Copper ion/gallic acid MOFs-laden adhesive pomelo peel sponge effectively treats biofilm-infected skin wounds and improves healing quality

Bacterial infection and scar formation remain primary challenges in wound healing. To address these issues, we developed a decellularized pomelo peel (DPP) functionalized with an adhesive PVA-TSPBA hydrogel and antibacterial gallic acid/copper MOFs. The hybrid wound dressing demonstrates favorable b...

Full description

Saved in:
Bibliographic Details
Published inBioactive materials Vol. 32; pp. 260 - 276
Main Authors Yang, Jianqiu, Huang, Zhenzhen, Tan, Jiang, Pan, Jingye, Chen, Shixuan, Wan, Wenbing
Format Journal Article
LanguageEnglish
Published KeAi Publishing 01.02.2024
KeAi Communications Co., Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Bacterial infection and scar formation remain primary challenges in wound healing. To address these issues, we developed a decellularized pomelo peel (DPP) functionalized with an adhesive PVA-TSPBA hydrogel and antibacterial gallic acid/copper MOFs. The hybrid wound dressing demonstrates favorable biocompatibility. It does not impede the proliferation of fibroblasts or immune cells and can stimulate fibroblast migration, endothelial angiogenesis, and M2 macrophage polarization. Additionally, the dressing can scavenge reactive oxygen species (ROS) and provide antioxidant effects. Furthermore, DPP + MOF@Gel effectively inhibits the viability of S. aureus and E. coli in vitro and in vivo. The histological observations revealed enhanced granulation tissue formation, re-epithelialization, and angiogenesis in the DPP + MOF@Gel group compared to other groups. The local immune response also shifted from a pro-inflammatory to a pro-regenerative status with DPP + MOF@Gel treatment. The skin incision stitching experiment further exhibits DPP + MOF@Gel could reduce scar formation during wound healing. Taken together, the hybrid DPP + MOF@Gel holds great promise for treating bacteria-infected skin wounds and inhibiting scar formation during wound healing.Bacterial infection and scar formation remain primary challenges in wound healing. To address these issues, we developed a decellularized pomelo peel (DPP) functionalized with an adhesive PVA-TSPBA hydrogel and antibacterial gallic acid/copper MOFs. The hybrid wound dressing demonstrates favorable biocompatibility. It does not impede the proliferation of fibroblasts or immune cells and can stimulate fibroblast migration, endothelial angiogenesis, and M2 macrophage polarization. Additionally, the dressing can scavenge reactive oxygen species (ROS) and provide antioxidant effects. Furthermore, DPP + MOF@Gel effectively inhibits the viability of S. aureus and E. coli in vitro and in vivo. The histological observations revealed enhanced granulation tissue formation, re-epithelialization, and angiogenesis in the DPP + MOF@Gel group compared to other groups. The local immune response also shifted from a pro-inflammatory to a pro-regenerative status with DPP + MOF@Gel treatment. The skin incision stitching experiment further exhibits DPP + MOF@Gel could reduce scar formation during wound healing. Taken together, the hybrid DPP + MOF@Gel holds great promise for treating bacteria-infected skin wounds and inhibiting scar formation during wound healing.
AbstractList Bacterial infection and scar formation remain primary challenges in wound healing. To address these issues, we developed a decellularized pomelo peel (DPP) functionalized with an adhesive PVA-TSPBA hydrogel and antibacterial gallic acid/copper MOFs. The hybrid wound dressing demonstrates favorable biocompatibility. It does not impede the proliferation of fibroblasts or immune cells and can stimulate fibroblast migration, endothelial angiogenesis, and M2 macrophage polarization. Additionally, the dressing can scavenge reactive oxygen species (ROS) and provide antioxidant effects. Furthermore, DPP + MOF@Gel effectively inhibits the viability of S. aureus and E. coli in vitro and in vivo. The histological observations revealed enhanced granulation tissue formation, re-epithelialization, and angiogenesis in the DPP + MOF@Gel group compared to other groups. The local immune response also shifted from a pro-inflammatory to a pro-regenerative status with DPP + MOF@Gel treatment. The skin incision stitching experiment further exhibits DPP + MOF@Gel could reduce scar formation during wound healing. Taken together, the hybrid DPP + MOF@Gel holds great promise for treating bacteria-infected skin wounds and inhibiting scar formation during wound healing. Image 1 • The designed wound dressing combines the advantages of decellularized plant materials, adhesive hydrogels, and inorganic antibacterial materials. • In vitro, the dressing demonstrates favorable biocompatibility, scavenges ROS, provides antioxidant effects, and promotes M2 macrophage polarization. • In vivo, the dressing promotes granulation tissue formation, re-epithelialization, and angiogenesis and reduces scar formation.
