Applications of carbon quantum dots (CQDs) in membrane technologies: A review

Carbon quantum dots (CQDs), which are a fascinating class of nanostructured carbons, have recently attracted extensive attention in the field of membrane technologies for their applications in separation processes. This is because they possess two unique advantages. Their productions are facile and...

Full description

Saved in:
Bibliographic Details
Published inWater research (Oxford) Vol. 147; pp. 43 - 49
Main Authors Zhao, Die Ling, Chung, Tai-Shung
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 15.12.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Carbon quantum dots (CQDs), which are a fascinating class of nanostructured carbons, have recently attracted extensive attention in the field of membrane technologies for their applications in separation processes. This is because they possess two unique advantages. Their productions are facile and inexpensive, while their physicochemical properties such as ultra-small sizes, good biocompatibility, high chemical inertness, tunable hydrophilicity, rich surface functional groups and antifouling characteristics are highly desirable. Leveraging on these, researchers have explored their utilizations in various membrane designs for reverse osmosis (RO), ultrafiltration (UF), nanofiltration (NF), forward osmosis (FO), pressure retarded osmosis (PRO), membrane distillation (MD), and organic solvent nanofiltration (OSN) processes. In particular, CQDs have especially stimulated exploration in the field of water treatment by membrane technologies since biocompatibility of membrane materials is of utmost importance to ensure safety of drinking water. In addition, CQDs are in a favorable position for achieving unprecedented performance of membrane separation processes in water treatment, in the light of substantial efficiency enhancement and antifouling propensity as discovered in recent studies. In this article, we will review the progress in the development of CQD incorporated membranes with discussions on their challenges and perspectives. [Display omitted] •The state-of-the-art of CQD modified membranes for different applications are summarized.•The methods to incorporate CQDs into membranes are introduced.•The challenges and future of CQDs for membrane technologies are elaborated.
AbstractList Carbon quantum dots (CQDs), which are a fascinating class of nanostructured carbons, have recently attracted extensive attention in the field of membrane technologies for their applications in separation processes. This is because they possess two unique advantages. Their productions are facile and inexpensive, while their physicochemical properties such as ultra-small sizes, good biocompatibility, high chemical inertness, tunable hydrophilicity, rich surface functional groups and antifouling characteristics are highly desirable. Leveraging on these, researchers have explored their utilizations in various membrane designs for reverse osmosis (RO), ultrafiltration (UF), nanofiltration (NF), forward osmosis (FO), pressure retarded osmosis (PRO), membrane distillation (MD), and organic solvent nanofiltration (OSN) processes. In particular, CQDs have especially stimulated exploration in the field of water treatment by membrane technologies since biocompatibility of membrane materials is of utmost importance to ensure safety of drinking water. In addition, CQDs are in a favorable position for achieving unprecedented performance of membrane separation processes in water treatment, in the light of substantial efficiency enhancement and antifouling propensity as discovered in recent studies. In this article, we will review the progress in the development of CQD incorporated membranes with discussions on their challenges and perspectives.Carbon quantum dots (CQDs), which are a fascinating class of nanostructured carbons, have recently attracted extensive attention in the field of membrane technologies for their applications in separation processes. This is because they possess two unique advantages. Their productions are facile and inexpensive, while their physicochemical properties such as ultra-small sizes, good biocompatibility, high chemical inertness, tunable hydrophilicity, rich surface functional groups and antifouling characteristics are highly desirable. Leveraging on these, researchers have explored their utilizations in various membrane designs for reverse osmosis (RO), ultrafiltration (UF), nanofiltration (NF), forward osmosis (FO), pressure retarded osmosis (PRO), membrane distillation (MD), and organic solvent nanofiltration (OSN) processes. In particular, CQDs have especially stimulated exploration in the field of water treatment by membrane technologies since biocompatibility of membrane materials is of utmost importance to ensure safety of drinking water. In addition, CQDs are in a favorable position for achieving unprecedented performance of membrane separation processes in water treatment, in the light of substantial efficiency enhancement and antifouling propensity as discovered in recent studies. In this article, we will review the progress in the development of CQD incorporated membranes with discussions on their challenges and perspectives.
Carbon quantum dots (CQDs), which are a fascinating class of nanostructured carbons, have recently attracted extensive attention in the field of membrane technologies for their applications in separation processes. This is because they possess two unique advantages. Their productions are facile and inexpensive, while their physicochemical properties such as ultra-small sizes, good biocompatibility, high chemical inertness, tunable hydrophilicity, rich surface functional groups and antifouling characteristics are highly desirable. Leveraging on these, researchers have explored their utilizations in various membrane designs for reverse osmosis (RO), ultrafiltration (UF), nanofiltration (NF), forward osmosis (FO), pressure retarded osmosis (PRO), membrane distillation (MD), and organic solvent nanofiltration (OSN) processes. In particular, CQDs have especially stimulated exploration in the field of water treatment by membrane technologies since biocompatibility of membrane materials is of utmost importance to ensure safety of drinking water. In addition, CQDs are in a favorable position for achieving unprecedented performance of membrane separation processes in water treatment, in the light of substantial efficiency enhancement and antifouling propensity as discovered in recent studies. In this article, we will review the progress in the development of CQD incorporated membranes with discussions on their challenges and perspectives. [Display omitted] •The state-of-the-art of CQD modified membranes for different applications are summarized.•The methods to incorporate CQDs into membranes are introduced.•The challenges and future of CQDs for membrane technologies are elaborated.
Carbon quantum dots (CQDs), which are a fascinating class of nanostructured carbons, have recently attracted extensive attention in the field of membrane technologies for their applications in separation processes. This is because they possess two unique advantages. Their productions are facile and inexpensive, while their physicochemical properties such as ultra-small sizes, good biocompatibility, high chemical inertness, tunable hydrophilicity, rich surface functional groups and antifouling characteristics are highly desirable. Leveraging on these, researchers have explored their utilizations in various membrane designs for reverse osmosis (RO), ultrafiltration (UF), nanofiltration (NF), forward osmosis (FO), pressure retarded osmosis (PRO), membrane distillation (MD), and organic solvent nanofiltration (OSN) processes. In particular, CQDs have especially stimulated exploration in the field of water treatment by membrane technologies since biocompatibility of membrane materials is of utmost importance to ensure safety of drinking water. In addition, CQDs are in a favorable position for achieving unprecedented performance of membrane separation processes in water treatment, in the light of substantial efficiency enhancement and antifouling propensity as discovered in recent studies. In this article, we will review the progress in the development of CQD incorporated membranes with discussions on their challenges and perspectives.
