Reconstruction of Extracellular Respiratory Pathways for Iron(III) Reduction in Shewanella Oneidensis Strain MR-1

Shewanella oneidensis strain MR-1 is a facultative anaerobic bacterium capable of respiring a multitude of electron acceptors, many of which require the Mtr respiratory pathway. The core Mtr respiratory pathway includes a periplasmic c-type cytochrome (MtrA), an integral outer-membrane β-barrel prot...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in microbiology Vol. 3; p. 56
Main Authors Coursolle, Dan, Gralnick, Jeffrey A.
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Research Foundation 01.01.2012
Frontiers Media S.A
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Shewanella oneidensis strain MR-1 is a facultative anaerobic bacterium capable of respiring a multitude of electron acceptors, many of which require the Mtr respiratory pathway. The core Mtr respiratory pathway includes a periplasmic c-type cytochrome (MtrA), an integral outer-membrane β-barrel protein (MtrB), and an outer-membrane-anchored c-type cytochrome (MtrC). Together, these components facilitate transfer of electrons from the c-type cytochrome CymA in the cytoplasmic membrane to electron acceptors at and beyond the outer-membrane. The genes encoding these core proteins have paralogs in the S. oneidensis genome (mtrB and mtrA each have four while mtrC has three) and some of the paralogs of mtrC and mtrA are able to form functional Mtr complexes. We demonstrate that of the additional three mtrB paralogs found in the S. oneidensis genome, only MtrE can replace MtrB to form a functional respiratory pathway to soluble iron(III) citrate. We also evaluate which mtrC/mtrA paralog pairs (a total of 12 combinations) are able to form functional complexes with endogenous levels of mtrB paralog expression. Finally, we reconstruct all possible functional Mtr complexes and test them in a S. oneidensis mutant strain where all paralogs have been eliminated from the genome. We find that each combination tested with the exception of MtrA/MtrE/OmcA is able to reduce iron(III) citrate at a level significantly above background. The results presented here have implications toward the evolution of anaerobic extracellular respiration in Shewanella and for future studies looking to increase the rates of substrate reduction for water treatment, bioremediation, or electricity production.
AbstractList Shewanella oneidensis strain MR-1 is a facultative anaerobic bacterium capable of respiring a multitude of electron acceptors, many of which require the Mtr respiratory pathway. The core Mtr respiratory pathway includes a periplasmic c-type cytochrome (MtrA), an integral outer membrane β-barrel protein (MtrB) and an outer membrane-anchored c-type cytochrome (MtrC). Together, these components facilitate transfer of electrons from the c-type cytochrome CymA in the cytoplasmic membrane to electron acceptors at and beyond the outer membrane. The genes encoding these core proteins have paralogs in the S. oneidensis genome (mtrB and mtrA each have four while mtrC has three) and some of the paralogs of mtrC and mtrA are able to form functional Mtr complexes. We demonstrate that of the additional three mtrB paralogs found in the S. oneidensis genome, only MtrE can replace MtrB to form a functional respiratory pathway to soluble iron(III) citrate. We also evaluate which mtrC / mtrA paralog pairs (a total of 12 combinations) are able to form functional complexes with endogenous levels of mtrB paralog expression. Finally, we reconstruct all possible functional Mtr complexes and test them in a S. oneidensis mutant strain where all paralogs have been eliminated from the genome. We find that each combination tested with the exception of MtrA / MtrE / OmcA is able to reduce iron(III) citrate at a level significantly above background. The results presented here have implications towards the evolution of anaerobic extracellular respiration in Shewanella and for future studies looking to increase the rates of substrate reduction for water treatment, bioremediation, or electricity production.
