Reconstruction of Extracellular Respiratory Pathways for Iron(III) Reduction in Shewanella Oneidensis Strain MR-1
Shewanella oneidensis strain MR-1 is a facultative anaerobic bacterium capable of respiring a multitude of electron acceptors, many of which require the Mtr respiratory pathway. The core Mtr respiratory pathway includes a periplasmic c-type cytochrome (MtrA), an integral outer-membrane β-barrel prot...
Saved in:
Published in | Frontiers in microbiology Vol. 3; p. 56 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Research Foundation
01.01.2012
Frontiers Media S.A |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Shewanella oneidensis strain MR-1 is a facultative anaerobic bacterium capable of respiring a multitude of electron acceptors, many of which require the Mtr respiratory pathway. The core Mtr respiratory pathway includes a periplasmic c-type cytochrome (MtrA), an integral outer-membrane β-barrel protein (MtrB), and an outer-membrane-anchored c-type cytochrome (MtrC). Together, these components facilitate transfer of electrons from the c-type cytochrome CymA in the cytoplasmic membrane to electron acceptors at and beyond the outer-membrane. The genes encoding these core proteins have paralogs in the S. oneidensis genome (mtrB and mtrA each have four while mtrC has three) and some of the paralogs of mtrC and mtrA are able to form functional Mtr complexes. We demonstrate that of the additional three mtrB paralogs found in the S. oneidensis genome, only MtrE can replace MtrB to form a functional respiratory pathway to soluble iron(III) citrate. We also evaluate which mtrC/mtrA paralog pairs (a total of 12 combinations) are able to form functional complexes with endogenous levels of mtrB paralog expression. Finally, we reconstruct all possible functional Mtr complexes and test them in a S. oneidensis mutant strain where all paralogs have been eliminated from the genome. We find that each combination tested with the exception of MtrA/MtrE/OmcA is able to reduce iron(III) citrate at a level significantly above background. The results presented here have implications toward the evolution of anaerobic extracellular respiration in Shewanella and for future studies looking to increase the rates of substrate reduction for water treatment, bioremediation, or electricity production. |
---|---|
AbstractList | Shewanella oneidensis strain MR-1 is a facultative anaerobic bacterium capable of respiring a multitude of electron acceptors, many of which require the Mtr respiratory pathway. The core Mtr respiratory pathway includes a periplasmic c-type cytochrome (MtrA), an integral outer membrane β-barrel protein (MtrB) and an outer membrane-anchored c-type cytochrome (MtrC). Together, these components facilitate transfer of electrons from the c-type cytochrome CymA in the cytoplasmic membrane to electron acceptors at and beyond the outer membrane. The genes encoding these core proteins have paralogs in the S. oneidensis genome (mtrB and mtrA each have four while mtrC has three) and some of the paralogs of mtrC and mtrA are able to form functional Mtr complexes. We demonstrate that of the additional three mtrB paralogs found in the S. oneidensis genome, only MtrE can replace MtrB to form a functional respiratory pathway to soluble iron(III) citrate. We