Author Chung, Tai-Shung
Zhao, Die Ling
Author_xml – sequence: 1
  givenname: Die Ling
  surname: Zhao
  fullname: Zhao, Die Ling
– sequence: 2
  givenname: Tai-Shung
  orcidid: 0000-0003-3704-8609
  surname: Chung
  fullname: Chung, Tai-Shung
  email: chencts@nus.edu.sg
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30296608$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtv1DAUhS1URKeFf4CQl2WRcP0Yx-4CaTS8KrVCSLC2HOcGPEriqe204t-TMu2GBe3qbr5zdHW-E3I0xQkJec2gZsDUu11960rCXHNgugZTg4RnZMV0YyoupT4iKwApKibW8pic5LwDAM6FeUGOBXCjFOgVudrs90PwroQ4ZRp76l1q40SvZzeVeaRdLJmebb99yG9pmOiIY5vchLSg_zXFIf4MmM_phia8CXj7kjzv3ZDx1f09JT8-ffy-_VJdfv18sd1cVl4qVqquXz5Rbt0zL3tpFPrGtOgaQCUbrbzg0jEO2njlnOLGcal169caWzTMozglZ4fefYrXM-Zix5A9DsPyWpyz5UybtRCCwxNQ1gijONcL-uYendsRO7tPYXTpt31YawHOD4BPMeeEvfWh_J2uJBcGy8DeqbE7e1Bj79RYMHZRs4TlP-GH_kdi7w8xXPZcNk42-4CTxy4k9MV2Mfy_4A_MIKkH
CitedBy_id crossref_primary_10_1016_j_desal_2022_116285
crossref_primary_10_1016_j_memsci_2022_120465
crossref_primary_10_1016_j_ccr_2025_216510
crossref_primary_10_1016_j_memsci_2021_120068
crossref_primary_10_1016_j_memsci_2023_121712
crossref_primary_10_1002_slct_202101957
crossref_primary_10_1016_j_memsci_2023_122248
crossref_primary_10_1021_acsaem_4c01721
crossref_primary_10_1039_D1EN00263E
crossref_primary_10_1016_j_jece_2021_105762
crossref_primary_10_2139_ssrn_3978665
crossref_primary_10_2166_ws_2023_204
crossref_primary_10_1016_j_desal_2022_115742
crossref_primary_10_1007_s00217_022_03985_1
crossref_primary_10_1016_j_memsci_2021_119765
crossref_primary_10_1021_acsanm_1c01372
crossref_primary_10_1002_adsu_202000279
crossref_primary_10_1002_slct_201901683
crossref_primary_10_1016_j_memsci_2020_118039
crossref_primary_10_1016_j_memsci_2020_118952
crossref_primary_10_1021_acs_iecr_3c02048
crossref_primary_10_1016_j_seppur_2021_118870
crossref_primary_10_1039_D3CY01139A
crossref_primary_10_1016_j_ijhydene_2020_01_142
crossref_primary_10_1016_j_desal_2019_114072
crossref_primary_10_1002_wer_1385
crossref_primary_10_3390_chemosensors9030052
crossref_primary_10_3390_membranes10100297
crossref_primary_10_1021_acsapm_3c02322
crossref_primary_10_1002_slct_202200473
crossref_primary_10_1016_j_psep_2023_10_053
crossref_primary_10_1021_acs_est_1c01269
crossref_primary_10_1016_j_seppur_2023_124876
crossref_primary_10_1016_j_envres_2022_113283
crossref_primary_10_1021_acsami_3c05677
crossref_primary_10_1016_j_jiec_2022_11_017
crossref_primary_10_1016_j_cartre_2024_100407
crossref_primary_10_1016_j_jiec_2021_06_022
crossref_primary_10_1016_j_biteb_2023_101728
crossref_primary_10_1016_j_jwpe_2020_101652
crossref_primary_10_1016_j_jece_2024_111935
crossref_primary_10_3390_ma14175094
crossref_primary_10_1016_j_apmt_2021_101331
crossref_primary_10_1016_j_jtice_2023_105082
crossref_primary_10_1016_j_jwpe_2023_104647
crossref_primary_10_1039_C9TA12847F
crossref_primary_10_1007_s00339_019_3160_1
crossref_primary_10_1007_s42247_021_00273_8
crossref_primary_10_1007_s10895_020_02680_2
crossref_primary_10_1016_j_memsci_2021_119309
crossref_primary_10_1016_j_jtice_2022_104250
crossref_primary_10_1016_j_sajce_2024_02_009
crossref_primary_10_1016_j_memsci_2023_121706
crossref_primary_10_1016_j_cclet_2021_03_028
crossref_primary_10_1016_j_matdes_2021_109800
crossref_primary_10_1016_j_memsci_2024_122656
crossref_primary_10_1007_s42773_022_00153_2
crossref_primary_10_1021_acsami_1c04777
crossref_primary_10_1002_tcr_202300189
crossref_primary_10_1016_j_chemosphere_2021_132126
crossref_primary_10_1016_j_scitotenv_2021_148462
crossref_primary_10_1016_j_cej_2023_144811
crossref_primary_10_1016_j_desal_2020_114618
crossref_primary_10_1016_j_seppur_2021_119756
crossref_primary_10_1021_acsami_8b19834
crossref_primary_10_1016_j_cej_2020_126703
crossref_primary_10_1016_j_jenvman_2024_122398
crossref_primary_10_1016_j_cherd_2021_04_031
crossref_primary_10_1016_j_scitotenv_2019_134050
crossref_primary_10_1016_j_aca_2022_340110
crossref_primary_10_1016_j_microc_2020_105773
crossref_primary_10_2174_1876402914666220318121343
crossref_primary_10_1007_s10895_024_03736_3
crossref_primary_10_1016_j_mser_2025_100969
crossref_primary_10_3390_polym15244712
crossref_primary_10_1007_s10570_024_05996_5
crossref_primary_10_1002_slct_202301136
crossref_primary_10_1016_j_saa_2022_122200
crossref_primary_10_1002_smsc_202200026
crossref_primary_10_1016_j_seppur_2020_117604
crossref_primary_10_1080_09593330_2023_2220891
crossref_primary_10_1016_j_cej_2021_133634
crossref_primary_10_3390_w17020210
crossref_primary_10_1016_j_desal_2022_115671
crossref_primary_10_1016_j_desal_2020_114501
crossref_primary_10_1016_j_progpolymsci_2021_101470
crossref_primary_10_1016_j_jece_2025_115784
crossref_primary_10_1016_j_cej_2020_126848
crossref_primary_10_1016_j_cherd_2020_01_010
crossref_primary_10_1016_j_memsci_2023_121855
crossref_primary_10_1016_j_mtcomm_2021_102413
crossref_primary_10_1002_smll_202301177
crossref_primary_10_1039_D4GC02944E
crossref_primary_10_1016_j_msea_2020_140573
crossref_primary_10_1016_j_cis_2020_102124
crossref_primary_10_1021_acsomega_9b01208
crossref_primary_10_1002_adfm_202308176
crossref_primary_10_1016_j_seppur_2021_118657
crossref_primary_10_1016_j_jwpe_2024_105833
crossref_primary_10_1016_j_cclet_2021_05_056
crossref_primary_10_1021_acs_iecr_3c00400
crossref_primary_10_1002_smll_202105579
crossref_primary_10_1016_j_desal_2021_115230
crossref_primary_10_1016_j_nanoso_2022_100931
crossref_primary_10_1016_j_molstruc_2024_137892
crossref_primary_10_1039_D2RA05201F
crossref_primary_10_1016_j_watres_2022_118121
crossref_primary_10_1007_s11224_019_01337_6
crossref_primary_10_1016_j_cej_2023_143005
crossref_primary_10_1016_j_matpr_2023_08_291
crossref_primary_10_1016_j_seppur_2021_118586
crossref_primary_10_1039_D3EW00266G
crossref_primary_10_1016_j_talanta_2021_122148
crossref_primary_10_3390_polym16111481
crossref_primary_10_1007_s13738_019_01749_5
crossref_primary_10_3390_polym16172513
crossref_primary_10_1021_acs_iecr_0c04360
crossref_primary_10_1021_acsomega_9b03975
crossref_primary_10_1016_j_desal_2023_116956
crossref_primary_10_1016_j_jes_2019_11_011
crossref_primary_10_1016_j_desal_2021_115506
crossref_primary_10_1080_10408398_2022_2039896
crossref_primary_10_3390_catal10060680
crossref_primary_10_1016_j_chemosphere_2021_132313
crossref_primary_10_1080_15422119_2023_2207084
crossref_primary_10_1016_j_msec_2020_110787
crossref_primary_10_1039_D1EN00017A
crossref_primary_10_1016_j_diamond_2023_110194
crossref_primary_10_2147_IJN_S334012
crossref_primary_10_1016_j_trac_2024_117939
crossref_primary_10_1016_j_cej_2024_155740
crossref_primary_10_1016_j_memsci_2023_121691
