Applications of carbon quantum dots (CQDs) in membrane technologies: A review
Carbon quantum dots (CQDs), which are a fascinating class of nanostructured carbons, have recently attracted extensive attention in the field of membrane technologies for their applications in separation processes. This is because they possess two unique advantages. Their productions are facile and...
Saved in:
Published in | Water research (Oxford) Vol. 147; pp. 43 - 49 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
15.12.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Carbon quantum dots (CQDs), which are a fascinating class of nanostructured carbons, have recently attracted extensive attention in the field of membrane technologies for their applications in separation processes. This is because they possess two unique advantages. Their productions are facile and inexpensive, while their physicochemical properties such as ultra-small sizes, good biocompatibility, high chemical inertness, tunable hydrophilicity, rich surface functional groups and antifouling characteristics are highly desirable. Leveraging on these, researchers have explored their utilizations in various membrane designs for reverse osmosis (RO), ultrafiltration (UF), nanofiltration (NF), forward osmosis (FO), pressure retarded osmosis (PRO), membrane distillation (MD), and organic solvent nanofiltration (OSN) processes. In particular, CQDs have especially stimulated exploration in the field of water treatment by membrane technologies since biocompatibility of membrane materials is of utmost importance to ensure safety of drinking water. In addition, CQDs are in a favorable position for achieving unprecedented performance of membrane separation processes in water treatment, in the light of substantial efficiency enhancement and antifouling propensity as discovered in recent studies. In this article, we will review the progress in the development of CQD incorporated membranes with discussions on their challenges and perspectives.
[Display omitted]
•The state-of-the-art of CQD modified membranes for different applications are summarized.•The methods to incorporate CQDs into membranes are introduced.•The challenges and future of CQDs for membrane technologies are elaborated. |
---|---|
AbstractList | Carbon quantum dots (CQDs), which are a fascinating class of nanostructured carbons, have recently attracted extensive attention in the field of membrane technologies for their applications in separation processes. This is because they possess two unique advantages. Their productions are facile and inexpensive, while their physicochemical properties such as ultra-small sizes, good biocompatibility, high chemical inertness, tunable hydrophilicity, rich surface functional groups and antifouling characteristics are highly desirable. Leveraging on these, researchers have explored their utilizations in various membrane designs for reverse osmosis (RO), ultrafiltration (UF), nanofiltration (NF), forward osmosis (FO), pressure retarded osmosis (PRO), membrane distillation (MD), and organic solvent nanofiltration (OSN) processes. In particular, CQDs have especially stimulated exploration in the field of water treatment by membrane technologies since biocompatibility of membrane materials is of utmost importance to ensure safety of drinking water. In addition, CQDs are in a favorable position for achieving unprecedented performance of membrane separation processes in water treatment, in the light of substantial efficiency enhancement and antifouling propensity as discovered in recent studies. In this article, we will review the progress in the development of CQD incorporated membranes with discussions on their challenges and perspectives.Carbon quantum dots (CQDs), which are a fascinating class of nanostructured carbons, have recently attracted extensive attention in the field of membrane technologies for their applications in separation processes. This is because they possess two unique advantages. Their productions are facile and inexpensive, while their physicochemical properties such as ultra-small sizes, good biocompatibility, high chemical inertness, tunable hydrophilicity, rich surface functional groups and antifouling characteristics are highly desirable. Leveraging on these, researchers have explored their utilizations in various membrane designs for reverse osmosis (RO), ultrafiltration (UF), nanofiltration (NF), forward osmosis (FO), pressure retarded osmosis (PRO), membrane distillation (MD), and organic solvent nanofiltration (OSN) processes. In particular, CQDs have especially stimulated exploration in the field of water treatment by membrane technologies since biocompatibility of membrane materials is of utmost importance to ensure safety of drinking water. In addition, CQDs are in a favorable position for achieving unprecedented performance of membrane separation processes in water treatment, in the light of substantial efficiency enhancement and antifouling propensity as discovered in recent studies. In this article, we will review the progress in the development of CQD incorporated membranes with discussions on their challenges and perspectives. Carbon quantum dots (CQDs), which are a fascinating class of nanostructured carbons, have recently attracted extensive attention in the field of membrane technologies for their applications in separation processes. This is because they possess two unique advantages. Their productions are facile and inexpensive, while their physicochemical properties such as ultra-small sizes, good biocompatibility, high chemical inertness, tunable hydrophilicity, rich surface functional groups and antifouling characteristics are highly desirable. Leveraging on these, researchers have explored their utilizations in various membrane designs for reverse osmosis (RO), ultrafiltration (UF), nanofiltration (NF), forward osmosis (FO), pressure retarded osmosis (PRO), membrane distillation (MD), and organic solvent nanofiltration (OSN) processes. In particular, CQDs have especially stimulated exploration in the field of water treatment by membrane technologies since biocompatibility of membrane materials is of utmost importance to ensure safety of drinking water. In addition, CQDs are in a favorable position for achieving unprecedented performance of membrane separation processes in water treatment, in the light of substantial efficiency enhancement and antifouling propensity as discovered in recent studies. In this article, we will review the progress in the development of CQD incorporated membranes with discussions on their challenges and perspectives. [Display omitted] •The state-of-the-art of CQD modified membranes for different applications are summarized.