Flame-propagation behavior and a dynamic model for the thermal-radiation effects in coal-dust explosions

To reveal the flame-propagation behavior and the thermal-radiation effects during coal-dust explosions, two coal-dust clouds were tested in a semi-enclosed vertical combustion tube. A high-speed video camera and a thermal infrared imaging device were used to record the flame-propagation process and...

Full description

Saved in:
Bibliographic Details
Published inJournal of loss prevention in the process industries Vol. 29; pp. 65 - 71
Main Authors Cao, Weiguo, Gao, Wei, Liang, Jiyuan, Xu, Sen, Pan, Feng
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.05.2014
Elsevier Science Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To reveal the flame-propagation behavior and the thermal-radiation effects during coal-dust explosions, two coal-dust clouds were tested in a semi-enclosed vertical combustion tube. A high-speed video camera and a thermal infrared imaging device were used to record the flame-propagation process and the thermal-radiation effects of the fireball at the combustion-tube outlet. The flame propagated more quickly and with a higher temperature in the more volatile coal-dust cloud. The coal-dust concentration also significantly affected the propagation behavior of the combustion zone. When the coal-dust concentration was increased, the flame-propagation velocity and the fireball temperature increased before decreasing overall. Based on the experimental results, a dynamic model of the thermal radiation was employed to describe the changes in the fireballs quantitatively and to estimate the thermal-radiation effects during coal-dust explosions. •We examined the flame-propagation behaviors and thermal-radiation effects of a fireball.•The flame-propagation behaviors were similar in the two types of coal-dust clouds.•On the basis of the experimental results, fireball thermal dynamic calculations were performed.•The dynamic model provided a theoretical foundation for the damage power of dust explosions.
AbstractList To reveal the flame-propagation behavior and the thermal-radiation effects during coal-dust explosions, two coal-dust clouds were tested in a semi-enclosed vertical combustion tube. A high-speed video camera and a thermal infrared imaging device were used to record the flame-propagation process and the thermal-radiation effects of the fireball at the combustion-tube outlet. The flame propagated more quickly and with a higher temperature in the more volatile coal-dust cloud. The coal-dust concentration also significantly affected the propagation behavior of the combustion zone. When the coal-dust concentration was increased, the flame-propagation velocity and the fireball temperature increased before decreasing overall. Based on the experimental results, a dynamic model of the thermal radiation was employed to describe the changes in the fireballs quantitatively and to estimate the thermal-radiation effects during coal-dust explosions. •We examined the flame-propagation behaviors and thermal-radiation effects of a fireball.•The flame-propagation behaviors were similar in the two types of coal-dust clouds.•On the basis of the experimental results, fireball thermal dynamic calculations were performed.•The dynamic model provided a theoretical foundation for the damage power of dust explosions.
To reveal the flame-propagation behavior and the thermal-radiation effects during coal-dust explosions, two coal-dust clouds were tested in a semi-enclosed vertical combustion tube. A high-speed video camera and a thermal infrared imaging device were used to record the flame-propagation process and the thermal-radiation effects of the fireball at the combustion-tube outlet. The flame propagated more quickly and with a higher temperature in the more volatile coal-dust cloud. The coal-dust concentration also significantly affected the propagation behavior of the combustion zone. When the coal-dust concentration was increased, the flame-propagation velocity and the fireball temperature increased before decreasing overall. Based on the experimental results, a dynamic model of the thermal radiation was employed to describe the changes in the fireballs quantitatively and to estimate the thermal-radiation effects during coal-dust explosions.