Shewanella oneidensis strain MR-1 is a facultative anaerobic bacterium capable of respiring a multitude of electron acceptors, many of which require the Mtr respiratory pathway. The core Mtr respiratory pathway includes a periplasmic c-type cytochrome (MtrA), an integral outer-membrane β-barrel protein (MtrB), and an outer-membrane-anchored c-type cytochrome (MtrC). Together, these components facilitate transfer of electrons from the c-type cytochrome CymA in the cytoplasmic membrane to electron acceptors at and beyond the outer-membrane. The genes encoding these core proteins have paralogs in the S. oneidensis genome (mtrB and mtrA each have four while mtrC has three) and some of the paralogs of mtrC and mtrA are able to form functional Mtr complexes. We demonstrate that of the additional three mtrB paralogs found in the S. oneidensis genome, only MtrE can replace MtrB to form a functional respiratory pathway to soluble iron(III) citrate. We also evaluate which mtrC/mtrA paralog pairs (a total of 12 combinations) are able to form functional complexes with endogenous levels of mtrB paralog expression. Finally, we reconstruct all possible functional Mtr complexes and test them in a S. oneidensis mutant strain where all paralogs have been eliminated from the genome. We find that each combination tested with the exception of MtrA/MtrE/OmcA is able to reduce iron(III) citrate at a level significantly above background. The results presented here have implications toward the evolution of anaerobic extracellular respiration in Shewanella and for future studies looking to increase the rates of substrate reduction for water treatment, bioremediation, or electricity production.Shewanella oneidensis strain MR-1 is a facultative anaerobic bacterium capable of respiring a multitude of electron acceptors, many of which require the Mtr respiratory pathway. The core Mtr respiratory pathway includes a periplasmic c-type cytochrome (MtrA), an integral outer-membrane β-barrel protein (MtrB), and an outer-membrane-anchored c-type cytochrome (MtrC). Together, these components facilitate transfer of electrons from the c-type cytochrome CymA in the cytoplasmic membrane to electron acceptors at and beyond the outer-membrane. The genes encoding these core proteins have paralogs in the S. oneidensis genome (mtrB and mtrA each have four while mtrC has three) and some of the paralogs of mtrC and mtrA are able to form functional Mtr complexes. We demonstrate that of the additional three mtrB paralogs found in the S. oneidensis genome, only MtrE can replace MtrB to form a functional respiratory pathway to soluble iron(III) citrate. We also evaluate which mtrC/mtrA paralog pairs (a total of 12 combinations) are able to form functional complexes with endogenous levels of mtrB paralog expression. Finally, we reconstruct all possible functional Mtr complexes and test them in a S. oneidensis mutant strain where all paralogs have been eliminated from the genome. We find that each combination tested with the exception of MtrA/MtrE/OmcA is able to reduce iron(III) citrate at a level significantly above background. The results presented here have implications toward the evolution of anaerobic extracellular respiration in Shewanella and for future studies looking to increase the rates of substrate reduction for water treatment, bioremediation, or electricity production.
Shewanella oneidensis strain MR-1 is a facultative anaerobic bacterium capable of respiring a multitude of electron acceptors, many of which require the Mtr respiratory pathway. The core Mtr respiratory pathway includes a periplasmic c -type cytochrome (MtrA), an integral outer-membrane β-barrel protein (MtrB), and an outer-membrane-anchored c -type cytochrome (MtrC). Together, these components facilitate transfer of electrons from the c -type cytochrome CymA in the cytoplasmic membrane to electron acceptors at and beyond the outer-membrane. The genes encoding these core proteins have paralogs in the S. oneidensis genome ( mtrB and mtrA each have four while mtrC has three) and some of the paralogs of mtrC and mtrA are able to form functional Mtr complexes. We demonstrate that of the additional three mtrB paralogs found in the S. oneidensis genome, only MtrE can replace MtrB to form a functional respiratory pathway to soluble iron(III) citrate. We also evaluate which mtrC / mtrA paralog pairs (a total of 12 combinations) are able to form functional complexes with endogenous levels of mtrB paralog expression. Finally, we reconstruct all possible functional Mtr complexes and test them in a S. oneidensis mutant strain where all paralogs have been eliminated from the genome. We find that each combination tested with the exception of MtrA/MtrE/OmcA is able to reduce iron(III) citrate at a level significantly above background. The results presented here have implications toward the evolution of anaerobic extracellular respiration in Shewanella and for future studies looking to increase the rates of substrate reduction for water treatment, bioremediation, or electricity production.