crossref_primary_10_1016_j_memsci_2019_117212
crossref_primary_10_1016_j_chemosphere_2024_143725
crossref_primary_10_1016_j_cej_2020_127144
crossref_primary_10_1016_j_matdes_2023_111982
crossref_primary_10_1039_D3TA03016D
crossref_primary_10_1007_s42114_024_00846_1
crossref_primary_10_3390_membranes10070140
crossref_primary_10_1016_j_chemosphere_2024_143985
crossref_primary_10_1016_j_jclepro_2020_121867
crossref_primary_10_1039_C9TA01915D
crossref_primary_10_1002_slct_202304930
crossref_primary_10_1016_j_foodchem_2021_131898
crossref_primary_10_1007_s10853_021_06032_8
crossref_primary_10_1007_s10965_020_02158_6
crossref_primary_10_1080_87559129_2020_1818255
crossref_primary_10_1016_j_watres_2020_115557
crossref_primary_10_1016_j_jece_2021_105028
crossref_primary_10_1007_s10068_024_01695_w
crossref_primary_10_1016_j_biortech_2024_131882
crossref_primary_10_1016_j_seppur_2023_123831
crossref_primary_10_1016_j_desal_2024_117666
crossref_primary_10_1021_acs_est_9b00473
crossref_primary_10_1016_j_seppur_2021_118572
crossref_primary_10_1016_j_polymdegradstab_2021_109506
crossref_primary_10_1016_j_jlumin_2020_117042
crossref_primary_10_3390_antiox11112193
crossref_primary_10_1021_acs_est_0c05377
crossref_primary_10_1016_j_inoche_2023_111258
crossref_primary_10_1016_j_watres_2019_01_043
crossref_primary_10_3390_nano12193519
crossref_primary_10_1007_s10854_023_11603_3
crossref_primary_10_20914_2310_1202_2024_2_40_47
crossref_primary_10_3390_polym12051143
crossref_primary_10_1016_j_jclepro_2022_133770
crossref_primary_10_1016_j_diamond_2022_109366
crossref_primary_10_1016_j_jelechem_2023_117664
crossref_primary_10_1016_j_carbon_2019_08_021
crossref_primary_10_1021_acs_est_9b01453
crossref_primary_10_2139_ssrn_3969117
crossref_primary_10_1016_j_memsci_2022_120428
crossref_primary_10_1016_j_jwpe_2024_105561
crossref_primary_10_1016_j_biortech_2019_121795
crossref_primary_10_1002_smll_202304066
crossref_primary_10_1007_s11157_025_09723_9
crossref_primary_10_1080_21691401_2023_2197947
crossref_primary_10_1016_j_cjche_2019_04_004
crossref_primary_10_1016_j_jwpe_2023_103664
crossref_primary_10_1016_j_jclepro_2024_144043
crossref_primary_10_1016_j_memsci_2022_121086
crossref_primary_10_1016_j_cej_2024_154862
crossref_primary_10_1016_j_chemosphere_2022_134930
crossref_primary_10_1016_j_mattod_2021_07_028
crossref_primary_10_1016_j_desal_2019_04_029
crossref_primary_10_1016_j_chemosphere_2021_130055
crossref_primary_10_1016_j_ceramint_2024_11_402
crossref_primary_10_1021_acsestengg_4c00265
crossref_primary_10_54691_f7ka2537
crossref_primary_10_1021_acssuschemeng_9b01073
crossref_primary_10_1016_j_seppur_2024_129273
crossref_primary_10_1039_D4CS00338A
crossref_primary_10_2139_ssrn_4191052
crossref_primary_10_1016_j_memsci_2025_123787
crossref_primary_10_1016_j_seppur_2021_118719
crossref_primary_10_1016_j_chemosphere_2022_136329
crossref_primary_10_3390_membranes13080726
crossref_primary_10_1016_j_molliq_2021_117312
crossref_primary_10_51435_turkjac_1450796
crossref_primary_10_1016_j_jcis_2023_05_092
crossref_primary_10_1016_j_seppur_2022_120975
crossref_primary_10_1021_acsami_9b11006
crossref_primary_10_1007_s13738_019_01639_w
crossref_primary_10_1002_adfm_202211983
crossref_primary_10_1016_j_seppur_2023_123759
crossref_primary_10_1016_j_wear_2024_205685
crossref_primary_10_1039_D4EN00563E
crossref_primary_10_3390_su15010806
crossref_primary_10_1016_j_ijbiomac_2024_131850
crossref_primary_10_1007_s10876_023_02444_5
crossref_primary_10_1016_j_pmatsci_2023_101162
crossref_primary_10_1016_j_memsci_2021_119580
crossref_primary_10_1016_j_seppur_2024_126301
crossref_primary_10_1016_j_seppur_2023_123870
crossref_primary_10_1016_j_seppur_2024_127757
crossref_primary_10_1016_j_cej_2019_123993
crossref_primary_10_1016_j_cej_2023_144074
crossref_primary_10_1039_C9QM00543A
crossref_primary_10_1021_acsami_9b16704
crossref_primary_10_1007_s13726_024_01285_x
crossref_primary_10_1021_acsami_3c01289
crossref_primary_10_1039_D2NR05951G
crossref_primary_10_1016_j_jcis_2023_03_044
crossref_primary_10_1016_j_ijbiomac_2024_137392
crossref_primary_10_1039_D3EW00249G
crossref_primary_10_1038_s41598_022_24553_3
crossref_primary_10_1016_j_jece_2022_108083
crossref_primary_10_1038_s41598_022_24089_6
crossref_primary_10_1016_j_petrol_2022_110325
crossref_primary_10_1155_2020_8216435
crossref_primary_10_1016_j_envres_2022_113635
crossref_primary_10_1016_j_jhazmat_2021_126881
crossref_primary_10_1016_j_desal_2022_116347
crossref_primary_10_1016_j_desal_2023_116888
crossref_primary_10_1016_j_ijbiomac_2024_132939
crossref_primary_10_1039_D2NR07065K
crossref_primary_10_3390_eng4010042
Cites_doi 10.1039/C1CC15678K
10.1021/acsami.6b12826
10.1016/j.memsci.2018.07.031
10.1016/j.desal.2017.07.014
10.1039/c4cc01603c
10.1039/C4CS00269E
10.1039/c3tc30820k
10.1038/srep20142
10.1021/cm901593y
10.1039/c2jm34690g
10.1016/j.coche.2017.03.002
10.1016/j.msec.2014.01.038
10.1039/C4TC00988F
10.1016/j.memsci.2018.02.010
10.1021/cm1018844
10.1039/C6TA08660H
10.1080/23080477.2017.1399318
10.1002/ange.200900652
10.1016/j.memsci.2004.12.004
10.1039/c3nr00092c
10.1039/c2cc00110a
10.1002/adfm.201501250
10.1039/C4RA12077A
10.1039/C7TA00009J
10.1039/C5RA04653J
10.1016/j.memsci.2018.04.009
10.1021/acs.est.7b04190
10.1021/acsami.5b10132
10.1039/c2cc33796g
10.1016/j.bios.2013.05.038
10.1021/ja062677d
10.1002/anie.201204381
10.1021/la010384m
10.1002/smll.200700578
10.1039/c2ra21705h
10.1021/ja0669070
10.1002/anie.200906623
10.1016/j.carbon.2010.10.004
10.1016/j.matlet.2011.08.081
10.1039/C6TA06636D
10.1039/c3nr03893a
10.1016/j.memsci.2018.01.034
10.1016/j.flm.2017.12.006
10.1021/nn402043c
10.1021/ja040082h
10.1016/j.cep.2018.03.010
10.1039/C7CS00235A
10.1039/c2cc35559k
10.1016/j.memsci.2017.11.051
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright © 2018 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Copyright © 2018 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.watres.2018.09.040
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2448
EndPage 49
ExternalDocumentID 30296608
10_1016_j_watres_2018_09_040
S0043135418307553
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
--K
--M
-DZ
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFO
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMC
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TAE
TN5
TWZ
WH7
XPP
ZCA
ZMT
~02
~G-
~KM
.55
186
29R
6TJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACKIV
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HMA
HVGLF
HZ~
H~9
MVM
OHT
R2-
SEN
SEP
SEW
SSH
WUQ
X7M
XOL
YHZ
YV5
ZXP
ZY4
~A~
EFKBS
