Antifouling hydrogel film based on a sandwich array for salivary glucose monitoring
A glucose biosensor prepared using interpenetrating polymer network (IPN) hydrogel as a sensing material is the subject of growing interest due to its fast response and high sensitivity. However, the IPN hydrogel circumvents the traditional antifouling strategy, which often requires thick antifoulin...
Saved in:
Published in | RSC advances Vol. 11; no. 44; pp. 27561 - 27569 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
12.08.2021
The Royal Society of Chemistry |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A glucose biosensor prepared using interpenetrating polymer network (IPN) hydrogel as a sensing material is the subject of growing interest due to its fast response and high sensitivity. However, the IPN hydrogel circumvents the traditional antifouling strategy, which often requires thick antifouling coating that can result in poor glucose sensitivity owing to its energetic physical barrier (greater than 43 nm); thus a complex, time-consuming and high-cost salivary preprocessing is needed to remove protein contaminants before salivary glucose detection using the IPN hydrogel. This limits its practical application in trace salivary glucose-level monitoring. Herein, a new hydrogel film based on a sandwich array (HFSA) with a weak physical barrier, which exhibits superior antifouling and sensitivity in salivary glucose detection is reported. HFSA relies on the formation of the sandwich structure containing substrate-grafted, surface-grafted zwitterionic polymer brushes (pSBMA) and phenylboronic acid (PBA)-functionalized hydrogel. The synergistic effect originating from pSBMA brushes on the surface of HFSA and inside the HFSA matrix provides a suitable physical barrier (∼28 nm) and a robust hydration layer for HFSA, which can enhance its sensitivity and antifouling. The results show that HFSA reduce the adsorption of nonspecific protein in 10% saliva by nearly 90% and enhanced the glucose sensitivity by 130%, compared to the IPN hydrogel film. These results demonstrate that HFSA exhibits significant potential as an antifouling and sensitive glucose probe for QCM sensors in non-invasive salivary glucose monitoring.
The synergistic effect originating from pSBMA brushes on the surface of HSA and inside the HSA matrix provides a suitable physical barrier (∼28 nm) and robust hydration layer for HSA, which can enhance its sensitivity and antifouling. |
---|---|
AbstractList | A glucose biosensor prepared using interpenetrating polymer network (IPN) hydrogel as a sensing material is the subject of growing interest due to its fast response and high sensitivity. However, the IPN hydrogel circumvents the traditional antifouling strategy, which often requires thick antifouling coating that can result in poor glucose sensitivity owing to its energetic physical barrier (greater than 43 nm); thus a complex, time-consuming and high-cost salivary preprocessing is needed to remove protein contaminants before salivary glucose detection using the IPN hydrogel. This limits its practical application in trace salivary glucose-level monitoring. Herein, a new hydrogel film based on a sandwich array (HFSA) with a weak physical barrier, which exhibits superior antifouling and sensitivity in salivary glucose detection is reported. HFSA relies on the formation of the sandwich structure containing substrate-grafted, surface-grafted zwitterionic polymer brushes (pSBMA) and phenylboronic acid (PBA)-functionalized hydrogel. The synergistic effect originating from pSBMA brushes on the surface of HFSA and inside the HFSA