also evaluate which mtrC / mtrA paralog pairs (a total of 12 combinations) are able to form functional complexes with endogenous levels of mtrB paralog expression. Finally, we reconstruct all possible functional Mtr complexes and test them in a S. oneidensis mutant strain where all paralogs have been eliminated from the genome. We find that each combination tested with the exception of MtrA / MtrE / OmcA is able to reduce iron(III) citrate at a level significantly above background. The results presented here have implications towards the evolution of anaerobic extracellular respiration in Shewanella and for future studies looking to increase the rates of substrate reduction for water treatment, bioremediation, or electricity production. Shewanella oneidensis strain MR-1 is a facultative anaerobic bacterium capable of respiring a multitude of electron acceptors, many of which require the Mtr respiratory pathway. The core Mtr respiratory pathway includes a periplasmic c-type cytochrome (MtrA), an integral outer-membrane β-barrel protein (MtrB), and an outer-membrane-anchored c-type cytochrome (MtrC). Together, these components facilitate transfer of electrons from the c-type cytochrome CymA in the cytoplasmic membrane to electron acceptors at and beyond the outer-membrane. The genes encoding these core proteins have paralogs in the S. oneidensis genome (mtrB and mtrA each have four while mtrC has three) and some of the paralogs of mtrC and mtrA are able to form functional Mtr complexes. We demonstrate that of the additional three mtrB paralogs found in the S. oneidensis genome, only MtrE can replace MtrB to form a functional respiratory pathway to soluble iron(III) citrate. We also evaluate which mtrC/mtrA paralog pairs (a total of 12 combinations) are able to form functional complexes with endogenous levels of mtrB paralog expression. Finally, we reconstruct all possible functional Mtr complexes and test them in a S. oneidensis mutant strain where all paralogs have been eliminated from the genome. We find that each combination tested with the exception of MtrA/MtrE/OmcA is able to reduce iron(III) citrate at a level significantly above background. The results presented here have implications toward the evolution of anaerobic extracellular respiration in Shewanella and for future studies looking to increase the rates of substrate reduction for water treatment, bioremediation, or electricity production.Shewanella oneidensis strain MR-1 is a facultative anaerobic bacterium capable of respiring a multitude of electron acceptors, many of which require the Mtr respiratory pathway. The core Mtr respiratory pathway includes a periplasmic c-type cytochrome (MtrA), an integral outer-membrane β-barrel protein (MtrB), and an outer-membrane-anchored c-type cytochrome (MtrC). Together, these components facilitate transfer of electrons from the c-type cytochrome CymA in the cytoplasmic membrane to electron acceptors at and beyond the outer-membrane. The genes encoding these core proteins have paralogs in the S. oneidensis genome (mtrB and mtrA each have four while mtrC has three) and some of the paralogs of mtrC and mtrA are able to form functional Mtr complexes. We demonstrate that of the additional three mtrB paralogs found in the S. oneidensis genome, only MtrE