Flame-propagation behavior and a dynamic model for the thermal-radiation effects in coal-dust explosions
To reveal the flame-propagation behavior and the thermal-radiation effects during coal-dust explosions, two coal-dust clouds were tested in a semi-enclosed vertical combustion tube. A high-speed video camera and a thermal infrared imaging device were used to record the flame-propagation process and...
Saved in:
Published in | Journal of loss prevention in the process industries Vol. 29; pp. 65 - 71 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.05.2014
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To reveal the flame-propagation behavior and the thermal-radiation effects during coal-dust explosions, two coal-dust clouds were tested in a semi-enclosed vertical combustion tube. A high-speed video camera and a thermal infrared imaging device were used to record the flame-propagation process and the thermal-radiation effects of the fireball at the combustion-tube outlet. The flame propagated more quickly and with a higher temperature in the more volatile coal-dust cloud. The coal-dust concentration also significantly affected the propagation behavior of the combustion zone. When the coal-dust concentration was increased, the flame-propagation velocity and the fireball temperature increased before decreasing overall. Based on the experimental results, a dynamic model of the thermal radiation was employed to describe the changes in the fireballs quantitatively and to estimate the thermal-radiation effects during coal-dust explosions.
•We examined the flame-propagation behaviors and thermal-radiation effects of a fireball.•The flame-propagation behaviors were similar in the two types of coal-dust clouds.•On the basis of the experimental results, fireball thermal dynamic calculations were performed.•The dynamic model provided a theoretical foundation for the damage power of dust explosions. |
---|---|
AbstractList | To reveal the flame-propagation behavior and the thermal-radiation effects during coal-dust explosions, two coal-dust clouds were tested in a semi-enclosed vertical combustion tube. A high-speed video camera and a thermal infrared imaging device were used to record the flame-propagation process and the thermal-radiation effects of the fireball at the combustion-tube outlet. The flame propagated more quickly and with a higher temperature in the more volatile coal-dust cloud. The coal-dust concentration also significantly affected the propagation behavior of the combustion zone. When the coal-dust concentration was increased, the flame-propagation velocity and the fireball temperature increased before decreasing overall. Based on the experimental results, a dynamic model of the thermal radiation was employed to describe the changes in the fireballs quantitatively and to estimate the thermal-radiation effects during coal-dust explosions.
•We examined the flame-propagation behaviors and thermal-radiation effects of a fireball.•The flame-propagation behaviors were similar in the two types of coal-dust clouds.•On the basis of the experimental results, fireball thermal dynamic calculations were performed.