matrix provides a suitable physical barrier (∼28 nm) and a robust hydration layer for HFSA, which can enhance its sensitivity and antifouling. The results show that HFSA reduce the adsorption of nonspecific protein in 10% saliva by nearly 90% and enhanced the glucose sensitivity by 130%, compared to the IPN hydrogel film. These results demonstrate that HFSA exhibits significant potential as an antifouling and sensitive glucose probe for QCM sensors in non-invasive salivary glucose monitoring. A glucose biosensor prepared using interpenetrating polymer network (IPN) hydrogel as a sensing material is the subject of growing interest due to its fast response and high sensitivity. However, the IPN hydrogel circumvents the traditional antifouling strategy, which often requires thick antifouling coating that can result in poor glucose sensitivity owing to its energetic physical barrier (greater than 43 nm); thus a complex, time-consuming and high-cost salivary preprocessing is needed to remove protein contaminants before salivary glucose detection using the IPN hydrogel. This limits its practical application in trace salivary glucose-level monitoring. Herein, a new hydrogel film based on a sandwich array (HFSA) with a weak physical barrier, which exhibits superior antifouling and sensitivity in salivary glucose detection is reported. HFSA relies on the formation of the sandwich structure containing substrate-grafted, surface-grafted zwitterionic polymer brushes (pSBMA) and phenylboronic acid (PBA)-functionalized hydrogel. The synergistic effect originating from pSBMA brushes on the surface of HFSA and inside the HFSA matrix provides a suitable physical barrier (∼28 nm) and a robust hydration layer for HFSA, which can enhance its sensitivity and antifouling. The results show that HFSA reduce the adsorption of nonspecific protein in 10% saliva by nearly 90% and enhanced the glucose sensitivity by 130%, compared to the IPN hydrogel film. These results demonstrate that HFSA exhibits significant potential as an antifouling and sensitive glucose probe for QCM sensors in non-invasive salivary glucose monitoring.A glucose biosensor prepared using interpenetrating polymer network (IPN) hydrogel as a sensing material is the subject of growing interest due to its fast response and high sensitivity. However, the IPN hydrogel circumvents the traditional antifouling strategy, which often requires thick antifouling coating that can result in poor glucose sensitivity owing to its energetic physical barrier (greater than 43 nm); thus a complex, time-consuming and high-cost salivary preprocessing is needed to remove protein contaminants before salivary glucose detection using the IPN hydrogel. This limits its practical application in trace salivary glucose-level monitoring. Herein, a new hydrogel film based on a sandwich array (HFSA) with a weak physical barrier, which exhibits superior antifouling and sensitivity in salivary glucose detection is reported. HFSA relies on the formation of the sandwich structure containing substrate-grafted, surface-grafted zwitterionic polymer brushes (pSBMA) and phenylboronic acid (PBA)-functionalized hydrogel. The synergistic effect originating from pSBMA brushes on the surface of HFSA and inside the HFSA matrix provides a suitable physical barrier (∼28 nm) and a robust hydration layer for HFSA, which can enhance its sensitivity and antifouling. The results show that HFSA reduce the adsorption of nonspecific protein in 10% saliva by nearly 90% and enhanced the glucose sensitivity by 130%, compared to the IPN hydrogel film. These results demonstrate that HFSA exhibits