Copper ion/gallic acid MOFs-laden adhesive pomelo peel sponge effectively treats biofilm-infected skin wounds and improves healing quality
Bacterial infection and scar formation remain primary challenges in wound healing. To address these issues, we developed a decellularized pomelo peel (DPP) functionalized with an adhesive PVA-TSPBA hydrogel and antibacterial gallic acid/copper MOFs. The hybrid wound dressing demonstrates favorable b...
Saved in:
Published in | Bioactive materials Vol. 32; pp. 260 - 276 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
KeAi Publishing
01.02.2024
KeAi Communications Co., Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Bacterial infection and scar formation remain primary challenges in wound healing. To address these issues, we developed a decellularized pomelo peel (DPP) functionalized with an adhesive PVA-TSPBA hydrogel and antibacterial gallic acid/copper MOFs. The hybrid wound dressing demonstrates favorable biocompatibility. It does not impede the proliferation of fibroblasts or immune cells and can stimulate fibroblast migration, endothelial angiogenesis, and M2 macrophage polarization. Additionally, the dressing can scavenge reactive oxygen species (ROS) and provide antioxidant effects. Furthermore, DPP + MOF@Gel effectively inhibits the viability of S. aureus and E. coli in vitro and in vivo. The histological observations revealed enhanced granulation tissue formation, re-epithelialization, and angiogenesis in the DPP + MOF@Gel group compared to other groups. The local immune response also shifted from a pro-inflammatory to a pro-regenerative status with DPP + MOF@Gel treatment. The skin incision stitching experiment further exhibits DPP + MOF@Gel could reduce scar formation during wound healing. Taken together, the hybrid DPP + MOF@Gel holds great promise for treating bacteria-infected skin wounds and inhibiting scar formation during wound healing.Bacterial infection and scar formation remain primary challenges in wound healing. To address these issues, we developed a decellularized pomelo peel (DPP) functionalized with an adhesive PVA-TSPBA hydrogel and antibacterial gallic acid/copper MOFs. The hybrid wound dressing demonstrates favorable biocompatibility. It does not impede the proliferation of fibroblasts or immune cells and can stimulate fibroblast migration, endothelial angiogenesis, and M2 macrophage polarization. Additionally, the dressing can scavenge reactive oxygen species (ROS) and provide antioxidant effects. Furthermore, DPP + MOF@Gel effectively inhibits the viability of S. aureus and E. coli in vitro and in vivo. The histological observations revealed enhanced granulation tissue formation, re-epithelialization, and angiogenesis in the DPP + MOF@Gel group compared to other groups. The local immune response also shifted from a pro-inflammatory to a pro-regenerative status with DPP + MOF@Gel treatment. The skin incision stitching experiment further exhibits DPP + MOF@Gel could reduce scar formation during wound healing. Taken together, the hybrid DPP + MOF@Gel holds great promise for treating bacteria-infected skin wounds and inhibiting scar formation during wound healing. |
---|---|
AbstractList | Bacterial infection and scar formation remain primary challenges in wound healing. To address these issues, we developed a decellularized pomelo peel (DPP) functionalized with an adhesive PVA-TSPBA hydrogel and antibacterial gallic acid/copper MOFs. The hybrid wound dressing demonstrates favorable biocompatibility. It does not impede the proliferation of fibroblasts or immune cells and can stimulate fibroblast migration, endothelial angiogenesis, and M2 macrophage polarization. Additionally, the dressing can scavenge reactive oxygen species (ROS) and provide antioxidant effects. Furthermore, DPP + MOF@Gel effectively inhibits the viability of
S. aureus
and
E. coli
in vitro and in vivo. The histological observations revealed enhanced granulation tissue formation, re-epithelialization, and angiogenesis in the DPP + MOF@Gel group compared to other groups. The local immune response also shifted from a pro-inflammatory to a pro-regenerative status with DPP + MOF@Gel treatment. The skin incision stitching experiment further exhibits DPP + MOF@Gel could reduce scar formation during wound healing. Taken together, the hybrid DPP + MOF@Gel holds great promise for treating bacteria-infected skin wounds and inhibiting scar formation during wound healing.
Image 1
•
The designed wound dressing combines the advantages of decellularized plant materials, adhesive hydrogels, and inorganic antibacterial materials.
•
In vitro, the dressing demonstrates favorable biocompatibility, scavenges ROS, provides antioxidant effects, and promotes M2 macrophage polarization.
