Antifouling hydrogel film based on a sandwich array for salivary glucose monitoring

A glucose biosensor prepared using interpenetrating polymer network (IPN) hydrogel as a sensing material is the subject of growing interest due to its fast response and high sensitivity. However, the IPN hydrogel circumvents the traditional antifouling strategy, which often requires thick antifoulin...

Full description

Saved in:
Bibliographic Details
Published inRSC advances Vol. 11; no. 44; pp. 27561 - 27569
Main Authors Zhang, Zifeng, Wang, Shiwen, Liu, Guanjiang, Hu, Debo, Yang, Bei, Dai, Qing, Dou, Qian
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 12.08.2021
The Royal Society of Chemistry
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A glucose biosensor prepared using interpenetrating polymer network (IPN) hydrogel as a sensing material is the subject of growing interest due to its fast response and high sensitivity. However, the IPN hydrogel circumvents the traditional antifouling strategy, which often requires thick antifouling coating that can result in poor glucose sensitivity owing to its energetic physical barrier (greater than 43 nm); thus a complex, time-consuming and high-cost salivary preprocessing is needed to remove protein contaminants before salivary glucose detection using the IPN hydrogel. This limits its practical application in trace salivary glucose-level monitoring. Herein, a new hydrogel film based on a sandwich array (HFSA) with a weak physical barrier, which exhibits superior antifouling and sensitivity in salivary glucose detection is reported. HFSA relies on the formation of the sandwich structure containing substrate-grafted, surface-grafted zwitterionic polymer brushes (pSBMA) and phenylboronic acid (PBA)-functionalized hydrogel. The synergistic effect originating from pSBMA brushes on the surface of HFSA and inside the HFSA matrix provides a suitable physical barrier (∼28 nm) and a robust hydration layer for HFSA, which can enhance its sensitivity and antifouling. The results show that HFSA reduce the adsorption of nonspecific protein in 10% saliva by nearly 90% and enhanced the glucose sensitivity by 130%, compared to the IPN hydrogel film. These results demonstrate that HFSA exhibits significant potential as an antifouling and sensitive glucose probe for QCM sensors in non-invasive salivary glucose monitoring. The synergistic effect originating from pSBMA brushes on the surface of HSA and inside the HSA matrix provides a suitable physical barrier (∼28 nm) and robust hydration layer for HSA, which can enhance its sensitivity and antifouling.
AbstractList A glucose biosensor prepared using interpenetrating polymer network (IPN) hydrogel as a sensing material is the subject of growing interest due to its fast response and high sensitivity. However, the IPN hydrogel circumvents the traditional antifouling strategy, which often requires thick antifouling coating that can result in poor glucose sensitivity owing to its energetic physical barrier (greater than 43 nm); thus a complex, time-consuming and high-cost salivary preprocessing is needed to remove protein contaminants before salivary glucose detection using the IPN hydrogel. This limits its practical application in trace salivary glucose-level monitoring. Herein, a new hydrogel film based on a sandwich array (HFSA) with a weak physical barrier, which exhibits superior antifouling and sensitivity in salivary glucose detection is reported. HFSA relies on the formation of the sandwich structure containing substrate-grafted, surface-grafted zwitterionic polymer brushes (pSBMA) and phenylboronic acid (PBA)-functionalized hydrogel. The synergistic effect originating from pSBMA brushes on the surface of HFSA and inside the HFSA matrix provides a suitable physical barrier (∼28 nm) and a robust hydration layer for HFSA, which can enhance its sensitivity and antifouling. The results show that HFSA reduce the adsorption of nonspecific protein in 10% saliva by nearly 90% and enhanced the glucose sensitivity by 130%, compared to the IPN hydrogel film. These results demonstrate that HFSA exhibits significant potential as an antifouling and sensitive glucose probe for QCM sensors in non-invasive salivary glucose monitoring.