significant potential as an antifouling and sensitive glucose probe for QCM sensors in non-invasive salivary glucose monitoring. A glucose biosensor prepared using interpenetrating polymer network (IPN) hydrogel as a sensing material is the subject of growing interest due to its fast response and high sensitivity. However, the IPN hydrogel circumvents the traditional antifouling strategy, which often requires thick antifouling coating that can result in poor glucose sensitivity owing to its energetic physical barrier (greater than 43 nm); thus a complex, time-consuming and high-cost salivary preprocessing is needed to remove protein contaminants before salivary glucose detection using the IPN hydrogel. This limits its practical application in trace salivary glucose-level monitoring. Herein, a new hydrogel film based on a sandwich array (HFSA) with a weak physical barrier, which exhibits superior antifouling and sensitivity in salivary glucose detection is reported. HFSA relies on the formation of the sandwich structure containing substrate-grafted, surface-grafted zwitterionic polymer brushes (pSBMA) and phenylboronic acid (PBA)-functionalized hydrogel. The synergistic effect originating from pSBMA brushes on the surface of HFSA and inside the HFSA matrix provides a suitable physical barrier (∼28 nm) and a robust hydration layer for HFSA, which can enhance its sensitivity and antifouling. The results show that HFSA reduce the adsorption of nonspecific protein in 10% saliva by nearly 90% and enhanced the glucose sensitivity by 130%, compared to the IPN hydrogel film. These results demonstrate that HFSA exhibits significant potential as an antifouling and sensitive glucose probe for QCM sensors in non-invasive salivary glucose monitoring. The synergistic effect originating from pSBMA brushes on the surface of HSA and inside the HSA matrix provides a suitable physical barrier (∼28 nm) and robust hydration layer for HSA, which can enhance its sensitivity and antifouling. |
Author | Dou, Qian Wang, Shiwen Zhang, Zifeng Hu, Debo Yang, Bei Liu, Guanjiang Dai, Qing |
AuthorAffiliation | CAS Center for Excellence in Nanoscience School of Materials Science and Engineering CAS Key Laboratory of Standardization and Measurement for Nanotechnology National Center for Nanoscience and Technology Division of Nanophotonics Center of Materials Science and Optoelectronics Engineering Zhengzhou University University of Chinese Academy of Sciences |
AuthorAffiliation_xml | – name: Zhengzhou University – name: CAS Center for Excellence in Nanoscience – name: Division of Nanophotonics – name: Center of Materials Science and Optoelectronics Engineering – name: CAS Key Laboratory of Standardization and Measurement for Nanotechnology – name: School of Materials Science and Engineering – name: National Center for Nanoscience and Technology – name: University of Chinese Academy of Sciences |
Author_xml | – sequence: 1 givenname: Zifeng surname: Zhang fullname: Zhang, Zifeng – sequence: 2 givenname: Shiwen surname: Wang fullname: Wang, Shiwen – sequence: 3 givenname: Guanjiang surname: Liu fullname: Liu, Guanjiang – sequence: 4 givenname: Debo surname: Hu fullname: Hu, Debo – sequence: 5 givenname: Bei surname: Yang fullname: Yang, Bei – sequence: 6 givenname: Qing surname: Dai fullname: Dai, Qing – sequence: 7 givenname: Qian surname: Dou fullname: Dou, Qian |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35480666$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks1vFCEYh4mpsbX24l1D4sWYrPLNcGmyqVpNmpj4cSYMA7M0DFSYqdn_XurWtTYe5AKB533yg5fH4CDl5AB4itFrjKh6M-BiEOVYjg_AEUFMrAgS6uDO-hCc1HqJ2hAcE4EfgUPKWYeEEEfgyzrNweclhjTCzXYoeXQR-hAn2JvqBpgTNLCaNPwIdgNNKWYLfS5tK4ZrU7ZwjIvN1cEppzDn0jxPwENvYnUnt_Mx-Pb-3dezD6uLT-cfz9YXK8sEnleDMoxwqbyTpLMceSE75qiUlkved54LKlxPqVeWKUYHgi22SMmeOYE9VfQYnO68V0s_ucG6NBcT9VUJUwumswn675MUNnrM11ohKhVCTfDyVlDy98XVWU-hWhejSS4vVRPBhWSS4u4_UNrikyZt6It76GVeSmovoQkXBAtCMWvU87vh96l_t6YBr3aALbnW4vwewUjftF6_xZ_Xv1p_3mB0D7ZhNnPINxcP8d8lz3Ylpdq9-s9voj8Bu8y5KA |