Bacterial infection and scar formation remain primary challenges in wound healing. To address these issues, we developed a decellularized pomelo peel (DPP) functionalized with an adhesive PVA-TSPBA hydrogel and antibacterial gallic acid/copper MOFs. The hybrid wound dressing demonstrates favorable biocompatibility. It does not impede the proliferation of fibroblasts or immune cells and can stimulate fibroblast migration, endothelial angiogenesis, and M2 macrophage polarization. Additionally, the dressing can scavenge reactive oxygen species (ROS) and provide antioxidant effects. Furthermore, DPP + MOF@Gel effectively inhibits the viability of S. aureus and E. coli in vitro and in vivo. The histological observations revealed enhanced granulation tissue formation, re-epithelialization, and angiogenesis in the DPP + MOF@Gel group compared to other groups. The local immune response also shifted from a pro-inflammatory to a pro-regenerative status with DPP + MOF@Gel treatment. The skin incision stitching experiment further exhibits DPP + MOF@Gel could reduce scar formation during wound healing. Taken together, the hybrid DPP + MOF@Gel holds great promise for treating bacteria-infected skin wounds and inhibiting scar formation during wound healing.Bacterial infection and scar formation remain primary challenges in wound healing. To address these issues, we developed a decellularized pomelo peel (DPP) functionalized with an adhesive PVA-TSPBA hydrogel and antibacterial gallic acid/copper MOFs. The hybrid wound dressing demonstrates favorable biocompatibility. It does not impede the proliferation of fibroblasts or immune cells and can stimulate fibroblast migration, endothelial angiogenesis, and M2 macrophage polarization. Additionally, the dressing can scavenge reactive oxygen species (ROS) and provide antioxidant effects. Furthermore, DPP + MOF@Gel effectively inhibits the viability of S. aureus and E. coli in vitro and in vivo. The histological observations revealed enhanced granulation tissue formation, re-epithelialization, and angiogenesis in the DPP + MOF@Gel group compared to other groups. The local immune response also shifted from a pro-inflammatory to a pro-regenerative status with DPP + MOF@Gel treatment. The skin incision stitching experiment further exhibits DPP + MOF@Gel could reduce scar formation during wound healing. Taken together, the hybrid DPP + MOF@Gel holds great promise for treating bacteria-infected skin wounds and inhibiting scar formation during wound healing.
Bacterial infection and scar formation remain primary challenges in wound healing. To address these issues, we developed a decellularized pomelo peel (DPP) functionalized with an adhesive PVA-TSPBA hydrogel and antibacterial gallic acid/copper MOFs. The hybrid wound dressing demonstrates favorable biocompatibility. It does not impede the proliferation of fibroblasts or immune cells and can stimulate fibroblast migration, endothelial angiogenesis, and M2 macrophage polarization. Additionally, the dressing can scavenge reactive oxygen species (ROS) and provide antioxidant effects. Furthermore, DPP + MOF@Gel effectively inhibits the viability of S. aureus and E. coli in vitro and in vivo. The histological observations revealed enhanced granulation tissue formation, re-epithelialization, and angiogenesis in the DPP + MOF@Gel group compared to other groups. The local immune response also shifted from a pro-inflammatory to a pro-regenerative status with DPP + MOF@Gel treatment. The skin incision stitching experiment further exhibits DPP + MOF@Gel could reduce scar formation during wound healing. Taken together, the hybrid DPP + MOF@Gel holds great promise for treating bacteria-infected skin wounds and inhibiting scar formation during wound healing.