A glucose biosensor prepared using interpenetrating polymer network (IPN) hydrogel as a sensing material is the subject of growing interest due to its fast response and high sensitivity. However, the IPN hydrogel circumvents the traditional antifouling strategy, which often requires thick antifouling coating that can result in poor glucose sensitivity owing to its energetic physical barrier (greater than 43 nm); thus a complex, time-consuming and high-cost salivary preprocessing is needed to remove protein contaminants before salivary glucose detection using the IPN hydrogel. This limits its practical application in trace salivary glucose-level monitoring. Herein, a new hydrogel film based on a sandwich array (HFSA) with a weak physical barrier, which exhibits superior antifouling and sensitivity in salivary glucose detection is reported. HFSA relies on the formation of the sandwich structure containing substrate-grafted, surface-grafted zwitterionic polymer brushes (pSBMA) and phenylboronic acid (PBA)-functionalized hydrogel. The synergistic effect originating from pSBMA brushes on the surface of HFSA and inside the HFSA matrix provides a suitable physical barrier (∼28 nm) and a robust hydration layer for HFSA, which can enhance its sensitivity and antifouling. The results show that HFSA reduce the adsorption of nonspecific protein in 10% saliva by nearly 90% and enhanced the glucose sensitivity by 130%, compared to the IPN hydrogel film. These results demonstrate that HFSA exhibits significant potential as an antifouling and sensitive glucose probe for QCM sensors in non-invasive salivary glucose monitoring.A glucose biosensor prepared using interpenetrating polymer network (IPN) hydrogel as a sensing material is the subject of growing interest due to its fast response and high sensitivity. However, the IPN hydrogel circumvents the traditional antifouling strategy, which often requires thick antifouling coating that can result in poor glucose sensitivity owing to its energetic physical barrier (greater than 43 nm); thus a complex, time-consuming and high-cost salivary preprocessing is needed to remove protein contaminants before salivary glucose detection using the IPN hydrogel. This limits its practical application in trace salivary glucose-level monitoring. Herein, a new hydrogel film based on a sandwich array (HFSA) with a weak physical barrier, which exhibits superior antifouling and sensitivity in salivary glucose detection is reported. HFSA relies on the formation of the sandwich structure containing substrate-grafted, surface-grafted zwitterionic polymer brushes (pSBMA) and phenylboronic acid (PBA)-functionalized hydrogel. The synergistic effect originating from pSBMA brushes on the surface of HFSA and inside the HFSA matrix provides a suitable physical barrier (∼28 nm) and a robust hydration layer for HFSA, which can enhance its sensitivity and antifouling. The results show that HFSA reduce the adsorption of nonspecific protein in 10% saliva by nearly 90% and enhanced the glucose sensitivity by 130%, compared to the IPN hydrogel film. These results demonstrate that HFSA exhibits significant potential as an antifouling and sensitive glucose probe for QCM sensors in non-invasive salivary glucose monitoring.
A glucose biosensor prepared using interpenetrating polymer network (IPN) hydrogel as a sensing material is the subject of growing interest due to its fast response and high sensitivity. However, the IPN hydrogel circumvents the traditional antifouling strategy, which often requires thick antifouling coating that can result in poor glucose sensitivity owing to its energetic physical barrier (greater than 43 nm); thus a complex, time-consuming and high-cost salivary preprocessing is needed to remove protein contaminants before salivary glucose detection using the IPN hydrogel. This limits its practical application in trace salivary glucose-level monitoring. Herein, a new hydrogel film based on a sandwich array (HFSA) with a weak physical barrier, which exhibits superior antifouling and sensitivity in salivary glucose detection is reported. HFSA relies on the formation of the sandwich structure containing substrate-grafted, surface-grafted zwitterionic polymer brushes (pSBMA) and phenylboronic acid (PBA)-functionalized hydrogel. The synergistic effect originating from pSBMA brushes on the surface of HFSA and inside the HFSA matrix provides a suitable physical barrier (∼28 nm) and a robust hydration layer for HFSA, which can enhance its sensitivity and antifouling. The results show that HFSA reduce the adsorption of nonspecific protein in 10% saliva by nearly 90% and enhanced the glucose sensitivity by 130%, compared to the IPN hydrogel film. These results demonstrate that HFSA exhibits significant potential as an antifouling and sensitive glucose probe for QCM sensors in non-invasive salivary glucose monitoring. The synergistic effect originating from pSBMA brushes on the surface of HSA and inside the HSA matrix provides a suitable physical barrier (∼28 nm) and robust hydration layer for HSA, which can enhance its sensitivity and antifouling.