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c461t-df0026a5f1c4f496ec79bea70e64786c324a12089c6aa629a2488bc58ebe91ce3
IEDL.DBID .~1
ISSN 0043-1354
1879-2448
IngestDate Mon Jul 21 11:34:52 EDT 2025
Mon Jul 21 11:10:41 EDT 2025
Mon Jul 21 06:06:25 EDT 2025
Tue Jul 01 01:20:54 EDT 2025
Thu Apr 24 23:09:15 EDT 2025
Fri Feb 23 02:23:33 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Membrane separation
Graphene oxide quantum dots
Carbon quantum dots
Antifouling
Language English
License Copyright © 2018 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c461t-df0026a5f1c4f496ec79bea70e64786c324a12089c6aa629a2488bc58ebe91ce3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0003-3704-8609
PMID 30296608
PQID 2117396228
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_2189533320
proquest_miscellaneous_2117396228
pubmed_primary_30296608
crossref_citationtrail_10_1016_j_watres_2018_09_040
crossref_primary_10_1016_j_watres_2018_09_040
elsevier_sciencedirect_doi_10_1016_j_watres_2018_09_040
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-12-15
PublicationDateYYYYMMDD 2018-12-15
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-15
  day: 15
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Water research (Oxford)
PublicationTitleAlternate Water Res
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Shen, Zhu, Yang, Li (bib35) 2012; 48
Jafari, Kebria, Rahimpour, Bakeri (bib16) 2018; 126
Fathizadeh, Tien, Khivantsev, Song, Zhou, Yu (bib9) 2017
Bi, Zhang, Zhang, Su, Jiang (bib2) 2018; 553
Wu, Tian, Wang, Chen, Wu, Zhao (bib41) 2013; 1
Colburn, Wanninayake, Kim, Bhattacharyya (bib6) 2018; 556
Xu, Ray, Gu, Ploehn, Gearheart, Raker, Scrivens (bib42) 2004; 126
Peng, Travas-Sejdic (bib32) 2009; 21
Guo, Zhao, Zhao, Wang, Lu (bib11) 2014; 50
Nurunnabi, Khatun, Huh, Park, Lee, Cho, Lee (bib30) 2013; 7
Zhang, He, Cui, Feng, Chen, Yang, Liu (bib47) 2015; 5
Demchenko, Dekaliuk (bib7) 2013; 1
Zhou, Booker, Li, Zhou, Sham, Sun, Ding (bib51) 2007; 129
Li, He, Liu, Huang, Lian, Lee, Kang (bib19) 2010; 49
Wang, Lu, Tang, Xu (bib39) 2017; 5
Hu, Tian, Dong, Yang, Liu, Chang (bib13) 2013; 5
Liu, Wu, Liu, Koynov, Knoll, Li (bib25) 2009; 121
Safaei, Youssefi, Rezaei, Irannejad (bib33) 2017; 6
Bourlinos, Stassinopoulos, Anglos, Zboril, Karakassides, Giannelis (bib3) 2008; 4
Li, Kang, Liu, Lee (bib20) 2012; 22
Li, Liu, Lian, Liu, Huang, Kang (bib21) 2013; 5
Dong, Zhou, Lin, Lin, Chi, Chen (bib8) 2010; 22
Sun, Zhou, Lin, Wang, Fernando, Pathak, Meziani, Harruff, Wang, Wang, Luo, Yang, Kose, Chen, Veca, Xie (bib37) 2006; 128
Li, Rui, Song, Shen, Zeng (bib22) 2015; 25
Jiang, Biswas, Fortner (bib17) 2016; 2
Hutton, Martindale, Reisner (bib15) 2017; 46
Lim, Shen, Gao (bib23) 2015; 44
Zhou, Wang, Hou, Zhang, Liu, Bruggen, Van der (bib53) 2017; 5
Hui, Huang, Chen, Zhu, Yang (bib14) 2015; 8
Lin, Zhang (bib24) 2012; 48
He, Zhao, Chung (bib12) 2018; 564
Wang, Hu (bib40) 2014; 2
Zhang, Chung (bib48) 2017; 16
Yuan, Wu, Jiang, Li, Huang, Hao, Zhang (bib44) 2018; 549
Sahu, Behera, Maiti, Mohapatra (bib34) 2012; 48
Baker, Baker (bib1) 2010; 49
Gai, Zhao, Chung (bib10) 2018; 551
Jiang, Chung, Cao, Huang, Kulprathipanja (bib18) 2005; 252
Zhou, Sheng, Han, Zou, Li (bib52) 2012; 66
Chowdhury, Gogoi, Majumdar (bib5) 2012; 2
Ostuni, Chapman, Holmlin, Takayama, Whitesides (bib31) 2001; 17
Liu, Zhang, Gao, Li, Chen, Wu, Liu (bib27) 2015; 5
Zeng, Yu, He, Liu, Xiao, Zhang, Wang, Bhattacharyya, Tan (bib45) 2016; 6
Mehta, Jha, Kailasa (bib29) 2014; 38
Zhao, Das, Chung (bib49) 2017; 51
Zheng, Cong, Wang, Li, Yang, Chen (bib50) 2013; 49
Song, Zhou, Zhang, Xu, Wang (bib36) 2016; 4
Yang, Cui, Zheng, Hu, Tan, Xiao, Yang, Liu (bib43) 2012; 48
Wang, Wang, Chen (bib38) 2012; 51
Chen, Gao, Qiu, Zhang, Liu, Liao, Fu, Luo (bib4) 2017; 1
Zhang, Wei, Zhang, Bai, Sun, Gu (bib46) 2017; 9
Li (10.1016/j.watres.2018.09.040_bib21) 2013; 5
Zhou (10.1016/j.watres.2018.09.040_bib53) 2017; 5
Yuan (10.1016/j.watres.2018.09.040_bib44) 2018; 549
Sahu (10.1016/j.watres.2018.09.040_bib34) 2012; 48
Hu (10.1016/j.watres.2018.09.040_bib13) 2013; 5
Zhang (10.1016/j.watres.2018.09.040_bib47) 2015; 5
Fathizadeh (10.1016/j.watres.2018.09.040_bib9) 2017
Chen (10.1016/j.watres.2018.09.040_bib4) 2017; 1
Zhao (10.1016/j.watres.2018.09.040_bib49) 2017; 51
Zhang (10.1016/j.watres.2018.09.040_bib46) 2017; 9
Jiang (10.1016/j.watres.2018.09.040_bib18) 2005; 252
Wu (10.1016/j.watres.2018.09.040_bib41) 2013; 1
Jafari (10.1016/j.watres.2018.09.040_bib16) 2018; 126
Wang (10.1016/j.watres.2018.09.040_bib40) 2014; 2
Xu (10.1016/j.watres.2018.09.040_bib42) 2004; 126
Sun (10.1016/j.watres.2018.09.040_bib37) 2006; 128
He (10.1016/j.watres.2018.09.040_bib12) 2018; 564
Liu (10.1016/j.watres.2018.09.040_bib27) 2015; 5
Zheng (10.1016/j.watres.2018.09.040_bib50) 2013; 49
Yang (10.1016/j.watres.2018.09.040_bib43) 2012; 48
Jiang (10.1016/j.watres.2018.09.040_bib17) 2016; 2
Lim (10.1016/j.watres.2018.09.040_bib23) 2015; 44
Shen (10.1016/j.watres.2018.09.040_bib35) 2012; 48
Mehta (10.1016/j.watres.2018.09.040_bib29) 2014; 38
Bourlinos (10.1016/j.watres.2018.09.040_bib3) 2008; 4
Nurunnabi (10.1016/j.watres.2018.09.040_bib30) 2013; 7
Bi (10.1016/j.watres.2018.09.040_bib2) 2018; 553
Hutton (10.1016/j.watres.2018.09.040_bib15) 2017; 46
Zhou (10.1016/j.watres.2018.09.040_bib51) 2007; 129
Baker (10.1016/j.watres.2018.09.040_bib1) 2010; 49
Guo (10.1016/j.watres.2018.09.040_bib11) 2014; 50
Liu (10.1016/j.watres.2018.09.040_bib25) 2009; 121
Gai (10.1016/j.watres.2018.09.040_bib10) 2018; 551
Chowdhury (10.1016/j.watres.2018.09.040_bib5) 2012; 2
Li (10.1016/j.watres.2018.09.040_bib22) 2015; 25
Zeng (10.1016/j.watres.2018.09.040_bib45) 2016; 6
Li (10.1016/j.watres.2018.09.040_bib20) 2012; 22
Dong (10.1016/j.watres.2018.09.040_bib8) 2010; 22
Safaei (10.1016/j.watres.2018.09.040_bib33) 2017; 6
Zhou (10.1016/j.watres.2018.09.040_bib52) 2012; 66
Peng (10.1016/j.watres.2018.09.040_bib32) 2009; 21
Li (10.1016/j.watres.2018.09.040_bib19) 2010; 49
Demchenko (10.1016/j.watres.2018.09.040_bib7) 2013; 1
Colburn (10.1016/j.watres.2018.09.040_bib6) 2018; 556
Hui (10.1016/j.watres.2018.09.040_bib14) 2015; 8
Wang (10.1016/j.watres.2018.09.040_bib39) 2017; 5
Song (10.1016/j.watres.2018.09.040_bib36) 2016; 4
Zhang (10.1016/j.watres.2018.09.040_bib48) 2017; 16
Lin (10.1016/j.watres.2018.09.040_bib24) 2012; 48
Wang (10.1016/j.watres.2018.09.040_bib38) 2012; 51
Ostuni (10.1016/j.watres.2018.09.040_bib31) 2001; 17
References_xml – volume: 49
  start-page: 6726
  year: 2010
  end-page: 6744
  ident: bib1
  article-title: Luminescent carbon nanodots: emergent nanolights
  publication-title: Angew. Chem. Int. Ed.