Author Chen, Shixuan
Wan, Wenbing
Pan, Jingye
Huang, Zhenzhen
Yang, Jianqiu
Tan, Jiang
Author_xml – sequence: 1
  givenname: Jianqiu
  surname: Yang
  fullname: Yang, Jianqiu
– sequence: 2
  givenname: Zhenzhen
  surname: Huang
  fullname: Huang, Zhenzhen
– sequence: 3
  givenname: Jiang
  surname: Tan
  fullname: Tan, Jiang
– sequence: 4
  givenname: Jingye
  surname: Pan
  fullname: Pan, Jingye
– sequence: 5
  givenname: Shixuan
  orcidid: 0000-0001-7905-3268
  surname: Chen
  fullname: Chen, Shixuan
– sequence: 6
  givenname: Wenbing
  surname: Wan
  fullname: Wan, Wenbing
BookMark eNqFUl1rVDEQvUgFa-1vMI--3G2S-_0gIovVQqUvCr6FuclkN2tucptkt-xf8Feb65ZifZHAzDBnzpmBnNfFmfMOi-ItoytGWXu1W43Gg0wTpBWnvMrdFaXNi-Kc1w0v2TD8OPurflVcxrijlLIuB9qdF7_Wfp4xEOPd1QasNZKANIp8vbuOpQWFjoDaYjQHJLOf0HoyI1oSZ-82SFBrlCmD9khSQEiR5IO0sVNp3AKhIvGnceTB752KBJwiZpqDP2AkWwRr3Ibc73NOxzfFSw024uVjvii-X3_6tv5S3t59vll_vC1l3bJUIqvHETrVDEzzsasQalnJnsqKN0OuWcs6rUZgXKtatrLqpYZaSd7odhilqi6Km5Ou8rATczAThKPwYMSfhg8bASEZaVGgrDStpWryklrSFvLDnla85wpwWLQ-nLTm_TihkuhSAPtM9DnizFZs_EEw2vRDV9Gs8O5RIfj7PcYkJhMlWgsO_T4K3ve05zWny2h3GpXBxxhQP-1hVCx2EDvxZAex2GEBsh0y8_0_TGkSpPzp-Shj_8v_DevqyGo
CitedBy_id crossref_primary_10_1002_smll_202400516
crossref_primary_10_1002_adfm_202315020
crossref_primary_10_1016_j_ccr_2024_216205
crossref_primary_10_1021_acsnano_4c17852
crossref_primary_10_3389_fbioe_2024_1431949
crossref_primary_10_1186_s12951_024_02687_y
crossref_primary_10_1016_j_ijbiomac_2024_133666
crossref_primary_10_1002_smll_202311903
crossref_primary_10_1002_anbr_202400008
crossref_primary_10_1016_j_ijbiomac_2024_139349
crossref_primary_10_1021_acsbiomaterials_4c02420
crossref_primary_10_1039_D4NR04486J
crossref_primary_10_1021_acsnano_4c04816
crossref_primary_10_1016_j_ijbiomac_2025_142108
crossref_primary_10_3389_fbioe_2023_1304835
crossref_primary_10_1021_acsomega_4c08103
crossref_primary_10_1021_acsami_4c20219
Cites_doi 10.1039/C8TB03341B
10.1021/acs.chemmater.3c00049
10.1016/j.ccr.2018.01.001
10.1126/scitranslmed.aan3682
10.1016/j.jss.2019.06.006
10.1002/mame.201600375
10.1021/acs.accounts.0c00339
10.1089/wound.2012.0368
10.1039/D0TB01751E
10.1111/j.1742-481X.2006.00265.x
10.1021/acssuschemeng.2c07445
10.1016/j.chemosphere.2021.131853
10.1016/j.actbio.2020.03.035
10.1021/acs.jafc.9b02511
10.1177/20417314211031378
10.3390/molecules21070899
10.4103/pr.pr_180_18
10.1093/burnst/tkz003
10.1002/adfm.202008720
10.1093/burnst/tkab013
10.1016/j.jare.2017.10.008
10.1016/j.jconrel.2023.03.060
10.1039/D2BM00658H
10.1142/S0192415X04002041
10.1038/s41467-020-16544-7
10.1111/1541-4337.12561
10.12968/bjon.2010.19.Sup5.77707
10.1021/nn2020248
10.1016/j.jmbbm.2011.05.007
10.1002/adma.201906872
10.1016/j.actbio.2012.10.014
10.1002/adfm.202202857
10.1016/j.ijbiomac.2020.11.153
10.1093/jbcr/iraa130
10.18063/ijb.703
10.1038/s41598-020-75927-4
10.1016/j.actbio.2023.05.048
ContentType Journal Article
Copyright 2023 The Authors.
2023 The Authors 2023
Copyright_xml – notice: 2023 The Authors.