Shewanella oneidensis strain MR-1 is a facultative anaerobic bacterium capable of respiring a multitude of electron acceptors, many of which require the Mtr respiratory pathway. The core Mtr respiratory pathway includes a periplasmic c-type cytochrome (MtrA), an integral outer-membrane β-barrel protein (MtrB), and an outer-membrane-anchored c-type cytochrome (MtrC). Together, these components facilitate transfer of electrons from the c-type cytochrome CymA in the cytoplasmic membrane to electron acceptors at and beyond the outer-membrane. The genes encoding these core proteins have paralogs in the S. oneidensis genome (mtrB and mtrA each have four while mtrC has three) and some of the paralogs of mtrC and mtrA are able to form functional Mtr complexes. We demonstrate that of the additional three mtrB paralogs found in the S. oneidensis genome, only MtrE can replace MtrB to form a functional respiratory pathway to soluble iron(III) citrate. We also evaluate which mtrC/mtrA paralog pairs (a total of 12 combinations) are able to form functional complexes with endogenous levels of mtrB paralog expression. Finally, we reconstruct all possible functional Mtr complexes and test them in a S. oneidensis mutant strain where all paralogs have been eliminated from the genome. We find that each combination tested with the exception of MtrA/MtrE/OmcA is able to reduce iron(III) citrate at a level significantly above background. The results presented here have implications toward the evolution of anaerobic extracellular respiration in Shewanella and for future studies looking to increase the rates of substrate reduction for water treatment, bioremediation, or electricity production.
Author Gralnick, Jeffrey A.
Coursolle, Dan
AuthorAffiliation 1 Department of Microbiology, BioTechnology Institute, University of Minnesota Twin Cities St. Paul, MN, USA
AuthorAffiliation_xml – name: 1 Department of Microbiology, BioTechnology Institute, University of Minnesota Twin Cities St. Paul, MN, USA
Author_xml – sequence: 1
  givenname: Dan
  surname: Coursolle
  fullname: Coursolle, Dan
– sequence: 2
  givenname: Jeffrey A.
  surname: Gralnick
  fullname: Gralnick, Jeffrey A.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22363330$$D View this record in MEDLINE/PubMed
BookMark eNp1kktv3CAUhVGVqnnuu6q8a7PwFIMBe1MpitLWUqpEk0bKDl0wzhB5YAJ20_n3xTOTKqlUFoDgnu-KwzlEe847g9D7As8orerP3dJqNSO4IDOMMeNv0EHBeZlTTO72Xuz30UmMD6kEl5ik-R3aJ4RySik-QI9zo72LQxj1YL3LfJdd_B4CaNP3Yw8hm5u4sgEGH9bZNQyLJ1jHrPMha4J3n5qmOU0l7U5tXXazME_gkhqyK2dsa1y0MbtJyHT5Y54Xx-htB300J7v1CN1-vfh5_j2_vPrWnJ9d5rrkxZC3ShSK11VZdEYRQzgo0jJuSl2nIUAILDQQjQXjBFjVKiAdq5k2TKiWlPQINVtu6-FBroJdQlhLD1ZuDny4lxAGq3sjsUoKJkrgjJbY8KqjHSaABaY1ZqpOrC9b1mpUS9Nq49J7-lfQ1zfOLuS9_yUpqUhd0gT4uAME_ziaOMiljZPHySo_RlkTygQjfGr14WWrvz2evywV8G2BDj7GYDqp7QCT_ZPHvSywnOIhN_GQUzzkJh5JiP8RPrP_K_kDbaq-8Q
CitedBy_id crossref_primary_10_1128_AEM_03556_12