can replace MtrB to form a functional respiratory pathway to soluble iron(III) citrate. We also evaluate which mtrC/mtrA paralog pairs (a total of 12 combinations) are able to form functional complexes with endogenous levels of mtrB paralog expression. Finally, we reconstruct all possible functional Mtr complexes and test them in a S. oneidensis mutant strain where all paralogs have been eliminated from the genome. We find that each combination tested with the exception of MtrA/MtrE/OmcA is able to reduce iron(III) citrate at a level significantly above background. The results presented here have implications toward the evolution of anaerobic extracellular respiration in Shewanella and for future studies looking to increase the rates of substrate reduction for water treatment, bioremediation, or electricity production. Shewanella oneidensis strain MR-1 is a facultative anaerobic bacterium capable of respiring a multitude of electron acceptors, many of which require the Mtr respiratory pathway. The core Mtr respiratory pathway includes a periplasmic c -type cytochrome (MtrA), an integral outer-membrane β-barrel protein (MtrB), and an outer-membrane-anchored c -type cytochrome (MtrC). Together, these components facilitate transfer of electrons from the c -type cytochrome CymA in the cytoplasmic membrane to electron acceptors at and beyond the outer-membrane. The genes encoding these core proteins have paralogs in the S. oneidensis genome ( mtrB and mtrA each have four while mtrC has three) and some of the paralogs of mtrC and mtrA are able to form functional Mtr complexes. We demonstrate that of the additional three mtrB paralogs found in the S. oneidensis genome, only MtrE can replace MtrB to form a functional respiratory pathway to soluble iron(III) citrate. We also evaluate which mtrC / mtrA paralog pairs (a total of 12 combinations) are able to form functional complexes with endogenous levels of mtrB paralog expression. Finally, we reconstruct all possible functional Mtr complexes and test them in a S. oneidensis mutant strain where all paralogs have been eliminated from the genome. We find that each combination tested with the exception of MtrA/MtrE/OmcA is able to reduce iron(III) citrate at a level significantly above background. The results presented here have implications toward the evolution of anaerobic extracellular respiration in Shewanella and for future studies looking to increase the rates of substrate reduction for water treatment, bioremediation, or electricity production. Shewanella oneidensis strain MR-1 is a facultative anaerobic bacterium capable of respiring a multitude of electron acceptors, many of which require the Mtr respiratory pathway. The core Mtr respiratory pathway includes a periplasmic c-type cytochrome (MtrA), an integral outer-membrane β-barrel protein (MtrB), and an outer-membrane-anchored c-type cytochrome (MtrC). Together, these components facilitate transfer of electrons from the c-type cytochrome CymA in the cytoplasmic membrane to electron acceptors at and beyond the outer-membrane. The genes encoding these core proteins have paralogs in the S. oneidensis genome (mtrB and mtrA each have four while mtrC has three) and some of the paralogs of mtrC and mtrA are able to form functional Mtr complexes. We demonstrate