•
In vivo, the dressing promotes granulation tissue formation, re-epithelialization, and angiogenesis and reduces scar formation. Bacterial infection and scar formation remain primary challenges in wound healing. To address these issues, we developed a decellularized pomelo peel (DPP) functionalized with an adhesive PVA-TSPBA hydrogel and antibacterial gallic acid/copper MOFs. The hybrid wound dressing demonstrates favorable biocompatibility. It does not impede the proliferation of fibroblasts or immune cells and can stimulate fibroblast migration, endothelial angiogenesis, and M2 macrophage polarization. Additionally, the dressing can scavenge reactive oxygen species (ROS) and provide antioxidant effects. Furthermore, DPP + MOF@Gel effectively inhibits the viability of S. aureus and E. coli in vitro and in vivo. The histological observations revealed enhanced granulation tissue formation, re-epithelialization, and angiogenesis in the DPP + MOF@Gel group compared to other groups. The local immune response also shifted from a pro-inflammatory to a pro-regenerative status with DPP + MOF@Gel treatment. The skin incision stitching experiment further exhibits DPP + MOF@Gel could reduce scar formation during wound healing. Taken together, the hybrid DPP + MOF@Gel holds great promise for treating bacteria-infected skin wounds and inhibiting scar formation during wound healing.Bacterial infection and scar formation remain primary challenges in wound healing. To address these issues, we developed a decellularized pomelo peel (DPP) functionalized with an adhesive PVA-TSPBA hydrogel and antibacterial gallic acid/copper MOFs. The hybrid wound dressing demonstrates favorable biocompatibility. It does not impede the proliferation of fibroblasts or immune cells and can stimulate fibroblast migration, endothelial angiogenesis, and M2 macrophage polarization. Additionally, the dressing can scavenge reactive oxygen species (ROS) and provide antioxidant effects. Furthermore, DPP + MOF@Gel effectively inhibits the viability of S. aureus and E. coli in vitro and in vivo. The histological observations revealed enhanced granulation tissue formation, re-epithelialization, and angiogenesis in the DPP + MOF@Gel group compared to other groups. The local immune response also shifted from a pro-inflammatory to a pro-regenerative status with DPP + MOF@Gel treatment. The skin incision stitching experiment further exhibits DPP + MOF@Gel could reduce scar formation during wound healing. Taken together, the hybrid DPP + MOF@Gel holds great promise for treating bacteria-infected skin wounds and inhibiting scar formation during wound healing. Bacterial infection and scar formation remain primary challenges in wound healing. To address these issues, we developed a decellularized pomelo peel (DPP) functionalized with an adhesive PVA-TSPBA hydrogel and antibacterial gallic acid/copper MOFs. The hybrid wound dressing demonstrates favorable biocompatibility. It does not impede the proliferation of fibroblasts or immune cells and can stimulate fibroblast migration, endothelial angiogenesis, and M2 macrophage polarization. Additionally, the dressing can scavenge reactive oxygen species (ROS) and provide antioxidant effects. Furthermore, DPP + MOF@Gel effectively inhibits the viability of S. aureus and E. coli in vitro and in vivo. The histological observations revealed enhanced granulation tissue formation, re-epithelialization, and angiogenesis in the DPP + MOF@Gel group compared to other groups. The local immune response also shifted from a pro-inflammatory to a pro-regenerative status with DPP + MOF@Gel treatment. The skin incision stitching experiment further exhibits DPP + MOF@Gel could reduce scar formation during wound healing. Taken together, the hybrid DPP + MOF@Gel holds great promise for treating bacteria-infected skin wounds and inhibiting scar formation during wound healing. |