•The dynamic model provided a theoretical foundation for the damage power of dust explosions. To reveal the flame-propagation behavior and the thermal-radiation effects during coal-dust explosions, two coal-dust clouds were tested in a semi-enclosed vertical combustion tube. A high-speed video camera and a thermal infrared imaging device were used to record the flame-propagation process and the thermal-radiation effects of the fireball at the combustion-tube outlet. The flame propagated more quickly and with a higher temperature in the more volatile coal-dust cloud. The coal-dust concentration also significantly affected the propagation behavior of the combustion zone. When the coal-dust concentration was increased, the flame-propagation velocity and the fireball temperature increased before decreasing overall. Based on the experimental results, a dynamic model of the thermal radiation was employed to describe the changes in the fireballs quantitatively and to estimate the thermal-radiation effects during coal-dust explosions. |
Author | Pan, Feng Liang, Jiyuan Xu, Sen Cao, Weiguo Gao, Wei |
Author_xml | – sequence: 1 givenname: Weiguo surname: Cao fullname: Cao, Weiguo organization: School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, PR China – sequence: 2 givenname: Wei surname: Gao fullname: Gao, Wei organization: School of Chemical Machinery, Dalian University of Technology, Dalian 116024, PR China – sequence: 3 givenname: Jiyuan surname: Liang fullname: Liang, Jiyuan organization: School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, PR China – sequence: 4 givenname: Sen surname: Xu fullname: Xu, Sen organization: School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, PR China – sequence: 5 givenname: Feng surname: Pan fullname: Pan, Feng email: panfengiem@163.com organization: School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, PR China |
BookMark | eNp9kT9rHDEQxYVxwGcnH8CdIE2a3Yyk_UuqYOIkYHDj1GIsjXxatKuNtGfibx9dLpULF2JA837DzHuX7HyJCzF2LaAWILrPUz2FtZYgmhpkDSDP2E4MvaqUauU528HYQtVIBRfsMucJQPQw9Du2vw04U7WmuOITbj4u_JH2-Oxj4rhYjty-LDh7w-doKXBX_rc9HV-aMVQJrT9h5ByZLXO_cBNLxx7yxunPGmIu7fyevXMYMn34X6_Yr9tvDzc_qrv77z9vvt5VpunEVllHHaECGg3Zvh3xsSHqHQ1SUYsdCNdZaYVrhRtwQDMaEApkN7ZEQ4NKXbFPp7nlpN8HypuefTYUAi4UD1mLthUwiqY5Sj--kk7xkJayXVEp6IQc-rGo-pPKpJhzIqeN3_6dvCX0QQvQxwT0pEsC-piABqlLAoUUr8g1-RnTy5vMlxNDxaNnT0ln42kpZvhU7NU2-jfov0rCodE |
CitedBy_id | crossref_primary_10_1002_fam_3148 crossref_primary_10_1155_2019_2763907 crossref_primary_10_1016_j_jlp_2024_105248 crossref_primary_10_1016_j_psep_2019_12_002 crossref_primary_10_1016_j_jlp_2023_105242 crossref_primary_10_1016_j_engfailanal_2014_12_015 crossref_primary_10_1016_j_powtec_2017_04_059 crossref_primary_10_3390_pr10112419 crossref_primary_10_1016_j_psep_2024_10_066 crossref_primary_10_1016_j_psep_2023_11_022 crossref_primary_10_1016_j_jlp_2021_104509 crossref_primary_10_1016_j_powtec_2015_06_025 crossref_primary_10_1016_j_powtec_2024_119794 crossref_primary_10_1016_j_powtec_2020_04_034 crossref_primary_10_1016_j_fuel_2019_116304 crossref_primary_10_1016_j_csite_2024_104677 crossref_primary_10_1016_j_fuel_2024_133596 crossref_primary_10_1016_j_jlp_2015_09_006 crossref_primary_10_1016_j_fuel_2021_120954 crossref_primary_10_1021_acsomega_3c03700 crossref_primary_10_1016_j_csite_2024_105392 crossref_primary_10_1021_acsomega_2c03952 crossref_primary_10_1080_00102202_2019_1675155 crossref_primary_10_1016_j_psep_2018_09_001 crossref_primary_10_1021_acs_energyfuels_0c03338 crossref_primary_10_1016_j_applthermaleng_2023_120881 crossref_primary_10_1016_j_fuel_2022_125816 crossref_primary_10_1016_j_pecs_2022_100994 crossref_primary_10_1155_2022_5078134 crossref_primary_10_1016_j_fuel_2019_116678 crossref_primary_10_1093_ijlct_ctab067 crossref_primary_10_1016_j_jhazmat_2019_05_116 crossref_primary_10_1016_j_actaastro_2015_05_019 crossref_primary_10_1038_s41598_022_21859_0 crossref_primary_10_1155_2022_3995455 crossref_primary_10_1038_s41598_023_42117_x crossref_primary_10_1016_j_jlp_2015_12_010 crossref_primary_10_1016_j_jlp_2017_01_002 