CitedBy_id | crossref_primary_10_54097_hset_v54i_9704 crossref_primary_10_1016_j_ijoes_2025_100980 crossref_primary_10_1016_j_hybadv_2023_100052 crossref_primary_10_1007_s10704_023_00722_x crossref_primary_10_1016_j_carbpol_2022_120351 crossref_primary_10_1002_macp_202300257 crossref_primary_10_1016_j_microc_2023_109818 crossref_primary_10_1021_acs_chemmater_2c01666 |
Cites_doi | 10.1021/ja034820y 10.1021/acs.analchem.6b03387 10.1126/scitranslmed.aaf2593 10.1016/j.bios.2012.03.018 10.1016/j.biomaterials.2011.11.071 10.1039/D0TC00725K 10.1021/acs.langmuir.6b03016 10.1021/ac00094a007 10.1002/admi.201900196 10.1021/la0470737 10.1177/039139889401700206 10.1126/sciadv.1701629 10.1002/adhm.201700873 10.1126/sciadv.1601314 10.1002/adma.201404378 10.1016/j.cca.2007.04.011 10.1002/elan.201600018 10.1021/bm030046v 10.1016/j.carbpol.2014.09.077 10.1039/C3PY01202F 10.1002/adma.201001215 10.1002/adfm.200902429 10.1021/acsami.0c08229 10.1038/s41565-019-0566-z 10.1038/nature16521 10.1021/acssensors.1c00390 10.1038/nnano.2016.38 10.3390/s100605859 10.1039/C7RA06965K 10.1002/adfm.201805754 10.1039/C7AN01571B 10.1016/j.memsci.2010.01.015 10.1021/acsami.6b03098 10.1039/c3lc41308j 10.1016/j.polymer.2010.08.022 10.1002/adfm.201201386 10.1039/D0NR03193C 10.1143/JJAP.24.L781 10.1002/marc.201100858 10.1021/ac500467c 10.1021/ac201700c 10.1039/C9BM01275C 10.3390/ijms20020423 10.1177/193229680800200202 10.1177/193229681100500630 10.1177/193229680800200520 10.1016/j.snb.2014.10.073 10.1126/sciadv.aap9841 10.1021/acs.analchem.7b02430 10.1002/adma.200803125 10.1016/j.bios.2010.12.042 10.1373/clinchem.2010.153767 10.1016/j.jconrel.2020.02.014 10.1002/adma.200900383 10.1039/D0NR05854H 10.3390/bios2030245 10.1021/acs.chemrev.9b00739 10.2337/diacare.27.5.1047 10.1016/j.bios.2005.11.028 10.1002/adfm.200900943 10.1002/adma.200901407 10.1021/ja021037h |
ContentType | Journal Article |
Copyright | This journal is © The Royal Society of Chemistry. Copyright Royal Society of Chemistry 2021 This journal is © The Royal Society of Chemistry 2021 The Royal Society of Chemistry |
Copyright_xml | – notice: This journal is © The Royal Society of Chemistry. – notice: Copyright Royal Society of Chemistry 2021 – notice: This journal is © The Royal Society of Chemistry 2021 The Royal Society of Chemistry |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7S9 L.6 7X8 5PM |
DOI | 10.1039/d1ra03517g |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic AGRICOLA CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2046-2069 |
EndPage | 27569 |
ExternalDocumentID | PMC9037900 35480666 10_1039_D1RA03517G d1ra03517g |
Genre | Journal Article |
GrantInformation_xml | – fundername: ; grantid: KFJ-STS-ZDTP-063 – fundername: ; grantid: 51925203; U2032206 – fundername: ; grantid: 2016YFA0201600 |
GroupedDBID | 0-7 0R AAGNR AAIWI ABGFH ACGFS ADBBV ADMRA AENEX AFVBQ AGRSR AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ANUXI ASKNT AUDPV BCNDV BLAPV BSQNT C6K CKLOX EBS EE0 EF- GROUPED_DOAJ HZ H~N J3I JG O9- OK1 R7C R7G RCNCU RPMJG RRC RSCEA RVUXY SLH SMJ ZCN 0R~ 53G AAFWJ AAHBH AAJAE AARTK AAWGC AAXHV AAYXX ABEMK ABIQK ABPDG ABXOH AEFDR AESAV AFLYV AFPKN AGEGJ AHGCF AKBGW APEMP CITATION H13 HZ~ M~E PGMZT RPM -JG NPM 7SR 8BQ 8FD JG9 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c461t-d9a42579fe728c50f6784e377c575b8f5636eb33f9c4943d21c1c097b4e61f393 |