crossref_primary_10_1021_ac400486u
crossref_primary_10_1021_jacs_8b05104
crossref_primary_10_1002_anie_201800294
crossref_primary_10_1007_s41918_018_0020_1
crossref_primary_10_1007_s00253_014_5973_3
crossref_primary_10_1016_j_bbabio_2012_10_001
crossref_primary_10_1038_s41467_018_04707_6
crossref_primary_10_1021_acssynbio_6b00349
crossref_primary_10_1111_gbi_12067
crossref_primary_10_1038_s41467_024_45759_1
crossref_primary_10_1073_pnas_2119964119
crossref_primary_10_3389_fmicb_2016_00530
crossref_primary_10_1021_acssynbio_2c00024
crossref_primary_10_1126_sciadv_aat5664
crossref_primary_10_1002_adfm_202109366
crossref_primary_10_1038_ncomms3120
crossref_primary_10_1128_AEM_01262_17
crossref_primary_10_1002_smll_201703145
crossref_primary_10_1021_acssynbio_8b00498
crossref_primary_10_1021_acssynbio_8b00218
crossref_primary_10_1021_sb500331x
crossref_primary_10_1016_j_biteb_2023_101355
crossref_primary_10_1002_mbo3_224
crossref_primary_10_3389_fmicb_2019_00938
crossref_primary_10_7554_eLife_48054
crossref_primary_10_1002_pmic_201500538
crossref_primary_10_1111_1751_7915_14171
crossref_primary_10_3389_fmicb_2014_00318
crossref_primary_10_3389_fmicb_2022_852942
crossref_primary_10_4014_jmb_2212_12024
crossref_primary_10_1016_j_ibiod_2022_105439
crossref_primary_10_1016_j_biortech_2018_02_073
crossref_primary_10_1146_annurev_micro_032221_023725
crossref_primary_10_1073_pnas_1818003116
crossref_primary_10_3390_biology11050632
crossref_primary_10_1021_acsbiomaterials_9b01773
crossref_primary_10_3389_fmicb_2016_00458
crossref_primary_10_1002_jctb_5658
crossref_primary_10_1042_BST20120106
crossref_primary_10_1371_journal_pone_0258380
crossref_primary_10_31083_j_fbl2706174
crossref_primary_10_1134_S0006297914130094
crossref_primary_10_1016_j_biortech_2014_09_079
crossref_primary_10_1073_pnas_2000802117
crossref_primary_10_3389_fmicb_2015_01075
crossref_primary_10_1111_1758_2229_12173
crossref_primary_10_1039_C4MB00386A
crossref_primary_10_1128_AEM_02947_14
crossref_primary_10_1128_JB_00347_18
crossref_primary_10_1042_BJ20121467
crossref_primary_10_1039_D3NA90043F
crossref_primary_10_1016_j_seta_2021_101332
crossref_primary_10_1038_s41579_018_0076_2
crossref_primary_10_1016_j_bioelechem_2018_07_015
crossref_primary_10_3389_fenrg_2019_00087
crossref_primary_10_1002_celc_201402194
crossref_primary_10_1128_aem_01387_23
crossref_primary_10_1002_celc_201500505
crossref_primary_10_1016_j_abb_2023_109665
crossref_primary_10_1016_j_procbio_2012_07_032
crossref_primary_10_1038_s41589_024_01628_y
crossref_primary_10_3389_fmicb_2023_1150091
crossref_primary_10_1002_advs_202000641
crossref_primary_10_1016_j_scitotenv_2020_143076
crossref_primary_10_1002_anie_202402318
crossref_primary_10_1111_mmi_14647
crossref_primary_10_1002_ange_201800294
crossref_primary_10_3389_fmicb_2020_00330
crossref_primary_10_1073_pnas_1718810115
crossref_primary_10_1111_gbi_12457
