Preparation of hybrid paper electrode based on hexagonal boron nitride integrated graphene nanocomposite for free-standing flexible supercapacitors

Flexible energy storage devices have received great interest due to the increasing demand for wearable and flexible electronic devices with high-power energy sources. Herein, a novel hybrid flexible hexagonal boron nitride integrated graphene paper (BN/GrP) is fabricated from 2D hexagonal boron nitr...

Full description

Saved in:
Bibliographic Details
Published inRSC advances Vol. 11; no. 6; pp. 3445 - 3451
Main Authors Rajendran, Jerome, Reshetilov, Anatoly N, Sundramoorthy, Ashok K
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 15.01.2021
The Royal Society of Chemistry
Subjects
Online AccessGet full text
ISSN2046-2069
2046-2069
DOI10.1039/d0ra10735b

Cover

Loading…
Abstract Flexible energy storage devices have received great interest due to the increasing demand for wearable and flexible electronic devices with high-power energy sources. Herein, a novel hybrid flexible hexagonal boron nitride integrated graphene paper (BN/GrP) is fabricated from 2D hexagonal boron nitride (h-BN) nanosheets integrated with graphene sheets dispersion via a simple vacuum filtration method. FE-SEM indicated that layered graphene nanosheets tightly confined with h-BN nanosheets. Further, the Raman spectroscopy confirmed successful integration of BN with graphene. As-prepared BN/GrP free-standing flexible conductive paper showed high electrical conductivity of 5.36 × 10 4 S m −1 with the sheet resistance of 8.87 Ω sq −1 . However, after 1000 continuous bending cycles, the BN/GrP sheet resistance increased just about 8.7% which indicated good flexibility of the paper. Furthermore, as-prepared BN/GrP showed excellent specific capacitance of 321.95 F g −1 at current density of 0.5 A g −1 . In addition, the power and energy densities were obtained as 3588.3 W kg −1 , and 44.7 W h kg −1 , respectively. The stability of the prepared flexible electrode was tested in galvanostatic charge/discharge cycles, where the results showed the 96.3% retention even after 6000 cycles. These results exhibited that the proposed BN/GrP may be useful to prepare flexible energy-storage systems. As-prepared BN/GrP free-standing flexible conductive paper showed high electrical conductivity of 5.36 × 10 4 S m −1 with the sheet resistance of 8.87 Ω sq −1 . Furthermore, BN/GrP showed excellent specific capacitance of 321.95 F g −1 at current density of 0.5 A g −1 . In addition, the power and energy densities were obtained as 3588.3 W kg −1 , and 44.7 W h kg −1 .
AbstractList Flexible energy storage devices have received great interest due to the increasing demand for wearable and flexible electronic devices with high-power energy sources. Herein, a novel hybrid flexible hexagonal boron nitride integrated graphene paper (BN/GrP) is fabricated from 2D hexagonal boron nitride (h-BN) nanosheets integrated with graphene sheets dispersion via a simple vacuum filtration method. FE-SEM indicated that layered graphene nanosheets tightly confined with h-BN nanosheets. Further, the Raman spectroscopy confirmed successful integration of BN with graphene. As-prepared BN/GrP free-standing flexible conductive paper showed high electrical conductivity of 5.36 × 10⁴ S m⁻¹ with the sheet resistance of 8.87 Ω sq⁻¹. However, after 1000 continuous bending cycles, the BN/GrP sheet resistance increased just about 8.7% which indicated good flexibility of the paper. Furthermore, as-prepared BN/GrP showed excellent specific capacitance of 321.95 F g⁻¹ at current density of 0.5 A g⁻¹. In addition, the power and energy densities were obtained as 3588.3 W kg⁻¹, and 44.7 W h kg⁻¹, respectively. The stability of the prepared flexible electrode was tested in galvanostatic charge/discharge cycles, where the results showed the 96.3% retention even after 6000 cycles. These results exhibited that the proposed BN/GrP may be useful to prepare flexible energy-storage systems.
Flexible energy storage devices have received great interest due to the increasing demand for wearable and flexible electronic devices with high-power energy sources. Herein, a novel hybrid flexible hexagonal boron nitride integrated graphene paper (BN/GrP) is fabricated from 2D hexagonal boron nitride (h-BN) nanosheets integrated with graphene sheets dispersion a simple vacuum filtration method. FE-SEM indicated that layered graphene nanosheets tightly confined with h-BN nanosheets. Further, the Raman spectroscopy confirmed successful integration of BN with graphene. As-prepared BN/GrP free-standing flexible conductive paper showed high electrical conductivity of 5.36 × 10 S m with the sheet resistance of 8.87 Ω sq . However, after 1000 continuous bending cycles, the BN/GrP sheet resistance increased just about 8.7% which indicated good flexibility of the paper. Furthermore, as-prepared BN/GrP showed excellent specific capacitance of 321.95 F g at current density of 0.5 A g . In addition, the power and energy densities were obtained as 3588.3 W kg , and 44.7 W h kg , respectively. The stability of the prepared flexible electrode was tested in galvanostatic charge/discharge cycles, where the results showed the 96.3% retention even after 6000 cycles. These results exhibited that the proposed BN/GrP may be useful to prepare flexible energy-storage systems.