Author | Chen, Shixuan Wan, Wenbing Pan, Jingye Huang, Zhenzhen Yang, Jianqiu Tan, Jiang |
Author_xml | – sequence: 1 givenname: Jianqiu surname: Yang fullname: Yang, Jianqiu – sequence: 2 givenname: Zhenzhen surname: Huang fullname: Huang, Zhenzhen – sequence: 3 givenname: Jiang surname: Tan fullname: Tan, Jiang – sequence: 4 givenname: Jingye surname: Pan fullname: Pan, Jingye – sequence: 5 givenname: Shixuan orcidid: 0000-0001-7905-3268 surname: Chen fullname: Chen, Shixuan – sequence: 6 givenname: Wenbing surname: Wan fullname: Wan, Wenbing |
BookMark | eNqFUl1rVDEQvUgFa-1vMI--3G2S-_0gIovVQqUvCr6FuclkN2tucptkt-xf8Feb65ZifZHAzDBnzpmBnNfFmfMOi-ItoytGWXu1W43Gg0wTpBWnvMrdFaXNi-Kc1w0v2TD8OPurflVcxrijlLIuB9qdF7_Wfp4xEOPd1QasNZKANIp8vbuOpQWFjoDaYjQHJLOf0HoyI1oSZ-82SFBrlCmD9khSQEiR5IO0sVNp3AKhIvGnceTB752KBJwiZpqDP2AkWwRr3Ibc73NOxzfFSw024uVjvii-X3_6tv5S3t59vll_vC1l3bJUIqvHETrVDEzzsasQalnJnsqKN0OuWcs6rUZgXKtatrLqpYZaSd7odhilqi6Km5Ou8rATczAThKPwYMSfhg8bASEZaVGgrDStpWryklrSFvLDnla85wpwWLQ-nLTm_TihkuhSAPtM9DnizFZs_EEw2vRDV9Gs8O5RIfj7PcYkJhMlWgsO_T4K3ve05zWny2h3GpXBxxhQP-1hVCx2EDvxZAex2GEBsh0y8_0_TGkSpPzp-Shj_8v_DevqyGo |
CitedBy_id | crossref_primary_10_1002_smll_202400516 crossref_primary_10_1002_adfm_202315020 crossref_primary_10_1016_j_ccr_2024_216205 crossref_primary_10_1021_acsnano_4c17852 crossref_primary_10_3389_fbioe_2024_1431949 crossref_primary_10_1186_s12951_024_02687_y crossref_primary_10_1016_j_ijbiomac_2024_133666 crossref_primary_10_1002_smll_202311903 crossref_primary_10_1002_anbr_202400008 crossref_primary_10_1016_j_ijbiomac_2024_139349 crossref_primary_10_1021_acsbiomaterials_4c02420 crossref_primary_10_1039_D4NR04486J crossref_primary_10_1021_acsnano_4c04816 crossref_primary_10_1016_j_ijbiomac_2025_142108 crossref_primary_10_3389_fbioe_2023_1304835 crossref_primary_10_1021_acsomega_4c08103 crossref_primary_10_1021_acsami_4c20219 |
Cites_doi | 10.1039/C8TB03341B 10.1021/acs.chemmater.3c00049 10.1016/j.ccr.2018.01.001 10.1126/scitranslmed.aan3682 10.1016/j.jss.2019.06.006 10.1002/mame.201600375 10.1021/acs.accounts.0c00339 10.1089/wound.2012.0368 10.1039/D0TB01751E 10.1111/j.1742-481X.2006.00265.x 10.1021/acssuschemeng.2c07445 10.1016/j.chemosphere.2021.131853 10.1016/j.actbio.2020.03.035 10.1021/acs.jafc.9b02511 10.1177/20417314211031378 10.3390/molecules21070899 10.4103/pr.pr_180_18 10.1093/burnst/tkz003 10.1002/adfm.202008720 10.1093/burnst/tkab013 10.1016/j.jare.2017.10.008 10.1016/j.jconrel.2023.03.060 10.1039/D2BM00658H 10.1142/S0192415X04002041 10.1038/s41467-020-16544-7 10.1111/1541-4337.12561 10.12968/bjon.2010.19.Sup5.77707 10.1021/nn2020248 10.1016/j.jmbbm.2011.05.007 10.1002/adma.201906872 10.1016/j.actbio.2012.10.014 10.1002/adfm.202202857 10.1016/j.ijbiomac.2020.11.153 10.1093/jbcr/iraa130 10.18063/ijb.703 10.1038/s41598-020-75927-4 10.1016/j.actbio.2023.05.048 |
ContentType | Journal Article |
Copyright | 2023 The Authors. 2023 The Authors 2023 |
Copyright_xml | – notice: 2023 The Authors. – notice: 2023 The Authors 2023 |
DBID | AAYXX CITATION 7X8 5PM DOA |
DOI | 10.1016/j.bioactmat.2023.10.005 |
DatabaseName | CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2452-199X |
EndPage | 276 |
ExternalDocumentID | oai_doaj_org_article_ec3f04cd5ea44c06a6a6e803282dae9d PMC10589730 10_1016_j_bioactmat_2023_10_005 |