crossref_primary_10_1016_j_biortech_2013_04_062
crossref_primary_10_1002_ange_202402318
crossref_primary_10_1128_jb_00469_22
crossref_primary_10_1016_j_bioelechem_2020_107644
crossref_primary_10_1074_jbc_RA118_001850
crossref_primary_10_1016_j_copbio_2019_01_018
crossref_primary_10_1021_acssynbio_9b00517
crossref_primary_10_1128_mSystems_00165_16
crossref_primary_10_1002_celc_202200965
crossref_primary_10_1128_spectrum_04081_23
crossref_primary_10_1186_s40168_015_0077_6
crossref_primary_10_3389_fenrg_2019_00116
crossref_primary_10_1038_s41598_018_33521_9
crossref_primary_10_1039_D2NA00691J
crossref_primary_10_1042_BST20120129
crossref_primary_10_1128_AEM_01253_20
crossref_primary_10_1128_AEM_02134_18
ContentType Journal Article
Copyright Copyright © 2012 Coursolle and Gralnick. 2012
Copyright_xml – notice: Copyright © 2012 Coursolle and Gralnick. 2012
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fmicb.2012.00056
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Open Access Journals (DOAJ)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1664-302X
ExternalDocumentID oai_doaj_org_article_0bbd2574a65340e68f3f02a0703905b9
PMC3282943
22363330
10_3389_fmicb_2012_00056
Genre Journal Article
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
ECGQY
GROUPED_DOAJ
GX1
HYE
IPNFZ
KQ8
M48
M~E
O5R
O5S
OK1
PGMZT
RIG
RNS
RPM
NPM
7X8
5PM
ID FETCH-LOGICAL-c461t-db71b69841feb2e26ab2d56e4c99997a7707ca2c07562a58dba2f595ce57bd243
IEDL.DBID M48
ISSN 1664-302X
IngestDate Wed Aug 27 01:28:55 EDT 2025
Thu Aug 21 18:12:10 EDT 2025
Fri Jul 11 00:08:53 EDT 2025
Thu Apr 03 07:02:49 EDT 2025
Thu Apr 24 23:05:32 EDT 2025
Tue Jul 01 03:54:40 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords anaerobic
Mtr-pathway
extracellular respiration
iron respiration
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution Non Commercial License, which permits non-commercial use, distribution, and reproduction in other forums, provided the original authors and source are credited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c461t-db71b69841feb2e26ab2d56e4c99997a7707ca2c07562a58dba2f595ce57bd243
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
This article was submitted to Frontiers in Microbiological Chemistry, a specialty of Frontiers in Microbiology.
Reviewed by: Chad Saltikov, University of California Santa Cruz, USA; Tom Clarke, University of East Anglia, UK
Edited by: David Emerson, Bigelow Laboratory for Ocean Sciences, USA
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fmicb.2012.00056
PMID 22363330
PQID 923575269
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_0bbd2574a65340e68f3f02a0703905b9
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3282943
proquest_miscellaneous_923575269
pubmed_primary_22363330
crossref_citationtrail_10_3389_fmicb_2012_00056
crossref_primary_10_3389_fmicb_2012_00056
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-01-01