– volume: 8
  start-page: 20
  year: 2015
  end-page: 25
  ident: bib14
  article-title: Antibacterial property of graphene quantum dots (both source material and bacterial shape matter)
  publication-title: ACS Appl. Mater. Interfaces
– volume: 49
  start-page: 605
  year: 2010
  end-page: 609
  ident: bib19
  article-title: One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties
  publication-title: Carbon
– volume: 4
  start-page: 16896
  year: 2016
  end-page: 16905
  ident: bib36
  article-title: Pressure-assisted preparation of graphene oxide quantum dot-incorporated reverse osmosis membranes: antifouling and chlorine resistance potentials
  publication-title: J. Mater. Chem. A.
– volume: 553
  start-page: 17
  year: 2018
  end-page: 24
  ident: bib2
  article-title: Thin film nanocomposite membranes incorporated with graphene quantum dots for high flux and antifouling property
  publication-title: J. Membr. Sci.
– volume: 6
  start-page: 20142
  year: 2016
  end-page: 20152
  ident: bib45
  article-title: Graphene oxide quantum dots covalently functionalized PVDF membrane with significantly-enhanced bactericidal and antibiofouling performances
  publication-title: Sci. Rep.
– volume: 2
  start-page: 915
  year: 2016
  end-page: 922
  ident: bib17
  article-title: A review of recent developments in graphene-enabled membranes for water treatment
  publication-title: Environ. Sci.: Water Res. Technol.
– volume: 48
  start-page: 380
  year: 2012
  end-page: 382
  ident: bib43
  article-title: One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan
  publication-title: Chem. Commun.
– volume: 121
  start-page: 4668
  year: 2009
  end-page: 4671
  ident: bib25
  article-title: An aqueous route to multicolor photoluminescent carbon dots using silica spheres as carriers
  publication-title: Angew. Chem. Int. Ed.
– volume: 7
  start-page: 6858
  year: 2013
  end-page: 6867
  ident: bib30
  article-title: biodistribution and toxicology of carboxylated graphene quantum dots
  publication-title: ACS Nano
– volume: 9
  start-page: 11082
  year: 2017
  end-page: 11094
  ident: bib46
  article-title: Graphene oxide quantum dots incorporated into a thin film nanocomposite membrane with high flux and antifouling properties for low-pressure nanofiltration
  publication-title: ACS Appl. Mater. Interfaces
– volume: 38
  start-page: 20
  year: 2014
  end-page: 27
  ident: bib29
  article-title: One-pot green synthesis of carbon dots by using
  publication-title: Mater. Sci. Eng. C
– volume: 1
  year: 2013
  ident: bib7
  article-title: Novel fluorescent carbonic nanomaterials for sensing and imaging
  publication-title: Methods Appl. Fluoresc.
– volume: 128
  start-page: 7756
  year: 2006
  end-page: 7757
  ident: bib37
  article-title: Quantum-sized carbon dots for bright and colorful photoluminescence
  publication-title: J. Am. Chem. Soc.
– volume: 16
  start-page: 9
  year: 2017
  end-page: 15
  ident: bib48
  article-title: Graphene oxide membranes for nanofiltration
  publication-title: Curr. Opin. Chem. Eng.
– volume: 1
  start-page: 192
  year: 2017
  end-page: 199
  ident: bib4
  article-title: Graphene quantum dots in biomedical applications: recent advances and future challenges
  publication-title: Front. Lab Med.
– year: 2017
  ident: bib9
  article-title: Polyamide/nitrogen-doped graphene oxide quantum dots (N-GOQD) thin film nanocomposite reverse osmosis membranes for high flux desalination
  publication-title: Desalination
– volume: 17
  start-page: 5605
  year: 2001
  end-page: 5620
  ident: bib31
  article-title: A survey of structure-property relationships of surfaces that resist the adsorption of protein
  publication-title: Langmuir
– volume: 5
  start-page: 40393
  year: 2015
  end-page: 40401
  ident: bib47
  article-title: Water-soluble, nitrogen-doped fluorescent carbon dots for highly sensitive and selective detection of Hg
  publication-title: RSC Adv.
– volume: 129
  start-page: 744
  year: 2007
  end-page: 745
  ident: bib51
  article-title: An electrochemical to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs)
  publication-title: J. Am. Chem. Soc.
– volume: 21
  start-page: 5563
  year: 2009
  end-page: 5565
  ident: bib32
  article-title: Simple aqueous solution route to luminescent carbogenic dots from carbohydrates
  publication-title: Chem. Mater.
– volume: 5
  start-page: 3289
  year: 2013
  end-page: 3297
  ident: bib21
  article-title: Near-infrared light controlled photocatalytic activity of carbon quantum dots for highly selective oxidation reaction
  publication-title: Nanoscale
– volume: 49
  start-page: 519
  year: 2013
  end-page: 524
  ident: bib50
  article-title: Highly-efficient peroxidase-like catalytic activity of graphene dots for biosensing
  publication-title: Biosens. Bioelectron.
– volume: 66
  start-page: 222
  year: 2012
  end-page: 224
  ident: bib52
  article-title: Facile synthesis of fluorescent carbon dots using watermelon peels as a carbon source
  publication-title: Mater. Lett.
– volume: 126
  start-page: 12736
  year: 2004
  end-page: 12737
  ident: bib42
  article-title: Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 117
  year: 2017
  end-page: 124
  ident: bib33
  article-title: Synthesis and properties of photoluminescent carbon quantum dot/polyacrylonitrile composite nanofibers
  publication-title: Smart Sci
– volume: 5
  start-page: 6776
  year: 2017
  end-page: 6793
  ident: bib53
  article-title: Graphene-based antimicrobial polymeric membranes: a review
  publication-title: J. Mater. Chem. A.