•The methods to incorporate CQDs into membranes are introduced.•The challenges and future of CQDs for membrane technologies are elaborated. Carbon quantum dots (CQDs), which are a fascinating class of nanostructured carbons, have recently attracted extensive attention in the field of membrane technologies for their applications in separation processes. This is because they possess two unique advantages. Their productions are facile and inexpensive, while their physicochemical properties such as ultra-small sizes, good biocompatibility, high chemical inertness, tunable hydrophilicity, rich surface functional groups and antifouling characteristics are highly desirable. Leveraging on these, researchers have explored their utilizations in various membrane designs for reverse osmosis (RO), ultrafiltration (UF), nanofiltration (NF), forward osmosis (FO), pressure retarded osmosis (PRO), membrane distillation (MD), and organic solvent nanofiltration (OSN) processes. In particular, CQDs have especially stimulated exploration in the field of water treatment by membrane technologies since biocompatibility of membrane materials is of utmost importance to ensure safety of drinking water. In addition, CQDs are in a favorable position for achieving unprecedented performance of membrane separation processes in water treatment, in the light of substantial efficiency enhancement and antifouling propensity as discovered in recent studies. In this article, we will review the progress in the development of CQD incorporated membranes with discussions on their challenges and perspectives. |
Author | Chung, Tai-Shung Zhao, Die Ling |
Author_xml | – sequence: 1 givenname: Die Ling surname: Zhao fullname: Zhao, Die Ling – sequence: 2 givenname: Tai-Shung orcidid: 0000-0003-3704-8609 surname: Chung fullname: Chung, Tai-Shung email: chencts@nus.edu.sg |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30296608$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUtv1DAUhS1URKeFf4CQl2WRcP0Yx-4CaTS8KrVCSLC2HOcGPEriqe204t-TMu2GBe3qbr5zdHW-E3I0xQkJec2gZsDUu11960rCXHNgugZTg4RnZMV0YyoupT4iKwApKibW8pic5LwDAM6FeUGOBXCjFOgVudrs90PwroQ4ZRp76l1q40SvZzeVeaRdLJmebb99yG9pmOiIY5vchLSg_zXFIf4MmM_phia8CXj7kjzv3ZDx1f09JT8-ffy-_VJdfv18sd1cVl4qVqquXz5Rbt0zL3tpFPrGtOgaQCUbrbzg0jEO2njlnOLGcal169caWzTMozglZ4fefYrXM-Zix5A9DsPyWpyz5UybtRCCwxNQ1gijONcL-uYendsRO7tPYXTpt31YawHOD4BPMeeEvfWh_J2uJBcGy8DeqbE7e1Bj79RYMHZRs4TlP-GH_kdi7w8xXPZcNk42-4CTxy4k9MV2Mfy_4A_MIKkH |
CitedBy_id | crossref_primary_10_1016_j_desal_2022_116285 crossref_primary_10_1016_j_memsci_2022_120465 crossref_primary_10_1016_j_ccr_2025_216510 crossref_primary_10_1016_j_memsci_2021_120068 crossref_primary_10_1016_j_memsci_2023_121712 crossref_primary_10_1002_slct_202101957 crossref_primary_10_1016_j_memsci_2023_122248 crossref_primary_10_1021_acsaem_4c01721 crossref_primary_10_1039_D1EN00263E crossref_primary_10_1016_j_jece_2021_105762 crossref_primary_10_2139_ssrn_3978665 crossref_primary_10_2166_ws_2023_204 crossref_primary_10_1016_j_desal_2022_115742 crossref_primary_10_1007_s00217_022_03985_1 crossref_primary_10_1016_j_memsci_2021_119765 crossref_primary_10_1021_acsanm_1c01372 crossref_primary_10_1002_adsu_202000279 crossref_primary_10_1002_slct_201901683 crossref_primary_10_1016_j_memsci_2020_118039 crossref_primary_10_1016_j_memsci_2020_118952 crossref_primary_10_1021_acs_iecr_3c02048 crossref_primary_10_1016_j_seppur_2021_118870 crossref_primary_10_1039_D3CY01139A crossref_primary_10_1016_j_ijhydene_2020_01_142 crossref_primary_10_1016_j_desal_2019_114072 crossref_primary_10_1002_wer_1385 crossref_primary_10_3390_chemosensors9030052 crossref_primary_10_3390_membranes10100297 crossref_primary_10_1021_acsapm_3c02322 crossref_primary_10_1002_slct_202200473 crossref_primary_10_1016_j_psep_2023_10_053 crossref_primary_10_1021_acs_est_1c01269 crossref_primary_10_1016_j_seppur_2023_124876 crossref_primary_10_1016_j_envres_2022_113283 crossref_primary_10_1021_acsami_3c05677 crossref_primary_10_1016_j_jiec_2022_11_017 crossref_primary_10_1016_j_cartre_2024_100407 crossref_primary_10_1016_j_jiec_2021_06_022 crossref_primary_10_1016_j_biteb_2023_101728 crossref_primary_10_1016_j_jwpe_2020_101652 crossref_primary_10_1016_j_jece_2024_111935 crossref_primary_10_3390_ma14175094 crossref_primary_10_1016_j_apmt_2021_101331 crossref_primary_10_1016_j_jtice_2023_105082 crossref_primary_10_1016_j_jwpe_2023_104647 crossref_primary_10_1039_C9TA12847F crossref_primary_10_1007_s00339_019_3160_1 crossref_primary_10_1007_s42247_021_00273_8 crossref_primary_10_1007_s10895_020_02680_2 crossref_primary_10_1016_j_memsci_2021_119309 crossref_primary_10_1016_j_jtice_2022_104250 crossref_primary_10_1016_j_sajce_2024_02_009 crossref_primary_10_1016_j_memsci_2023_121706 crossref_primary_10_1016_j_cclet_2021_03_028 crossref_primary_10_1016_j_matdes_2021_109800 crossref_primary_10_1016_j_memsci_2024_122656 crossref_primary_10_1007_s42773_022_00153_2 crossref_primary_10_1021_acsami_1c04777 crossref_primary_10_1002_tcr_202300189 crossref_primary_10_1016_j_chemosphere_2021_132126 crossref_primary_10_1016_j_scitotenv_2021_148462 crossref_primary_10_1016_j_cej_2023_144811 crossref_primary_10_1016_j_desal_2020_114618 crossref_primary_10_1016_j_seppur_2021_119756 crossref_primary_10_1021_acsami_8b19834 crossref_primary_10_1016_j_cej_2020_126703 crossref_primary_10_1016_j_jenvman_2024_122398 crossref_primary_10_1016_j_cherd_2021_04_031 crossref_primary_10_1016_j_scitotenv_2019_134050 crossref_primary_10_1016_j_aca_2022_340110 crossref_primary_10_1016_j_microc_2020_105773 crossref_primary_10_2174_1876402914666220318121343 crossref_primary_10_1007_s10895_024_03736_3 crossref_primary_10_1016_j_mser_2025_100969 crossref_primary_10_3390_polym15244712 crossref_primary_10_1007_s10570_024_05996_5 crossref_primary_10_1002_slct_202301136 crossref_primary_10_1016_j_saa_2022_122200 crossref_primary_10_1002_smsc_202200026 crossref_primary_10_1016_j_seppur_2020_117604 crossref_primary_10_1080_09593330_2023_2220891 crossref_primary_10_1016_j_cej_2021_133634 crossref_primary_10_3390_w17020210 crossref_primary_10_1016_j_desal_2022_115671 crossref_primary_10_1016_j_desal_2020_114501 crossref_primary_10_1016_j_progpolymsci_2021_101470 crossref_primary_10_1016_j_jece_2025_115784 crossref_primary_10_1016_j_cej_2020_126848 crossref_primary_10_1016_j_cherd_2020_01_010 crossref_primary_10_1016_j_memsci_2023_121855 crossref_primary_10_1016_j_mtcomm_2021_102413 crossref_primary_10_1002_smll_202301177 crossref_primary_10_1039_D4GC02944E crossref_primary_10_1016_j_msea_2020_140573 crossref_primary_10_1016_j_cis_2020_102124 crossref_primary_10_1021_acsomega_9b01208 crossref_primary_10_1002_adfm_202308176 crossref_primary_10_1016_j_seppur_2021_118657 crossref_primary_10_1016_j_jwpe_2024_105833 