Author Dou, Qian
Wang, Shiwen
Zhang, Zifeng
Hu, Debo
Yang, Bei
Liu, Guanjiang
Dai, Qing
AuthorAffiliation CAS Center for Excellence in Nanoscience
School of Materials Science and Engineering
CAS Key Laboratory of Standardization and Measurement for Nanotechnology
National Center for Nanoscience and Technology
Division of Nanophotonics
Center of Materials Science and Optoelectronics Engineering
Zhengzhou University
University of Chinese Academy of Sciences
AuthorAffiliation_xml – name: Zhengzhou University
– name: CAS Center for Excellence in Nanoscience
– name: Division of Nanophotonics
– name: Center of Materials Science and Optoelectronics Engineering
– name: CAS Key Laboratory of Standardization and Measurement for Nanotechnology
– name: School of Materials Science and Engineering
– name: National Center for Nanoscience and Technology
– name: University of Chinese Academy of Sciences
Author_xml – sequence: 1
  givenname: Zifeng
  surname: Zhang
  fullname: Zhang, Zifeng
– sequence: 2
  givenname: Shiwen
  surname: Wang
  fullname: Wang, Shiwen
– sequence: 3
  givenname: Guanjiang
  surname: Liu
  fullname: Liu, Guanjiang
– sequence: 4
  givenname: Debo
  surname: Hu
  fullname: Hu, Debo
– sequence: 5
  givenname: Bei
  surname: Yang
  fullname: Yang, Bei
– sequence: 6
  givenname: Qing
  surname: Dai
  fullname: Dai, Qing
– sequence: 7
  givenname: Qian
  surname: Dou
  fullname: Dou, Qian
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35480666$$D View this record in MEDLINE/PubMed
BookMark eNqNks1vFCEYh4mpsbX24l1D4sWYrPLNcGmyqVpNmpj4cSYMA7M0DFSYqdn_XurWtTYe5AKB533yg5fH4CDl5AB4itFrjKh6M-BiEOVYjg_AEUFMrAgS6uDO-hCc1HqJ2hAcE4EfgUPKWYeEEEfgyzrNweclhjTCzXYoeXQR-hAn2JvqBpgTNLCaNPwIdgNNKWYLfS5tK4ZrU7ZwjIvN1cEppzDn0jxPwENvYnUnt_Mx-Pb-3dezD6uLT-cfz9YXK8sEnleDMoxwqbyTpLMceSE75qiUlkved54LKlxPqVeWKUYHgi22SMmeOYE9VfQYnO68V0s_ucG6NBcT9VUJUwumswn675MUNnrM11ohKhVCTfDyVlDy98XVWU-hWhejSS4vVRPBhWSS4u4_UNrikyZt6It76GVeSmovoQkXBAtCMWvU87vh96l_t6YBr3aALbnW4vwewUjftF6_xZ_Xv1p_3mB0D7ZhNnPINxcP8d8lz3Ylpdq9-s9voj8Bu8y5KA
CitedBy_id crossref_primary_10_54097_hset_v54i_9704
crossref_primary_10_1016_j_ijoes_2025_100980
crossref_primary_10_1016_j_hybadv_2023_100052
crossref_primary_10_1007_s10704_023_00722_x
crossref_primary_10_1016_j_carbpol_2022_120351
crossref_primary_10_1002_macp_202300257
crossref_primary_10_1016_j_microc_2023_109818
crossref_primary_10_1021_acs_chemmater_2c01666
Cites_doi 10.1021/ja034820y
10.1021/acs.analchem.6b03387
10.1126/scitranslmed.aaf2593
10.1016/j.bios.2012.03.018
10.1016/j.biomaterials.2011.11.071
10.1039/D0TC00725K
10.1021/acs.langmuir.6b03016
10.1021/ac00094a007
10.1002/admi.201900196
10.1021/la0470737
10.1177/039139889401700206
10.1126/sciadv.1701629
10.1002/adhm.201700873
10.1126/sciadv.1601314
10.1002/adma.201404378
10.1016/j.cca.2007.04.011
10.1002/elan.201600018
10.1021/bm030046v
10.1016/j.carbpol.2014.09.077
10.1039/C3PY01202F
10.1002/adma.201001215
10.1002/adfm.200902429
10.1021/acsami.0c08229
10.1038/s41565-019-0566-z
10.1038/nature16521
10.1021/acssensors.1c00390
10.1038/nnano.2016.38
10.3390/s100605859
10.1039/C7RA06965K
10.1002/adfm.201805754
10.1039/C7AN01571B
10.1016/j.memsci.2010.01.015
10.1021/acsami.6b03098
10.1039/c3lc41308j
10.1016/j.polymer.2010.08.022
10.1002/adfm.201201386
10.1039/D0NR03193C
10.1143/JJAP.24.L781
10.1002/marc.201100858
10.1021/ac500467c
10.1021/ac201700c
10.1039/C9BM01275C
10.3390/ijms20020423
10.1177/193229680800200202
10.1177/193229681100500630
10.1177/193229680800200520
10.1016/j.snb.2014.10.073
10.1126/sciadv.aap9841
10.1021/acs.analchem.7b02430
10.1002/adma.200803125
10.1016/j.bios.2010.12.042
10.1373/clinchem.2010.153767
10.1016/j.jconrel.2020.02.014
10.1002/adma.200900383
10.1039/D0NR05854H
10.3390/bios2030245
10.1021/acs.chemrev.9b00739
10.2337/diacare.27.5.1047
10.1016/j.bios.2005.11.028
10.1002/adfm.200900943
10.1002/adma.200901407
10.1021/ja021037h
ContentType Journal Article
Copyright This journal is © The Royal Society of Chemistry.