– volume: 48
  start-page: 10177
  year: 2012
  end-page: 10179
  ident: bib24
  article-title: Creating high yield water soluble luminescent graphene quantum dots via exfoliating and disintegrating carbon nanotubes and graphite flakes
  publication-title: Chem. Commun.
– volume: 252
  start-page: 89
  year: 2005
  end-page: 100
  ident: bib18
  article-title: Fundamental understanding of nano-sized zeolite distribution in the formation of the mixed matrix single- and dual-layer asymmetric hollow fiber membranes
  publication-title: J. Membr. Sci.
– volume: 2
  start-page: 6921
  year: 2014
  end-page: 6939
  ident: bib40
  article-title: Carbon quantum dots: synthesis, properties and applications
  publication-title: J. Mater. Chem. C.
– volume: 2
  start-page: 12156
  year: 2012
  end-page: 12159
  ident: bib5
  article-title: Fluorescent carbon dots obtained from chitosan gel
  publication-title: RSC Adv.
– volume: 564
  start-page: 483
  year: 2018
  end-page: 491
  ident: bib12
  article-title: Na+ functionalized carbon quantum dots incorporated thin-film nanocomposite membranes for selenium and arsenic removal
  publication-title: J. Membr. Sci.
– volume: 551
  start-page: 94
  year: 2018
  end-page: 102
  ident: bib10
  article-title: Novel thin film composite hollow fiber membranes incorporated with carbon quantum dots for osmotic power generation
  publication-title: J. Membr. Sci.
– volume: 126
  start-page: 222
  year: 2018
  end-page: 231
  ident: bib16
  article-title: Graphene quantum dots modified polyvinylidenefluride (PVDF) nanofibrous membranes with enhanced performance for air gap membrane distillation
  publication-title: Chem. Eng. Process: Proc. Inten.
– volume: 48
  start-page: 3686
  year: 2012
  end-page: 3699
  ident: bib35
  article-title: Graphene quantum dots: emerging nanolights for bioimaging, sensors, catalysis and photovoltaic devices
  publication-title: Chem. Commun.
– volume: 22
  start-page: 5895
  year: 2010
  end-page: 5899
  ident: bib8
  article-title: Extraction of electrochemiluminescent oxidized carbon quantum dots from activated carbon
  publication-title: Chem. Mater.
– volume: 46
  start-page: 6111
  year: 2017
  end-page: 6123
  ident: bib15
  article-title: Carbon dots as photosensitisers for solar-driven catalysis
  publication-title: Chem. Soc. Rev.
– volume: 51
  start-page: 9297
  year: 2012
  end-page: 9301
  ident: bib38
  article-title: Amphiphilic egg-derived carbon dots: rapid plasma fabrication, pyrolysis process, and multicolor printing patterns
  publication-title: Angew. Chem. Int. Ed.
– volume: 48
  start-page: 8835
  year: 2012
  end-page: 8837
  ident: bib34
  article-title: Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents
  publication-title: Chem. Commun.
– volume: 22
  start-page: 24230
  year: 2012
  end-page: 24253
  ident: bib20
  article-title: Carbon nanodots: synthesis, properties and applications
  publication-title: J. Mater. Chem.
– volume: 50
  start-page: 7318
  year: 2014
  end-page: 7321
  ident: bib11
  article-title: Na+-functionalized carbon quantum dots: a new draw solute in forward osmosis for seawater desalination
  publication-title: Chem. Commun.
– volume: 1
  start-page: 4676
  year: 2013
  end-page: 4684
  ident: bib41
  article-title: Fabrication of highly fluorescent graphene quantum dots using L-glutamic acid for
  publication-title: J. Mater. Chem. C.
– volume: 5
  start-page: 11665
  year: 2013
  end-page: 11671
  ident: bib13
  article-title: Modulation and effects of surface groups on photoluminescence and photocatalytic activity of carbon dots
  publication-title: Nanoscale
– volume: 556
  start-page: 293
  year: 2018
  end-page: 302
  ident: bib6
  article-title: Cellulose-graphene quantum dot composite membranes using ionic liquid
  publication-title: J. Membr. Sci.
– volume: 44
  start-page: 362
  year: 2015
  end-page: 381
  ident: bib23
  article-title: Carbon quantum dots and their applications
  publication-title: Chem. Soc. Rev.
– volume: 549
  start-page: 1
  year: 2018
  end-page: 11
  ident: bib44
  article-title: Carbon dots-incorporated composite membrane towards enhanced organic solvent nanofiltration performance
  publication-title: J. Membr. Sci.
– volume: 51
  start-page: 14016
  year: 2017
  end-page: 14023
  ident: bib49
  article-title: Carbon quantum dots grafted antifouling membranes for osmotic power generation via pressure-retarded osmosis process
  publication-title: Envion. Sci. Technol.
– volume: 4
  start-page: 455
  year: 2008
  end-page: 458
  ident: bib3
  article-title: Surface functionalized carbogenic quantum dots
  publication-title: Small
– volume: 25
  start-page: 4929
  year: 2015
  end-page: 4947
  ident: bib22
  article-title: Carbon and graphene quantum dots for optoelectronic and energy devices: a review
  publication-title: Adv. Funct. Mater.
– volume: 5
  start-page: 4428
  year: 2015
  end-page: 4433
  ident: bib27
  article-title: A facile microwave-hydrothermal approach towards highly photoluminescent carbon dots from goose feathers
  publication-title: RSC Adv.
– volume: 5
  start-page: 3717
  year: 2017
  end-page: 3734
  ident: bib39
  article-title: Recent progress in carbon quantum dots: synthesis, properties and applications in photocatalysis
  publication-title: J. Mater. Chem. A.
– volume: 48
  start-page: 380
  year: 2012
  ident: 10.1016/j.watres.2018.09.040_bib43
  article-title: One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan
  publication-title: Chem. Commun.
  doi: 10.1039/C1CC15678K
– volume: 9
  start-page: 11082
  year: 2017
  ident: 10.1016/j.watres.2018.09.040_bib46
  article-title: Graphene oxide quantum dots incorporated into a thin film nanocomposite membrane with high flux and antifouling properties for low-pressure nanofiltration
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b12826
– volume: 564
  start-page: 483
  year: 2018
  ident: 10.1016/j.watres.2018.09.040_bib12
  article-title: Na+ functionalized carbon quantum dots incorporated thin-film nanocomposite membranes for selenium and arsenic removal
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2018.07.031
– year: 2017
  ident: 10.1016/j.watres.2018.09.040_bib9
  article-title: Polyamide/nitrogen-doped graphene oxide quantum dots (N-GOQD) thin film nanocomposite reverse osmosis membranes for high flux desalination
  publication-title: Desalination
  doi: 10.1016/j.desal.2017.07.014
– volume: 50
  start-page: 7318
  year: 2014
  ident: 10.1016/j.watres.2018.09.040_bib11
  article-title: Na+-functionalized carbon quantum dots: a new draw solute in forward osmosis for seawater desalination
  publication-title: Chem. Commun.
  doi: 10.1039/c4cc01603c
– volume: 44
  start-page: 362
  year: 2015
  ident: 10.1016/j.watres.2018.09.040_bib23
  article-title: Carbon quantum dots and their applications
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00269E
– volume: 1
  start-page: 4676
  year: 2013
  ident: 10.1016/j.watres.2018.09.040_bib41
  article-title: Fabrication of highly fluorescent graphene quantum dots using L-glutamic acid for in vitro/in vivo imaging and sensing
  publication-title: J. Mater. Chem. C.
  doi: 10.1039/c3tc30820k
– volume: 6
  start-page: 20142
  year: 2016
  ident: 10.1016/j.watres.2018.09.040_bib45
  article-title: Graphene oxide quantum dots covalently functionalized PVDF membrane with significantly-enhanced bactericidal and antibiofouling performances
  publication-title: Sci. Rep.