that of the additional three mtrB paralogs found in the S. oneidensis genome, only MtrE can replace MtrB to form a functional respiratory pathway to soluble iron(III) citrate. We also evaluate which mtrC/mtrA paralog pairs (a total of 12 combinations) are able to form functional complexes with endogenous levels of mtrB paralog expression. Finally, we reconstruct all possible functional Mtr complexes and test them in a S. oneidensis mutant strain where all paralogs have been eliminated from the genome. We find that each combination tested with the exception of MtrA/MtrE/OmcA is able to reduce iron(III) citrate at a level significantly above background. The results presented here have implications toward the evolution of anaerobic extracellular respiration in Shewanella and for future studies looking to increase the rates of substrate reduction for water treatment, bioremediation, or electricity production. |
Author | Gralnick, Jeffrey A. Coursolle, Dan |
AuthorAffiliation | 1 Department of Microbiology, BioTechnology Institute, University of Minnesota Twin Cities St. Paul, MN, USA |
AuthorAffiliation_xml | – name: 1 Department of Microbiology, BioTechnology Institute, University of Minnesota Twin Cities St. Paul, MN, USA |
Author_xml | – sequence: 1 givenname: Dan surname: Coursolle fullname: Coursolle, Dan – sequence: 2 givenname: Jeffrey A. surname: Gralnick fullname: Gralnick, Jeffrey A. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22363330$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kktv3CAUhVGVqnnuu6q8a7PwFIMBe1MpitLWUqpEk0bKDl0wzhB5YAJ20_n3xTOTKqlUFoDgnu-KwzlEe847g9D7As8orerP3dJqNSO4IDOMMeNv0EHBeZlTTO72Xuz30UmMD6kEl5ik-R3aJ4RySik-QI9zo72LQxj1YL3LfJdd_B4CaNP3Yw8hm5u4sgEGH9bZNQyLJ1jHrPMha4J3n5qmOU0l7U5tXXazME_gkhqyK2dsa1y0MbtJyHT5Y54Xx-htB300J7v1CN1-vfh5_j2_vPrWnJ9d5rrkxZC3ShSK11VZdEYRQzgo0jJuSl2nIUAILDQQjQXjBFjVKiAdq5k2TKiWlPQINVtu6-FBroJdQlhLD1ZuDny4lxAGq3sjsUoKJkrgjJbY8KqjHSaABaY1ZqpOrC9b1mpUS9Nq49J7-lfQ1zfOLuS9_yUpqUhd0gT4uAME_ziaOMiljZPHySo_RlkTygQjfGr14WWrvz2evywV8G2BDj7GYDqp7QCT_ZPHvSywnOIhN_GQUzzkJh5JiP8RPrP_K_kDbaq-8Q |
CitedBy_id | crossref_primary_10_1128_AEM_03556_12 crossref_primary_10_1021_ac400486u crossref_primary_10_1021_jacs_8b05104 crossref_primary_10_1002_anie_201800294 crossref_primary_10_1007_s41918_018_0020_1 crossref_primary_10_1007_s00253_014_5973_3 crossref_primary_10_1016_j_bbabio_2012_10_001 crossref_primary_10_1038_s41467_018_04707_6 crossref_primary_10_1021_acssynbio_6b00349 crossref_primary_10_1111_gbi_12067 crossref_primary_10_1038_s41467_024_45759_1 crossref_primary_10_1073_pnas_2119964119 crossref_primary_10_3389_fmicb_2016_00530 crossref_primary_10_1021_acssynbio_2c00024 crossref_primary_10_1126_sciadv_aat5664 crossref_primary_10_1002_adfm_202109366 crossref_primary_10_1038_ncomms3120 crossref_primary_10_1128_AEM_01262_17 crossref_primary_10_1002_smll_201703145 crossref_primary_10_1021_acssynbio_8b00498 crossref_primary_10_1021_acssynbio_8b00218 crossref_primary_10_1021_sb500331x crossref_primary_10_1016_j_biteb_2023_101355 crossref_primary_10_1002_mbo3_224 crossref_primary_10_3389_fmicb_2019_00938 crossref_primary_10_7554_eLife_48054 crossref_primary_10_1002_pmic_201500538 crossref_primary_10_1111_1751_7915_14171 crossref_primary_10_3389_fmicb_2014_00318 crossref_primary_10_3389_fmicb_2022_852942 