Copyright Royal Society of Chemistry 2021
This journal is © The Royal Society of Chemistry 2021 The Royal Society of Chemistry
Copyright_xml – notice: This journal is © The Royal Society of Chemistry.
– notice: Copyright Royal Society of Chemistry 2021
– notice: This journal is © The Royal Society of Chemistry 2021 The Royal Society of Chemistry
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7S9
L.6
7X8
5PM
DOI 10.1039/d1ra03517g
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE - Academic
AGRICOLA

CrossRef

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2046-2069
EndPage 27569
ExternalDocumentID PMC9037900
35480666
10_1039_D1RA03517G
d1ra03517g
Genre Journal Article
GrantInformation_xml – fundername: ;
  grantid: KFJ-STS-ZDTP-063
– fundername: ;
  grantid: 51925203; U2032206
– fundername: ;
  grantid: 2016YFA0201600
GroupedDBID 0-7
0R
AAGNR
AAIWI
ABGFH
ACGFS
ADBBV
ADMRA
AENEX
AFVBQ
AGRSR
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ANUXI
ASKNT
AUDPV
BCNDV
BLAPV
BSQNT
C6K
CKLOX
EBS
EE0
EF-
GROUPED_DOAJ
HZ
H~N
J3I
JG
O9-
OK1
R7C
R7G
RCNCU
RPMJG
RRC
RSCEA
RVUXY
SLH
SMJ
ZCN
0R~
53G
AAFWJ
AAHBH
AAJAE
AARTK
AAWGC
AAXHV
AAYXX
ABEMK
ABIQK
ABPDG
ABXOH
AEFDR
AESAV
AFLYV
AFPKN
AGEGJ
AHGCF
AKBGW
APEMP
CITATION
H13
HZ~
M~E
PGMZT
RPM
-JG
NPM
7SR
8BQ
8FD
JG9
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c461t-d9a42579fe728c50f6784e377c575b8f5636eb33f9c4943d21c1c097b4e61f393
ISSN 2046-2069
IngestDate Thu Aug 21 13:44:19 EDT 2025
Sun Aug 24 03:56:34 EDT 2025
Fri Jul 11 06:14:09 EDT 2025
Mon Jun 30 04:38:19 EDT 2025
Thu Jan 02 22:53:39 EST 2025
Thu Apr 24 23:03:40 EDT 2025
Tue Jul 01 04:06:11 EDT 2025
Sun Apr 17 04:30:15 EDT 2022
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 44
Language English
License This journal is © The Royal Society of Chemistry.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c461t-d9a42579fe728c50f6784e377c575b8f5636eb33f9c4943d21c1c097b4e61f393
Notes Electronic supplementary information (ESI) available. See DOI
10.1039/d1ra03517g
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7457-219X
0000-0002-3632-6200
0000-0001-9432-1670
OpenAccessLink http://dx.doi.org/10.1039/d1ra03517g
PMID 35480666
PQID 2562162314
PQPubID 2047525
PageCount 9
ParticipantIDs proquest_journals_2562162314
proquest_miscellaneous_2636782003
crossref_citationtrail_10_1039_D1RA03517G
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9037900
pubmed_primary_35480666
crossref_primary_10_1039_D1RA03517G
rsc_primary_d1ra03517g
proquest_miscellaneous_2656747318
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-August-12
PublicationDateYYYYMMDD 2021-08-12
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-August-12
  day: 12
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle RSC advances
PublicationTitleAlternate RSC Adv
PublicationYear 2021
Publisher Royal Society of Chemistry
The Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
– name: The Royal Society of Chemistry
References Picher (D1RA03517G/cit28) 2013; 13
Jiang (D1RA03517G/cit35) 2020; 120
Moussy (D1RA03517G/cit29) 1994; 17
Minami (D1RA03517G/cit44) 1985; 24
Liu (D1RA03517G/cit48) 2010; 350
Carlmark (D1RA03517G/cit50) 2003; 4
Heikenfeld (D1RA03517G/cit7) 2016; 28
Horgan (D1RA03517G/cit61) 2006; 21
Dou (D1RA03517G/cit65) 2020; 12
Dou (D1RA03517G/cit46) 2020; 12
Park (D1RA03517G/cit14) 2018; 4
Yao (D1RA03517G/cit23) 2010; 10
Zhang (D1RA03517G/cit58) 2018; 7
Gao (D1RA03517G/cit8) 2016; 529
Moussy (D1RA03517G/cit30) 1994; 66
Wang (D1RA03517G/cit32) 2015; 117
Hucknall (D1RA03517G/cit45) 2009; 21
Chiappin (D1RA03517G/cit17) 2007; 383
Irwin (D1RA03517G/cit56) 2005; 21
Li (D1RA03517G/cit22) 2017; 89
Tsuge (D1RA03517G/cit24) 2016; 88
He (D1RA03517G/cit43) 2019; 7
Pfaffe (D1RA03517G/cit16) 2011; 57
Erbahar (D1RA03517G/cit25) 2015; 207
Wild (D1RA03517G/cit1) 2004; 27
Klonoff (D1RA03517G/cit2) 2011; 5
Koh (D1RA03517G/cit9) 2016; 8
Mi (D1RA03517G/cit37) 2012; 33
Campuzano (D1RA03517G/cit39) 2019; 20
Dou (D1RA03517G/cit64) 2017; 7
Yao (D1RA03517G/cit13) 2011; 26
Baxamusa (D1RA03517G/cit54) 2009; 19
Hu (D1RA03517G/cit52) 2016; 32
Lazerges (D1RA03517G/cit26) 2012; 2
Zhu (D1RA03517G/cit51) 2014; 86
Banerjee (D1RA03517G/cit41) 2011; 23
Chen (D1RA03517G/cit18) 2017; 3
Herrwerth (D1RA03517G/cit36) 2003; 125
Chang (D1RA03517G/cit38) 2013; 23
Rio (D1RA03517G/cit42) 2019; 14
Mamkin (D1RA03517G/cit3) 2008; 2
Jiang (D1RA03517G/cit19) 2010; 22
Hucknall (D1RA03517G/cit21) 2009; 21
Banerjee (D1RA03517G/cit31) 2011; 23
Asher (D1RA03517G/cit62) 2003; 125
Chen (D1RA03517G/cit40) 2010; 51
Zhang (D1RA03517G/cit5) 2015; 4
Russo (D1RA03517G/cit34) 2021; 6
Torjman (D1RA03517G/cit4) 2008; 2
Yakubovsky (D1RA03517G/cit57) 2019; 6
Russo (D1RA03517G/cit33) 2020; 7
Yan (D1RA03517G/cit12) 2011; 83
Liao (D1RA03517G/cit15) 2015; 27
Zhang (D1RA03517G/cit47) 2020; 8
Lee (D1RA03517G/cit6) 2016; 11
Lee (D1RA03517G/cit10) 2017; 3
Ye (D1RA03517G/cit49) 2016; 8
Chen (D1RA03517G/cit63) 2012; 35
Hong (D1RA03517G/cit11) 2018; 28
Shen (D1RA03517G/cit60) 2020; 321
Ma (D1RA03517G/cit59) 2014; 5
Zhang (D1RA03517G/cit27) 2020; 12
Nqamchuea (D1RA03517G/cit53) 2018; 143
Hendrickson (D1RA03517G/cit20) 2010; 20
Huang (D1RA03517G/cit55) 2012; 33
References_xml – volume: 125
  start-page: 9359
  year: 2003
  ident: D1RA03517G/cit36
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja034820y
– volume: 88
  start-page: 10744
  year: 2016
  ident: D1RA03517G/cit24
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.6b03387
– volume: 8
  start-page: 366ra165
  year: 2016
  ident: D1RA03517G/cit9
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aaf2593
– volume: 4
  start-page: 23
  year: 2015
  ident: D1RA03517G/cit5
  publication-title: Sens. Biosens. Res.