crossref_primary_10_1080_00102202_2021_2010722 crossref_primary_10_1080_15567036_2017_1403515 crossref_primary_10_1080_00102202_2020_1768082 crossref_primary_10_1002_prs_12312 crossref_primary_10_1038_s41598_024_58017_7 crossref_primary_10_1021_acsomega_0c00078 crossref_primary_10_1016_j_jma_2023_08_017 crossref_primary_10_1002_prs_12075 crossref_primary_10_1007_s12517_021_07540_2 crossref_primary_10_1016_j_ijheatmasstransfer_2017_11_051 crossref_primary_10_1016_j_jlp_2022_104801 crossref_primary_10_1080_00102202_2019_1695606 crossref_primary_10_1155_2021_3052191 crossref_primary_10_1016_j_jlp_2022_104969 crossref_primary_10_1038_s41598_024_83595_x crossref_primary_10_1016_j_powtec_2017_01_019 crossref_primary_10_1080_00102202_2019_1688313 crossref_primary_10_1016_j_fuel_2020_120034 crossref_primary_10_1016_j_combustflame_2024_113336 crossref_primary_10_1252_jcej_21we066 crossref_primary_10_2298_TSCI220718141L crossref_primary_10_1016_j_ijimpeng_2024_105182 crossref_primary_10_1080_00102202_2018_1474877 crossref_primary_10_3390_en12203807 crossref_primary_10_1016_j_aej_2020_10_034 crossref_primary_10_1016_j_fuel_2022_123211 crossref_primary_10_1016_j_csite_2024_104888 |
Cites_doi | 10.1016/j.jhazmat.2010.05.094 10.1016/j.jhazmat.2006.11.007 10.1016/j.jlp.2013.02.014 10.1016/j.jlp.2012.05.015 10.1016/j.ijthermalsci.2009.10.002 10.1016/j.jlp.2005.06.035 10.1016/j.ijthermalsci.2010.03.013 10.1016/j.jlp.2012.10.007 10.1016/j.jlp.2005.06.040 10.1016/j.jlp.2007.04.018 10.1016/S0950-4230(99)00072-8 10.1016/S0950-4230(99)00079-0 10.1016/0016-2361(93)90580-U 10.1016/j.jlp.2008.07.006 |
ContentType | Journal Article |
Copyright | 2014 Elsevier Ltd Copyright Elsevier Science Ltd. May 2014 |
Copyright_xml | – notice: 2014 Elsevier Ltd – notice: Copyright Elsevier Science Ltd. May 2014 |
DBID | AAYXX CITATION 7TA 8FD JG9 |
DOI | 10.1016/j.jlp.2014.02.002 |
DatabaseName | CrossRef Materials Business File Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Materials Business File |
DatabaseTitleList | Materials Research Database Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3352 |
EndPage | 71 |
ExternalDocumentID | 3320441791 10_1016_j_jlp_2014_02_002 S0950423014000254 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABNUV ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BJAXD BKOJK BLXMC CS3 D-I DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HLY HVGLF HZ~ IHE J1W JJJVA KOM LX7 M41 MO0 MS~ N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ SCE SDF SDG SES SEW SPC SPCBC SSG SST SSZ T5K WUQ ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7TA 8FD EFKBS JG9 |
ID | FETCH-LOGICAL-c461t-dfe6ea30e9ced759ab4ee7fe823e5a601f6d2d1f51f8a8ac9c01302695ee84a33 |
IEDL.DBID | .~1 |
ISSN | 0950-4230 |
IngestDate | Fri Jul 11 06:24:37 EDT 2025 Wed Aug 13 09:44:15 EDT 2025 Tue Jul 01 03:25:46 EDT 2025 Thu Apr 24 22:54:02 EDT 2025 Fri Feb 23 02:23:08 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Coal-dust explosion Dynamic model Fireball thermal radiation Flame-propagation behavior |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c461t-dfe6ea30e9ced759ab4ee7fe823e5a601f6d2d1f51f8a8ac9c01302695ee84a33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
PQID | 1530612879 |
PQPubID | 105365 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_1551091443 proquest_journals_1530612879 crossref_citationtrail_10_1016_j_jlp_2014_02_002 crossref_primary_10_1016_j_jlp_2014_02_002 elsevier_sciencedirect_doi_10_1016_j_jlp_2014_02_002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-05-01 |
PublicationDateYYYYMMDD | 2014-05-01 |