crossref_primary_10_4014_jmb_2212_12024 crossref_primary_10_1016_j_ibiod_2022_105439 crossref_primary_10_1016_j_biortech_2018_02_073 crossref_primary_10_1146_annurev_micro_032221_023725 crossref_primary_10_1073_pnas_1818003116 crossref_primary_10_3390_biology11050632 crossref_primary_10_1021_acsbiomaterials_9b01773 crossref_primary_10_3389_fmicb_2016_00458 crossref_primary_10_1002_jctb_5658 crossref_primary_10_1042_BST20120106 crossref_primary_10_1371_journal_pone_0258380 crossref_primary_10_31083_j_fbl2706174 crossref_primary_10_1134_S0006297914130094 crossref_primary_10_1016_j_biortech_2014_09_079 crossref_primary_10_1073_pnas_2000802117 crossref_primary_10_3389_fmicb_2015_01075 crossref_primary_10_1111_1758_2229_12173 crossref_primary_10_1039_C4MB00386A crossref_primary_10_1128_AEM_02947_14 crossref_primary_10_1128_JB_00347_18 crossref_primary_10_1042_BJ20121467 crossref_primary_10_1039_D3NA90043F crossref_primary_10_1016_j_seta_2021_101332 crossref_primary_10_1038_s41579_018_0076_2 crossref_primary_10_1016_j_bioelechem_2018_07_015 crossref_primary_10_3389_fenrg_2019_00087 crossref_primary_10_1002_celc_201402194 crossref_primary_10_1128_aem_01387_23 crossref_primary_10_1002_celc_201500505 crossref_primary_10_1016_j_abb_2023_109665 crossref_primary_10_1016_j_procbio_2012_07_032 crossref_primary_10_1038_s41589_024_01628_y crossref_primary_10_3389_fmicb_2023_1150091 crossref_primary_10_1002_advs_202000641 crossref_primary_10_1016_j_scitotenv_2020_143076 crossref_primary_10_1002_anie_202402318 crossref_primary_10_1111_mmi_14647 crossref_primary_10_1002_ange_201800294 crossref_primary_10_3389_fmicb_2020_00330 crossref_primary_10_1073_pnas_1718810115 crossref_primary_10_1111_gbi_12457 crossref_primary_10_1016_j_biortech_2013_04_062 crossref_primary_10_1002_ange_202402318 crossref_primary_10_1128_jb_00469_22 crossref_primary_10_1016_j_bioelechem_2020_107644 crossref_primary_10_1074_jbc_RA118_001850 crossref_primary_10_1016_j_copbio_2019_01_018 crossref_primary_10_1021_acssynbio_9b00517 crossref_primary_10_1128_mSystems_00165_16 crossref_primary_10_1002_celc_202200965 crossref_primary_10_1128_spectrum_04081_23 crossref_primary_10_1186_s40168_015_0077_6 crossref_primary_10_3389_fenrg_2019_00116 crossref_primary_10_1038_s41598_018_33521_9 crossref_primary_10_1039_D2NA00691J crossref_primary_10_1042_BST20120129 crossref_primary_10_1128_AEM_01253_20 crossref_primary_10_1128_AEM_02134_18 |
ContentType | Journal Article |
Copyright | Copyright © 2012 Coursolle and Gralnick. 2012 |
Copyright_xml | – notice: Copyright © 2012 Coursolle and Gralnick. 2012 |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3389/fmicb.2012.00056 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1664-302X |
ExternalDocumentID | oai_doaj_org_article_0bbd2574a65340e68f3f02a0703905b9 PMC3282943 22363330 10_3389_fmicb_2012_00056 |
Genre | Journal Article |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK ECGQY GROUPED_DOAJ GX1 HYE IPNFZ KQ8 M48 M~E O5R O5S OK1 PGMZT RIG RNS RPM NPM 7X8 5PM |
ID | FETCH-LOGICAL-c461t-db71b69841feb2e26ab2d56e4c99997a7707ca2c07562a58dba2f595ce57bd243 |
IEDL.DBID | M48 |
ISSN | 1664-302X |