ISSN | 2046-2069 |
IngestDate | Thu Aug 21 13:44:19 EDT 2025 Sun Aug 24 03:56:34 EDT 2025 Fri Jul 11 06:14:09 EDT 2025 Mon Jun 30 04:38:19 EDT 2025 Thu Jan 02 22:53:39 EST 2025 Thu Apr 24 23:03:40 EDT 2025 Tue Jul 01 04:06:11 EDT 2025 Sun Apr 17 04:30:15 EDT 2022 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 44 |
Language | English |
License | This journal is © The Royal Society of Chemistry. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c461t-d9a42579fe728c50f6784e377c575b8f5636eb33f9c4943d21c1c097b4e61f393 |
Notes | Electronic supplementary information (ESI) available. See DOI 10.1039/d1ra03517g ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7457-219X 0000-0002-3632-6200 0000-0001-9432-1670 |
OpenAccessLink | http://dx.doi.org/10.1039/d1ra03517g |
PMID | 35480666 |
PQID | 2562162314 |
PQPubID | 2047525 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2562162314 proquest_miscellaneous_2636782003 crossref_citationtrail_10_1039_D1RA03517G pubmedcentral_primary_oai_pubmedcentral_nih_gov_9037900 pubmed_primary_35480666 crossref_primary_10_1039_D1RA03517G rsc_primary_d1ra03517g proquest_miscellaneous_2656747318 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-August-12 |
PublicationDateYYYYMMDD | 2021-08-12 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-August-12 day: 12 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | RSC advances |
PublicationTitleAlternate | RSC Adv |
PublicationYear | 2021 |
Publisher | Royal Society of Chemistry The Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry – name: The Royal Society of Chemistry |
References | Picher (D1RA03517G/cit28) 2013; 13 Jiang (D1RA03517G/cit35) 2020; 120 Moussy (D1RA03517G/cit29) 1994; 17 Minami (D1RA03517G/cit44) 1985; 24 Liu (D1RA03517G/cit48) 2010; 350 Carlmark (D1RA03517G/cit50) 2003; 4 Heikenfeld (D1RA03517G/cit7) 2016; 28 Horgan (D1RA03517G/cit61) 2006; 21 Dou (D1RA03517G/cit65) 2020; 12 Dou (D1RA03517G/cit46) 2020; 12 Park (D1RA03517G/cit14) 2018; 4 Yao (D1RA03517G/cit23) 2010; 10 Zhang (D1RA03517G/cit58) 2018; 7 Gao (D1RA03517G/cit8) 2016; 529 Moussy (D1RA03517G/cit30) 1994; 66 Wang (D1RA03517G/cit32) 2015; 117 Hucknall (D1RA03517G/cit45) 2009; 21 Chiappin (D1RA03517G/cit17) 2007; 383 Irwin (D1RA03517G/cit56) 2005; 21 Li (D1RA03517G/cit22) 2017; 89 Tsuge (D1RA03517G/cit24) 2016; 88 He (D1RA03517G/cit43) 2019; 7 Pfaffe (D1RA03517G/cit16) 2011; 57 Erbahar (D1RA03517G/cit25) 2015; 207 Wild (D1RA03517G/cit1) 2004; 27 Klonoff (D1RA03517G/cit2) 2011; 5 Koh (D1RA03517G/cit9) 2016; 8 Mi (D1RA03517G/cit37) 2012; 33 Campuzano (D1RA03517G/cit39) 2019; 20 Dou (D1RA03517G/cit64) 2017; 7 Yao (D1RA03517G/cit13) 2011; 26 Baxamusa (D1RA03517G/cit54) 2009; 19 Hu (D1RA03517G/cit52) 2016; 32 Lazerges (D1RA03517G/cit26) 2012; 2 Zhu (D1RA03517G/cit51) 2014; 86 Banerjee (D1RA03517G/cit41) 2011; 23 Chen (D1RA03517G/cit18) 2017; 3 Herrwerth (D1RA03517G/cit36) 2003; 125 Chang (D1RA03517G/cit38) 2013; 23 Rio (D1RA03517G/cit42) 2019; 14 Mamkin (D1RA03517G/cit3) 2008; 2 Jiang (D1RA03517G/cit19) 2010; 22 Hucknall (D1RA03517G/cit21) 2009; 21 Banerjee (D1RA03517G/cit31) 2011; 23 Asher (D1RA03517G/cit62) 2003; 125 Chen (D1RA03517G/cit40) 2010; 51 Zhang (D1RA03517G/cit5) 2015; 4 Russo (D1RA03517G/cit34) 2021; 6 Torjman (D1RA03517G/cit4) 2008; 2 Yakubovsky (D1RA03517G/cit57) 2019; 6 Russo (D1RA03517G/cit33) 2020; 7 Yan (D1RA03517G/cit12) 2011; 83 Liao (D1RA03517G/cit15) 2015; 27 Zhang (D1RA03517G/cit47) 2020; 8 Lee (D1RA03517G/cit6) 2016; 11 Lee (D1RA03517G/cit10) 2017; 3 Ye (D1RA03517G/cit49) 2016; 8 Chen (D1RA03517G/cit63) 2012; 35 Hong (D1RA03517G/cit11) 2018; 28 Shen (D1RA03517G/cit60) 2020; 321 Ma (D1RA03517G/cit59) 2014; 5 Zhang (D1RA03517G/cit27) 2020; 12 Nqamchuea (D1RA03517G/cit53) 2018; 143 Hendrickson (D1RA03517G/cit20) 2010; 20 Huang (D1RA03517G/cit55) 2012; 33 |