GroupedDBID | 0R~ AAEDW AALRI AAXUO AAYWO AAYXX ABJCF ABMAC ACGFS ACVFH ADBBV ADCNI ADMLS ADVLN AEUPX AEXQZ AFKRA AFPUW AFTJW AIGII AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BBNVY BCNDV BENPR BGLVJ BHPHI CCPQU CITATION EBS EJD FDB GROUPED_DOAJ HCIFZ HYE KB. M41 M7P M~E OK1 PDBOC PHGZM PHGZT PIMPY ROL RPM SSZ 7X8 PQGLB 5PM PUEGO |
ID | FETCH-LOGICAL-c461t-e14bba7d591f2b73ea4c3c80c3259a4c1617fdba12fd4c6c38cfa4dc25f69bcd3 |
IEDL.DBID | DOA |
ISSN | 2452-199X |
IngestDate | Wed Aug 27 01:23:32 EDT 2025 Thu Aug 21 18:36:03 EDT 2025 Fri Jul 11 16:12:06 EDT 2025 Tue Jul 01 02:11:34 EDT 2025 Thu Apr 24 22:57:06 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c461t-e14bba7d591f2b73ea4c3c80c3259a4c1617fdba12fd4c6c38cfa4dc25f69bcd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 J. Yang and Z. Huang contributed equally to this work. |
ORCID | 0000-0001-7905-3268 |
OpenAccessLink | https://doaj.org/article/ec3f04cd5ea44c06a6a6e803282dae9d |
PQID | 2880824200 |
PQPubID | 23479 |
PageCount | 17 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ec3f04cd5ea44c06a6a6e803282dae9d pubmedcentral_primary_oai_pubmedcentral_nih_gov_10589730 proquest_miscellaneous_2880824200 crossref_primary_10_1016_j_bioactmat_2023_10_005 crossref_citationtrail_10_1016_j_bioactmat_2023_10_005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-02-01 |
PublicationDateYYYYMMDD | 2024-02-01 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Bioactive materials |
PublicationYear | 2024 |
Publisher | KeAi Publishing KeAi Communications Co., Ltd |
Publisher_xml | – name: KeAi Publishing – name: KeAi Communications Co., Ltd |
References | Liu (10.1016/j.bioactmat.2023.10.005_bib19) 2018; 359 Gong (10.1016/j.bioactmat.2023.10.005_bib20) 2022; 10 Tocmo (10.1016/j.bioactmat.2023.10.005_bib3) 2020; 19 Predeina (10.1016/j.bioactmat.2023.10.005_bib22) 2020; 8 Kim (10.1016/j.bioactmat.2023.10.005_bib26) 2022; 286 Mutra (10.1016/j.bioactmat.2023.10.005_bib23) 2023; 11 Li (10.1016/j.bioactmat.2023.10.005_bib25) 2023 Leaper (10.1016/j.bioactmat.2023.10.005_bib15) 2006; 3 Chen (10.1016/j.bioactmat.2023.10.005_bib38) 2020; 108 Wan (10.1016/j.bioactmat.2023.10.005_bib39) 2019; 7 Chak (10.1016/j.bioactmat.2023.10.005_bib2) 2013; 2 Han (10.1016/j.bioactmat.2023.10.005_bib24) 2020; 53 Abudayeh (10.1016/j.bioactmat.2023.10.005_bib37) 2019; 11 Kang (10.1016/j.bioactmat.2023.10.005_bib21) 2022; 18 Yang (10.1016/j.bioactmat.2023.10.005_bib34) 2016; 21 Francesko (10.1016/j.bioactmat.2023.10.005_bib32) 2013; 9 Huang (10.1016/j.bioactmat.2023.10.005_bib1) 2004; 32 Wang (10.1016/j.bioactmat.2023.10.005_bib12) 2018; 10 Lai (10.1016/j.bioactmat.2023.10.005_bib18) 2020; 32 Gunawan (10.1016/j.bioactmat.2023.10.005_bib28) 2011; 5 Lundin (10.1016/j.bioactmat.2023.10.005_bib31) 2017; 302 Liu (10.1016/j.bioactmat.2023.10.005_bib33) 2020; 11 Zhang (10.1016/j.bioactmat.2023.10.005_bib40) 2023; 9 Zhang (10.1016/j.bioactmat.2023.10.005_bib17) 2021; 31 Li (10.1016/j.bioactmat.2023.10.005_bib8) 2021; 31 Shan (10.1016/j.bioactmat.2023.10.005_bib11) 2021; 12 Ding (10.1016/j.bioactmat.2023.10.005_bib10) 2023; 360 Mahar (10.1016/j.bioactmat.2023.10.005_bib42) 2021; 42 Azhar (10.1016/j.bioactmat.2023.10.005_bib27) 2020; 10 Gan (10.1016/j.bioactmat.2023.10.005_bib36) 2023; 25 Liu (10.1016/j.bioactmat.2023.10.005_bib7) 2021; 6 Tian (10.1016/j.bioactmat.2023.10.005_bib29) 2023; 167 Sun (10.1016/j.bioactmat.2023.10.005_bib35) 2021; 167 Gan (10.1016/j.bioactmat.2023.10.005_bib9) 2023; 25 Akter (10.1016/j.bioactmat.2023.10.005_bib16) 2018; 9 Zead Helmi (10.1016/j.bioactmat.2023.10.005_bib5) 2019; 11 Zhao (10.1016/j.bioactmat.2023.10.005_bib4) 2019; 67 Carney (10.1016/j.bioactmat.2023.10.005_bib44) 2019; 244 Elliott (10.1016/j.bioactmat.2023.10.005_bib14) 2010; 19 Yu (10.1016/j.bioactmat.2023.10.005_bib13) 2022; 32 Zaman (10.1016/j.bioactmat.2023.10.005_bib30) 2011; 4 Liu (10.1016/j.bioactmat.2023.10.005_bib43) 2023; 35 Shirakami (10.1016/j.bioactmat.2023.10.005_bib6) 2020; 8 Zhang (10.1016/j.bioactmat.2023.10.005_bib41) 2021; 9 |