  doi: 10.1038/srep20142
– volume: 21
  start-page: 5563
  year: 2009
  ident: 10.1016/j.watres.2018.09.040_bib32
  article-title: Simple aqueous solution route to luminescent carbogenic dots from carbohydrates
  publication-title: Chem. Mater.
  doi: 10.1021/cm901593y
– volume: 22
  start-page: 24230
  year: 2012
  ident: 10.1016/j.watres.2018.09.040_bib20
  article-title: Carbon nanodots: synthesis, properties and applications
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm34690g
– volume: 16
  start-page: 9
  year: 2017
  ident: 10.1016/j.watres.2018.09.040_bib48
  article-title: Graphene oxide membranes for nanofiltration
  publication-title: Curr. Opin. Chem. Eng.
  doi: 10.1016/j.coche.2017.03.002
– volume: 38
  start-page: 20
  year: 2014
  ident: 10.1016/j.watres.2018.09.040_bib29
  article-title: One-pot green synthesis of carbon dots by using Saccharum officinarum juice for fluorescent imaging of bacteria (Escherichia coli) and yeast (Saccharomyces cerevisiae) cells
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2014.01.038
– volume: 2
  start-page: 6921
  year: 2014
  ident: 10.1016/j.watres.2018.09.040_bib40
  article-title: Carbon quantum dots: synthesis, properties and applications
  publication-title: J. Mater. Chem. C.
  doi: 10.1039/C4TC00988F
– volume: 553
  start-page: 17
  year: 2018
  ident: 10.1016/j.watres.2018.09.040_bib2
  article-title: Thin film nanocomposite membranes incorporated with graphene quantum dots for high flux and antifouling property
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2018.02.010
– volume: 22
  start-page: 5895
  year: 2010
  ident: 10.1016/j.watres.2018.09.040_bib8
  article-title: Extraction of electrochemiluminescent oxidized carbon quantum dots from activated carbon
  publication-title: Chem. Mater.
  doi: 10.1021/cm1018844
– volume: 5
  start-page: 3717
  year: 2017
  ident: 10.1016/j.watres.2018.09.040_bib39
  article-title: Recent progress in carbon quantum dots: synthesis, properties and applications in photocatalysis
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/C6TA08660H
– volume: 6
  start-page: 117
  year: 2017
  ident: 10.1016/j.watres.2018.09.040_bib33
  article-title: Synthesis and properties of photoluminescent carbon quantum dot/polyacrylonitrile composite nanofibers
  publication-title: Smart Sci
  doi: 10.1080/23080477.2017.1399318
– volume: 121
  start-page: 4668
  year: 2009
  ident: 10.1016/j.watres.2018.09.040_bib25
  article-title: An aqueous route to multicolor photoluminescent carbon dots using silica spheres as carriers
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/ange.200900652
– volume: 252
  start-page: 89
  year: 2005
  ident: 10.1016/j.watres.2018.09.040_bib18
  article-title: Fundamental understanding of nano-sized zeolite distribution in the formation of the mixed matrix single- and dual-layer asymmetric hollow fiber membranes
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2004.12.004
– volume: 5
  start-page: 3289
  year: 2013
  ident: 10.1016/j.watres.2018.09.040_bib21
  article-title: Near-infrared light controlled photocatalytic activity of carbon quantum dots for highly selective oxidation reaction
  publication-title: Nanoscale
  doi: 10.1039/c3nr00092c
– volume: 48
  start-page: 3686
  year: 2012
  ident: 10.1016/j.watres.2018.09.040_bib35
  article-title: Graphene quantum dots: emerging nanolights for bioimaging, sensors, catalysis and photovoltaic devices
  publication-title: Chem. Commun.
  doi: 10.1039/c2cc00110a
– volume: 25
  start-page: 4929
  year: 2015
  ident: 10.1016/j.watres.2018.09.040_bib22
  article-title: Carbon and graphene quantum dots for optoelectronic and energy devices: a review
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201501250
– volume: 5
  start-page: 4428
  year: 2015
  ident: 10.1016/j.watres.2018.09.040_bib27
  article-title: A facile microwave-hydrothermal approach towards highly photoluminescent carbon dots from goose feathers
  publication-title: RSC Adv.
  doi: 10.1039/C4RA12077A
– volume: 5
  start-page: 6776
  year: 2017
  ident: 10.1016/j.watres.2018.09.040_bib53
  article-title: Graphene-based antimicrobial polymeric membranes: a review
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/C7TA00009J
– volume: 5
  start-page: 40393
  year: 2015
  ident: 10.1016/j.watres.2018.09.040_bib47
  article-title: Water-soluble, nitrogen-doped fluorescent carbon dots for highly sensitive and selective detection of Hg2+ in aqueous solution
  publication-title: RSC Adv.
  doi: 10.1039/C5RA04653J
– volume: 556
  start-page: 293
  year: 2018
  ident: 10.1016/j.watres.2018.09.040_bib6
  article-title: Cellulose-graphene quantum dot composite membranes using ionic liquid
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2018.04.009
– volume: 1
  year: 2013
  ident: 10.1016/j.watres.2018.09.040_bib7
  article-title: Novel fluorescent carbonic nanomaterials for sensing and imaging
  publication-title: Methods Appl. Fluoresc.
– volume: 51
  start-page: 14016
  year: 2017
  ident: 10.1016/j.watres.2018.09.040_bib49
  article-title: Carbon quantum dots grafted antifouling membranes for osmotic power generation via pressure-retarded osmosis process
  publication-title: Envion. Sci. Technol.
  doi: 10.1021/acs.est.7b04190
– volume: 8
  start-page: 20
  year: 2015
  ident: 10.1016/j.watres.2018.09.040_bib14
  article-title: Antibacterial property of graphene quantum dots (both source material and bacterial shape matter)
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b10132
– volume: 48
  start-page: 8835
  year: 2012
  ident: 10.1016/j.watres.2018.09.040_bib34
  article-title: Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents
  publication-title: Chem. Commun.
  doi: 10.1039/c2cc33796g
– volume: 49
  start-page: 519
  year: 2013
  ident: 10.1016/j.watres.2018.09.040_bib50
  article-title: Highly-efficient peroxidase-like catalytic activity of graphene dots for biosensing
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2013.05.038
– volume: 128
  start-page: 7756
  year: 2006
  ident: 10.1016/j.watres.2018.09.040_bib37
  article-title: Quantum-sized carbon dots for bright and colorful photoluminescence
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja062677d
– volume: 51
  start-page: 9297
  year: 2012
  ident: 10.1016/j.watres.2018.09.040_bib38
  article-title: Amphiphilic egg-derived carbon dots: rapid plasma fabrication, pyrolysis process, and multicolor printing patterns
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201204381
– volume: 17
  start-page: 5605
  year: 2001
  ident: 10.1016/j.watres.2018.09.040_bib31
  article-title: A survey of structure-property relationships of surfaces that resist the adsorption of protein
  publication-title: Langmuir
  doi: 10.1021/la010384m
– volume: 4
  start-page: 455
  year: 2008
  ident: 10.1016/j.watres.2018.09.040_bib3
  article-title: Surface functionalized carbogenic quantum dots
  publication-title: Small
  doi: 10.1002/smll.200700578
– volume: 2
  start-page: 12156
  year: 2012
  ident: 10.1016/j.watres.2018.09.040_bib5
  article-title: Fluorescent carbon dots obtained from chitosan gel
  publication-title: RSC Adv.
  doi: 10.1039/c2ra21705h
– volume: 129
  start-page: 744
  year: 2007
  ident: 10.1016/j.watres.2018.09.040_bib51
  article-title: An electrochemical to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs)
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0669070
– volume: 49
  start-page: 6726
  year: 2010
  ident: 10.1016/j.watres.2018.09.040_bib1
  article-title: Luminescent carbon nanodots: emergent nanolights
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200906623
– volume: 49
  start-page: 605
  year: 2010
  ident: 10.1016/j.watres.2018.09.040_bib19
  article-title: One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties
  publication-title: Carbon
  doi: 10.1016/j.carbon.2010.10.004
– volume: 66
  start-page: 222
  year: 2012
  ident: 10.1016/j.watres.2018.09.040_bib52
  article-title: Facile synthesis of fluorescent carbon dots using watermelon peels as a carbon source
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2011.08.081
– volume: 2
  start-page: 915
  year: 2016
  ident: 10.1016/j.watres.2018.09.040_bib17
  article-title: A review of recent developments in graphene-enabled membranes for water treatment
  publication-title: Environ. Sci.: Water Res. Technol.