References_xml | – volume: 125 start-page: 9359 year: 2003 ident: D1RA03517G/cit36 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja034820y – volume: 88 start-page: 10744 year: 2016 ident: D1RA03517G/cit24 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.6b03387 – volume: 8 start-page: 366ra165 year: 2016 ident: D1RA03517G/cit9 publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aaf2593 – volume: 4 start-page: 23 year: 2015 ident: D1RA03517G/cit5 publication-title: Sens. Biosens. Res. – volume: 35 start-page: 363 year: 2012 ident: D1RA03517G/cit63 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2012.03.018 – volume: 33 start-page: 2001 year: 2012 ident: D1RA03517G/cit37 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.11.071 – volume: 8 start-page: 9655 year: 2020 ident: D1RA03517G/cit47 publication-title: J. Mater. Chem. C doi: 10.1039/D0TC00725K – volume: 32 start-page: 11763 year: 2016 ident: D1RA03517G/cit52 publication-title: Langmuir doi: 10.1021/acs.langmuir.6b03016 – volume: 66 start-page: 3882 year: 1994 ident: D1RA03517G/cit30 publication-title: Anal. Chem. doi: 10.1021/ac00094a007 – volume: 6 start-page: 1900196 year: 2019 ident: D1RA03517G/cit57 publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201900196 – volume: 21 start-page: 5529 year: 2005 ident: D1RA03517G/cit56 publication-title: Langmuir doi: 10.1021/la0470737 – volume: 17 start-page: 88 year: 1994 ident: D1RA03517G/cit29 publication-title: Int. J. Artif. Organs doi: 10.1177/039139889401700206 – volume: 3 start-page: e1701629 year: 2017 ident: D1RA03517G/cit18 publication-title: Sci. Adv. doi: 10.1126/sciadv.1701629 – volume: 7 start-page: 1700873 year: 2018 ident: D1RA03517G/cit58 publication-title: Adv. Healthcare Mater. doi: 10.1002/adhm.201700873 – volume: 3 start-page: e1601314 year: 2017 ident: D1RA03517G/cit10 publication-title: Sci. Adv. doi: 10.1126/sciadv.1601314 – volume: 27 start-page: 676 year: 2015 ident: D1RA03517G/cit15 publication-title: Adv. Mater. doi: 10.1002/adma.201404378 – volume: 383 start-page: 30 year: 2007 ident: D1RA03517G/cit17 publication-title: Clin. Chim. Acta doi: 10.1016/j.cca.2007.04.011 – volume: 28 start-page: 1242 year: 2016 ident: D1RA03517G/cit7 publication-title: Electroanalysis doi: 10.1002/elan.201600018 – volume: 4 start-page: 1740 year: 2003 ident: D1RA03517G/cit50 publication-title: Biomacromolecules doi: 10.1021/bm030046v – volume: 117 start-page: 384 year: 2015 ident: D1RA03517G/cit32 publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2014.09.077 – volume: 5 start-page: 1503 year: 2014 ident: D1RA03517G/cit59 publication-title: Polym. Chem. doi: 10.1039/C3PY01202F – volume: 23 start-page: 690 year: 2011 ident: D1RA03517G/cit41 publication-title: Adv. Mater. doi: 10.1002/adma.201001215 – volume: 20 start-page: 1697 year: 2010 ident: D1RA03517G/cit20 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200902429 – volume: 12 start-page: 34190 year: 2020 ident: D1RA03517G/cit46 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c08229 – volume: 14 start-page: 1143 year: 2019 ident: D1RA03517G/cit42 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-019-0566-z – volume: 529 start-page: 509 year: 2016 ident: D1RA03517G/cit8 publication-title: Nature doi: 10.1038/nature16521 – volume: 6 start-page: 1482 year: 2021 ident: D1RA03517G/cit34 publication-title: ACS sensors doi: 