References_xml | – volume: 6 start-page: 721 issue: 3 year: 2021 ident: 10.1016/j.bioactmat.2023.10.005_bib7 article-title: Bioactive antiinflammatory antibacterial hemostatic citrate-based dressing with macrophage polarization regulation for accelerating wound healing and hair follicle neogenesis publication-title: Bioact. Mater. – volume: 7 start-page: 2954 issue: 18 year: 2019 ident: 10.1016/j.bioactmat.2023.10.005_bib39 article-title: A skin-inspired 3D bilayer scaffold enhances granulation tissue formation and anti-infection for diabetic wound healing publication-title: J. Mater. Chem. B doi: 10.1039/C8TB03341B – volume: 35 start-page: 2588 issue: 6 year: 2023 ident: 10.1016/j.bioactmat.2023.10.005_bib43 article-title: Biological glue from only lipoic acid for scarless wound healing by anti-inflammation and TGF-β regulation publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.3c00049 – volume: 359 start-page: 112 year: 2018 ident: 10.1016/j.bioactmat.2023.10.005_bib19 article-title: Atomically precise copper nanoclusters and their applications publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2018.01.001 – volume: 10 issue: 429 year: 2018 ident: 10.1016/j.bioactmat.2023.10.005_bib12 article-title: In situ formed reactive oxygen species–responsive scaffold with gemcitabine and checkpoint inhibitor for combination therapy publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aan3682 – volume: 244 start-page: 312 year: 2019 ident: 10.1016/j.bioactmat.2023.10.005_bib44 article-title: Reactive oxygen species scavenging potential contributes to hypertrophic scar formation publication-title: J. Surg. Res. doi: 10.1016/j.jss.2019.06.006 – volume: 302 issue: 3 year: 2017 ident: 10.1016/j.bioactmat.2023.10.005_bib31 article-title: Multi‐functional polyurethane hydrogel foams with tunable mechanical properties for wound dressing applications publication-title: Macromol. Mater. Eng. doi: 10.1002/mame.201600375 – volume: 53 start-page: 2521 issue: 11 year: 2020 ident: 10.1016/j.bioactmat.2023.10.005_bib24 article-title: Local and targeted delivery of immune checkpoint blockade therapeutics publication-title: Accounts Chem. Res. doi: 10.1021/acs.accounts.0c00339 – volume: 2 start-page: 448 issue: 8 year: 2013 ident: 10.1016/j.bioactmat.2023.10.005_bib2 article-title: A study of the effect of shiunko, a traditional Chinese herbal medicine, on fibroblasts and its implication on wound healing processes publication-title: Adv. Wound Care doi: 10.1089/wound.2012.0368 – year: 2023 ident: 10.1016/j.bioactmat.2023.10.005_bib25 article-title: Dually crosslinked copper‐poly (tannic acid) nanoparticles with microenvironment‐responsiveness for infected wound treatment publication-title: Adv. Healthcare Mater. – volume: 8 start-page: 10010 issue: 44 year: 2020 ident: 10.1016/j.bioactmat.2023.10.005_bib22 article-title: Bioreactivity of decellularized animal, plant, and fungal scaffolds: perspectives for medical applications publication-title: J. Mater. Chem. B doi: 10.1039/D0TB01751E – volume: 3 start-page: 282 issue: 4 year: 2006 ident: 10.1016/j.bioactmat.2023.10.005_bib15 article-title: Silver dressings: their role in wound management publication-title: Int. Wound J. doi: 10.1111/j.1742-481X.2006.00265.x – volume: 11 start-page: 6485 issue: 17 year: 2023 ident: 10.1016/j.bioactmat.2023.10.005_bib23 article-title: Emergence of plant-based decellularized scaffolds for tissue regeneration: a review publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.2c07445 – volume: 286 year: 2022 ident: 10.1016/j.bioactmat.2023.10.005_bib26 article-title: Electrosorption of cadmium ions in aqueous solutions using a copper-gallate metal-organic framework publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.131853 – volume: 108 start-page: 153 year: 2020 ident: 10.1016/j.bioactmat.2023.10.005_bib38 article-title: Mesenchymal stem cell-laden, personalized 3D scaffolds with controlled structure and fiber alignment promote diabetic wound healing publication-title: Acta Biomater. doi: 10.1016/j.actbio.2020.03.035 – volume: 67 start-page: 8810 issue: 32 year: 2019 ident: 10.1016/j.bioactmat.2023.10.005_bib4 article-title: Anti-inflammatory effect of pomelo peel and its bioactive coumarins publication-title: J. Agric. Food Chem. doi: 10.1021/acs.jafc.9b02511 – volume: 12 year: 2021 ident: 10.1016/j.bioactmat.2023.10.005_bib11 article-title: Injectable ROS-scavenging hydrogel with MSCs promoted the regeneration of damaged skeletal muscle publication-title: J. Tissue Eng. doi: 10.1177/20417314211031378 – volume: 21 start-page: 899 issue: 7 year: 2016 ident: 10.1016/j.bioactmat.2023.10.005_bib34 article-title: Gallic acid promotes wound healing in normal and hyperglucidic conditions publication-title: Molecules doi: 10.3390/molecules21070899 – volume: 11 issue: 3 year: 2019 ident: 10.1016/j.bioactmat.2023.10.005_bib37 article-title: Phytochemical content and antioxidant activities of pomelo peel extract publication-title: Pharmacogn. Res. doi: 10.4103/pr.pr_180_18 – volume: 8 year: 2020 ident: 10.1016/j.bioactmat.2023.10.005_bib6 article-title: Strategies to prevent hypertrophic scar formation: a review of therapeutic interventions based on molecular evidence publication-title: Burns & Trauma doi: 10.1093/burnst/tkz003 – volume: 31 issue: 14 year: 2021 ident: 10.1016/j.bioactmat.2023.10.005_bib17 article-title: Copper clusters: an effective antibacterial for eradicating multidrug-resistant bacterial infection in vitro and in vivo publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202008720 – volume: 9 year: 2021 ident: 10.1016/j.bioactmat.2023.10.005_bib41 article-title: Using bioprinting and spheroid culture to create a skin model with sweat glands and hair follicles publication-title: Burns & Trauma doi: 10.1093/burnst/tkab013 – volume: 25 start-page: 347 year: 2023 ident: 10.1016/j.bioactmat.2023.10.005_bib36 article-title: Stiffness-tuned and ROS-sensitive hydrogel incorporating complement C5a receptor antagonist modulates antibacterial activity of macrophages for periodontitis treatment publication-title: Bioact. Mater. – volume: 9 start-page: 1 year: 2018 ident: 10.1016/j.bioactmat.2023.10.005_bib16 article-title: A systematic review on silver nanoparticles-induced cytotoxicity: physicochemical properties and perspectives publication-title: J. Adv. Res. doi: 10.1016/j.jare.2017.10.008 – volume: 360 start-page: 365 year: 2023 ident: 10.1016/j.bioactmat.2023.10.005_bib10 article-title: ROS-responsive microneedles loaded with integrin avβ6-blocking antibodies for the treatment of pulmonary fibrosis publication-title: J. Contr. Release doi: 10.1016/j.jconrel.2023.03.060 – volume: 10 start-page: 6836 issue: 23 year: 2022 