– volume: 4
  start-page: 16896
  year: 2016
  ident: 10.1016/j.watres.2018.09.040_bib36
  article-title: Pressure-assisted preparation of graphene oxide quantum dot-incorporated reverse osmosis membranes: antifouling and chlorine resistance potentials
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/C6TA06636D
– volume: 5
  start-page: 11665
  year: 2013
  ident: 10.1016/j.watres.2018.09.040_bib13
  article-title: Modulation and effects of surface groups on photoluminescence and photocatalytic activity of carbon dots
  publication-title: Nanoscale
  doi: 10.1039/c3nr03893a
– volume: 551
  start-page: 94
  year: 2018
  ident: 10.1016/j.watres.2018.09.040_bib10
  article-title: Novel thin film composite hollow fiber membranes incorporated with carbon quantum dots for osmotic power generation
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2018.01.034
– volume: 1
  start-page: 192
  year: 2017
  ident: 10.1016/j.watres.2018.09.040_bib4
  article-title: Graphene quantum dots in biomedical applications: recent advances and future challenges
  publication-title: Front. Lab Med.
  doi: 10.1016/j.flm.2017.12.006
– volume: 7
  start-page: 6858
  year: 2013
  ident: 10.1016/j.watres.2018.09.040_bib30
  article-title: In vivo biodistribution and toxicology of carboxylated graphene quantum dots
  publication-title: ACS Nano
  doi: 10.1021/nn402043c
– volume: 126
  start-page: 12736
  year: 2004
  ident: 10.1016/j.watres.2018.09.040_bib42
  article-title: Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja040082h
– volume: 126
  start-page: 222
  year: 2018
  ident: 10.1016/j.watres.2018.09.040_bib16
  article-title: Graphene quantum dots modified polyvinylidenefluride (PVDF) nanofibrous membranes with enhanced performance for air gap membrane distillation
  publication-title: Chem. Eng. Process: Proc. Inten.
  doi: 10.1016/j.cep.2018.03.010
– volume: 46
  start-page: 6111
  year: 2017
  ident: 10.1016/j.watres.2018.09.040_bib15
  article-title: Carbon dots as photosensitisers for solar-driven catalysis
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00235A
– volume: 48
  start-page: 10177
  year: 2012
  ident: 10.1016/j.watres.2018.09.040_bib24
  article-title: Creating high yield water soluble luminescent graphene quantum dots via exfoliating and disintegrating carbon nanotubes and graphite flakes
  publication-title: Chem. Commun.
  doi: 10.1039/c2cc35559k
– volume: 549
  start-page: 1
  year: 2018
  ident: 10.1016/j.watres.2018.09.040_bib44
  article-title: Carbon dots-incorporated composite membrane towards enhanced organic solvent nanofiltration performance
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2017.11.051
SSID ssj0002239
Score 2.6480033
SecondaryResourceType review_article
Snippet Carbon quantum dots (CQDs), which are a fascinating class of nanostructured carbons, have recently attracted extensive attention in the field of membrane...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 43
SubjectTerms Antifouling
antifouling activities
biocompatibility
Carbon quantum dots
distillation
drinking water
Graphene oxide quantum dots
hydrophilicity
Membrane separation
moieties
nanofiltration
reverse osmosis
solvents
ultrafiltration
water treatment
Title Applications of carbon quantum dots (CQDs) in membrane technologies: A review
URI https://dx.doi.org/10.1016/j.watres.2018.09.040
https://www.ncbi.nlm.nih.gov/pubmed/30296608
https://www.proquest.com/docview/2117396228
https://www.proquest.com/docview/2189533320
Volume 147
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSxwxEA-iL_VBqq316gcp-GAftuZ7N74dp3JtUShU8C1kswmc9Pas3uFb__bO7Icf0Cr4uMskhN9M5iOZmRCyn5JIwbM8MxWeVlWszKxkVaaLiuVRlTxVWI18dm7GF-rbpb5cIqO-FgbTKjvd3-r0Rlt3fw47NA-vJxOs8QXjJ7UCoQS7p7Hjp1I5SvmXPw9pHmD-bH_LjNR9-VyT43XnsSADE7yKptspHoH82zz9z_1szNDpW7LW-Y902C5xnSzFeoOsPuoq-I6cDR9dStNZosHflLOa_l4AiosphTj0lh6MfhzffqaTmk7jFCLmOtJ5f8oOwfMRHdK2quU9uTg9-TkaZ92rCVlQhs-zKmFc5XXiQSVlTQy5LaPPWcSyUhPAg_JcsMIG470R1gvYw2XQBbDT8hDlJlmuZ3XcIrQqpdQ2aZGSUVpDsFx4nkfrKw3eLhMDInuwXOhaiuPLFr9cnzt25VqIHULsmHUA8YBk96Ou25YaL9DnPR_cE9FwoPVfGPmpZ5uDXYNXIQDnbAFEnOfSGiGK52gKzL2VAub50PL8fr2SCWxrWnx89dq2yRv8wswYrnfI8vxmEXfBv5mXe40A75GV4dfv4_O_zEr5jQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEB5S59DmEPpu0pcKPbSHJXqstKvejNvgNLGhkEBuQquVwKVe52GTv58Z765JoW2g111JiG-keUjzjQA-piRT8LzITE2nVTWvMqt4nemy5kXMK5FqYiNPpmZ8ln8_1-dbMOq5MJRW2en-VqevtXX35aBD8-BiNiOOLxo_pXNclGj3tHoA21SdSg9ge3h0PJ5uFDJaQNtfNFOHnkG3TvO68cTJoByvcl3wlE5B_myh_uaBri3R4WPY7VxINmxn-QS2YvMUdu4UFnwGk-Gde2m2SCz4q2rRsMsVArmaMwxFr9mn0Y-v15_ZrGHzOMeguYls2R-0Y_z8hQ1ZS2x5DmeH305H46x7OCELuRHLrE4UWnmdRMhTbk0Mha2iL3gkZqkJ6ER5IXlpg_HeSOslbuMq6BIlakWI6gUMmkUTXwGrK6W0TVqmZHKtMV4uvSii9bVGh5fLPVA9WC50VcXpcYtfrk8f--laiB1B7Lh1CPEeZJteF21VjXvaF70c3G-rw6Hiv6fnh15sDjcO3YYgnIsVNhKiUNZIWf6rTUnpt0riOC9bmW_mq7ikyqbl_n_P7T08HJ9OTtzJ0fT4NTyiP5QoI_QbGCyvVvEtujvL6l23nG8BWhD8Pg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Applications+of+carbon+quantum+dots+%28CQDs%29+in+membrane+technologies%3A+A+review&rft.jtitle=Water+research+%28Oxford%29&rft.au=Zhao%2C+Die+Ling&rft.au=Chung%2C+Tai-Shung&rft.date=2018-12-15&rft.issn=1879-2448&rft.eissn=1879-2448&rft.volume=147&rft.spage=43&rft_id=info:doi/10.1016%2Fj.watres.2018.09.040&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1354&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1354&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1354&client=summon