crossref_primary_10_1016_j_cclet_2021_05_056 crossref_primary_10_1021_acs_iecr_3c00400 crossref_primary_10_1002_smll_202105579 crossref_primary_10_1016_j_desal_2021_115230 crossref_primary_10_1016_j_nanoso_2022_100931 crossref_primary_10_1016_j_molstruc_2024_137892 crossref_primary_10_1039_D2RA05201F crossref_primary_10_1016_j_watres_2022_118121 crossref_primary_10_1007_s11224_019_01337_6 crossref_primary_10_1016_j_cej_2023_143005 crossref_primary_10_1016_j_matpr_2023_08_291 crossref_primary_10_1016_j_seppur_2021_118586 crossref_primary_10_1039_D3EW00266G crossref_primary_10_1016_j_talanta_2021_122148 crossref_primary_10_3390_polym16111481 crossref_primary_10_1007_s13738_019_01749_5 crossref_primary_10_3390_polym16172513 crossref_primary_10_1021_acs_iecr_0c04360 crossref_primary_10_1021_acsomega_9b03975 crossref_primary_10_1016_j_desal_2023_116956 crossref_primary_10_1016_j_jes_2019_11_011 crossref_primary_10_1016_j_desal_2021_115506 crossref_primary_10_1080_10408398_2022_2039896 crossref_primary_10_3390_catal10060680 crossref_primary_10_1016_j_chemosphere_2021_132313 crossref_primary_10_1080_15422119_2023_2207084 crossref_primary_10_1016_j_msec_2020_110787 crossref_primary_10_1039_D1EN00017A crossref_primary_10_1016_j_diamond_2023_110194 crossref_primary_10_2147_IJN_S334012 crossref_primary_10_1016_j_trac_2024_117939 crossref_primary_10_1016_j_cej_2024_155740 crossref_primary_10_1016_j_memsci_2023_121691 crossref_primary_10_1016_j_memsci_2019_117212 crossref_primary_10_1016_j_chemosphere_2024_143725 crossref_primary_10_1016_j_cej_2020_127144 crossref_primary_10_1016_j_matdes_2023_111982 crossref_primary_10_1039_D3TA03016D crossref_primary_10_1007_s42114_024_00846_1 crossref_primary_10_3390_membranes10070140 crossref_primary_10_1016_j_chemosphere_2024_143985 crossref_primary_10_1016_j_jclepro_2020_121867 crossref_primary_10_1039_C9TA01915D crossref_primary_10_1002_slct_202304930 crossref_primary_10_1016_j_foodchem_2021_131898 crossref_primary_10_1007_s10853_021_06032_8 crossref_primary_10_1007_s10965_020_02158_6 crossref_primary_10_1080_87559129_2020_1818255 crossref_primary_10_1016_j_watres_2020_115557 crossref_primary_10_1016_j_jece_2021_105028 crossref_primary_10_1007_s10068_024_01695_w crossref_primary_10_1016_j_biortech_2024_131882 crossref_primary_10_1016_j_seppur_2023_123831 crossref_primary_10_1016_j_desal_2024_117666 crossref_primary_10_1021_acs_est_9b00473 crossref_primary_10_1016_j_seppur_2021_118572 crossref_primary_10_1016_j_polymdegradstab_2021_109506 crossref_primary_10_1016_j_jlumin_2020_117042 crossref_primary_10_3390_antiox11112193 crossref_primary_10_1021_acs_est_0c05377 crossref_primary_10_1016_j_inoche_2023_111258 crossref_primary_10_1016_j_watres_2019_01_043 crossref_primary_10_3390_nano12193519 crossref_primary_10_1007_s10854_023_11603_3 crossref_primary_10_20914_2310_1202_2024_2_40_47 crossref_primary_10_3390_polym12051143 crossref_primary_10_1016_j_jclepro_2022_133770 crossref_primary_10_1016_j_diamond_2022_109366 crossref_primary_10_1016_j_jelechem_2023_117664 crossref_primary_10_1016_j_carbon_2019_08_021 crossref_primary_10_1021_acs_est_9b01453 crossref_primary_10_2139_ssrn_3969117 crossref_primary_10_1016_j_memsci_2022_120428 crossref_primary_10_1016_j_jwpe_2024_105561 crossref_primary_10_1016_j_biortech_2019_121795 crossref_primary_10_1002_smll_202304066 crossref_primary_10_1007_s11157_025_09723_9 crossref_primary_10_1080_21691401_2023_2197947 crossref_primary_10_1016_j_cjche_2019_04_004 crossref_primary_10_1016_j_jwpe_2023_103664 crossref_primary_10_1016_j_jclepro_2024_144043 crossref_primary_10_1016_j_memsci_2022_121086 crossref_primary_10_1016_j_cej_2024_154862 crossref_primary_10_1016_j_chemosphere_2022_134930 crossref_primary_10_1016_j_mattod_2021_07_028 crossref_primary_10_1016_j_desal_2019_04_029 crossref_primary_10_1016_j_chemosphere_2021_130055 crossref_primary_10_1016_j_ceramint_2024_11_402 crossref_primary_10_1021_acsestengg_4c00265 crossref_primary_10_54691_f7ka2537 crossref_primary_10_1021_acssuschemeng_9b01073 crossref_primary_10_1016_j_seppur_2024_129273 crossref_primary_10_1039_D4CS00338A crossref_primary_10_2139_ssrn_4191052 crossref_primary_10_1016_j_memsci_2025_123787 crossref_primary_10_1016_j_seppur_2021_118719 crossref_primary_10_1016_j_chemosphere_2022_136329 crossref_primary_10_3390_membranes13080726 crossref_primary_10_1016_j_molliq_2021_117312 crossref_primary_10_51435_turkjac_1450796 crossref_primary_10_1016_j_jcis_2023_05_092 crossref_primary_10_1016_j_seppur_2022_120975 crossref_primary_10_1021_acsami_9b11006 crossref_primary_10_1007_s13738_019_01639_w crossref_primary_10_1002_adfm_202211983 crossref_primary_10_1016_j_seppur_2023_123759 crossref_primary_10_1016_j_wear_2024_205685 crossref_primary_10_1039_D4EN00563E crossref_primary_10_3390_su15010806 crossref_primary_10_1016_j_ijbiomac_2024_131850 crossref_primary_10_1007_s10876_023_02444_5 crossref_primary_10_1016_j_pmatsci_2023_101162 crossref_primary_10_1016_j_memsci_2021_119580 crossref_primary_10_1016_j_seppur_2024_126301 crossref_primary_10_1016_j_seppur_2023_123870 crossref_primary_10_1016_j_seppur_2024_127757 crossref_primary_10_1016_j_cej_2019_123993 crossref_primary_10_1016_j_cej_2023_144074 crossref_primary_10_1039_C9QM00543A crossref_primary_10_1021_acsami_9b16704 crossref_primary_10_1007_s13726_024_01285_x crossref_primary_10_1021_acsami_3c01289 crossref_primary_10_1039_D2NR05951G crossref_primary_10_1016_j_jcis_2023_03_044 crossref_primary_10_1016_j_ijbiomac_2024_137392 crossref_primary_10_1039_D3EW00249G crossref_primary_10_1038_s41598_022_24553_3 crossref_primary_10_1016_j_jece_2022_108083 crossref_primary_10_1038_s41598_022_24089_6 crossref_primary_10_1016_j_petrol_2022_110325 crossref_primary_10_1155_2020_8216435 crossref_primary_10_1016_j_envres_2022_113635 crossref_primary_10_1016_j_jhazmat_2021_126881 crossref_primary_10_1016_j_desal_2022_116347 crossref_primary_10_1016_j_desal_2023_116888 crossref_primary_10_1016_j_ijbiomac_2024_132939 crossref_primary_10_1039_D2NR07065K crossref_primary_10_3390_eng4010042 |
Cites_doi | 10.1039/C1CC15678K 10.1021/acsami.6b12826 10.1016/j.memsci.2018.07.031 10.1016/j.desal.2017.07.014 10.1039/c4cc01603c 10.1039/C4CS00269E 10.1039/c3tc30820k 10.1038/srep20142 10.1021/cm901593y 10.1039/c2jm34690g 10.1016/j.coche.2017.03.002 10.1016/j.msec.2014.01.038 10.1039/C4TC00988F 10.1016/j.memsci.2018.02.010 10.1021/cm1018844 10.1039/C6TA08660H 10.1080/23080477.2017.1399318 10.1002/ange.200900652 10.1016/j.memsci.2004.12.004 10.1039/c3nr00092c 10.1039/c2cc00110a 10.1002/adfm.201501250 10.1039/C4RA12077A 10.1039/C7TA00009J 10.1039/C5RA04653J 10.1016/j.memsci.2018.04.009 10.1021/acs.est.7b04190 10.1021/acsami.5b10132 10.1039/c2cc33796g 10.1016/j.bios.2013.05.038 10.1021/ja062677d 10.1002/anie.201204381 10.1021/la010384m 10.1002/smll.200700578 10.1039/c2ra21705h 10.1021/ja0669070 10.1002/anie.200906623 10.1016/j.carbon.2010.10.004 10.1016/j.matlet.2011.08.081 10.1039/C6TA06636D 10.1039/c3nr03893a 10.1016/j.memsci.2018.01.034 10.1016/j.flm.2017.12.006 10.1021/nn402043c 10.1021/ja040082h 10.1016/j.cep.2018.03.010 10.1039/C7CS00235A 10.1039/c2cc35559k 10.1016/j.memsci.2017.11.051 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd Copyright © 2018 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Copyright © 2018 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.watres.2018.09.040 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-2448 |