– volume: 35
  start-page: 363
  year: 2012
  ident: D1RA03517G/cit63
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2012.03.018
– volume: 33
  start-page: 2001
  year: 2012
  ident: D1RA03517G/cit37
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2011.11.071
– volume: 8
  start-page: 9655
  year: 2020
  ident: D1RA03517G/cit47
  publication-title: J. Mater. Chem. C
  doi: 10.1039/D0TC00725K
– volume: 32
  start-page: 11763
  year: 2016
  ident: D1RA03517G/cit52
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.6b03016
– volume: 66
  start-page: 3882
  year: 1994
  ident: D1RA03517G/cit30
  publication-title: Anal. Chem.
  doi: 10.1021/ac00094a007
– volume: 6
  start-page: 1900196
  year: 2019
  ident: D1RA03517G/cit57
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201900196
– volume: 21
  start-page: 5529
  year: 2005
  ident: D1RA03517G/cit56
  publication-title: Langmuir
  doi: 10.1021/la0470737
– volume: 17
  start-page: 88
  year: 1994
  ident: D1RA03517G/cit29
  publication-title: Int. J. Artif. Organs
  doi: 10.1177/039139889401700206
– volume: 3
  start-page: e1701629
  year: 2017
  ident: D1RA03517G/cit18
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1701629
– volume: 7
  start-page: 1700873
  year: 2018
  ident: D1RA03517G/cit58
  publication-title: Adv. Healthcare Mater.
  doi: 10.1002/adhm.201700873
– volume: 3
  start-page: e1601314
  year: 2017
  ident: D1RA03517G/cit10
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1601314
– volume: 27
  start-page: 676
  year: 2015
  ident: D1RA03517G/cit15
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201404378
– volume: 383
  start-page: 30
  year: 2007
  ident: D1RA03517G/cit17
  publication-title: Clin. Chim. Acta
  doi: 10.1016/j.cca.2007.04.011
– volume: 28
  start-page: 1242
  year: 2016
  ident: D1RA03517G/cit7
  publication-title: Electroanalysis
  doi: 10.1002/elan.201600018
– volume: 4
  start-page: 1740
  year: 2003
  ident: D1RA03517G/cit50
  publication-title: Biomacromolecules
  doi: 10.1021/bm030046v
– volume: 117
  start-page: 384
  year: 2015
  ident: D1RA03517G/cit32
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2014.09.077
– volume: 5
  start-page: 1503
  year: 2014
  ident: D1RA03517G/cit59
  publication-title: Polym. Chem.
  doi: 10.1039/C3PY01202F
– volume: 23
  start-page: 690
  year: 2011
  ident: D1RA03517G/cit41
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201001215
– volume: 20
  start-page: 1697
  year: 2010
  ident: D1RA03517G/cit20
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200902429
– volume: 12
  start-page: 34190
  year: 2020
  ident: D1RA03517G/cit46
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c08229
– volume: 14
  start-page: 1143
  year: 2019
  ident: D1RA03517G/cit42
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-019-0566-z
– volume: 529
  start-page: 509
  year: 2016
  ident: D1RA03517G/cit8
  publication-title: Nature
  doi: 10.1038/nature16521
– volume: 6
  start-page: 1482
  year: 2021
  ident: D1RA03517G/cit34
  publication-title: ACS sensors
  doi: 10.1021/acssensors.1c00390
– volume: 11
  start-page: 566
  year: 2016
  ident: D1RA03517G/cit6
  publication-title: Nat. Nanotech.
  doi: 10.1038/nnano.2016.38
– volume: 10
  start-page: 5859
  year: 2010
  ident: D1RA03517G/cit23
  publication-title: Sensors
  doi: 10.3390/s100605859
– volume: 7
  start-page: 41384
  year: 2017
  ident: D1RA03517G/cit64
  publication-title: RSC Adv.
  doi: 10.1039/C7RA06965K
– volume: 28
  start-page: 1805754
  year: 2018
  ident: D1RA03517G/cit11
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201805754
– volume: 143
  start-page: 81
  year: 2018
  ident: D1RA03517G/cit53
  publication-title: Analyst
  doi: 10.1039/C7AN01571B
– volume: 350
  start-page: 387
  year: 2010
  ident: D1RA03517G/cit48
  publication-title: J. Member. Sci.