– notice: 2023 The Authors 2023
DBID AAYXX
CITATION
7X8
5PM
DOA
DOI 10.1016/j.bioactmat.2023.10.005
DatabaseName CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2452-199X
EndPage 276
ExternalDocumentID oai_doaj_org_article_ec3f04cd5ea44c06a6a6e803282dae9d
PMC10589730
10_1016_j_bioactmat_2023_10_005
GroupedDBID 0R~
AAEDW
AALRI
AAXUO
AAYWO
AAYXX
ABJCF
ABMAC
ACGFS
ACVFH
ADBBV
ADCNI
ADMLS
ADVLN
AEUPX
AEXQZ
AFKRA
AFPUW
AFTJW
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
EBS
EJD
FDB
GROUPED_DOAJ
HCIFZ
HYE
KB.
M41
M7P
M~E
OK1
PDBOC
PHGZM
PHGZT
PIMPY
ROL
RPM
SSZ
7X8
PQGLB
5PM
PUEGO
ID FETCH-LOGICAL-c461t-e14bba7d591f2b73ea4c3c80c3259a4c1617fdba12fd4c6c38cfa4dc25f69bcd3
IEDL.DBID DOA
ISSN 2452-199X
IngestDate Wed Aug 27 01:23:32 EDT 2025
Thu Aug 21 18:36:03 EDT 2025
Fri Jul 11 16:12:06 EDT 2025
Tue Jul 01 02:11:34 EDT 2025
Thu Apr 24 22:57:06 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c461t-e14bba7d591f2b73ea4c3c80c3259a4c1617fdba12fd4c6c38cfa4dc25f69bcd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
J. Yang and Z. Huang contributed equally to this work.
ORCID 0000-0001-7905-3268
OpenAccessLink https://doaj.org/article/ec3f04cd5ea44c06a6a6e803282dae9d
PQID 2880824200
PQPubID 23479
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_ec3f04cd5ea44c06a6a6e803282dae9d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10589730
proquest_miscellaneous_2880824200
crossref_primary_10_1016_j_bioactmat_2023_10_005
crossref_citationtrail_10_1016_j_bioactmat_2023_10_005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationTitle Bioactive materials
PublicationYear 2024
Publisher KeAi Publishing
KeAi Communications Co., Ltd
Publisher_xml – name: KeAi Publishing
– name: KeAi Communications Co., Ltd
References Liu (10.1016/j.bioactmat.2023.10.005_bib19) 2018; 359
Gong (10.1016/j.bioactmat.2023.10.005_bib20) 2022; 10
Tocmo (10.1016/j.bioactmat.2023.10.005_bib3) 2020; 19
Predeina (10.1016/j.bioactmat.2023.10.005_bib22) 2020; 8
Kim (10.1016/j.bioactmat.2023.10.005_bib26) 2022; 286
Mutra (10.1016/j.bioactmat.2023.10.005_bib23) 2023; 11
Li (10.1016/j.bioactmat.2023.10.005_bib25) 2023
Leaper (10.1016/j.bioactmat.2023.10.005_bib15) 2006; 3
Chen (10.1016/j.bioactmat.2023.10.005_bib38) 2020; 108
Wan (10.1016/j.bioactmat.2023.10.005_bib39) 2019; 7
Chak (10.1016/j.bioactmat.2023.10.005_bib2) 2013; 2
Han (10.1016/j.bioactmat.2023.10.005_bib24) 2020; 53
Abudayeh (10.1016/j.bioactmat.2023.10.005_bib37) 2019; 11
Kang (10.1016/j.bioactmat.2023.10.005_bib21) 2022; 18
Yang (10.1016/j.bioactmat.2023.10.005_bib34) 2016; 21
Francesko (10.1016/j.bioactmat.2023.10.005_bib32) 2013; 9
Huang (10.1016/j.bioactmat.2023.10.005_bib1) 2004; 32
Wang (10.1016/j.bioactmat.2023.10.005_bib12) 2018; 10
Lai (10.1016/j.bioactmat.2023.10.005_bib18) 2020; 32
Gunawan (10.1016/j.bioactmat.2023.10.005_bib28) 2011; 5
Lundin (10.1016/j.bioactmat.2023.10.005_bib31) 2017; 302
Liu (10.1016/j.bioactmat.2023.10.005_bib33) 2020; 11
Zhang (10.1016/j.bioactmat.2023.10.005_bib40) 2023; 9
Zhang (10.1016/j.bioactmat.2023.10.005_bib17) 2021; 31
Li (10.1016/j.bioactmat.2023.10.005_bib8) 2021; 31
Shan (10.1016/j.bioactmat.2023.10.005_bib11) 2021; 12
Ding (10.1016/j.bioactmat.2023.10.005_bib10) 2023; 360
Mahar (10.1016/j.bioactmat.2023.10.005_bib42) 2021; 42
Azhar (10.1016/j.bioactmat.2023.10.005_bib27) 2020; 10
Gan (10.1016/j.bioactmat.2023.10.005_bib36) 2023; 25
Liu (10.1016/j.bioactmat.2023.10.005_bib7) 2021; 6
Tian (10.1016/j.bioactmat.2023.10.005_bib29) 2023; 167