EndPage | 49 |
ExternalDocumentID | 30296608 10_1016_j_watres_2018_09_040 S0043135418307553 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- --K --M -DZ -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFO ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA HMC IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SCU SDF SDG SDP SES SPC SPCBC SSE SSJ SSZ T5K TAE TN5 TWZ WH7 XPP ZCA ZMT ~02 ~G- ~KM .55 186 29R 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACKIV ACRPL ACVFH ADCNI ADMUD ADNMO AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HMA HVGLF HZ~ H~9 MVM OHT R2- SEN SEP SEW SSH WUQ X7M XOL YHZ YV5 ZXP ZY4 ~A~ EFKBS NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c461t-df0026a5f1c4f496ec79bea70e64786c324a12089c6aa629a2488bc58ebe91ce3 |
IEDL.DBID | .~1 |
ISSN | 0043-1354 1879-2448 |
IngestDate | Mon Jul 21 11:34:52 EDT 2025 Mon Jul 21 11:10:41 EDT 2025 Mon Jul 21 06:06:25 EDT 2025 Tue Jul 01 01:20:54 EDT 2025 Thu Apr 24 23:09:15 EDT 2025 Fri Feb 23 02:23:33 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Membrane separation Graphene oxide quantum dots Carbon quantum dots Antifouling |
Language | English |
License | Copyright © 2018 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c461t-df0026a5f1c4f496ec79bea70e64786c324a12089c6aa629a2488bc58ebe91ce3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-3704-8609 |
PMID | 30296608 |
PQID | 2117396228 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2189533320 proquest_miscellaneous_2117396228 pubmed_primary_30296608 crossref_citationtrail_10_1016_j_watres_2018_09_040 crossref_primary_10_1016_j_watres_2018_09_040 elsevier_sciencedirect_doi_10_1016_j_watres_2018_09_040 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-12-15 |
PublicationDateYYYYMMDD | 2018-12-15 |
PublicationDate_xml | – month: 12 year: 2018 text: 2018-12-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Water research (Oxford) |
PublicationTitleAlternate | Water Res |
PublicationYear | 2018 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Shen, Zhu, Yang, Li (bib35) 2012; 48 Jafari, Kebria, Rahimpour, Bakeri (bib16) 2018; 126 Fathizadeh, Tien, Khivantsev, Song, Zhou, Yu (bib9) 2017 Bi, Zhang, Zhang, Su, Jiang (bib2) 2018; 553 Wu, Tian, Wang, Chen, Wu, Zhao (bib41) 2013; 1 Colburn, Wanninayake, Kim, Bhattacharyya (bib6) 2018; 556 Xu, Ray, Gu, Ploehn, Gearheart, Raker, Scrivens (bib42) 2004; 126 Peng, Travas-Sejdic (bib32) 2009; 21 Guo, Zhao, Zhao, Wang, Lu (bib11) 2014; 50 Nurunnabi, Khatun, Huh, Park, Lee, Cho, Lee (bib30) 2013; 7 Zhang, He, Cui, Feng, Chen, Yang, Liu (bib47) 2015; 5 Demchenko, Dekaliuk (bib7) 2013; 1 Zhou, Booker, Li, Zhou, Sham, Sun, Ding (bib51) 2007; 129 Li, He, Liu, Huang, Lian, Lee, Kang (bib19) 2010; 49 Wang, Lu, Tang, Xu (bib39) 2017; 5 Hu, Tian, Dong, Yang, Liu, Chang (bib13) 2013; 5 Liu, Wu, Liu, Koynov, Knoll, Li (bib25) 2009; 121 Safaei, Youssefi, Rezaei, Irannejad (bib33) 2017; 6 Bourlinos, Stassinopoulos, Anglos, Zboril, Karakassides, Giannelis (bib3) 2008; 4 Li, Kang, Liu, Lee (bib20) 2012; 22 Li, Liu, Lian, Liu, Huang, Kang (bib21) 2013; 5 Dong, Zhou, Lin, Lin, Chi, Chen (bib8) 2010; 22 Sun, Zhou, Lin, Wang, Fernando, Pathak, Meziani, Harruff, Wang, Wang, Luo, Yang, Kose, Chen, Veca, Xie (bib37) 2006; 128 Li, Rui, Song, Shen, Zeng (bib22) 2015; 25 Jiang, Biswas, Fortner (bib17) 2016; 2 Hutton, Martindale, Reisner (bib15) 2017; 46 Lim, Shen, Gao (bib23) 2015; 44 Zhou, Wang, Hou, Zhang, Liu, Bruggen, Van der (bib53) 2017; 5 Hui, Huang, Chen, Zhu, Yang (bib14) 2015; 8 Lin, Zhang (bib24) 2012; 48 He, Zhao, Chung (bib12) 2018; 564 Wang, Hu (bib40) 2014; 2 Zhang, Chung (bib48) 2017; 16 Yuan, Wu, Jiang, Li, Huang, Hao, Zhang (bib44) 2018; 549 Sahu, Behera, Maiti, Mohapatra (bib34) 2012; 48 Baker, Baker (bib1) 2010; 49 Gai, Zhao, Chung (bib10) 2018; 551 Jiang, Chung, Cao, Huang, Kulprathipanja (bib18) 2005; 252 Zhou, Sheng, Han, Zou, Li (bib52) 2012; 66 Chowdhury, Gogoi, Majumdar (bib5) 2012; 2 Ostuni, Chapman, Holmlin, Takayama, Whitesides (bib31) 2001; 17 Liu, Zhang, Gao, Li, Chen, Wu, Liu (bib27) 2015; 5 Zeng, Yu, He, Liu, Xiao, Zhang, Wang, Bhattacharyya, Tan (bib45) 2016; 6 Mehta, Jha, Kailasa (bib29) 2014; 38 Zhao, Das, Chung (bib49) 2017; 51 Zheng, Cong, Wang, Li, Yang, Chen (bib50) 2013; 49 Song, Zhou, Zhang, Xu, Wang (bib36) 2016; 4 Yang, Cui, Zheng, Hu, Tan, Xiao, Yang, Liu (bib43) 2012; 48 Wang, Wang, Chen (bib38) 2012; 51 Chen, Gao, Qiu, Zhang, Liu, Liao, Fu, Luo (bib4) 2017; 1 Zhang, Wei, Zhang, Bai, Sun, Gu (bib46) 2017; 9 Li (10.1016/j.watres.2018.09.040_bib21) 2013; 5 Zhou (10.1016/j.watres.2018.09.040_bib53) 2017; 5 Yuan (10.1016/j.watres.2018.09.040_bib44) 2018; 549 Sahu (10.1016/j.watres.2018.09.040_bib34) 2012; 48 Hu (10.1016/j.watres.2018.09.040_bib13) 2013; 5 Zhang (10.1016/j.watres.2018.09.040_bib47) 2015; 5 Fathizadeh (10.1016/j.watres.2018.09.040_bib9) 2017 Chen (10.1016/j.watres.2018.09.040_bib4) 2017; 1 Zhao (10.1016/j.watres.2018.09.040_bib49) 2017; 51 Zhang (10.1016/j.watres.2018.09.040_bib46) 2017; 9 Jiang (10.1016/j.watres.2018.09.040_bib18) 2005; 252 Wu (10.1016/j.watres.2018.09.040_bib41) 2013; 1 Jafari (10.1016/j.watres.2018.09.040_bib16) 2018; 126 Wang (10.1016/j.watres.2018.09.040_bib40) 2014; 2 Xu (10.1016/j.watres.2018.09.040_bib42) 2004; 126 Sun (10.1016/j.watres.2018.09.040_bib37) 2006; 128 He (10.1016/j.watres.2018.09.040_bib12) 2018; 564 Liu (10.1016/j.watres.2018.09.040_bib27) 2015; 5 Zheng (10.1016/j.watres.2018.09.040_bib50) 2013; 49 Yang (10.1016/j.watres.2018.09.040_bib43) 2012; 48 Jiang (10.1016/j.watres.2018.09.040_bib17) 2016; 2 Lim (10.1016/j.watres.2018.09.040_bib23) 2015; 44 Shen (10.1016/j.watres.2018.09.040_bib35) 2012; 48 Mehta (10.1016/j.watres.2018.09.040_bib29) 2014; 38 Bourlinos (10.1016/j.watres.2018.09.040_bib3) 2008; 4 Nurunnabi (10.1016/j.watres.2018.09.040_bib30) 2013; 7 Bi (10.1016/j.watres.2018.09.040_bib2) 2018; 553 Hutton (10.1016/j.watres.2018.09.040_bib15) 2017; 46 Zhou (10.1016/j.watres.2018.09.040_bib51) 2007; 129 Baker (10.1016/j.watres.2018.09.040_bib1) 2010; 49 Guo (10.1016/j.watres.2018.09.040_bib11) 2014; 50 Liu (10.1016/j.watres.2018.09.040_bib25) 2009; 121 Gai (10.1016/j.watres.2018.09.040_bib10) 2018; 551 Chowdhury (10.1016/j.watres.2018.09.040_bib5) 2012; 2 Li (10.1016/j.watres.2018.09.040_bib22) 2015; 25 Zeng (10.1016/j.watres.2018.09.040_bib45) 2016; 6 Li (10.1016/j.watres.2018.09.040_bib20) 2012; 22 Dong (10.1016/j.watres.2018.09.040_bib8) 2010; 22 Safaei (10.1016/j.watres.2018.09.040_bib33) 2017; 6 Zhou (10.1016/j.watres.2018.09.040_bib52) 2012; 66 Peng (10.1016/j.watres.2018.09.040_bib32) 2009; 21 Li (10.1016/j.watres.2018.09.040_bib19) 2010; 49 Demchenko (10.1016/j.watres.2018.09.040_bib7) 2013; 1 Colburn (10.1016/j.watres.2018.09.040_bib6) 2018; 556 Hui (10.1016/j.watres.2018.09.040_bib14) 2015; 8 Wang (10.1016/j.watres.2018.09.040_bib39) 2017; 5 Song (10.1016/j.watres.2018.09.040_bib36) 2016; 4 Zhang (10.1016/j.watres.2018.09.040_bib48) 2017; 16 Lin (10.1016/j.watres.2018.09.040_bib24) 2012; 48 Wang (10.1016/j.watres.2018.09.040_bib38) 2012; 51 Ostuni (10.1016/j.watres.2018.09.040_bib31) 2001; 17 |