IngestDate | Wed Aug 27 01:28:55 EDT 2025 Thu Aug 21 18:12:10 EDT 2025 Fri Jul 11 00:08:53 EDT 2025 Thu Apr 03 07:02:49 EDT 2025 Thu Apr 24 23:05:32 EDT 2025 Tue Jul 01 03:54:40 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | anaerobic Mtr-pathway extracellular respiration iron respiration |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution Non Commercial License, which permits non-commercial use, distribution, and reproduction in other forums, provided the original authors and source are credited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c461t-db71b69841feb2e26ab2d56e4c99997a7707ca2c07562a58dba2f595ce57bd243 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 This article was submitted to Frontiers in Microbiological Chemistry, a specialty of Frontiers in Microbiology. Reviewed by: Chad Saltikov, University of California Santa Cruz, USA; Tom Clarke, University of East Anglia, UK Edited by: David Emerson, Bigelow Laboratory for Ocean Sciences, USA |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fmicb.2012.00056 |
PMID | 22363330 |
PQID | 923575269 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0bbd2574a65340e68f3f02a0703905b9 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3282943 proquest_miscellaneous_923575269 pubmed_primary_22363330 crossref_citationtrail_10_3389_fmicb_2012_00056 crossref_primary_10_3389_fmicb_2012_00056 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-01-01 |
PublicationDateYYYYMMDD | 2012-01-01 |
PublicationDate_xml | – month: 01 year: 2012 text: 2012-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in microbiology |
PublicationTitleAlternate | Front Microbiol |
PublicationYear | 2012 |
Publisher | Frontiers Research Foundation Frontiers Media S.A |
Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers Media S.A |
References | 9023196 - J Bacteriol. 1997 Feb;179(4):1143-52 7826009 - Annu Rev Microbiol. 1994;48:311-43 16537430 - Proc Natl Acad Sci U S A. 2006 Mar 21;103(12):4669-74 16704344 - Annu Rev Microbiol. 2006;60:149-66 17061851 - J Am Chem Soc. 2006 Nov 1;128(43):13978-9 18065612 - Appl Environ Microbiol. 2008 Feb;74(3):615-23 18836009 - Appl Environ Microbiol. 2008 Nov;74(22):6880-6 19661057 - J Biol Chem. 2009 Oct 16;284(42):28865-73 12899636 - Biochemistry. 2003 Aug 12;42(31):9491-7 17939701 - J Phys Chem B. 2007 Nov 8;111(44):12857-64 17815852 - Science. 1988 Jun 3;240(4857):1319-21 18791025 - Appl Environ Microbiol. 2008 Nov;74(21):6746-55 21838277 - J Phys Chem B. 2011 Sep 29;115(38):11208-14 18604222 - Nat Rev Microbiol. 2008 Aug;6(8):592-603 18394146 - Mol Microbiol. 2008 May;68(3):706-19 12939408 - Proc Natl Acad Sci U S A. 2003 Sep 16;100(19):10983-8 8529885 - Gene. 1995 Dec 1;166(1):175-6 18575901 - J Biol Inorg Chem. 2008 Aug;13(6):849-54 19000760 - Curr Opin Biotechnol. 2008 Dec;19(6):564-71 21606337 - Proc Natl Acad Sci U S A. 2011 Jun 7;108(23):9384-9 14696317 - Adv Appl Microbiol. 2003;53:85-128 1324728 - Biochim Biophys Acta. 1992 Aug 28;1102(1):1-18 20018742 - Proc Natl Acad Sci U S A. 2009 Dec 29;106(52):22169-74 8534676 - Biochim Biophys Acta. 1995 Dec 12;1232(3):97-173 17581116 - Mol Microbiol. 2007 Jul;65(1):12-20 11844754 - J Bacteriol. 2002 Mar;184(5):1262-9 822747 - Anal Biochem. 1976 Sep;75(1):168-76 3062312 - Mol Microbiol. 1988 Nov;2(6):785-95 1444716 - Arch Microbiol. 1992;158(1):68-73 11450112 - Adv Microb Physiol. 2001;45:51-112 9829939 - J Bacteriol. 1998 Dec;180(23):6292-7 18412550 - Environ Microbiol. 