Author Pan, Feng
Liang, Jiyuan
Xu, Sen
Cao, Weiguo
Gao, Wei
Author_xml – sequence: 1
  givenname: Weiguo
  surname: Cao
  fullname: Cao, Weiguo
  organization: School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, PR China
– sequence: 2
  givenname: Wei
  surname: Gao
  fullname: Gao, Wei
  organization: School of Chemical Machinery, Dalian University of Technology, Dalian 116024, PR China
– sequence: 3
  givenname: Jiyuan
  surname: Liang
  fullname: Liang, Jiyuan
  organization: School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, PR China
– sequence: 4
  givenname: Sen
  surname: Xu
  fullname: Xu, Sen
  organization: School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, PR China
– sequence: 5
  givenname: Feng
  surname: Pan
  fullname: Pan, Feng
  email: panfengiem@163.com
  organization: School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, PR China
BookMark eNp9kT9rHDEQxYVxwGcnH8CdIE2a3Yyk_UuqYOIkYHDj1GIsjXxatKuNtGfibx9dLpULF2JA837DzHuX7HyJCzF2LaAWILrPUz2FtZYgmhpkDSDP2E4MvaqUauU528HYQtVIBRfsMucJQPQw9Du2vw04U7WmuOITbj4u_JH2-Oxj4rhYjty-LDh7w-doKXBX_rc9HV-aMVQJrT9h5ByZLXO_cBNLxx7yxunPGmIu7fyevXMYMn34X6_Yr9tvDzc_qrv77z9vvt5VpunEVllHHaECGg3Zvh3xsSHqHQ1SUYsdCNdZaYVrhRtwQDMaEApkN7ZEQ4NKXbFPp7nlpN8HypuefTYUAi4UD1mLthUwiqY5Sj--kk7xkJayXVEp6IQc-rGo-pPKpJhzIqeN3_6dvCX0QQvQxwT0pEsC-piABqlLAoUUr8g1-RnTy5vMlxNDxaNnT0ln42kpZvhU7NU2-jfov0rCodE
CitedBy_id crossref_primary_10_1002_fam_3148
crossref_primary_10_1155_2019_2763907
crossref_primary_10_1016_j_jlp_2024_105248
crossref_primary_10_1016_j_psep_2019_12_002
crossref_primary_10_1016_j_jlp_2023_105242
crossref_primary_10_1016_j_engfailanal_2014_12_015
crossref_primary_10_1016_j_powtec_2017_04_059
crossref_primary_10_3390_pr10112419
crossref_primary_10_1016_j_psep_2024_10_066
crossref_primary_10_1016_j_psep_2023_11_022
crossref_primary_10_1016_j_jlp_2021_104509
crossref_primary_10_1016_j_powtec_2015_06_025
crossref_primary_10_1016_j_powtec_2024_119794
crossref_primary_10_1016_j_powtec_2020_04_034
crossref_primary_10_1016_j_fuel_2019_116304
crossref_primary_10_1016_j_csite_2024_104677
crossref_primary_10_1016_j_fuel_2024_133596
crossref_primary_10_1016_j_jlp_2015_09_006
crossref_primary_10_1016_j_fuel_2021_120954
crossref_primary_10_1021_acsomega_3c03700
crossref_primary_10_1016_j_csite_2024_105392
crossref_primary_10_1021_acsomega_2c03952
crossref_primary_10_1080_00102202_2019_1675155
crossref_primary_10_1016_j_psep_2018_09_001
crossref_primary_10_1021_acs_energyfuels_0c03338
crossref_primary_10_1016_j_applthermaleng_2023_120881
crossref_primary_10_1016_j_fuel_2022_125816
crossref_primary_10_1016_j_pecs_2022_100994
crossref_primary_10_1155_2022_5078134
crossref_primary_10_1016_j_fuel_2019_116678
crossref_primary_10_1093_ijlct_ctab067
crossref_primary_10_1016_j_jhazmat_2019_05_116
crossref_primary_10_1016_j_actaastro_2015_05_019
crossref_primary_10_1038_s41598_022_21859_0
crossref_primary_10_1155_2022_3995455
crossref_primary_10_1038_s41598_023_42117_x
crossref_primary_10_1016_j_jlp_2015_12_010
crossref_primary_10_1016_j_jlp_2017_01_002
crossref_primary_10_1080_00102202_2021_2010722
crossref_primary_10_1080_15567036_2017_1403515
crossref_primary_10_1080_00102202_2020_1768082
crossref_primary_10_1002_prs_12312
crossref_primary_10_1038_s41598_024_58017_7
crossref_primary_10_1021_acsomega_0c00078
crossref_primary_10_1016_j_jma_2023_08_017
crossref_primary_10_1002_prs_12075
crossref_primary_10_1007_s12517_021_07540_2
crossref_primary_10_1016_j_ijheatmasstransfer_2017_11_051