Sun (10.1016/j.bioactmat.2023.10.005_bib35) 2021; 167
Gan (10.1016/j.bioactmat.2023.10.005_bib9) 2023; 25
Akter (10.1016/j.bioactmat.2023.10.005_bib16) 2018; 9
Zead Helmi (10.1016/j.bioactmat.2023.10.005_bib5) 2019; 11
Zhao (10.1016/j.bioactmat.2023.10.005_bib4) 2019; 67
Carney (10.1016/j.bioactmat.2023.10.005_bib44) 2019; 244
Elliott (10.1016/j.bioactmat.2023.10.005_bib14) 2010; 19
Yu (10.1016/j.bioactmat.2023.10.005_bib13) 2022; 32
Zaman (10.1016/j.bioactmat.2023.10.005_bib30) 2011; 4
Liu (10.1016/j.bioactmat.2023.10.005_bib43) 2023; 35
Shirakami (10.1016/j.bioactmat.2023.10.005_bib6) 2020; 8
Zhang (10.1016/j.bioactmat.2023.10.005_bib41) 2021; 9
References_xml – volume: 6
  start-page: 721
  issue: 3
  year: 2021
  ident: 10.1016/j.bioactmat.2023.10.005_bib7
  article-title: Bioactive antiinflammatory antibacterial hemostatic citrate-based dressing with macrophage polarization regulation for accelerating wound healing and hair follicle neogenesis
  publication-title: Bioact. Mater.
– volume: 7
  start-page: 2954
  issue: 18
  year: 2019
  ident: 10.1016/j.bioactmat.2023.10.005_bib39
  article-title: A skin-inspired 3D bilayer scaffold enhances granulation tissue formation and anti-infection for diabetic wound healing
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C8TB03341B
– volume: 35
  start-page: 2588
  issue: 6
  year: 2023
  ident: 10.1016/j.bioactmat.2023.10.005_bib43
  article-title: Biological glue from only lipoic acid for scarless wound healing by anti-inflammation and TGF-β regulation
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.3c00049
– volume: 359
  start-page: 112
  year: 2018
  ident: 10.1016/j.bioactmat.2023.10.005_bib19
  article-title: Atomically precise copper nanoclusters and their applications
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2018.01.001
– volume: 10
  issue: 429
  year: 2018
  ident: 10.1016/j.bioactmat.2023.10.005_bib12
  article-title: In situ formed reactive oxygen species–responsive scaffold with gemcitabine and checkpoint inhibitor for combination therapy
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aan3682
– volume: 244
  start-page: 312
  year: 2019
  ident: 10.1016/j.bioactmat.2023.10.005_bib44
  article-title: Reactive oxygen species scavenging potential contributes to hypertrophic scar formation
  publication-title: J. Surg. Res.
  doi: 10.1016/j.jss.2019.06.006
– volume: 302
  issue: 3
  year: 2017
  ident: 10.1016/j.bioactmat.2023.10.005_bib31
  article-title: Multi‐functional polyurethane hydrogel foams with tunable mechanical properties for wound dressing applications
  publication-title: Macromol. Mater. Eng.
  doi: 10.1002/mame.201600375
– volume: 53
  start-page: 2521
  issue: 11
  year: 2020
  ident: 10.1016/j.bioactmat.2023.10.005_bib24
  article-title: Local and targeted delivery of immune checkpoint blockade therapeutics
  publication-title: Accounts Chem. Res.
  doi: 10.1021/acs.accounts.0c00339
– volume: 2
  start-page: 448
  issue: 8
  year: 2013
  ident: 10.1016/j.bioactmat.2023.10.005_bib2
  article-title: A study of the effect of shiunko, a traditional Chinese herbal medicine, on fibroblasts and its implication on wound healing processes
  publication-title: Adv. Wound Care
  doi: 10.1089/wound.2012.0368
– year: 2023
  ident: 10.1016/j.bioactmat.2023.10.005_bib25
  article-title: Dually crosslinked copper‐poly (tannic acid) nanoparticles with microenvironment‐responsiveness for infected wound treatment
  publication-title: Adv. Healthcare Mater.