10.1021/acssensors.1c00390 – volume: 11 start-page: 566 year: 2016 ident: D1RA03517G/cit6 publication-title: Nat. Nanotech. doi: 10.1038/nnano.2016.38 – volume: 10 start-page: 5859 year: 2010 ident: D1RA03517G/cit23 publication-title: Sensors doi: 10.3390/s100605859 – volume: 7 start-page: 41384 year: 2017 ident: D1RA03517G/cit64 publication-title: RSC Adv. doi: 10.1039/C7RA06965K – volume: 28 start-page: 1805754 year: 2018 ident: D1RA03517G/cit11 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201805754 – volume: 143 start-page: 81 year: 2018 ident: D1RA03517G/cit53 publication-title: Analyst doi: 10.1039/C7AN01571B – volume: 350 start-page: 387 year: 2010 ident: D1RA03517G/cit48 publication-title: J. Member. Sci. doi: 10.1016/j.memsci.2010.01.015 – volume: 8 start-page: 15710 year: 2016 ident: D1RA03517G/cit49 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b03098 – volume: 13 start-page: 1780 year: 2013 ident: D1RA03517G/cit28 publication-title: Lap Chip doi: 10.1039/c3lc41308j – volume: 51 start-page: 5283 year: 2010 ident: D1RA03517G/cit40 publication-title: Polymer doi: 10.1016/j.polymer.2010.08.022 – volume: 23 start-page: 1100 year: 2013 ident: D1RA03517G/cit38 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201201386 – volume: 12 start-page: 19317 year: 2020 ident: D1RA03517G/cit65 publication-title: Nanoscale doi: 10.1039/D0NR03193C – volume: 24 start-page: 781 year: 1985 ident: D1RA03517G/cit44 publication-title: JPM. J. Appl. Phys. doi: 10.1143/JJAP.24.L781 – volume: 33 start-page: 1003 year: 2012 ident: D1RA03517G/cit55 publication-title: Macromol. Rapid Commun. doi: 10.1002/marc.201100858 – volume: 86 start-page: 2871 year: 2014 ident: D1RA03517G/cit51 publication-title: Anal. Chem. doi: 10.1021/ac500467c – volume: 83 start-page: 8341 year: 2011 ident: D1RA03517G/cit12 publication-title: Anal. Chem. doi: 10.1021/ac201700c – volume: 7 start-page: 5369 year: 2019 ident: D1RA03517G/cit43 publication-title: Biomater. Sci. doi: 10.1039/C9BM01275C – volume: 20 start-page: 423 year: 2019 ident: D1RA03517G/cit39 publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms20020423 – volume: 2 start-page: 178 year: 2008 ident: D1RA03517G/cit4 publication-title: J. Diabetes Sci. Technol. doi: 10.1177/193229680800200202 – volume: 5 start-page: 1529 year: 2011 ident: D1RA03517G/cit2 publication-title: J. Diabetes Sci. Technol. doi: 10.1177/193229681100500630 – volume: 2 start-page: 882 year: 2008 ident: D1RA03517G/cit3 publication-title: J. Diabetes Sci. Technol. doi: 10.1177/193229680800200520 – volume: 207 start-page: 297 year: 2015 ident: D1RA03517G/cit25 publication-title: Sens. Actuators. B doi: 10.1016/j.snb.2014.10.073 – volume: 4 start-page: eaap9841 year: 2018 ident: D1RA03517G/cit14 publication-title: Sci. Adv. doi: 10.1126/sciadv.aap9841 – volume: 89 start-page: 10431 year: 2017 ident: D1RA03517G/cit22 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.7b02430 – volume: 21 start-page: 1968 year: 2009 ident: D1RA03517G/cit45 publication-title: Adv. Mater. doi: 10.1002/adma.200803125 – volume: 26 start-page: 3290 year: 2011 ident: D1RA03517G/cit13 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2010.12.042 – volume: 57 start-page: 675 year: 2011 ident: D1RA03517G/cit16 publication-title: Clin. Chem. doi: 10.1373/clinchem.2010.153767 – volume: 321 start-page: 236 year: 2020 ident: D1RA03517G/cit60 publication-title: J. Controlled Release doi: 10.1016/j.jconrel.2020.02.014 – volume: 21 start-page: 2441 year: 2009 ident: D1RA03517G/cit21 publication-title: Adv. Mater. doi: 10.1002/adma.200900383 – volume: 12 start-page: 22787 year: 2020 ident: D1RA03517G/cit27 