  doi: 10.1016/j.memsci.2010.01.015
– volume: 8
  start-page: 15710
  year: 2016
  ident: D1RA03517G/cit49
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b03098
– volume: 13
  start-page: 1780
  year: 2013
  ident: D1RA03517G/cit28
  publication-title: Lap Chip
  doi: 10.1039/c3lc41308j
– volume: 51
  start-page: 5283
  year: 2010
  ident: D1RA03517G/cit40
  publication-title: Polymer
  doi: 10.1016/j.polymer.2010.08.022
– volume: 23
  start-page: 1100
  year: 2013
  ident: D1RA03517G/cit38
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201201386
– volume: 12
  start-page: 19317
  year: 2020
  ident: D1RA03517G/cit65
  publication-title: Nanoscale
  doi: 10.1039/D0NR03193C
– volume: 24
  start-page: 781
  year: 1985
  ident: D1RA03517G/cit44
  publication-title: JPM. J. Appl. Phys.
  doi: 10.1143/JJAP.24.L781
– volume: 33
  start-page: 1003
  year: 2012
  ident: D1RA03517G/cit55
  publication-title: Macromol. Rapid Commun.
  doi: 10.1002/marc.201100858
– volume: 86
  start-page: 2871
  year: 2014
  ident: D1RA03517G/cit51
  publication-title: Anal. Chem.
  doi: 10.1021/ac500467c
– volume: 83
  start-page: 8341
  year: 2011
  ident: D1RA03517G/cit12
  publication-title: Anal. Chem.
  doi: 10.1021/ac201700c
– volume: 7
  start-page: 5369
  year: 2019
  ident: D1RA03517G/cit43
  publication-title: Biomater. Sci.
  doi: 10.1039/C9BM01275C
– volume: 20
  start-page: 423
  year: 2019
  ident: D1RA03517G/cit39
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms20020423
– volume: 2
  start-page: 178
  year: 2008
  ident: D1RA03517G/cit4
  publication-title: J. Diabetes Sci. Technol.
  doi: 10.1177/193229680800200202
– volume: 5
  start-page: 1529
  year: 2011
  ident: D1RA03517G/cit2
  publication-title: J. Diabetes Sci. Technol.
  doi: 10.1177/193229681100500630
– volume: 2
  start-page: 882
  year: 2008
  ident: D1RA03517G/cit3
  publication-title: J. Diabetes Sci. Technol.
  doi: 10.1177/193229680800200520
– volume: 207
  start-page: 297
  year: 2015
  ident: D1RA03517G/cit25
  publication-title: Sens. Actuators. B
  doi: 10.1016/j.snb.2014.10.073
– volume: 4
  start-page: eaap9841
  year: 2018
  ident: D1RA03517G/cit14
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aap9841
– volume: 89
  start-page: 10431
  year: 2017
  ident: D1RA03517G/cit22
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.7b02430
– volume: 21
  start-page: 1968
  year: 2009
  ident: D1RA03517G/cit45
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200803125
– volume: 26
  start-page: 3290
  year: 2011
  ident: D1RA03517G/cit13
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2010.12.042
– volume: 57
  start-page: 675
  year: 2011
  ident: D1RA03517G/cit16
  publication-title: Clin. Chem.
  doi: 10.1373/clinchem.2010.153767
– volume: 321
  start-page: 236
  year: 2020
  ident: D1RA03517G/cit60
  publication-title: J. Controlled Release
  doi: 10.1016/j.jconrel.2020.02.014
– volume: 21
  start-page: 2441
  year: 2009
  ident: D1RA03517G/cit21
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200900383
– volume: 12
  start-page: 22787
  year: 2020
  ident: D1RA03517G/cit27
  publication-title: Nanoscale
  doi: 10.1039/D0NR05854H
– volume: 2
  start-page: 245
  year: 2012
  ident: D1RA03517G/cit26
  publication-title: Biosensors
  doi: 10.3390/bios2030245
– volume: 23
  start-page: 690
  year: 2011
  ident: D1RA03517G/cit31
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201001215
– volume: 120
  start-page: 3852
  year: 2020
  ident: D1RA03517G/cit35
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00739
– volume: 27
  start-page: 1047
  year: 2004
  ident: D1RA03517G/cit1
  publication-title: Diabetes care
  doi: 10.2337/diacare.27.5.1047
– volume: 21
  start-page: 1838
  year: 2006
  ident: D1RA03517G/cit61
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2005.11.028
– volume: 7
  start-page: 2851
  year: 2020
  ident: D1RA03517G/cit33
  publication-title: Chem. Electro. Chem.
