHQqEQUyj5B4UsGDBZtk05H3d9o1x9TFrxTlBp8rSJy3OJipiU5quljlUYuhjTdC14xkRNWGusV7S89vADzZjzbyWHkcNpdcifteDgQkuS9uzi444tklbbVMlv2bDg8fYx92QEXYHlpm7js_fvUZu7DTttl0QrDyhsdvf_P_gj2CORS95M58f34Sq9fNXglg-gt15t8AF5Z-v0YSsGAs4uW_J-Af_WTqY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Cascade+of+Convolutional+Neural+Networks+for+Quantification+of+Enlarged+Perivascular+Spaces+in+the+Basal+Ganglia+in+Magnetic+Resonance+Imaging&rft.jtitle=Diagnostics+%28Basel%29&rft.au=Chae%2C+Seunghye&rft.au=Yang%2C+Ehwa&rft.au=Moon%2C+Won-Jin&rft.au=Kim%2C+Jae-Hun&rft.date=2024-07-01&rft.pub=MDPI+AG&rft.issn=2075-4418&rft.eissn=2075-4418&rft.volume=14&rft.issue=14&rft_id=info:doi/10.3390%2Fdiagnostics14141504&rft.externalDocID=A803767154 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-4418&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-4418&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-4418&client=summon |