ident: 10.1016/j.bioactmat.2023.10.005_bib20 article-title: Construction of a sustained-release hydrogel using gallic acid and lysozyme with antimicrobial properties for wound treatment publication-title: Biomater. Sci. doi: 10.1039/D2BM00658H – volume: 32 start-page: 389 issue: 3 year: 2004 ident: 10.1016/j.bioactmat.2023.10.005_bib1 article-title: Shiunko promotes epithelization of wounded skin publication-title: Am. J. Chin. Med. doi: 10.1142/S0192415X04002041 – volume: 31 issue: 15 year: 2021 ident: 10.1016/j.bioactmat.2023.10.005_bib8 article-title: Injection of ROS‐responsive hydrogel loaded with basic fibroblast growth factor into the pericardial cavity for heart repair publication-title: Adv. Funct. Mater. – volume: 11 start-page: 2788 issue: 1 year: 2020 ident: 10.1016/j.bioactmat.2023.10.005_bib33 article-title: Ultrasmall copper-based nanoparticles for reactive oxygen species scavenging and alleviation of inflammation related diseases publication-title: Nat. Commun. doi: 10.1038/s41467-020-16544-7 – volume: 19 start-page: 1969 issue: 4 year: 2020 ident: 10.1016/j.bioactmat.2023.10.005_bib3 article-title: Valorization of pomelo (Citrus grandis Osbeck) peel: a review of current utilization, phytochemistry, bioactivities, and mechanisms of action publication-title: Compr. Rev. Food Sci. Food Saf. doi: 10.1111/1541-4337.12561 – volume: 19 start-page: S32 issue: 5 year: 2010 ident: 10.1016/j.bioactmat.2023.10.005_bib14 article-title: The effects of silver dressings on chronic and burns wound healing publication-title: Br. J. Nurs. doi: 10.12968/bjon.2010.19.Sup5.77707 – volume: 5 start-page: 7214 issue: 9 year: 2011 ident: 10.1016/j.bioactmat.2023.10.005_bib28 article-title: Cytotoxic origin of copper (II) oxide nanoparticles: comparative studies with micron-sized particles, leachate, and metal salts publication-title: ACS Nano doi: 10.1021/nn2020248 – volume: 4 start-page: 1369 issue: 7 year: 2011 ident: 10.1016/j.bioactmat.2023.10.005_bib30 article-title: Physico-mechanical properties of wound dressing material and its biomedical application publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2011.05.007 – volume: 18 start-page: 26 year: 2022 ident: 10.1016/j.bioactmat.2023.10.005_bib21 article-title: Exosome-functionalized magnesium-organic framework-based scaffolds with osteogenic, angiogenic and anti-inflammatory properties for accelerated bone regeneration publication-title: Bioact. Mater. – volume: 32 issue: 9 year: 2020 ident: 10.1016/j.bioactmat.2023.10.005_bib18 article-title: Development of copper nanoclusters for in vitro and in vivo theranostic applications publication-title: Adv. Mater. doi: 10.1002/adma.201906872 – volume: 9 start-page: 5216 issue: 2 year: 2013 ident: 10.1016/j.bioactmat.2023.10.005_bib32 article-title: Functional biopolymer-based matrices for modulation of chronic wound enzyme activities publication-title: Acta Biomater. doi: 10.1016/j.actbio.2012.10.014 – volume: 32 issue: 33 year: 2022 ident: 10.1016/j.bioactmat.2023.10.005_bib13 article-title: Injectable reactive oxygen species‐responsive hydrogel dressing with sustained nitric oxide release for bacterial ablation and wound healing publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202202857 – volume: 167 start-page: 10 year: 2021 ident: 10.1016/j.bioactmat.2023.10.005_bib35 article-title: Multifunctional chitosan-copper-gallic acid based antibacterial nanocomposite wound dressing publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2020.11.153 – volume: 42 start-page: 200 issue: 2 year: 2021 ident: 10.1016/j.bioactmat.2023.10.005_bib42 