– volume: 8
  start-page: 10010
  issue: 44
  year: 2020
  ident: 10.1016/j.bioactmat.2023.10.005_bib22
  article-title: Bioreactivity of decellularized animal, plant, and fungal scaffolds: perspectives for medical applications
  publication-title: J. Mater. Chem. B
  doi: 10.1039/D0TB01751E
– volume: 3
  start-page: 282
  issue: 4
  year: 2006
  ident: 10.1016/j.bioactmat.2023.10.005_bib15
  article-title: Silver dressings: their role in wound management
  publication-title: Int. Wound J.
  doi: 10.1111/j.1742-481X.2006.00265.x
– volume: 11
  start-page: 6485
  issue: 17
  year: 2023
  ident: 10.1016/j.bioactmat.2023.10.005_bib23
  article-title: Emergence of plant-based decellularized scaffolds for tissue regeneration: a review
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.2c07445
– volume: 286
  year: 2022
  ident: 10.1016/j.bioactmat.2023.10.005_bib26
  article-title: Electrosorption of cadmium ions in aqueous solutions using a copper-gallate metal-organic framework
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.131853
– volume: 108
  start-page: 153
  year: 2020
  ident: 10.1016/j.bioactmat.2023.10.005_bib38
  article-title: Mesenchymal stem cell-laden, personalized 3D scaffolds with controlled structure and fiber alignment promote diabetic wound healing
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2020.03.035
– volume: 67
  start-page: 8810
  issue: 32
  year: 2019
  ident: 10.1016/j.bioactmat.2023.10.005_bib4
  article-title: Anti-inflammatory effect of pomelo peel and its bioactive coumarins
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/acs.jafc.9b02511
– volume: 12
  year: 2021
  ident: 10.1016/j.bioactmat.2023.10.005_bib11
  article-title: Injectable ROS-scavenging hydrogel with MSCs promoted the regeneration of damaged skeletal muscle
  publication-title: J. Tissue Eng.
  doi: 10.1177/20417314211031378
– volume: 21
  start-page: 899
  issue: 7
  year: 2016
  ident: 10.1016/j.bioactmat.2023.10.005_bib34
  article-title: Gallic acid promotes wound healing in normal and hyperglucidic conditions
  publication-title: Molecules
  doi: 10.3390/molecules21070899
– volume: 11
  issue: 3
  year: 2019
  ident: 10.1016/j.bioactmat.2023.10.005_bib37
  article-title: Phytochemical content and antioxidant activities of pomelo peel extract
  publication-title: Pharmacogn. Res.
  doi: 10.4103/pr.pr_180_18
– volume: 8
  year: 2020
  ident: 10.1016/j.bioactmat.2023.10.005_bib6
  article-title: Strategies to prevent hypertrophic scar formation: a review of therapeutic interventions based on molecular evidence
  publication-title: Burns & Trauma
  doi: 10.1093/burnst/tkz003
– volume: 31
  issue: 14
  year: 2021
  ident: 10.1016/j.bioactmat.2023.10.005_bib17
  article-title: Copper clusters: an effective antibacterial for eradicating multidrug-resistant bacterial infection in vitro and in vivo
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202008720
– volume: 9
  year: 2021
  ident: 10.1016/j.bioactmat.2023.10.005_bib41
  article-title: Using bioprinting and spheroid culture to create a skin model with sweat glands and hair follicles
  publication-title: Burns & Trauma
  doi: 10.1093/burnst/tkab013
– volume: 25
  start-page: 347
  year: 2023
  ident: 10.1016/j.bioactmat.2023.10.005_bib36
  article-title: Stiffness-tuned and ROS-sensitive hydrogel incorporating complement C5a receptor antagonist modulates antibacterial activity of macrophages for periodontitis treatment
  publication-title: Bioact. Mater.