PublicationDate_xml | – month: 05 year: 2014 text: 2014-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Journal of loss prevention in the process industries |
PublicationYear | 2014 |
Publisher | Elsevier Ltd Elsevier Science Ltd |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science Ltd |
References | Gao, Zhong, Mogi, Liu, Rong, Dobashi (bib9) 2013; 26 Han, Yashima, Matsuda, Matsui, Miyake, Ogawa (bib11) 2000; 13 (pp. 605–621). San Francisco, California. van Wingerden, Arntzen, Kosinski (bib17) 2001; 1601 Zhong, Wang, Huang (bib22) 2011; 31 Amyotte, Mintz, Pegg, Sun (bib2) 1993; 72 Zhang, Jiang, Zheng (bib19) 2005; 15 Cashdollar, Zlochower (bib5) 2007; 20 Eckhoff (bib7) 2009; 22 Bidabadi, Haghiri, Rahbari (bib3) 2010; 49 Haghiri, Bidabadi (bib10) 2010; 49 Holbrow, Hawksworth, Tyldesley (bib13) 2000; 13 Bouillard, Vignes, Dufaud, Perrin, Thomas (bib4) 2010; 181 Gao, Dobashi, Mogi, Sun, Shen (bib8) 2012; 25 Xu, Li, Zhu, Wang, Zhang (bib18) 2013; 26 Qiu, Cao, Huang, Zhang, Pan (bib16) 2012; 41 Zhang, Li, Jin (bib20) 1995 Martinsen, W. E., & Marx, J. D. (Sep. 28th–Oct. 1st, 1999). An improved model for the prediction of radiant heat flux from fireball. In Zhang, Liu, Wang, Li (bib21) 2007; 7 Proust (bib15) 2006; 19 Abbasi, Abbasi (bib1) 2007; 140 Dobashi, Senda (bib6) 2006; 19 Amyotte (10.1016/j.jlp.2014.02.002_bib2) 1993; 72 Bouillard (10.1016/j.jlp.2014.02.002_bib4) 2010; 181 Haghiri (10.1016/j.jlp.2014.02.002_bib10) 2010; 49 Gao (10.1016/j.jlp.2014.02.002_bib9) 2013; 26 Zhang (10.1016/j.jlp.2014.02.002_bib20) 1995 Abbasi (10.1016/j.jlp.2014.02.002_bib1) 2007; 140 Gao (10.1016/j.jlp.2014.02.002_bib8) 2012; 25 Zhang (10.1016/j.jlp.2014.02.002_bib21) 2007; 7 Qiu (10.1016/j.jlp.2014.02.002_bib16) 2012; 41 Proust (10.1016/j.jlp.2014.02.002_bib15) 2006; 19 10.1016/j.jlp.2014.02.002_bib14 Xu (10.1016/j.jlp.2014.02.002_bib18) 2013; 26 Dobashi (10.1016/j.jlp.2014.02.002_bib6) 2006; 19 van Wingerden (10.1016/j.jlp.2014.02.002_bib17) 2001; 1601 Zhong (10.1016/j.jlp.2014.02.002_bib22) 2011; 31 Bidabadi (10.1016/j.jlp.2014.02.002_bib3) 2010; 49 Holbrow (10.1016/j.jlp.2014.02.002_bib13) 2000; 13 Cashdollar (10.1016/j.jlp.2014.02.002_bib5) 2007; 20 Eckhoff (10.1016/j.jlp.2014.02.002_bib7) 2009; 22 Han (10.1016/j.jlp.2014.02.002_bib11) 2000; 13 Zhang (10.1016/j.jlp.2014.02.002_bib19) 2005; 15 |
References_xml | – volume: 140 start-page: 7 year: 2007 end-page: 44 ident: bib1 article-title: Dust explosions-cases, causes, consequences, and control publication-title: Journal of Hazardous Materials – volume: 49 start-page: 1446 year: 2010 end-page: 1456 ident: bib10 article-title: Modeling of laminar flame propagation through organic dust cloud with thermal radiation effect publication-title: International Journal of Thermal Sciences – volume: 31 start-page: 528 year: 2011 end-page: 532 ident: bib22 article-title: Application of a dynamic model to thermal damage estimation of thermobaric explosives publication-title: Explosion and Shock Waves – volume: 19 start-page: 149 year: 2006 end-page: 153 ident: bib6 article-title: Detailed analysis of flame propagation during dust explosions by UV band observations publication-title: Journal of Loss Prevention in the Process Industries – volume: 25 start-page: 993 year: 2012 end-page: 999 ident: bib8 article-title: Effects of particle characteristics on flame propagation behavior during organic dust explosions in a half-closed chamber publication-title: Journal of Loss Prevention in the Process Industries – volume: 26 start-page: 186 year: 2013 end-page: 196 ident: bib9 article-title: Study on the influence of material thermal