publication-title: Nanoscale doi: 10.1039/D0NR05854H – volume: 2 start-page: 245 year: 2012 ident: D1RA03517G/cit26 publication-title: Biosensors doi: 10.3390/bios2030245 – volume: 23 start-page: 690 year: 2011 ident: D1RA03517G/cit31 publication-title: Adv. Mater. doi: 10.1002/adma.201001215 – volume: 120 start-page: 3852 year: 2020 ident: D1RA03517G/cit35 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00739 – volume: 27 start-page: 1047 year: 2004 ident: D1RA03517G/cit1 publication-title: Diabetes care doi: 10.2337/diacare.27.5.1047 – volume: 21 start-page: 1838 year: 2006 ident: D1RA03517G/cit61 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2005.11.028 – volume: 7 start-page: 2851 year: 2020 ident: D1RA03517G/cit33 publication-title: Chem. Electro. Chem. – volume: 19 start-page: 3489 year: 2009 ident: D1RA03517G/cit54 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200900943 – volume: 22 start-page: 920 year: 2010 ident: D1RA03517G/cit19 publication-title: Adv. Mater. doi: 10.1002/adma.200901407 – volume: 125 start-page: 3322 year: 2003 ident: D1RA03517G/cit62 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja021037h |
SSID | ssj0000651261 |
Score | 2.3672163 |
Snippet | A glucose biosensor prepared using interpenetrating polymer network (IPN) hydrogel as a sensing material is the subject of growing interest due to its fast... |
SourceID | pubmedcentral proquest pubmed crossref rsc |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 27561 |
SubjectTerms | adsorption Antifouling coatings Arrays Barriers Biosensors Brushes Chemistry Contaminants Glucose Glucose monitoring Hydrogels Interpenetrating networks Monitoring phenylboronic acids Polymers Proteins saliva Sandwich structures Sensitivity enhancement Substrates synergism Synergistic effect zwitterions |
Title | Antifouling hydrogel film based on a sandwich array for salivary glucose monitoring |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35480666 https://www.proquest.com/docview/2562162314 https://www.proquest.com/docview/2636782003 https://www.proquest.com/docview/2656747318 https://pubmed.ncbi.nlm.nih.gov/PMC9037900 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdYd4AL4msQGJMRXFAViGMnqY9V-ZgQcNhWVLhUju20QVuK0lbT-Ot5dmKn1QoCLlEbv0aN38_P78vvIfQi5jqGbczEDJUKmWIqFGkmw2RgMioJyfLMnHf-9Dk9HrMPk2TSdXG0p0tW-Sv5c-e5kv_hKtwDvppTsv_AWf9QuAGfgb9wBQ7D9a94PDSZPqalOZj78ytVL2b63FRauuibzUmZQIDoL0WlLks574u6Fk165lKYAFB91XcJ6xd2ZdduG3MFu09HLkfAa97ewfytLHRLbv3xrdt5Xl52h8s-lmvrd1-L6jvAcNZhyIm6TadDbL2obbqztsIpBrsaeNG0WfGSlGwghrFNuZglTc31dpM13_lOCR5RUwBVkVqYGGc26_Ypnz3YDe6h_RjMg7iH9k--jCdfvXcNFCsCtqGrR0v56-5H2xrINbPienbsXu2awVil4-wOut1aC3jYsP4uuqGre-jmyDXpu49ONyCAHQSwgQC2EMCLCgvsIIAtBDBAADsI4BYCuIPAAzR-9_ZsdBy2fTJCyVKyChUXRvLyQmfxQCZRAQoI0zTLJOji-aBIUprqnNKCS8YZVTGRREY8y5lOSUE5PUC9alHpRwiD9ZqYSLtmQAm65SDmiSCS02JQgKavAvTSzd1UtkXkTS-T86lNZqB8-oacDO08vw_Qc0_7oymdspPq0LFg2i6t5RT08JiAYk5YgJ75YZhaE80SlV6sgQbeyhR7jOifaJIU7GV4jwA9bLjq_wo1lQ7BeA9QtsVvT2AKr2-PVOXcFmDnEc14FAXoAJDh6TuEPf7dwBN0q1tNh6i3qtf6KSi1q_zIOoOOWhz_Aus7pfg |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Antifouling+hydrogel+film+based+on+a+sandwich+array+for+salivary+glucose+monitoring&rft.jtitle=RSC+advances&rft.au=Zhang%2C+Zifeng&rft.au=Wang%2C+Shiwen&rft.au=Liu%2C+Guanjiang&rft.au=Hu%2C+Debo&rft.date=2021-08-12&rft.eissn=2046-2069&rft.volume=11&rft.issue=44&rft.spage=27561&rft.epage=27569&rft_id=info:doi/10.1039%2Fd1ra03517g&rft.externalDocID=d1ra03517g |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-2069&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-2069&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-2069&client=summon |