References_xml | – volume: 49 start-page: 6726 year: 2010 end-page: 6744 ident: bib1 article-title: Luminescent carbon nanodots: emergent nanolights publication-title: Angew. Chem. Int. Ed. – volume: 8 start-page: 20 year: 2015 end-page: 25 ident: bib14 article-title: Antibacterial property of graphene quantum dots (both source material and bacterial shape matter) publication-title: ACS Appl. Mater. Interfaces – volume: 49 start-page: 605 year: 2010 end-page: 609 ident: bib19 article-title: One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties publication-title: Carbon – volume: 4 start-page: 16896 year: 2016 end-page: 16905 ident: bib36 article-title: Pressure-assisted preparation of graphene oxide quantum dot-incorporated reverse osmosis membranes: antifouling and chlorine resistance potentials publication-title: J. Mater. Chem. A. – volume: 553 start-page: 17 year: 2018 end-page: 24 ident: bib2 article-title: Thin film nanocomposite membranes incorporated with graphene quantum dots for high flux and antifouling property publication-title: J. Membr. Sci. – volume: 6 start-page: 20142 year: 2016 end-page: 20152 ident: bib45 article-title: Graphene oxide quantum dots covalently functionalized PVDF membrane with significantly-enhanced bactericidal and antibiofouling performances publication-title: Sci. Rep. – volume: 2 start-page: 915 year: 2016 end-page: 922 ident: bib17 article-title: A review of recent developments in graphene-enabled membranes for water treatment publication-title: Environ. Sci.: Water Res. Technol. – volume: 48 start-page: 380 year: 2012 end-page: 382 ident: bib43 article-title: One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan publication-title: Chem. Commun. – volume: 121 start-page: 4668 year: 2009 end-page: 4671 ident: bib25 article-title: An aqueous route to multicolor photoluminescent carbon dots using silica spheres as carriers publication-title: Angew. Chem. Int. Ed. – volume: 7 start-page: 6858 year: 2013 end-page: 6867 ident: bib30 article-title: biodistribution and toxicology of carboxylated graphene quantum dots publication-title: ACS Nano – volume: 9 start-page: 11082 year: 2017 end-page: 11094 ident: bib46 article-title: Graphene oxide quantum dots incorporated into a thin film nanocomposite membrane with high flux and antifouling properties for low-pressure nanofiltration publication-title: ACS Appl. Mater. Interfaces – volume: 38 start-page: 20 year: 2014 end-page: 27 ident: bib29 article-title: One-pot green synthesis of carbon dots by using publication-title: Mater. Sci. Eng. C – volume: 1 year: 2013 ident: bib7 article-title: Novel fluorescent carbonic nanomaterials for sensing and imaging publication-title: Methods Appl. Fluoresc. – volume: 128 start-page: 7756 year: 2006 end-page: 7757 ident: bib37 article-title: Quantum-sized carbon dots for bright and colorful photoluminescence publication-title: J. Am. Chem. Soc. – volume: 16 start-page: 9 year: 2017 end-page: 15 ident: bib48 article-title: Graphene oxide membranes for nanofiltration publication-title: Curr. Opin. Chem. Eng. – volume: 1 start-page: 192 year: 2017 end-page: 199 ident: bib4 article-title: Graphene quantum dots in biomedical applications: recent advances and future challenges publication-title: Front. Lab Med. – year: 2017 ident: bib9 article-title: Polyamide/nitrogen-doped graphene oxide quantum dots (N-GOQD) thin film nanocomposite reverse osmosis membranes for high flux desalination publication-title: Desalination – volume: 17 start-page: 5605 year: 2001 end-page: 5620 ident: bib31 article-title: A survey of structure-property relationships of surfaces that resist the adsorption of protein publication-title: Langmuir – volume: 5 start-page: 40393 year: 2015 end-page: 40401 ident: bib47 article-title: Water-soluble, nitrogen-doped fluorescent carbon dots for highly sensitive and selective detection of Hg publication-title: RSC Adv. – volume: 129 start-page: 744 year: 2007 end-page: 745 ident: bib51 article-title: An electrochemical to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs) publication-title: J. Am. Chem. Soc. – volume: 21 start-page: 5563 year: 2009 end-page: 5565 ident: bib32 article-title: Simple aqueous solution route to luminescent carbogenic dots from carbohydrates publication-title: Chem. Mater. – volume: 5 start-page: 3289 year: 2013 end-page: 3297 ident: bib21 article-title: Near-infrared light controlled photocatalytic activity of carbon quantum dots for highly selective oxidation reaction publication-title: Nanoscale – volume: 49 start-page: 519 year: 2013 end-page: 524 ident: bib50 article-title: Highly-efficient peroxidase-like catalytic activity of graphene dots for biosensing publication-title: Biosens. Bioelectron. – volume: 66 start-page: 222 year: 2012 end-page: 224 ident: bib52 article-title: Facile synthesis of fluorescent carbon dots using watermelon peels as a carbon source publication-title: Mater. Lett. – volume: 126 start-page: 12736 year: 2004 end-page: 12737 ident: bib42 article-title: Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 117 year: 2017 end-page: 124 ident: bib33 article-title: Synthesis and properties of photoluminescent carbon quantum dot/polyacrylonitrile composite nanofibers publication-title: Smart Sci – volume: 5 start-page: 6776 year: 2017 end-page: 6793 ident: bib53 article-title: Graphene-based antimicrobial polymeric membranes: a review publication-title: J. Mater. Chem. A. – volume: 48 start-page: 10177 year: 2012 end-page: 10179 ident: bib24 article-title: Creating high yield water soluble luminescent graphene quantum dots via exfoliating and disintegrating carbon nanotubes and graphite flakes publication-title: Chem. Commun. – volume: 252 start-page: 89 year: 2005 end-page: 100 ident: bib18 