characteristics on dust explosion parameters of three long-chain monobasic alcohols publication-title: Journal of Loss Prevention in the Process Industries – reference: Martinsen, W. E., & Marx, J. D. (Sep. 28th–Oct. 1st, 1999). An improved model for the prediction of radiant heat flux from fireball. In – volume: 26 start-page: 815 year: 2013 end-page: 820 ident: bib18 article-title: Experimental study on the mitigation via an ultra-fine water mist of methane/coal dust mixture explosions in the presence of obstacles publication-title: Journal of Loss Prevention in the Process Industries – reference: (pp. 605–621). San Francisco, California. – volume: 7 start-page: 132 year: 2007 end-page: 135 ident: bib21 article-title: On the dynamic model application to the fireball radiation consequence calculation publication-title: Journal of Safety and Environment – volume: 72 start-page: 671 year: 1993 end-page: 679 ident: bib2 article-title: The ignitability of coal dust-air and methane-coal dust-air mixtures publication-title: Fuel – volume: 13 start-page: 467 year: 2000 end-page: 476 ident: bib13 article-title: Thermal radiation from vented dust explosions publication-title: Journal of Loss Prevention in the Process Industries – volume: 15 start-page: 73 year: 2005 end-page: 76 ident: bib19 article-title: Study on the mode and prevention of dust explosion accident publication-title: China Safety Science Journal – volume: 49 start-page: 534 year: 2010 end-page: 542 ident: bib3 article-title: The effect of Lewis and Damköhler numbers on the flame propagation through micro-organic dust particles publication-title: International Journal of Thermal Sciences – volume: 41 start-page: 16 year: 2012 end-page: 18 ident: bib16 article-title: Experimental research on lycopodium dust explosion publication-title: Explosive Materials – volume: 1601 start-page: 411 year: 2001 end-page: 421 ident: bib17 article-title: Modelling of dust explosions publication-title: VDI-Berichte – volume: 22 start-page: 105 year: 2009 end-page: 116 ident: bib7 article-title: Understanding dust explosions-the role of powder science and technology publication-title: Journal of Loss Prevention in the Process Industries – volume: 181 start-page: 873 year: 2010 end-page: 880 ident: bib4 article-title: Ignition and explosion risks of nanopowders publication-title: Journal of Hazardous Materials – volume: 13 start-page: 449 year: 2000 end-page: 457 ident: bib11 article-title: Behavior of flames propagating through lycopodium dust clouds in a vertical duct publication-title: Journal of Loss Prevention in the Process Industries – year: 1995 ident: bib20 article-title: Low light level and infrared imaging technique [M] – volume: 19 start-page: 104 year: 2006 end-page: 120 ident: bib15 article-title: A few fundamental aspects about ignition and flame propagation in dust clouds publication-title: Journal of Loss Prevention in the Process Industries – volume: 20 start-page: 337 year: 2007 end-page: 348 ident: bib5 article-title: Explosion temperatures and pressures of metals and other elemental dust clouds publication-title: Journal of Loss Prevention in the Process Industries – volume: 181 start-page: 873 year: 2010 ident: 10.1016/j.jlp.2014.02.002_bib4 article-title: Ignition and explosion risks of nanopowders publication-title: Journal of Hazardous Materials doi: 10.1016/j.jhazmat.2010.05.094 – ident: 10.1016/j.jlp.2014.02.002_bib14 – year: 1995 ident: 10.1016/j.jlp.2014.02.002_bib20 – volume: 140 start-page: 7 year: 2007 ident: 10.1016/j.jlp.2014.02.002_bib1 article-title: Dust explosions-cases, causes, consequences, and