PublicationDateYYYYMMDD 2012-01-01
PublicationDate_xml – month: 01
  year: 2012
  text: 2012-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in microbiology
PublicationTitleAlternate Front Microbiol
PublicationYear 2012
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References 9023196 - J Bacteriol. 1997 Feb;179(4):1143-52
7826009 - Annu Rev Microbiol. 1994;48:311-43
16537430 - Proc Natl Acad Sci U S A. 2006 Mar 21;103(12):4669-74
16704344 - Annu Rev Microbiol. 2006;60:149-66
17061851 - J Am Chem Soc. 2006 Nov 1;128(43):13978-9
18065612 - Appl Environ Microbiol. 2008 Feb;74(3):615-23
18836009 - Appl Environ Microbiol. 2008 Nov;74(22):6880-6
19661057 - J Biol Chem. 2009 Oct 16;284(42):28865-73
12899636 - Biochemistry. 2003 Aug 12;42(31):9491-7
17939701 - J Phys Chem B. 2007 Nov 8;111(44):12857-64
17815852 - Science. 1988 Jun 3;240(4857):1319-21
18791025 - Appl Environ Microbiol. 2008 Nov;74(21):6746-55
21838277 - J Phys Chem B. 2011 Sep 29;115(38):11208-14
18604222 - Nat Rev Microbiol. 2008 Aug;6(8):592-603
18394146 - Mol Microbiol. 2008 May;68(3):706-19
12939408 - Proc Natl Acad Sci U S A. 2003 Sep 16;100(19):10983-8
8529885 - Gene. 1995 Dec 1;166(1):175-6
18575901 - J Biol Inorg Chem. 2008 Aug;13(6):849-54
19000760 - Curr Opin Biotechnol. 2008 Dec;19(6):564-71
21606337 - Proc Natl Acad Sci U S A. 2011 Jun 7;108(23):9384-9
14696317 - Adv Appl Microbiol. 2003;53:85-128
1324728 - Biochim Biophys Acta. 1992 Aug 28;1102(1):1-18
20018742 - Proc Natl Acad Sci U S A. 2009 Dec 29;106(52):22169-74
8534676 - Biochim Biophys Acta. 1995 Dec 12;1232(3):97-173
17581116 - Mol Microbiol. 2007 Jul;65(1):12-20
11844754 - J Bacteriol. 2002 Mar;184(5):1262-9
822747 - Anal Biochem. 1976 Sep;75(1):168-76
3062312 - Mol Microbiol. 1988 Nov;2(6):785-95
1444716 - Arch Microbiol. 1992;158(1):68-73
11450112 - Adv Microb Physiol. 2001;45:51-112
9829939 - J Bacteriol. 1998 Dec;180(23):6292-7
18412550 - Environ Microbiol. 2008 Jul;10(7):1861-76
6309742 - J Bacteriol. 1983 Sep;155(3):1147-55
12732647 - J Biol Chem. 2003 Jul 25;278(30):27758-65
20370837 - FEMS Microbiol Lett. 2010 May;306(2):144-51
19897659 - J Bacteriol. 2010 Jan;192(2):467-74
19542342 - Appl Environ Microbiol. 2009 Aug;75(16):5218-26
10319494 - Int J Syst Bacteriol. 1999 Apr;49 Pt 2:705-24
20598084 - Mol Microbiol. 2010 Aug;77(4):995-1008
11881834 - OMICS. 2002;6(1):39-60
20400539 - J Bacteriol. 2010 Jul;192(13):3345-51
17581115 - Mol Microbiol. 2007 Jul;65(1):1-11
21199252 - Environ Microbiol. 2011 Jan;13(1):108-15
18316736 - Proc Natl Acad Sci U S A. 2008 Mar 11;105(10):3968-73
22033566 - Appl Microbiol Biotechnol. 2011 Dec;92(6):1275-86
References_xml – reference: 16704344 - Annu Rev Microbiol. 2006;60:149-66
– reference: 11450112 - Adv Microb Physiol. 2001;45:51-112
– reference: 18575901 - J Biol Inorg Chem. 2008 Aug;13(6):849-54
– reference: 19542342 - Appl Environ Microbiol. 2009 Aug;75(16):5218-26