crossref_primary_10_1016_j_jlp_2022_104801
crossref_primary_10_1080_00102202_2019_1695606
crossref_primary_10_1155_2021_3052191
crossref_primary_10_1016_j_jlp_2022_104969
crossref_primary_10_1038_s41598_024_83595_x
crossref_primary_10_1016_j_powtec_2017_01_019
crossref_primary_10_1080_00102202_2019_1688313
crossref_primary_10_1016_j_fuel_2020_120034
crossref_primary_10_1016_j_combustflame_2024_113336
crossref_primary_10_1252_jcej_21we066
crossref_primary_10_2298_TSCI220718141L
crossref_primary_10_1016_j_ijimpeng_2024_105182
crossref_primary_10_1080_00102202_2018_1474877
crossref_primary_10_3390_en12203807
crossref_primary_10_1016_j_aej_2020_10_034
crossref_primary_10_1016_j_fuel_2022_123211
crossref_primary_10_1016_j_csite_2024_104888
Cites_doi 10.1016/j.jhazmat.2010.05.094
10.1016/j.jhazmat.2006.11.007
10.1016/j.jlp.2013.02.014
10.1016/j.jlp.2012.05.015
10.1016/j.ijthermalsci.2009.10.002
10.1016/j.jlp.2005.06.035
10.1016/j.ijthermalsci.2010.03.013
10.1016/j.jlp.2012.10.007
10.1016/j.jlp.2005.06.040
10.1016/j.jlp.2007.04.018
10.1016/S0950-4230(99)00072-8
10.1016/S0950-4230(99)00079-0
10.1016/0016-2361(93)90580-U
10.1016/j.jlp.2008.07.006
ContentType Journal Article
Copyright 2014 Elsevier Ltd
Copyright Elsevier Science Ltd. May 2014
Copyright_xml – notice: 2014 Elsevier Ltd
– notice: Copyright Elsevier Science Ltd. May 2014
DBID AAYXX
CITATION
7TA
8FD
JG9
DOI 10.1016/j.jlp.2014.02.002
DatabaseName CrossRef
Materials Business File
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Materials Business File
DatabaseTitleList
Materials Research Database
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3352
EndPage 71
ExternalDocumentID 3320441791
10_1016_j_jlp_2014_02_002
S0950423014000254
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BJAXD
BKOJK
BLXMC
CS3
D-I
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLY
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LX7
M41
MO0
MS~
N9A
NDZJH
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SCE
SDF
SDG
SES
SEW
SPC
SPCBC
SSG
SST
SSZ
T5K
WUQ
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7TA
8FD
EFKBS
JG9
ID FETCH-LOGICAL-c461t-dfe6ea30e9ced759ab4ee7fe823e5a601f6d2d1f51f8a8ac9c01302695ee84a33
IEDL.DBID .~1
ISSN 0950-4230
IngestDate Fri Jul 11 06:24:37 EDT 2025
Wed Aug 13 09:44:15 EDT 2025
Tue Jul 01 03:25:46 EDT 2025
Thu Apr 24 22:54:02 EDT 2025
Fri Feb 23 02:23:08 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Coal-dust explosion
Dynamic model
Fireball thermal radiation
Flame-propagation behavior
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c461t-dfe6ea30e9ced759ab4ee7fe823e5a601f6d2d1f51f8a8ac9c01302695ee84a33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PQID 1530612879
PQPubID 105365
PageCount 7
ParticipantIDs proquest_miscellaneous_1551091443
proquest_journals_1530612879
crossref_citationtrail_10_1016_j_jlp_2014_02_002
crossref_primary_10_1016_j_jlp_2014_02_002
elsevier_sciencedirect_doi_10_1016_j_jlp_2014_02_002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-05-01
PublicationDateYYYYMMDD 2014-05-01
PublicationDate_xml – month: 05
  year: 2014
  text: 2014-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Journal of loss prevention in the process industries
PublicationYear 2014
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References Gao, Zhong, Mogi, Liu, Rong, Dobashi (bib9) 2013; 26
Han, Yashima, Matsuda, Matsui, Miyake, Ogawa (bib11) 2000; 13
(pp. 605–621). San Francisco, California.