2008 Jul;10(7):1861-76 6309742 - J Bacteriol. 1983 Sep;155(3):1147-55 12732647 - J Biol Chem. 2003 Jul 25;278(30):27758-65 20370837 - FEMS Microbiol Lett. 2010 May;306(2):144-51 19897659 - J Bacteriol. 2010 Jan;192(2):467-74 19542342 - Appl Environ Microbiol. 2009 Aug;75(16):5218-26 10319494 - Int J Syst Bacteriol. 1999 Apr;49 Pt 2:705-24 20598084 - Mol Microbiol. 2010 Aug;77(4):995-1008 11881834 - OMICS. 2002;6(1):39-60 20400539 - J Bacteriol. 2010 Jul;192(13):3345-51 17581115 - Mol Microbiol. 2007 Jul;65(1):1-11 21199252 - Environ Microbiol. 2011 Jan;13(1):108-15 18316736 - Proc Natl Acad Sci U S A. 2008 Mar 11;105(10):3968-73 22033566 - Appl Microbiol Biotechnol. 2011 Dec;92(6):1275-86 |
References_xml | – reference: 16704344 - Annu Rev Microbiol. 2006;60:149-66 – reference: 11450112 - Adv Microb Physiol. 2001;45:51-112 – reference: 18575901 - J Biol Inorg Chem. 2008 Aug;13(6):849-54 – reference: 19542342 - Appl Environ Microbiol. 2009 Aug;75(16):5218-26 – reference: 21838277 - J Phys Chem B. 2011 Sep 29;115(38):11208-14 – reference: 7826009 - Annu Rev Microbiol. 1994;48:311-43 – reference: 17581116 - Mol Microbiol. 2007 Jul;65(1):12-20 – reference: 20598084 - Mol Microbiol. 2010 Aug;77(4):995-1008 – reference: 18412550 - Environ Microbiol. 2008 Jul;10(7):1861-76 – reference: 1444716 - Arch Microbiol. 1992;158(1):68-73 – reference: 20370837 - FEMS Microbiol Lett. 2010 May;306(2):144-51 – reference: 1324728 - Biochim Biophys Acta. 1992 Aug 28;1102(1):1-18 – reference: 9023196 - J Bacteriol. 1997 Feb;179(4):1143-52 – reference: 19661057 - J Biol Chem. 2009 Oct 16;284(42):28865-73 – reference: 12899636 - Biochemistry. 2003 Aug 12;42(31):9491-7 – reference: 18604222 - Nat Rev Microbiol. 2008 Aug;6(8):592-603 – reference: 11844754 - J Bacteriol. 2002 Mar;184(5):1262-9 – reference: 8534676 - Biochim Biophys Acta. 1995 Dec 12;1232(3):97-173 – reference: 9829939 - J Bacteriol. 1998 Dec;180(23):6292-7 – reference: 17581115 - Mol Microbiol. 2007 Jul;65(1):1-11 – reference: 17061851 - J Am Chem Soc. 2006 Nov 1;128(43):13978-9 – reference: 14696317 - Adv Appl Microbiol. 2003;53:85-128 – reference: 21199252 - Environ Microbiol. 2011 Jan;13(1):108-15 – reference: 18065612 - Appl Environ Microbiol. 2008 Feb;74(3):615-23 – reference: 22033566 - Appl Microbiol Biotechnol. 2011 Dec;92(6):1275-86 – reference: 20018742 - Proc Natl Acad Sci U S A. 2009 Dec 29;106(52):22169-74 – reference: 8529885 - Gene. 1995 Dec 1;166(1):175-6 – reference: 18394146 - Mol Microbiol. 2008 May;68(3):706-19 – reference: 822747 - Anal Biochem. 1976 Sep;75(1):168-76 – reference: 21606337 - Proc Natl Acad Sci U S A. 2011 Jun 7;108(23):9384-9 – reference: 12939408 - Proc Natl Acad Sci U S A. 2003 Sep 16;100(19):10983-8 – reference: 10319494 - Int J Syst Bacteriol. 1999 Apr;49 Pt 2:705-24 – reference: 19000760 - Curr Opin Biotechnol. 2008 Dec;19(6):564-71 – reference: 12732647 - J Biol Chem. 2003 Jul 25;278(30):27758-65 – reference: 17939701 - J Phys Chem B. 2007 Nov 8;111(44):12857-64 – reference: 17815852 - Science. 1988 Jun 3;240(4857):1319-21 – reference: 18316736 - Proc Natl Acad Sci U S A. 2008 Mar 11;105(10):3968-73 – reference: 19897659 - J Bacteriol. 2010 Jan;192(2):467-74 – reference: 20400539 - J Bacteriol. 2010 Jul;192(13):3345-51 – reference: 18836009 - Appl Environ Microbiol. 2008 Nov;74(22):6880-6 – reference: 18791025 - Appl Environ Microbiol. 2008 Nov;74(21):6746-55 – reference: 6309742 - J Bacteriol. 1983 Sep;155(3):1147-55 – reference: 16537430 - Proc Natl Acad Sci U S A. 2006 Mar 21;103(12):4669-74 – reference: 3062312 - Mol Microbiol. 1988 Nov;2(6):785-95 – reference: 11881834 - OMICS. 2002;6(1):39-60 |