– reference: 21838277 - J Phys Chem B. 2011 Sep 29;115(38):11208-14
– reference: 7826009 - Annu Rev Microbiol. 1994;48:311-43
– reference: 17581116 - Mol Microbiol. 2007 Jul;65(1):12-20
– reference: 20598084 - Mol Microbiol. 2010 Aug;77(4):995-1008
– reference: 18412550 - Environ Microbiol. 2008 Jul;10(7):1861-76
– reference: 1444716 - Arch Microbiol. 1992;158(1):68-73
– reference: 20370837 - FEMS Microbiol Lett. 2010 May;306(2):144-51
– reference: 1324728 - Biochim Biophys Acta. 1992 Aug 28;1102(1):1-18
– reference: 9023196 - J Bacteriol. 1997 Feb;179(4):1143-52
– reference: 19661057 - J Biol Chem. 2009 Oct 16;284(42):28865-73
– reference: 12899636 - Biochemistry. 2003 Aug 12;42(31):9491-7
– reference: 18604222 - Nat Rev Microbiol. 2008 Aug;6(8):592-603
– reference: 11844754 - J Bacteriol. 2002 Mar;184(5):1262-9
– reference: 8534676 - Biochim Biophys Acta. 1995 Dec 12;1232(3):97-173
– reference: 9829939 - J Bacteriol. 1998 Dec;180(23):6292-7
– reference: 17581115 - Mol Microbiol. 2007 Jul;65(1):1-11
– reference: 17061851 - J Am Chem Soc. 2006 Nov 1;128(43):13978-9
– reference: 14696317 - Adv Appl Microbiol. 2003;53:85-128
– reference: 21199252 - Environ Microbiol. 2011 Jan;13(1):108-15
– reference: 18065612 - Appl Environ Microbiol. 2008 Feb;74(3):615-23
– reference: 22033566 - Appl Microbiol Biotechnol. 2011 Dec;92(6):1275-86
– reference: 20018742 - Proc Natl Acad Sci U S A. 2009 Dec 29;106(52):22169-74
– reference: 8529885 - Gene. 1995 Dec 1;166(1):175-6
– reference: 18394146 - Mol Microbiol. 2008 May;68(3):706-19
– reference: 822747 - Anal Biochem. 1976 Sep;75(1):168-76
– reference: 21606337 - Proc Natl Acad Sci U S A. 2011 Jun 7;108(23):9384-9
– reference: 12939408 - Proc Natl Acad Sci U S A. 2003 Sep 16;100(19):10983-8
– reference: 10319494 - Int J Syst Bacteriol. 1999 Apr;49 Pt 2:705-24
– reference: 19000760 - Curr Opin Biotechnol. 2008 Dec;19(6):564-71
– reference: 12732647 - J Biol Chem. 2003 Jul 25;278(30):27758-65
– reference: 17939701 - J Phys Chem B. 2007 Nov 8;111(44):12857-64
– reference: 17815852 - Science. 1988 Jun 3;240(4857):1319-21
– reference: 18316736 - Proc Natl Acad Sci U S A. 2008 Mar 11;105(10):3968-73
– reference: 19897659 - J Bacteriol. 2010 Jan;192(2):467-74
– reference: 20400539 - J Bacteriol. 2010 Jul;192(13):3345-51
– reference: 18836009 - Appl Environ Microbiol. 2008 Nov;74(22):6880-6
– reference: 18791025 - Appl Environ Microbiol. 2008 Nov;74(21):6746-55
– reference: 6309742 - J Bacteriol. 1983 Sep;155(3):1147-55
– reference: 16537430 - Proc Natl Acad Sci U S A. 2006 Mar 21;103(12):4669-74
– reference: 3062312 - Mol Microbiol. 1988 Nov;2(6):785-95
– reference: 11881834 - OMICS. 2002;6(1):39-60
SSID ssj0000402000
Score 2.299993
Snippet Shewanella oneidensis strain MR-1 is a facultative anaerobic bacterium capable of respiring a multitude of electron acceptors, many of which require the Mtr...