– volume: 9
  start-page: 1
  year: 2018
  ident: 10.1016/j.bioactmat.2023.10.005_bib16
  article-title: A systematic review on silver nanoparticles-induced cytotoxicity: physicochemical properties and perspectives
  publication-title: J. Adv. Res.
  doi: 10.1016/j.jare.2017.10.008
– volume: 360
  start-page: 365
  year: 2023
  ident: 10.1016/j.bioactmat.2023.10.005_bib10
  article-title: ROS-responsive microneedles loaded with integrin avβ6-blocking antibodies for the treatment of pulmonary fibrosis
  publication-title: J. Contr. Release
  doi: 10.1016/j.jconrel.2023.03.060
– volume: 10
  start-page: 6836
  issue: 23
  year: 2022
  ident: 10.1016/j.bioactmat.2023.10.005_bib20
  article-title: Construction of a sustained-release hydrogel using gallic acid and lysozyme with antimicrobial properties for wound treatment
  publication-title: Biomater. Sci.
  doi: 10.1039/D2BM00658H
– volume: 32
  start-page: 389
  issue: 3
  year: 2004
  ident: 10.1016/j.bioactmat.2023.10.005_bib1
  article-title: Shiunko promotes epithelization of wounded skin
  publication-title: Am. J. Chin. Med.
  doi: 10.1142/S0192415X04002041
– volume: 31
  issue: 15
  year: 2021
  ident: 10.1016/j.bioactmat.2023.10.005_bib8
  article-title: Injection of ROS‐responsive hydrogel loaded with basic fibroblast growth factor into the pericardial cavity for heart repair
  publication-title: Adv. Funct. Mater.
– volume: 11
  start-page: 2788
  issue: 1
  year: 2020
  ident: 10.1016/j.bioactmat.2023.10.005_bib33
  article-title: Ultrasmall copper-based nanoparticles for reactive oxygen species scavenging and alleviation of inflammation related diseases
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-16544-7
– volume: 19
  start-page: 1969
  issue: 4
  year: 2020
  ident: 10.1016/j.bioactmat.2023.10.005_bib3
  article-title: Valorization of pomelo (Citrus grandis Osbeck) peel: a review of current utilization, phytochemistry, bioactivities, and mechanisms of action
  publication-title: Compr. Rev. Food Sci. Food Saf.
  doi: 10.1111/1541-4337.12561
– volume: 19
  start-page: S32
  issue: 5
  year: 2010
  ident: 10.1016/j.bioactmat.2023.10.005_bib14
  article-title: The effects of silver dressings on chronic and burns wound healing
  publication-title: Br. J. Nurs.
  doi: 10.12968/bjon.2010.19.Sup5.77707
– volume: 5
  start-page: 7214
  issue: 9
  year: 2011
  ident: 10.1016/j.bioactmat.2023.10.005_bib28
  article-title: Cytotoxic origin of copper (II) oxide nanoparticles: comparative studies with micron-sized particles, leachate, and metal salts
  publication-title: ACS Nano
  doi: 10.1021/nn2020248
– volume: 4
  start-page: 1369
  issue: 7
  year: 2011
  ident: 10.1016/j.bioactmat.2023.10.005_bib30
  article-title: Physico-mechanical properties of wound dressing material and its biomedical application
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2011.05.007
– volume: 18
  start-page: 26
  year: 2022
  ident: 10.1016/j.bioactmat.2023.10.005_bib21
  article-title: Exosome-functionalized magnesium-organic framework-based scaffolds with osteogenic, angiogenic and anti-inflammatory properties for accelerated bone regeneration
  publication-title: Bioact. Mater.
– volume: 32
  issue: 9
  year: 2020
  ident: 10.1016/j.bioactmat.2023.10.005_bib18
  article-title: Development of copper nanoclusters for in vitro and in vivo theranostic applications
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201906872
– volume: 9
  start-page: 5216
  issue: 2
  year: 2013
  ident: 10.1016/j.bioactmat.2023.10.005_bib32
  article-title: Functional biopolymer-based matrices for modulation of chronic wound enzyme activities
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2012.10.014
– volume: 32
  issue: 33
  year: 2022
  ident: 10.1016/j.bioactmat.2023.10.005_bib13
  article-title: Injectable reactive oxygen species‐responsive hydrogel dressing with sustained nitric oxide release for bacterial ablation and wound healing
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202202857
– volume: 167
  start-page: 10
  year: 2021
  ident: 10.1016/j.bioactmat.2023.10.005_bib35
  article-title: Multifunctional chitosan-copper-gallic acid based antibacterial nanocomposite wound dressing
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2020.11.153
– volume: 42
  start-page: 200
  issue: 2
  year: 2021
  ident: 10.1016/j.bioactmat.2023.10.005_bib42
  article-title: Improvement of burn scars treated with fractional ablative CO2 lasers—a systematic review and meta-analysis using the Vancouver Scar Scale
  publication-title: J. Burn Care Res.
  doi: 10.1093/jbcr/iraa130
– volume: 11
  issue: 3
  year: 2019
  ident: 10.1016/j.bioactmat.2023.10.005_bib5
  article-title: Phytochemical content and antioxidant activities of pomelo peel extract
  publication-title: Pharmacogn. Res.