article-title: Fundamental understanding of nano-sized zeolite distribution in the formation of the mixed matrix single- and dual-layer asymmetric hollow fiber membranes publication-title: J. Membr. Sci. – volume: 2 start-page: 6921 year: 2014 end-page: 6939 ident: bib40 article-title: Carbon quantum dots: synthesis, properties and applications publication-title: J. Mater. Chem. C. – volume: 2 start-page: 12156 year: 2012 end-page: 12159 ident: bib5 article-title: Fluorescent carbon dots obtained from chitosan gel publication-title: RSC Adv. – volume: 564 start-page: 483 year: 2018 end-page: 491 ident: bib12 article-title: Na+ functionalized carbon quantum dots incorporated thin-film nanocomposite membranes for selenium and arsenic removal publication-title: J. Membr. Sci. – volume: 551 start-page: 94 year: 2018 end-page: 102 ident: bib10 article-title: Novel thin film composite hollow fiber membranes incorporated with carbon quantum dots for osmotic power generation publication-title: J. Membr. Sci. – volume: 126 start-page: 222 year: 2018 end-page: 231 ident: bib16 article-title: Graphene quantum dots modified polyvinylidenefluride (PVDF) nanofibrous membranes with enhanced performance for air gap membrane distillation publication-title: Chem. Eng. Process: Proc. Inten. – volume: 48 start-page: 3686 year: 2012 end-page: 3699 ident: bib35 article-title: Graphene quantum dots: emerging nanolights for bioimaging, sensors, catalysis and photovoltaic devices publication-title: Chem. Commun. – volume: 22 start-page: 5895 year: 2010 end-page: 5899 ident: bib8 article-title: Extraction of electrochemiluminescent oxidized carbon quantum dots from activated carbon publication-title: Chem. Mater. – volume: 46 start-page: 6111 year: 2017 end-page: 6123 ident: bib15 article-title: Carbon dots as photosensitisers for solar-driven catalysis publication-title: Chem. Soc. Rev. – volume: 51 start-page: 9297 year: 2012 end-page: 9301 ident: bib38 article-title: Amphiphilic egg-derived carbon dots: rapid plasma fabrication, pyrolysis process, and multicolor printing patterns publication-title: Angew. Chem. Int. Ed. – volume: 48 start-page: 8835 year: 2012 end-page: 8837 ident: bib34 article-title: Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents publication-title: Chem. Commun. – volume: 22 start-page: 24230 year: 2012 end-page: 24253 ident: bib20 article-title: Carbon nanodots: synthesis, properties and applications publication-title: J. Mater. Chem. – volume: 50 start-page: 7318 year: 2014 end-page: 7321 ident: bib11 article-title: Na+-functionalized carbon quantum dots: a new draw solute in forward osmosis for seawater desalination publication-title: Chem. Commun. – volume: 1 start-page: 4676 year: 2013 end-page: 4684 ident: bib41 article-title: Fabrication of highly fluorescent graphene quantum dots using L-glutamic acid for publication-title: J. Mater. Chem. C. – volume: 5 start-page: 11665 year: 2013 end-page: 11671 ident: bib13 article-title: Modulation and effects of surface groups on photoluminescence and photocatalytic activity of carbon dots publication-title: Nanoscale – volume: 556 start-page: 293 year: 2018 end-page: 302 ident: bib6 article-title: Cellulose-graphene quantum dot composite membranes using ionic liquid publication-title: J. Membr. Sci. – volume: 44 start-page: 362 year: 2015 end-page: 381 ident: bib23 article-title: Carbon quantum dots and their applications publication-title: Chem. Soc. Rev. – volume: 549 start-page: 1 year: 2018 end-page: 11 ident: bib44 article-title: Carbon dots-incorporated composite membrane towards enhanced organic solvent nanofiltration performance publication-title: J. Membr. Sci. – volume: 51 start-page: 14016 year: 2017 end-page: 14023 ident: bib49 article-title: Carbon quantum dots grafted antifouling membranes for osmotic power generation via pressure-retarded osmosis process publication-title: Envion. Sci. Technol. – volume: 4 start-page: 455 year: 2008 end-page: 458 ident: bib3 article-title: Surface functionalized carbogenic quantum dots publication-title: Small – volume: 25 start-page: 4929 year: 2015 end-page: 4947 ident: bib22 article-title: Carbon and graphene quantum dots for optoelectronic and energy devices: a review publication-title: Adv. Funct. Mater. – volume: 5 start-page: 4428 year: 2015 end-page: 4433 ident: bib27 article-title: A facile microwave-hydrothermal approach towards highly photoluminescent carbon dots from goose feathers publication-title: RSC Adv. – volume: 5 start-page: 3717 year: 2017 end-page: 3734 ident: bib39 article-title: Recent progress in carbon quantum dots: synthesis, properties and applications in photocatalysis publication-title: J. Mater. Chem. A. – volume: 48 start-page: 380 year: 2012 ident: 10.1016/j.watres.2018.09.040_bib43 article-title: One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan publication-title: Chem. Commun. doi: 10.1039/C1CC15678K – volume: 9 start-page: 11082 year: 2017 ident: 10.1016/j.watres.2018.09.040_bib46 article-title: Graphene oxide quantum dots incorporated into a thin film nanocomposite membrane with high flux and antifouling properties for low-pressure nanofiltration publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b12826 – volume: 564 start-page: 483 year: 2018 ident: 10.1016/j.watres.2018.09.040_bib12 article-title: Na+ functionalized carbon quantum dots incorporated thin-film nanocomposite membranes for selenium and arsenic removal publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2018.07.031 – year: 2017 ident: 10.1016/j.watres.2018.09.040_bib9 article-title: Polyamide/nitrogen-doped graphene oxide quantum dots (N-GOQD) thin film nanocomposite reverse osmosis membranes for high flux desalination publication-title: Desalination doi: 10.1016/j.desal.2017.07.014 – volume: 50 start-page: 7318 year: 2014 ident: 10.1016/j.watres.2018.09.040_bib11 article-title: Na+-functionalized carbon quantum dots: a new draw solute in forward osmosis for seawater desalination publication-title: Chem. Commun. doi: 10.1039/c4cc01603c – volume: 44 start-page: 362 year: 2015 ident: 10.1016/j.watres.2018.09.040_bib23 article-title: Carbon quantum dots and their applications publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00269E – volume: 1 start-page: 4676 year: 2013 ident: 10.1016/j.watres.2018.09.040_bib41 article-title: Fabrication of highly fluorescent graphene quantum dots using L-glutamic acid for in vitro/in vivo imaging and sensing publication-title: J. Mater. Chem. C. doi: 10.1039/c3tc30820k – volume: 6 start-page: 20142 year: 2016 ident: 10.1016/j.watres.2018.09.040_bib45 article-title: Graphene oxide quantum dots covalently functionalized PVDF membrane with significantly-enhanced bactericidal and antibiofouling