Shewanella oneidensis strain MR-1 is a facultative anaerobic bacterium capable of respiring a multitude of electron acceptors, many of which require the Mtr...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 56
SubjectTerms anaerobic
extracellular respiration
iron respiration
Microbiology
Mtr pathway
SummonAdditionalLinks – databaseName: Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYhUMil9JG27gsdckgOJrL1so5tScgGUkoekJsYSTZZKN60Tknz7zsjO5vdUtpLLz7YsjXMN7JmpNE3jO0EqJLEeajESyxVqqB0RkEJODd0DkInLB0UPvlsji7U8aW-XCn1RTlhIz3wqLh9EUJCs1JgtFSiNU0nO1EDWaoTOuSje9jXSjCV_8EUFgkx7ktiFOYQpnkMlMqVCTqpXvXKPJTp-v_kY_6eKrky9xw-YY8np5F_GIV9yjba_hl7NJaRvHvOvlEM-cAEyxcdP_iJ36FFecoy5acP--n8C7p8t3A3cPRW-ez7ot-dzWZ72CRNb897fnbV3gLlvwBf9ESE1Q_zgQ-5nAQ_OS2rbXZxeHD-6aicSimUUZnqpkzBVsG4RlUdhtJtbSDUSZtWRXQQnQVrhY1QR3QgTA26SQHqTjsdW21R_0q-YJs99viKcemqJkUA0SSh2roJJmqMYXDwR9Mpmwq2f69YHyeecZLvq8d4g6DwGQpPUPgMRcH2lm9cjxwbf2n7kbBatiN27HwDbcZPNuP_ZTMF4_dIexxNhAYqdfFj8I7Yf6joesFejsAve0I_ykgpRcHsmkmsibL-pJ9fZcJuSdvVSr7-H7K_YVukjXEV6C3bRNtq36FfdBPe5yHwC4wvC44
  priority: 102
  providerName: Directory of Open Access Journals
Title Reconstruction of Extracellular Respiratory Pathways for Iron(III) Reduction in Shewanella Oneidensis Strain MR-1
URI https://www.ncbi.nlm.nih.gov/pubmed/22363330
https://www.proquest.com/docview/923575269
https://pubmed.ncbi.nlm.nih.gov/PMC3282943
https://doaj.org/article/0bbd2574a65340e68f3f02a0703905b9
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELagCIkLojwDtPKBAz0E7PiVHBCiVUsXaQG1rLS3yI-kXalK6Kao3X_PjJPusmgFlxwSO3H82Z5v_PiGkDfO8iDADqVw8akM3KaFlja1YBvqwrqaGTwoPP6qjyfyy1RNV8ejhwrsNrp2GE9qMr94d3O5-Agd_gN6nGBvAYGZd7hLK2pvKn2X3AO7ZDCewXgg-3FcRlcpnknhWuNyQDbt1y03vmTNTkU5_00c9O-tlH_YpqNH5OFAKumnvhVskztV85jc78NMLp6QS_QxV0qxtK3p4Q28ByftcRcqPVmtt9PvQAmv7aKjwGbpaN42b0ej0R4kCUPuWUNPz6tri_tjLP3WoFBW0806ehrDTdDxScqfksnR4Y-D43QItZB6qflVGpzhThe55DW42lWmrcuC0pX0QCALY41hxtvMA8HQmVV5cDarVaF8pYwLmRTPyFbTNtULQkXB8-CtZXlgsspyp70CHwcGB69raUJC3t9WbOkHHXIs30UJ_ghCUUYoSoSijFAkZG-Z42evwfGPtPuI1TIdqmfHG-38rBw6Y8kclFkZabUSklU6r0XNMoujX8GUKxJCb5EuobchGlCp7a-uLFAdCIOyJ-R5D_zyS8CztBCCJcSsNYm1oqw_aWbnUdBb4HK2FC___9lX5AH-az8H9JpsQcupdoAVXbndOJsA189Tvhsb_m-Ilg02
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reconstruction+of+Extracellular+Respiratory+Pathways+for+Iron%28III%29+Reduction+in+Shewanella+Oneidensis+Strain+MR-1&rft.jtitle=Frontiers+in+microbiology&rft.au=Coursolle%2C+Dan&rft.au=Gralnick%2C+Jeffrey+A&rft.date=2012-01-01&rft.issn=1664-302X&rft.eissn=1664-302X&rft.volume=3&rft.spage=56&rft_id=info:doi/10.3389%2Ffmicb.2012.00056&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-302X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-302X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-302X&client=summon