van Wingerden, Arntzen, Kosinski (bib17) 2001; 1601
Zhong, Wang, Huang (bib22) 2011; 31
Amyotte, Mintz, Pegg, Sun (bib2) 1993; 72
Zhang, Jiang, Zheng (bib19) 2005; 15
Cashdollar, Zlochower (bib5) 2007; 20
Eckhoff (bib7) 2009; 22
Bidabadi, Haghiri, Rahbari (bib3) 2010; 49
Haghiri, Bidabadi (bib10) 2010; 49
Holbrow, Hawksworth, Tyldesley (bib13) 2000; 13
Bouillard, Vignes, Dufaud, Perrin, Thomas (bib4) 2010; 181
Gao, Dobashi, Mogi, Sun, Shen (bib8) 2012; 25
Xu, Li, Zhu, Wang, Zhang (bib18) 2013; 26
Qiu, Cao, Huang, Zhang, Pan (bib16) 2012; 41
Zhang, Li, Jin (bib20) 1995
Martinsen, W. E., & Marx, J. D. (Sep. 28th–Oct. 1st, 1999). An improved model for the prediction of radiant heat flux from fireball. In
Zhang, Liu, Wang, Li (bib21) 2007; 7
Proust (bib15) 2006; 19
Abbasi, Abbasi (bib1) 2007; 140
Dobashi, Senda (bib6) 2006; 19
Amyotte (10.1016/j.jlp.2014.02.002_bib2) 1993; 72
Bouillard (10.1016/j.jlp.2014.02.002_bib4) 2010; 181
Haghiri (10.1016/j.jlp.2014.02.002_bib10) 2010; 49
Gao (10.1016/j.jlp.2014.02.002_bib9) 2013; 26
Zhang (10.1016/j.jlp.2014.02.002_bib20) 1995
Abbasi (10.1016/j.jlp.2014.02.002_bib1) 2007; 140
Gao (10.1016/j.jlp.2014.02.002_bib8) 2012; 25
Zhang (10.1016/j.jlp.2014.02.002_bib21) 2007; 7
Qiu (10.1016/j.jlp.2014.02.002_bib16) 2012; 41
Proust (10.1016/j.jlp.2014.02.002_bib15) 2006; 19
10.1016/j.jlp.2014.02.002_bib14
Xu (10.1016/j.jlp.2014.02.002_bib18) 2013; 26
Dobashi (10.1016/j.jlp.2014.02.002_bib6) 2006; 19
van Wingerden (10.1016/j.jlp.2014.02.002_bib17) 2001; 1601
Zhong (10.1016/j.jlp.2014.02.002_bib22) 2011; 31
Bidabadi (10.1016/j.jlp.2014.02.002_bib3) 2010; 49
Holbrow (10.1016/j.jlp.2014.02.002_bib13) 2000; 13
Cashdollar (10.1016/j.jlp.2014.02.002_bib5) 2007; 20
Eckhoff (10.1016/j.jlp.2014.02.002_bib7) 2009; 22
Han (10.1016/j.jlp.2014.02.002_bib11) 2000; 13
Zhang (10.1016/j.jlp.2014.02.002_bib19) 2005; 15
References_xml – volume: 140
  start-page: 7
  year: 2007
  end-page: 44
  ident: bib1
  article-title: Dust explosions-cases, causes, consequences, and control
  publication-title: Journal of Hazardous Materials
– volume: 49
  start-page: 1446
  year: 2010
  end-page: 1456
  ident: bib10
  article-title: Modeling of laminar flame propagation through organic dust cloud with thermal radiation effect
  publication-title: International Journal of Thermal Sciences
– volume: 31
  start-page: 528
  year: 2011
  end-page: 532
  ident: bib22
  article-title: Application of a dynamic model to thermal damage estimation of thermobaric explosives
  publication-title: Explosion and Shock Waves
– volume: 19
  start-page: 149
  year: 2006
  end-page: 153
  ident: bib6
  article-title: Detailed analysis of flame propagation during dust explosions by UV band observations
  publication-title: Journal of Loss Prevention in the Process Industries
– volume: 25
  start-page: 993
  year: 2012
  end-page: 999
  ident: bib8
  article-title: Effects of particle characteristics on flame propagation behavior during organic dust explosions in a half-closed chamber
  publication-title: Journal of Loss Prevention in the Process Industries
– volume: 26
  start-page: 186
  year: 2013
  end-page: 196
  ident: bib9
  article-title: Study on the influence of material thermal characteristics on dust explosion parameters of three long-chain monobasic alcohols
  publication-title: Journal of Loss Prevention in the Process Industries
– reference: Martinsen, W. E., & Marx, J. D. (Sep. 28th–Oct. 1st, 1999). An improved model for the prediction of radiant heat flux from fireball. In
– volume: 26
  start-page: 815
  year: 2013
  end-page: 820
  ident: bib18
  article-title: Experimental study on the mitigation via an ultra-fine water mist of methane/coal dust mixture explosions in the presence of obstacles
  publication-title: Journal of Loss Prevention in the Process Industries
– reference: (pp. 605–621). San Francisco, California.