SSID | ssj0000402000 |
Score | 2.299993 |
Snippet | Shewanella oneidensis strain MR-1 is a facultative anaerobic bacterium capable of respiring a multitude of electron acceptors, many of which require the Mtr... Shewanella oneidensis strain MR-1 is a facultative anaerobic bacterium capable of respiring a multitude of electron acceptors, many of which require the Mtr... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 56 |
SubjectTerms | anaerobic extracellular respiration iron respiration Microbiology Mtr pathway |
SummonAdditionalLinks | – databaseName: Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYhUMil9JG27gsdckgOJrL1so5tScgGUkoekJsYSTZZKN60Tknz7zsjO5vdUtpLLz7YsjXMN7JmpNE3jO0EqJLEeajESyxVqqB0RkEJODd0DkInLB0UPvlsji7U8aW-XCn1RTlhIz3wqLh9EUJCs1JgtFSiNU0nO1EDWaoTOuSje9jXSjCV_8EUFgkx7ktiFOYQpnkMlMqVCTqpXvXKPJTp-v_kY_6eKrky9xw-YY8np5F_GIV9yjba_hl7NJaRvHvOvlEM-cAEyxcdP_iJ36FFecoy5acP--n8C7p8t3A3cPRW-ez7ot-dzWZ72CRNb897fnbV3gLlvwBf9ESE1Q_zgQ-5nAQ_OS2rbXZxeHD-6aicSimUUZnqpkzBVsG4RlUdhtJtbSDUSZtWRXQQnQVrhY1QR3QgTA26SQHqTjsdW21R_0q-YJs99viKcemqJkUA0SSh2roJJmqMYXDwR9Mpmwq2f69YHyeecZLvq8d4g6DwGQpPUPgMRcH2lm9cjxwbf2n7kbBatiN27HwDbcZPNuP_ZTMF4_dIexxNhAYqdfFj8I7Yf6joesFejsAve0I_ykgpRcHsmkmsibL-pJ9fZcJuSdvVSr7-H7K_YVukjXEV6C3bRNtq36FfdBPe5yHwC4wvC44 priority: 102 providerName: Directory of Open Access Journals |
Title | Reconstruction of Extracellular Respiratory Pathways for Iron(III) Reduction in Shewanella Oneidensis Strain MR-1 |
URI | https://www.ncbi.nlm.nih.gov/pubmed/22363330 https://www.proquest.com/docview/923575269 https://pubmed.ncbi.nlm.nih.gov/PMC3282943 https://doaj.org/article/0bbd2574a65340e68f3f02a0703905b9 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELagCIkLojwDtPKBAz0E7PiVHBCiVUsXaQG1rLS3yI-kXalK6Kao3X_PjJPusmgFlxwSO3H82Z5v_PiGkDfO8iDADqVw8akM3KaFlja1YBvqwrqaGTwoPP6qjyfyy1RNV8ejhwrsNrp2GE9qMr94d3O5-Agd_gN6nGBvAYGZd7hLK2pvKn2X3AO7ZDCewXgg-3FcRlcpnknhWuNyQDbt1y03vmTNTkU5_00c9O-tlH_YpqNH5OFAKumnvhVskztV85jc78NMLp6QS_QxV0qxtK3p4Q28ByftcRcqPVmtt9PvQAmv7aKjwGbpaN42b0ej0R4kCUPuWUNPz6tri_tjLP3WoFBW0806ehrDTdDxScqfksnR4Y-D43QItZB6qflVGpzhThe55DW42lWmrcuC0pX0QCALY41hxtvMA8HQmVV5cDarVaF8pYwLmRTPyFbTNtULQkXB8-CtZXlgsspyp70CHwcGB69raUJC3t9WbOkHHXIs30UJ_ghCUUYoSoSijFAkZG-Z42evwfGPtPuI1TIdqmfHG-38rBw6Y8kclFkZabUSklU6r0XNMoujX8GUKxJCb5EuobchGlCp7a-uLFAdCIOyJ-R5D_zyS8CztBCCJcSsNYm1oqw_aWbnUdBb4HK2FC___9lX5AH-az8H9JpsQcupdoAVXbndOJsA189Tvhsb_m-Ilg02 |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reconstruction+of+Extracellular+Respiratory+Pathways+for+Iron%28III%29+Reduction+in+Shewanella+Oneidensis+Strain+MR-1&rft.jtitle=Frontiers+in+microbiology&rft.au=Coursolle%2C+Dan&rft.au=Gralnick%2C+Jeffrey+A&rft.date=2012-01-01&rft.issn=1664-302X&rft.eissn=1664-302X&rft.volume=3&rft.spage=56&rft_id=info:doi/10.3389%2Ffmicb.2012.00056&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-302X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-302X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-302X&client=summon |