– volume: 25
  start-page: 347
  year: 2023
  ident: 10.1016/j.bioactmat.2023.10.005_bib9
  article-title: Stiffness-tuned and ROS-sensitive hydrogel incorporating complement C5a receptor antagonist modulates antibacterial activity of macrophages for periodontitis treatment
  publication-title: Bioact. Mater.
– volume: 9
  issue: 3
  year: 2023
  ident: 10.1016/j.bioactmat.2023.10.005_bib40
  article-title: Integrating zinc/silicon dual ions with 3D-printed GelMA hydrogel promotes in situ hair follicle regeneration
  publication-title: Int. J. Bioprint.
  doi: 10.18063/ijb.703
– volume: 10
  issue: 1
  year: 2020
  ident: 10.1016/j.bioactmat.2023.10.005_bib27
  article-title: Aqueous synthesis of highly adsorptive copper–gallic acid metal–organic framework
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-75927-4
– volume: 167
  start-page: 449
  year: 2023
  ident: 10.1016/j.bioactmat.2023.10.005_bib29
  article-title: Cu-GA-coordination polymer nanozymes with triple enzymatic activity for wound disinfection and accelerated wound healing
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2023.05.048
SSID ssj0001700007
Score 2.4686837
Snippet Bacterial infection and scar formation remain primary challenges in wound healing. To address these issues, we developed a decellularized pomelo peel (DPP)...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 260
SubjectTerms Bacteria infection
Decellularized pomelo peel
Granulation tissue formation
Scar formation
Wound healing
Title Copper ion/gallic acid MOFs-laden adhesive pomelo peel sponge effectively treats biofilm-infected skin wounds and improves healing quality
URI https://www.proquest.com/docview/2880824200
https://pubmed.ncbi.nlm.nih.gov/PMC10589730
https://doaj.org/article/ec3f04cd5ea44c06a6a6e803282dae9d
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQuXBBIEAsj8pIXN0mseNNjm3pqkJsQUCl3iI_xjQlTaJmK9S_wK9mJt5dbU69oBzysK04HntmHH_-hrGPyhcScNgIbaQVSpWpsGkCwqvC5jrMg8po7_DyXJ9dqM-X-eVOqC_ChEV64Nhwh-BkSJTzORilXKINHlAQC1zmDZSetC_avJ3J1HUkhSHrNwF02bozboV-4AGFDD8YMV35xByNrP0TV3MKlNyxPItn7OnaZeRHsarP2SNoX7C_J13fwy3HZj2kxfPaceNqz5dfF4NoDGoTbvwVEDid990NNB3vARpOiNhfwCOMAxObez5izQeOFQ91cyMiPAs8H37XLf9DYZcGblrP6_H_AwycnEu0eDxuyLx_yS4Wpz9PzsQ6roJwSqcrAamy1sx9XqYhs3OJLeukKxIncS6E1zTlCd6aNAteOe1k4YJR3mV50KV1Xr5ie23XwmvGiTpHBwiy9KUKmA1vXChz64wJxdzMmN40b-XWpOMU-6KpNuiy62orl4rkQgkolxlLtgX7yLvxcJFjkt82OxFnjw-wO1Xr7lQ91J1m7MNG-hUONFo9MS10d0OVoaYr0KFJkhkrJt1i8sZpSltfjZTdKUVvRGX65n_U8S17gp-tInb8Hdtb3d7Be3SNVnafPT76tPzyA8_Hp-ffvu-Po-Ifnx0ZwQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Copper+ion%2Fgallic+acid+MOFs-laden+adhesive+pomelo+peel+sponge+effectively+treats+biofilm-infected+skin+wounds+and+improves+healing+quality&rft.jtitle=Bioactive+materials&rft.au=Yang%2C+Jianqiu&rft.au=Huang%2C+Zhenzhen&rft.au=Tan%2C+Jiang&rft.au=Pan%2C+Jingye&rft.date=2024-02-01&rft.issn=2452-199X&rft.eissn=2452-199X&rft.volume=32&rft.spage=260&rft_id=info:doi/10.1016%2Fj.bioactmat.2023.10.005&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2452-199X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2452-199X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2452-199X&client=summon