– volume: 7
  start-page: 132
  year: 2007
  end-page: 135
  ident: bib21
  article-title: On the dynamic model application to the fireball radiation consequence calculation
  publication-title: Journal of Safety and Environment
– volume: 72
  start-page: 671
  year: 1993
  end-page: 679
  ident: bib2
  article-title: The ignitability of coal dust-air and methane-coal dust-air mixtures
  publication-title: Fuel
– volume: 13
  start-page: 467
  year: 2000
  end-page: 476
  ident: bib13
  article-title: Thermal radiation from vented dust explosions
  publication-title: Journal of Loss Prevention in the Process Industries
– volume: 15
  start-page: 73
  year: 2005
  end-page: 76
  ident: bib19
  article-title: Study on the mode and prevention of dust explosion accident
  publication-title: China Safety Science Journal
– volume: 49
  start-page: 534
  year: 2010
  end-page: 542
  ident: bib3
  article-title: The effect of Lewis and Damköhler numbers on the flame propagation through micro-organic dust particles
  publication-title: International Journal of Thermal Sciences
– volume: 41
  start-page: 16
  year: 2012
  end-page: 18
  ident: bib16
  article-title: Experimental research on lycopodium dust explosion
  publication-title: Explosive Materials
– volume: 1601
  start-page: 411
  year: 2001
  end-page: 421
  ident: bib17
  article-title: Modelling of dust explosions
  publication-title: VDI-Berichte
– volume: 22
  start-page: 105
  year: 2009
  end-page: 116
  ident: bib7
  article-title: Understanding dust explosions-the role of powder science and technology
  publication-title: Journal of Loss Prevention in the Process Industries
– volume: 181
  start-page: 873
  year: 2010
  end-page: 880
  ident: bib4
  article-title: Ignition and explosion risks of nanopowders
  publication-title: Journal of Hazardous Materials
– volume: 13
  start-page: 449
  year: 2000
  end-page: 457
  ident: bib11
  article-title: Behavior of flames propagating through lycopodium dust clouds in a vertical duct
  publication-title: Journal of Loss Prevention in the Process Industries
– year: 1995
  ident: bib20
  article-title: Low light level and infrared imaging technique [M]
– volume: 19
  start-page: 104
  year: 2006
  end-page: 120
  ident: bib15
  article-title: A few fundamental aspects about ignition and flame propagation in dust clouds
  publication-title: Journal of Loss Prevention in the Process Industries
– volume: 20
  start-page: 337
  year: 2007
  end-page: 348
  ident: bib5
  article-title: Explosion temperatures and pressures of metals and other elemental dust clouds
  publication-title: Journal of Loss Prevention in the Process Industries
– volume: 181
  start-page: 873
  year: 2010
  ident: 10.1016/j.jlp.2014.02.002_bib4
  article-title: Ignition and explosion risks of nanopowders
  publication-title: Journal of Hazardous Materials
  doi: 10.1016/j.jhazmat.2010.05.094
– ident: 10.1016/j.jlp.2014.02.002_bib14
– year: 1995
  ident: 10.1016/j.jlp.2014.02.002_bib20
– volume: 140
  start-page: 7
  year: 2007
  ident: 10.1016/j.jlp.2014.02.002_bib1
  article-title: Dust explosions-cases, causes, consequences, and control
  publication-title: Journal of Hazardous Materials
  doi: 10.1016/j.jhazmat.2006.11.007
– volume: 26
  start-page: 815
  year: 2013
  ident: 10.1016/j.jlp.2014.02.002_bib18
  article-title: Experimental study on the mitigation via an ultra-fine water mist of methane/coal dust mixture explosions in the presence of obstacles