control publication-title: Journal of Hazardous Materials doi: 10.1016/j.jhazmat.2006.11.007 – volume: 26 start-page: 815 year: 2013 ident: 10.1016/j.jlp.2014.02.002_bib18 article-title: Experimental study on the mitigation via an ultra-fine water mist of methane/coal dust mixture explosions in the presence of obstacles publication-title: Journal of Loss Prevention in the Process Industries doi: 10.1016/j.jlp.2013.02.014 – volume: 25 start-page: 993 year: 2012 ident: 10.1016/j.jlp.2014.02.002_bib8 article-title: Effects of particle characteristics on flame propagation behavior during organic dust explosions in a half-closed chamber publication-title: Journal of Loss Prevention in the Process Industries doi: 10.1016/j.jlp.2012.05.015 – volume: 41 start-page: 16 year: 2012 ident: 10.1016/j.jlp.2014.02.002_bib16 article-title: Experimental research on lycopodium dust explosion publication-title: Explosive Materials – volume: 31 start-page: 528 year: 2011 ident: 10.1016/j.jlp.2014.02.002_bib22 article-title: Application of a dynamic model to thermal damage estimation of thermobaric explosives publication-title: Explosion and Shock Waves – volume: 49 start-page: 534 year: 2010 ident: 10.1016/j.jlp.2014.02.002_bib3 article-title: The effect of Lewis and Damköhler numbers on the flame propagation through micro-organic dust particles publication-title: International Journal of Thermal Sciences doi: 10.1016/j.ijthermalsci.2009.10.002 – volume: 19 start-page: 104 year: 2006 ident: 10.1016/j.jlp.2014.02.002_bib15 article-title: A few fundamental aspects about ignition and flame propagation in dust clouds publication-title: Journal of Loss Prevention in the Process Industries doi: 10.1016/j.jlp.2005.06.035 – volume: 49 start-page: 1446 year: 2010 ident: 10.1016/j.jlp.2014.02.002_bib10 article-title: Modeling of laminar flame propagation through organic dust cloud with thermal radiation effect publication-title: International Journal of Thermal Sciences doi: 10.1016/j.ijthermalsci.2010.03.013 – volume: 15 start-page: 73 year: 2005 ident: 10.1016/j.jlp.2014.02.002_bib19 article-title: Study on the mode and prevention of dust explosion accident publication-title: China Safety Science Journal – volume: 26 start-page: 186 year: 2013 ident: 10.1016/j.jlp.2014.02.002_bib9 article-title: Study on the influence of material thermal characteristics on dust explosion parameters of three long-chain monobasic alcohols publication-title: Journal of Loss Prevention in the Process Industries doi: 10.1016/j.jlp.2012.10.007 – volume: 19 start-page: 149 year: 2006 ident: 10.1016/j.jlp.2014.02.002_bib6 article-title: Detailed analysis of flame propagation during dust explosions by UV band observations publication-title: Journal of Loss Prevention in the Process Industries doi: 10.1016/j.jlp.2005.06.040 – volume: 7 start-page: 132 year: 2007 ident: 10.1016/j.jlp.2014.02.002_bib21 article-title: On the dynamic model application to the fireball radiation consequence calculation publication-title: Journal of Safety and Environment – volume: 20 start-page: 337 year: 2007 ident: 10.1016/j.jlp.2014.02.002_bib5 article-title: Explosion temperatures and pressures of metals and other elemental dust clouds publication-title: Journal of Loss Prevention in the Process Industries doi: 10.1016/j.jlp.2007.04.018 – volume: 1601 start-page: 411 year: 2001 ident: 10.1016/j.jlp.2014.02.002_bib17 article-title: Modelling of dust explosions publication-title: VDI-Berichte – volume: 13 start-page: 449 year: 2000 ident: 10.1016/j.jlp.2014.02.002_bib11 article-title: Behavior of flames propagating