performances publication-title: Sci. Rep. doi: 10.1038/srep20142 – volume: 21 start-page: 5563 year: 2009 ident: 10.1016/j.watres.2018.09.040_bib32 article-title: Simple aqueous solution route to luminescent carbogenic dots from carbohydrates publication-title: Chem. Mater. doi: 10.1021/cm901593y – volume: 22 start-page: 24230 year: 2012 ident: 10.1016/j.watres.2018.09.040_bib20 article-title: Carbon nanodots: synthesis, properties and applications publication-title: J. Mater. Chem. doi: 10.1039/c2jm34690g – volume: 16 start-page: 9 year: 2017 ident: 10.1016/j.watres.2018.09.040_bib48 article-title: Graphene oxide membranes for nanofiltration publication-title: Curr. Opin. Chem. Eng. doi: 10.1016/j.coche.2017.03.002 – volume: 38 start-page: 20 year: 2014 ident: 10.1016/j.watres.2018.09.040_bib29 article-title: One-pot green synthesis of carbon dots by using Saccharum officinarum juice for fluorescent imaging of bacteria (Escherichia coli) and yeast (Saccharomyces cerevisiae) cells publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2014.01.038 – volume: 2 start-page: 6921 year: 2014 ident: 10.1016/j.watres.2018.09.040_bib40 article-title: Carbon quantum dots: synthesis, properties and applications publication-title: J. Mater. Chem. C. doi: 10.1039/C4TC00988F – volume: 553 start-page: 17 year: 2018 ident: 10.1016/j.watres.2018.09.040_bib2 article-title: Thin film nanocomposite membranes incorporated with graphene quantum dots for high flux and antifouling property publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2018.02.010 – volume: 22 start-page: 5895 year: 2010 ident: 10.1016/j.watres.2018.09.040_bib8 article-title: Extraction of electrochemiluminescent oxidized carbon quantum dots from activated carbon publication-title: Chem. Mater. doi: 10.1021/cm1018844 – volume: 5 start-page: 3717 year: 2017 ident: 10.1016/j.watres.2018.09.040_bib39 article-title: Recent progress in carbon quantum dots: synthesis, properties and applications in photocatalysis publication-title: J. Mater. Chem. A. doi: 10.1039/C6TA08660H – volume: 6 start-page: 117 year: 2017 ident: 10.1016/j.watres.2018.09.040_bib33 article-title: Synthesis and properties of photoluminescent carbon quantum dot/polyacrylonitrile composite nanofibers publication-title: Smart Sci doi: 10.1080/23080477.2017.1399318 – volume: 121 start-page: 4668 year: 2009 ident: 10.1016/j.watres.2018.09.040_bib25 article-title: An aqueous route to multicolor photoluminescent carbon dots using silica spheres as carriers publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.200900652 – volume: 252 start-page: 89 year: 2005 ident: 10.1016/j.watres.2018.09.040_bib18 article-title: Fundamental understanding of nano-sized zeolite distribution in the formation of the mixed matrix single- and dual-layer asymmetric hollow fiber membranes publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2004.12.004 – volume: 5 start-page: 3289 year: 2013 ident: 10.1016/j.watres.2018.09.040_bib21 article-title: Near-infrared light controlled photocatalytic activity of carbon quantum dots for highly selective oxidation reaction publication-title: Nanoscale doi: 10.1039/c3nr00092c – volume: 48 start-page: 3686 year: 2012 ident: 10.1016/j.watres.2018.09.040_bib35 article-title: Graphene quantum dots: emerging nanolights for bioimaging, sensors, catalysis and photovoltaic devices publication-title: Chem. Commun. doi: 10.1039/c2cc00110a – volume: 25 start-page: 4929 year: 2015 ident: 10.1016/j.watres.2018.09.040_bib22 article-title: Carbon and graphene quantum dots for optoelectronic and energy devices: a review publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201501250 – volume: 5 start-page: 4428 year: 2015 ident: 10.1016/j.watres.2018.09.040_bib27 article-title: A facile microwave-hydrothermal approach towards highly photoluminescent carbon dots from goose feathers publication-title: RSC Adv. doi: 10.1039/C4RA12077A – volume: 5 start-page: 6776 year: 2017 ident: 10.1016/j.watres.2018.09.040_bib53 article-title: Graphene-based antimicrobial polymeric membranes: a review publication-title: J. Mater. Chem. A. doi: 10.1039/C7TA00009J – volume: 5 start-page: 40393 year: 2015 ident: 10.1016/j.watres.2018.09.040_bib47 article-title: Water-soluble, nitrogen-doped fluorescent carbon dots for highly sensitive and selective detection of Hg2+ in aqueous solution publication-title: RSC Adv. doi: 10.1039/C5RA04653J – volume: 556 start-page: 293 year: 2018 ident: 10.1016/j.watres.2018.09.040_bib6 article-title: Cellulose-graphene quantum dot composite membranes using ionic liquid publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2018.04.009 – volume: 1 year: 2013 ident: 10.1016/j.watres.2018.09.040_bib7 article-title: Novel fluorescent carbonic nanomaterials for sensing and imaging publication-title: Methods Appl. Fluoresc. – volume: 51 start-page: 14016 year: 2017 ident: 10.1016/j.watres.2018.09.040_bib49 article-title: Carbon quantum dots grafted antifouling membranes for osmotic power generation via pressure-retarded osmosis process publication-title: Envion. Sci. Technol. doi: 10.1021/acs.est.7b04190 – volume: 8 start-page: 20 year: 2015 ident: 10.1016/j.watres.2018.09.040_bib14 article-title: Antibacterial property of graphene quantum dots (both source material and bacterial shape matter) publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b10132 – volume: 48 start-page: 8835 year: 2012 ident: 10.1016/j.watres.2018.09.040_bib34 article-title: Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents publication-title: Chem. Commun. doi: 10.1039/c2cc33796g – volume: 49 start-page: 519 year: 2013 ident: 10.1016/j.watres.2018.09.040_bib50 article-title: Highly-efficient peroxidase-like catalytic activity of graphene dots for biosensing publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2013.05.038 – volume: 128 start-page: 7756 year: 2006 ident: 10.1016/j.watres.2018.09.040_bib37 article-title: Quantum-sized carbon dots for bright and colorful photoluminescence publication-title: J. Am. Chem. Soc. doi: 10.1021/ja062677d – volume: 51 start-page: 9297 year: 2012 ident: 10.1016/j.watres.2018.09.040_bib38 article-title: Amphiphilic egg-derived carbon dots: rapid plasma fabrication, pyrolysis process, and multicolor printing patterns publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201204381 – volume: 17 start-page: 5605 year: 2001 ident: 10.1016/j.watres.2018.09.040_bib31 article-title: A survey of structure-property relationships of surfaces that resist the adsorption of protein publication-title: Langmuir doi: 10.1021/la010384m – volume: 4 start-page: 455 year: 2008 ident: 10.1016/j.watres.2018.09.040_bib3 article-title: Surface functionalized carbogenic quantum dots publication-title: Small doi: 