  publication-title: Journal of Loss Prevention in the Process Industries
  doi: 10.1016/j.jlp.2013.02.014
– volume: 25
  start-page: 993
  year: 2012
  ident: 10.1016/j.jlp.2014.02.002_bib8
  article-title: Effects of particle characteristics on flame propagation behavior during organic dust explosions in a half-closed chamber
  publication-title: Journal of Loss Prevention in the Process Industries
  doi: 10.1016/j.jlp.2012.05.015
– volume: 41
  start-page: 16
  year: 2012
  ident: 10.1016/j.jlp.2014.02.002_bib16
  article-title: Experimental research on lycopodium dust explosion
  publication-title: Explosive Materials
– volume: 31
  start-page: 528
  year: 2011
  ident: 10.1016/j.jlp.2014.02.002_bib22
  article-title: Application of a dynamic model to thermal damage estimation of thermobaric explosives
  publication-title: Explosion and Shock Waves
– volume: 49
  start-page: 534
  year: 2010
  ident: 10.1016/j.jlp.2014.02.002_bib3
  article-title: The effect of Lewis and Damköhler numbers on the flame propagation through micro-organic dust particles
  publication-title: International Journal of Thermal Sciences
  doi: 10.1016/j.ijthermalsci.2009.10.002
– volume: 19
  start-page: 104
  year: 2006
  ident: 10.1016/j.jlp.2014.02.002_bib15
  article-title: A few fundamental aspects about ignition and flame propagation in dust clouds
  publication-title: Journal of Loss Prevention in the Process Industries
  doi: 10.1016/j.jlp.2005.06.035
– volume: 49
  start-page: 1446
  year: 2010
  ident: 10.1016/j.jlp.2014.02.002_bib10
  article-title: Modeling of laminar flame propagation through organic dust cloud with thermal radiation effect
  publication-title: International Journal of Thermal Sciences
  doi: 10.1016/j.ijthermalsci.2010.03.013
– volume: 15
  start-page: 73
  year: 2005
  ident: 10.1016/j.jlp.2014.02.002_bib19
  article-title: Study on the mode and prevention of dust explosion accident
  publication-title: China Safety Science Journal
– volume: 26
  start-page: 186
  year: 2013
  ident: 10.1016/j.jlp.2014.02.002_bib9
  article-title: Study on the influence of material thermal characteristics on dust explosion parameters of three long-chain monobasic alcohols
  publication-title: Journal of Loss Prevention in the Process Industries
  doi: 10.1016/j.jlp.2012.10.007
– volume: 19
  start-page: 149
  year: 2006
  ident: 10.1016/j.jlp.2014.02.002_bib6
  article-title: Detailed analysis of flame propagation during dust explosions by UV band observations
  publication-title: Journal of Loss Prevention in the Process Industries
  doi: 10.1016/j.jlp.2005.06.040
– volume: 7
  start-page: 132
  year: 2007
  ident: 10.1016/j.jlp.2014.02.002_bib21
  article-title: On the dynamic model application to the fireball radiation consequence calculation
  publication-title: Journal of Safety and Environment
– volume: 20
  start-page: 337
  year: 2007
  ident: 10.1016/j.jlp.2014.02.002_bib5
  article-title: Explosion temperatures and pressures of metals and other elemental dust clouds
  publication-title: Journal of Loss Prevention in the Process Industries
  doi: 10.1016/j.jlp.2007.04.018
– volume: 1601
  start-page: 411
  year: 2001
  ident: 10.1016/j.jlp.2014.02.002_bib17
  article-title: Modelling of dust explosions
  publication-title: VDI-Berichte
– volume: 13
  start-page: 449
  year: 2000
  ident: 10.1016/j.jlp.2014.02.002_bib11
  article-title: Behavior of flames propagating through lycopodium dust clouds in a vertical duct
  publication-title: Journal of Loss Prevention in the Process Industries