article-title: Improvement of burn scars treated with fractional ablative CO2 lasers—a systematic review and meta-analysis using the Vancouver Scar Scale publication-title: J. Burn Care Res. doi: 10.1093/jbcr/iraa130 – volume: 11 issue: 3 year: 2019 ident: 10.1016/j.bioactmat.2023.10.005_bib5 article-title: Phytochemical content and antioxidant activities of pomelo peel extract publication-title: Pharmacogn. Res. – volume: 25 start-page: 347 year: 2023 ident: 10.1016/j.bioactmat.2023.10.005_bib9 article-title: Stiffness-tuned and ROS-sensitive hydrogel incorporating complement C5a receptor antagonist modulates antibacterial activity of macrophages for periodontitis treatment publication-title: Bioact. Mater. – volume: 9 issue: 3 year: 2023 ident: 10.1016/j.bioactmat.2023.10.005_bib40 article-title: Integrating zinc/silicon dual ions with 3D-printed GelMA hydrogel promotes in situ hair follicle regeneration publication-title: Int. J. Bioprint. doi: 10.18063/ijb.703 – volume: 10 issue: 1 year: 2020 ident: 10.1016/j.bioactmat.2023.10.005_bib27 article-title: Aqueous synthesis of highly adsorptive copper–gallic acid metal–organic framework publication-title: Sci. Rep. doi: 10.1038/s41598-020-75927-4 – volume: 167 start-page: 449 year: 2023 ident: 10.1016/j.bioactmat.2023.10.005_bib29 article-title: Cu-GA-coordination polymer nanozymes with triple enzymatic activity for wound disinfection and accelerated wound healing publication-title: Acta Biomater. doi: 10.1016/j.actbio.2023.05.048 |
SSID | ssj0001700007 |
Score | 2.4686837 |
Snippet | Bacterial infection and scar formation remain primary challenges in wound healing. To address these issues, we developed a decellularized pomelo peel (DPP)... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 260 |
SubjectTerms | Bacteria infection Decellularized pomelo peel Granulation tissue formation Scar formation Wound healing |
Title | Copper ion/gallic acid MOFs-laden adhesive pomelo peel sponge effectively treats biofilm-infected skin wounds and improves healing quality |
URI | https://www.proquest.com/docview/2880824200 https://pubmed.ncbi.nlm.nih.gov/PMC10589730 https://doaj.org/article/ec3f04cd5ea44c06a6a6e803282dae9d |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQuXBBIEAsj8pIXN0mseNNjm3pqkJsQUCl3iI_xjQlTaJmK9S_wK9mJt5dbU69oBzysK04HntmHH_-hrGPyhcScNgIbaQVSpWpsGkCwqvC5jrMg8po7_DyXJ9dqM-X-eVOqC_ChEV64Nhwh-BkSJTzORilXKINHlAQC1zmDZSetC_avJ3J1HUkhSHrNwF02bozboV-4AGFDD8YMV35xByNrP0TV3MKlNyxPItn7OnaZeRHsarP2SNoX7C_J13fwy3HZj2kxfPaceNqz5dfF4NoDGoTbvwVEDid990NNB3vARpOiNhfwCOMAxObez5izQeOFQ91cyMiPAs8H37XLf9DYZcGblrP6_H_AwycnEu0eDxuyLx_yS4Wpz9PzsQ6roJwSqcrAamy1sx9XqYhs3OJLeukKxIncS6E1zTlCd6aNAteOe1k4YJR3mV50KV1Xr5ie23XwmvGiTpHBwiy9KUKmA1vXChz64wJxdzMmN40b-XWpOMU-6KpNuiy62orl4rkQgkolxlLtgX7yLvxcJFjkt82OxFnjw-wO1Xr7lQ91J1m7MNG-hUONFo9MS10d0OVoaYr0KFJkhkrJt1i8sZpSltfjZTdKUVvRGX65n_U8S17gp-tInb8Hdtb3d7Be3SNVnafPT76tPzyA8_Hp-ffvu-Po-Ifnx0ZwQ |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Copper+ion%2Fgallic+acid+MOFs-laden+adhesive+pomelo+peel+sponge+effectively+treats+biofilm-infected+skin+wounds+and+improves+healing+quality&rft.jtitle=Bioactive+materials&rft.au=Yang%2C+Jianqiu&rft.au=Huang%2C+Zhenzhen&rft.au=Tan%2C+Jiang&rft.au=Pan%2C+Jingye&rft.date=2024-02-01&rft.issn=2452-199X&rft.eissn=2452-199X&rft.volume=32&rft.spage=260&rft_id=info:doi/10.1016%2Fj.bioactmat.2023.10.005&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2452-199X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2452-199X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2452-199X&client=summon |