10.1002/smll.200700578 – volume: 2 start-page: 12156 year: 2012 ident: 10.1016/j.watres.2018.09.040_bib5 article-title: Fluorescent carbon dots obtained from chitosan gel publication-title: RSC Adv. doi: 10.1039/c2ra21705h – volume: 129 start-page: 744 year: 2007 ident: 10.1016/j.watres.2018.09.040_bib51 article-title: An electrochemical to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs) publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0669070 – volume: 49 start-page: 6726 year: 2010 ident: 10.1016/j.watres.2018.09.040_bib1 article-title: Luminescent carbon nanodots: emergent nanolights publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200906623 – volume: 49 start-page: 605 year: 2010 ident: 10.1016/j.watres.2018.09.040_bib19 article-title: One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties publication-title: Carbon doi: 10.1016/j.carbon.2010.10.004 – volume: 66 start-page: 222 year: 2012 ident: 10.1016/j.watres.2018.09.040_bib52 article-title: Facile synthesis of fluorescent carbon dots using watermelon peels as a carbon source publication-title: Mater. Lett. doi: 10.1016/j.matlet.2011.08.081 – volume: 2 start-page: 915 year: 2016 ident: 10.1016/j.watres.2018.09.040_bib17 article-title: A review of recent developments in graphene-enabled membranes for water treatment publication-title: Environ. Sci.: Water Res. Technol. – volume: 4 start-page: 16896 year: 2016 ident: 10.1016/j.watres.2018.09.040_bib36 article-title: Pressure-assisted preparation of graphene oxide quantum dot-incorporated reverse osmosis membranes: antifouling and chlorine resistance potentials publication-title: J. Mater. Chem. A. doi: 10.1039/C6TA06636D – volume: 5 start-page: 11665 year: 2013 ident: 10.1016/j.watres.2018.09.040_bib13 article-title: Modulation and effects of surface groups on photoluminescence and photocatalytic activity of carbon dots publication-title: Nanoscale doi: 10.1039/c3nr03893a – volume: 551 start-page: 94 year: 2018 ident: 10.1016/j.watres.2018.09.040_bib10 article-title: Novel thin film composite hollow fiber membranes incorporated with carbon quantum dots for osmotic power generation publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2018.01.034 – volume: 1 start-page: 192 year: 2017 ident: 10.1016/j.watres.2018.09.040_bib4 article-title: Graphene quantum dots in biomedical applications: recent advances and future challenges publication-title: Front. Lab Med. doi: 10.1016/j.flm.2017.12.006 – volume: 7 start-page: 6858 year: 2013 ident: 10.1016/j.watres.2018.09.040_bib30 article-title: In vivo biodistribution and toxicology of carboxylated graphene quantum dots publication-title: ACS Nano doi: 10.1021/nn402043c – volume: 126 start-page: 12736 year: 2004 ident: 10.1016/j.watres.2018.09.040_bib42 article-title: Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments publication-title: J. Am. Chem. Soc. doi: 10.1021/ja040082h – volume: 126 start-page: 222 year: 2018 ident: 10.1016/j.watres.2018.09.040_bib16 article-title: Graphene quantum dots modified polyvinylidenefluride (PVDF) nanofibrous membranes with enhanced performance for air gap membrane distillation publication-title: Chem. Eng. Process: Proc. Inten. doi: 10.1016/j.cep.2018.03.010 – volume: 46 start-page: 6111 year: 2017 ident: 10.1016/j.watres.2018.09.040_bib15 article-title: Carbon dots as photosensitisers for solar-driven catalysis publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00235A – volume: 48 start-page: 10177 year: 2012 ident: 10.1016/j.watres.2018.09.040_bib24 article-title: Creating high yield water soluble luminescent graphene quantum dots via exfoliating and disintegrating carbon nanotubes and graphite flakes publication-title: Chem. Commun. doi: 10.1039/c2cc35559k – volume: 549 start-page: 1 year: 2018 ident: 10.1016/j.watres.2018.09.040_bib44 article-title: Carbon dots-incorporated composite membrane towards enhanced organic solvent nanofiltration performance publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2017.11.051 |
SSID | ssj0002239 |
Score | 2.6480033 |
SecondaryResourceType | review_article |
Snippet | Carbon quantum dots (CQDs), which are a fascinating class of nanostructured carbons, have recently attracted extensive attention in the field of membrane... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 43 |
SubjectTerms | Antifouling antifouling activities biocompatibility Carbon quantum dots distillation drinking water Graphene oxide quantum dots hydrophilicity Membrane separation moieties nanofiltration reverse osmosis solvents ultrafiltration water treatment |
Title | Applications of carbon quantum dots (CQDs) in membrane technologies: A review |
URI | https://dx.doi.org/10.1016/j.watres.2018.09.040 https://www.ncbi.nlm.nih.gov/pubmed/30296608 https://www.proquest.com/docview/2117396228 https://www.proquest.com/docview/2189533320 |
Volume | 147 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSxwxEA-iL_VBqq316gcp-GAftuZ7N74dp3JtUShU8C1kswmc9Pas3uFb__bO7Icf0Cr4uMskhN9M5iOZmRCyn5JIwbM8MxWeVlWszKxkVaaLiuVRlTxVWI18dm7GF-rbpb5cIqO-FgbTKjvd3-r0Rlt3fw47NA-vJxOs8QXjJ7UCoQS7p7Hjp1I5SvmXPw9pHmD-bH_LjNR9-VyT43XnsSADE7yKptspHoH82zz9z_1szNDpW7LW-Y902C5xnSzFeoOsPuoq-I6cDR9dStNZosHflLOa_l4AiosphTj0lh6MfhzffqaTmk7jFCLmOtJ5f8oOwfMRHdK2quU9uTg9-TkaZ92rCVlQhs-zKmFc5XXiQSVlTQy5LaPPWcSyUhPAg_JcsMIG470R1gvYw2XQBbDT8hDlJlmuZ3XcIrQqpdQ2aZGSUVpDsFx4nkfrKw3eLhMDInuwXOhaiuPLFr9cnzt25VqIHULsmHUA8YBk96Ou25YaL9DnPR_cE9FwoPVfGPmpZ5uDXYNXIQDnbAFEnOfSGiGK52gKzL2VAub50PL8fr2SCWxrWnx89dq2yRv8wswYrnfI8vxmEXfBv5mXe40A75GV4dfv4_O_zEr5jQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEB5S59DmEPpu0pcKPbSHJXqstKvejNvgNLGhkEBuQquVwKVe52GTv58Z765JoW2g111JiG-keUjzjQA-piRT8LzITE2nVTWvMqt4nemy5kXMK5FqYiNPpmZ8ln8_1-dbMOq5MJRW2en-VqevtXX35aBD8-BiNiOOLxo_pXNclGj3tHoA21SdSg9ge3h0PJ5uFDJaQNtfNFOHnkG3TvO68cTJoByvcl3wlE5B_myh_uaBri3R4WPY7VxINmxn-QS2YvMUdu4UFnwGk-Gde2m2SCz4q2rRsMsVArmaMwxFr9mn0Y-v15_ZrGHzOMeguYls2R-0Y_z8hQ1ZS2x5DmeH305H46x7OCELuRHLrE4UWnmdRMhTbk0Mha2iL3gkZqkJ6ER5IXlpg_HeSOslbuMq6BIlakWI6gUMmkUTXwGrK6W0TVqmZHKtMV4uvSii9bVGh5fLPVA9WC50VcXpcYtfrk8f--laiB1B7Lh1CPEeZJteF21VjXvaF70c3G-rw6Hiv6fnh15sDjcO3YYgnIsVNhKiUNZIWf6rTUnpt0riOC9bmW_mq7ikyqbl_n_P7T08HJ9OTtzJ0fT4NTyiP5QoI_QbGCyvVvEtujvL6l23nG8BWhD8Pg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Applications+of+carbon+quantum+dots+%28CQDs%29+in+membrane+technologies%3A+A+review&rft.jtitle=Water+research+%28Oxford%29&rft.au=Zhao%2C+Die+Ling&rft.au=Chung%2C+Tai-Shung&rft.date=2018-12-15&rft.issn=1879-2448&rft.eissn=1879-2448&rft.volume=147&rft.spage=43&rft_id=info:doi/10.1016%2Fj.watres.2018.09.040&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1354&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1354&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1354&client=summon |