  doi: 10.1016/S0950-4230(99)00072-8
– volume: 13
  start-page: 467
  year: 2000
  ident: 10.1016/j.jlp.2014.02.002_bib13
  article-title: Thermal radiation from vented dust explosions
  publication-title: Journal of Loss Prevention in the Process Industries
  doi: 10.1016/S0950-4230(99)00079-0
– volume: 72
  start-page: 671
  year: 1993
  ident: 10.1016/j.jlp.2014.02.002_bib2
  article-title: The ignitability of coal dust-air and methane-coal dust-air mixtures
  publication-title: Fuel
  doi: 10.1016/0016-2361(93)90580-U
– volume: 22
  start-page: 105
  year: 2009
  ident: 10.1016/j.jlp.2014.02.002_bib7
  article-title: Understanding dust explosions-the role of powder science and technology
  publication-title: Journal of Loss Prevention in the Process Industries
  doi: 10.1016/j.jlp.2008.07.006
SSID ssj0017087
Score 2.3049645
Snippet To reveal the flame-propagation behavior and the thermal-radiation effects during coal-dust explosions, two coal-dust clouds were tested in a semi-enclosed...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 65
SubjectTerms Chemical reactions
Clouds
Coal
Coal-dust explosion
Combustion
Dust
Dynamic model
Dynamic models
Explosions
Fireball thermal radiation
Fireballs
Flame-propagation behavior
High speed
Outlets
Propagation
Radiation
Thermal energy
Tubes
Title Flame-propagation behavior and a dynamic model for the thermal-radiation effects in coal-dust explosions
URI https://dx.doi.org/10.1016/j.jlp.2014.02.002
https://www.proquest.com/docview/1530612879
https://www.proquest.com/docview/1551091443
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6LXvQgPnF9LBE8CXHbJunjKOKyKnpRwVtI0wmuLF3R9epvdyZtFxX04KGHNpO2zCRfJ803M4wd2yLTRRV7oXVZCuUiL4rMOQHeWesTqVRC8c43t-n4QV096sceO-9iYYhW2WJ_g-kBrdsrw1abw5fJZHiHzgGROmiJEGK6KYJdZTTKTz8WNI84i0KRPBIWJN3tbAaO1_OUUlbGqknbmfz2bfqB0uHTM1pna63PyM-a19pgPag32eqXTIJb7GmElgWBd0CACMrmXQA-t3XFLa-a0vM8lL7h6KpydP3oQGSeildKURC6tQQPPqm5m2ELVfbgQEw9-q_2ts0eRhf352PRFlEQTqXxXFQeUrAyggI1inaxpQLIPOSJBG1xOebTKkFj6djnNreucGEvMy00QK6slDtsqZ7VsMt4KbXC5aCVmUwVztsyKfNQgFJayCov-yzq1Gdcm2GcCl1MTUclezaocUMaN1FiUON9drLo8tKk1_hLWHU2Md_GiEH4_6vbQWc_007QN4NAT85dnhV9drRoxqlF-yW2htk7yWhKm6qU3Pvfk_fZCp01_MgDtjR_fYdD9GHm5SAM0gFbPru8Ht9-AvhJ8ac
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCa69LDtUHQvLOtjGrDTACGOJflxLIoF6drmshboTZBlCksROEWb_v-RshxsA9ZDD75Yom2QEkWa5EeAr64uTd1OgzSmaaT2WZB16b3E4J0LudI653rny0Uxv9Y_bszNDpwOtTCcVpl0f6_To7ZOdyaJm5O75XLyk4wDTupgFyHWdL-AXUanMiPYPTk7ny-2wYQyi33yeL5kgiG4GdO8bleMWjnVPXJn_r_j6R9FHU-f2T7sJbNRnPRf9gZ2sHsLr_8AE3wHv2YkXJT0BNIRkd9iqMEXrmuFE23ffV7E7jeCrFVB1h9fpJxX8p5RCiJZyvEQy074NY1wcw-BnKzHv9Ye3sP17PvV6VymPgrS62K6kW3AAp3KsCamkmhcoxHLgFWu0DjyyELR5iQvMw2Vq5yvfQxnFrVBrLRT6gOMunWHH0E0ymjyCJ0qVaFp6zZ5U8UelMph2QY1hmxgn_UJZJx7XazskE12a4njljlus9wSx8fwbUty1yNsPDVZDzKxfy0TSyfAU2SHg_xs2qMPlnQ923dVWY_hy3aYdheHTFyH60eeYxg5VWv16Xlv_gwv51eXF_bibHF-AK94pE-XPITR5v4Rj8ik2TTHacn-BkHr9Fg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flame-propagation+behavior+and+a+dynamic+model+for+the+thermal-radiation+effects+in+coal-dust+explosions&rft.jtitle=Journal+of+loss+prevention+in+the+process+industries&rft.au=Cao%2C+Weiguo&rft.au=Gao%2C+Wei&rft.au=Liang%2C+Jiyuan&rft.au=Xu%2C+Sen&rft.date=2014-05-01&rft.issn=0950-4230&rft.volume=29&rft.spage=65&rft.epage=71&rft_id=info:doi/10.1016%2Fj.jlp.2014.02.002&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-4230&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-4230&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-4230&client=summon