through lycopodium dust clouds in a vertical duct publication-title: Journal of Loss Prevention in the Process Industries doi: 10.1016/S0950-4230(99)00072-8 – volume: 13 start-page: 467 year: 2000 ident: 10.1016/j.jlp.2014.02.002_bib13 article-title: Thermal radiation from vented dust explosions publication-title: Journal of Loss Prevention in the Process Industries doi: 10.1016/S0950-4230(99)00079-0 – volume: 72 start-page: 671 year: 1993 ident: 10.1016/j.jlp.2014.02.002_bib2 article-title: The ignitability of coal dust-air and methane-coal dust-air mixtures publication-title: Fuel doi: 10.1016/0016-2361(93)90580-U – volume: 22 start-page: 105 year: 2009 ident: 10.1016/j.jlp.2014.02.002_bib7 article-title: Understanding dust explosions-the role of powder science and technology publication-title: Journal of Loss Prevention in the Process Industries doi: 10.1016/j.jlp.2008.07.006 |
SSID | ssj0017087 |
Score | 2.3049645 |
Snippet | To reveal the flame-propagation behavior and the thermal-radiation effects during coal-dust explosions, two coal-dust clouds were tested in a semi-enclosed... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 65 |
SubjectTerms | Chemical reactions Clouds Coal Coal-dust explosion Combustion Dust Dynamic model Dynamic models Explosions Fireball thermal radiation Fireballs Flame-propagation behavior High speed Outlets Propagation Radiation Thermal energy Tubes |
Title | Flame-propagation behavior and a dynamic model for the thermal-radiation effects in coal-dust explosions |
URI | https://dx.doi.org/10.1016/j.jlp.2014.02.002 https://www.proquest.com/docview/1530612879 https://www.proquest.com/docview/1551091443 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6LXvQgPnF9LBE8CXHbJunjKOKyKnpRwVtI0wmuLF3R9epvdyZtFxX04KGHNpO2zCRfJ803M4wd2yLTRRV7oXVZCuUiL4rMOQHeWesTqVRC8c43t-n4QV096sceO-9iYYhW2WJ_g-kBrdsrw1abw5fJZHiHzgGROmiJEGK6KYJdZTTKTz8WNI84i0KRPBIWJN3tbAaO1_OUUlbGqknbmfz2bfqB0uHTM1pna63PyM-a19pgPag32eqXTIJb7GmElgWBd0CACMrmXQA-t3XFLa-a0vM8lL7h6KpydP3oQGSeildKURC6tQQPPqm5m2ELVfbgQEw9-q_2ts0eRhf352PRFlEQTqXxXFQeUrAyggI1inaxpQLIPOSJBG1xOebTKkFj6djnNreucGEvMy00QK6slDtsqZ7VsMt4KbXC5aCVmUwVztsyKfNQgFJayCov-yzq1Gdcm2GcCl1MTUclezaocUMaN1FiUON9drLo8tKk1_hLWHU2Md_GiEH4_6vbQWc_007QN4NAT85dnhV9drRoxqlF-yW2htk7yWhKm6qU3Pvfk_fZCp01_MgDtjR_fYdD9GHm5SAM0gFbPru8Ht9-AvhJ8ac |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCa69LDtUHQvLOtjGrDTACGOJflxLIoF6drmshboTZBlCksROEWb_v-RshxsA9ZDD75Yom2QEkWa5EeAr64uTd1OgzSmaaT2WZB16b3E4J0LudI653rny0Uxv9Y_bszNDpwOtTCcVpl0f6_To7ZOdyaJm5O75XLyk4wDTupgFyHWdL-AXUanMiPYPTk7ny-2wYQyi33yeL5kgiG4GdO8bleMWjnVPXJn_r_j6R9FHU-f2T7sJbNRnPRf9gZ2sHsLr_8AE3wHv2YkXJT0BNIRkd9iqMEXrmuFE23ffV7E7jeCrFVB1h9fpJxX8p5RCiJZyvEQy074NY1wcw-BnKzHv9Ye3sP17PvV6VymPgrS62K6kW3AAp3KsCamkmhcoxHLgFWu0DjyyELR5iQvMw2Vq5yvfQxnFrVBrLRT6gOMunWHH0E0ymjyCJ0qVaFp6zZ5U8UelMph2QY1hmxgn_UJZJx7XazskE12a4njljlus9wSx8fwbUty1yNsPDVZDzKxfy0TSyfAU2SHg_xs2qMPlnQ923dVWY_hy3aYdheHTFyH60eeYxg5VWv16Xlv_gwv51eXF_bibHF-AK94pE-XPITR5v4Rj8ik2TTHacn-BkHr9Fg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flame-propagation+behavior+and+a+dynamic+model+for+the+thermal-radiation+effects+in+coal-dust+explosions&rft.jtitle=Journal+of+loss+prevention+in+the+process+industries&rft.au=Cao%2C+Weiguo&rft.au=Gao%2C+Wei&rft.au=Liang%2C+Jiyuan&rft.au=Xu%2C+Sen&rft.date=2014-05-01&rft.issn=0950-4230&rft.volume=29&rft.spage=65&rft.epage=71&rft_id=info:doi/10.1016%2Fj.jlp.2014.02.002&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-4230&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-4230&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-4230&client=summon |