– volume: 19
  start-page: 3489
  year: 2009
  ident: D1RA03517G/cit54
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200900943
– volume: 22
  start-page: 920
  year: 2010
  ident: D1RA03517G/cit19
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200901407
– volume: 125
  start-page: 3322
  year: 2003
  ident: D1RA03517G/cit62
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja021037h
SSID ssj0000651261
Score 2.3672163
Snippet A glucose biosensor prepared using interpenetrating polymer network (IPN) hydrogel as a sensing material is the subject of growing interest due to its fast...
SourceID pubmedcentral
proquest
pubmed
crossref
rsc
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 27561
SubjectTerms adsorption
Antifouling coatings
Arrays
Barriers
Biosensors
Brushes
Chemistry
Contaminants
Glucose
Glucose monitoring
Hydrogels
Interpenetrating networks
Monitoring
phenylboronic acids
Polymers
Proteins
saliva
Sandwich structures
Sensitivity enhancement
Substrates
synergism
Synergistic effect
zwitterions
Title Antifouling hydrogel film based on a sandwich array for salivary glucose monitoring
URI https://www.ncbi.nlm.nih.gov/pubmed/35480666
https://www.proquest.com/docview/2562162314
https://www.proquest.com/docview/2636782003
https://www.proquest.com/docview/2656747318
https://pubmed.ncbi.nlm.nih.gov/PMC9037900
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdYd4AL4msQGJMRXFAViGMnqY9V-ZgQcNhWVLhUju20QVuK0lbT-Ot5dmKn1QoCLlEbv0aN38_P78vvIfQi5jqGbczEDJUKmWIqFGkmw2RgMioJyfLMnHf-9Dk9HrMPk2TSdXG0p0tW-Sv5c-e5kv_hKtwDvppTsv_AWf9QuAGfgb9wBQ7D9a94PDSZPqalOZj78ytVL2b63FRauuibzUmZQIDoL0WlLks574u6Fk165lKYAFB91XcJ6xd2ZdduG3MFu09HLkfAa97ewfytLHRLbv3xrdt5Xl52h8s-lmvrd1-L6jvAcNZhyIm6TadDbL2obbqztsIpBrsaeNG0WfGSlGwghrFNuZglTc31dpM13_lOCR5RUwBVkVqYGGc26_Ypnz3YDe6h_RjMg7iH9k--jCdfvXcNFCsCtqGrR0v56-5H2xrINbPienbsXu2awVil4-wOut1aC3jYsP4uuqGre-jmyDXpu49ONyCAHQSwgQC2EMCLCgvsIIAtBDBAADsI4BYCuIPAAzR-9_ZsdBy2fTJCyVKyChUXRvLyQmfxQCZRAQoI0zTLJOji-aBIUprqnNKCS8YZVTGRREY8y5lOSUE5PUC9alHpRwiD9ZqYSLtmQAm65SDmiSCS02JQgKavAvTSzd1UtkXkTS-T86lNZqB8-oacDO08vw_Qc0_7oymdspPq0LFg2i6t5RT08JiAYk5YgJ75YZhaE80SlV6sgQbeyhR7jOifaJIU7GV4jwA9bLjq_wo1lQ7BeA9QtsVvT2AKr2-PVOXcFmDnEc14FAXoAJDh6TuEPf7dwBN0q1tNh6i3qtf6KSi1q_zIOoOOWhz_Aus7pfg
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Antifouling+hydrogel+film+based+on+a+sandwich+array+for+salivary+glucose+monitoring&rft.jtitle=RSC+advances&rft.au=Zhang%2C+Zifeng&rft.au=Wang%2C+Shiwen&rft.au=Liu%2C+Guanjiang&rft.au=Hu%2C+Debo&rft.date=2021-08-12&rft.eissn=2046-2069&rft.volume=11&rft.issue=44&rft.spage=27561&rft.epage=27569&rft_id=info:doi/10.1039%2Fd1ra03517g&rft.externalDocID=d1ra03517g
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-2069&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-2069&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-2069&client=summon