Flexible energy storage devices have received great interest due to the increasing demand for wearable and flexible electronic devices with high-power energy sources. Herein, a novel hybrid flexible hexagonal boron nitride integrated graphene paper (BN/GrP) is fabricated from 2D hexagonal boron nitride (h-BN) nanosheets integrated with graphene sheets dispersion via a simple vacuum filtration method. FE-SEM indicated that layered graphene nanosheets tightly confined with h-BN nanosheets. Further, the Raman spectroscopy confirmed successful integration of BN with graphene. As-prepared BN/GrP free-standing flexible conductive paper showed high electrical conductivity of 5.36 × 10 4 S m −1 with the sheet resistance of 8.87 Ω sq −1 . However, after 1000 continuous bending cycles, the BN/GrP sheet resistance increased just about 8.7% which indicated good flexibility of the paper. Furthermore, as-prepared BN/GrP showed excellent specific capacitance of 321.95 F g −1 at current density of 0.5 A g −1 . In addition, the power and energy densities were obtained as 3588.3 W kg −1 , and 44.7 W h kg −1 , respectively. The stability of the prepared flexible electrode was tested in galvanostatic charge/discharge cycles, where the results showed the 96.3% retention even after 6000 cycles. These results exhibited that the proposed BN/GrP may be useful to prepare flexible energy-storage systems. As-prepared BN/GrP free-standing flexible conductive paper showed high electrical conductivity of 5.36 × 10 4 S m −1 with the sheet resistance of 8.87 Ω sq −1 . Furthermore, BN/GrP showed excellent specific capacitance of 321.95 F g −1 at current density of 0.5 A g −1 . In addition, the power and energy densities were obtained as 3588.3 W kg −1 , and 44.7 W h kg −1 .
Flexible energy storage devices have received great interest due to the increasing demand for wearable and flexible electronic devices with high-power energy sources. Herein, a novel hybrid flexible hexagonal boron nitride integrated graphene paper (BN/GrP) is fabricated from 2D hexagonal boron nitride (h-BN) nanosheets integrated with graphene sheets dispersion via a simple vacuum filtration method. FE-SEM indicated that layered graphene nanosheets tightly confined with h-BN nanosheets. Further, the Raman spectroscopy confirmed successful integration of BN with graphene. As-prepared BN/GrP free-standing flexible conductive paper showed high electrical conductivity of 5.36 × 104 S m-1 with the sheet resistance of 8.87 Ω sq-1. However, after 1000 continuous bending cycles, the BN/GrP sheet resistance increased just about 8.7% which indicated good flexibility of the paper. Furthermore, as-prepared BN/GrP showed excellent specific capacitance of 321.95 F g-1 at current density of 0.5 A g-1. In addition, the power and energy densities were obtained as 3588.3 W kg-1, and 44.7 W h kg-1, respectively. The stability of the prepared flexible electrode was tested in galvanostatic charge/discharge cycles, where the results showed the 96.3% retention even after 6000 cycles. These results exhibited that the proposed BN/GrP may be useful to prepare flexible energy-storage systems.Flexible energy storage devices have received great interest due to the increasing demand for wearable and flexible electronic devices with high-power energy sources. Herein, a novel hybrid flexible hexagonal boron nitride integrated graphene paper (BN/GrP) is fabricated from 2D hexagonal boron nitride (h-BN) nanosheets integrated with graphene sheets dispersion via a simple vacuum filtration method. FE-SEM indicated that layered graphene nanosheets tightly confined with h-BN nanosheets. Further, the Raman spectroscopy confirmed successful integration of BN with graphene. As-prepared BN/GrP free-standing flexible conductive paper showed high electrical conductivity of 5.36 × 104 S m-1 with the sheet resistance of 8.87 Ω sq-1. However, after 1000 continuous bending cycles, the BN/GrP sheet resistance increased just about 8.7% which indicated good flexibility of the paper. Furthermore, as-prepared BN/GrP showed excellent specific capacitance of 321.95 F g-1 at current density of 0.5 A g-1. In addition, the power and energy densities were obtained as 3588.3 W kg-1, and 44.7 W h kg-1, respectively. The stability of the prepared flexible electrode was tested in galvanostatic charge/discharge cycles, where the results showed the 96.3% retention even after 6000 cycles. These results exhibited that the proposed BN/GrP may be useful to prepare flexible energy-storage systems.
Flexible energy storage devices have received great interest due to the increasing demand for wearable and flexible electronic devices with high-power energy sources. Herein, a novel hybrid flexible hexagonal boron nitride integrated graphene paper (BN/GrP) is fabricated from 2D hexagonal boron nitride (h-BN) nanosheets integrated with graphene sheets dispersion via a simple vacuum filtration method. FE-SEM indicated that layered graphene nanosheets tightly confined with h-BN nanosheets. Further, the Raman spectroscopy confirmed successful integration of BN with graphene. As-prepared BN/GrP free-standing flexible conductive paper showed high electrical conductivity of 5.36 × 10 4 S m −1 with the sheet resistance of 8.87 Ω sq −1 . However, after 1000 continuous bending cycles, the BN/GrP sheet resistance increased just about 8.7% which indicated good flexibility of the paper. Furthermore, as-prepared BN/GrP showed excellent specific capacitance of 321.95 F g −1 at current density of 0.5 A g −1 . In addition, the power and energy densities were obtained as 3588.3 W kg −1 , and 44.7 W h kg −1 , respectively. The stability of the prepared flexible electrode was tested in galvanostatic charge/discharge cycles, where the results showed the 96.3% retention even after 6000 cycles. These results exhibited that the proposed BN/GrP may be useful to prepare flexible energy-storage systems.
Flexible energy storage devices have received great interest due to the increasing demand for wearable and flexible electronic devices with high-power energy sources. Herein, a novel hybrid flexible hexagonal boron nitride integrated graphene paper (BN/GrP) is fabricated from 2D hexagonal boron nitride (h-BN) nanosheets integrated with graphene sheets dispersion via a simple vacuum filtration method. FE-SEM indicated that layered graphene nanosheets tightly confined with h-BN nanosheets. Further, the Raman spectroscopy confirmed successful integration of BN with graphene. As-prepared BN/GrP free-standing flexible conductive paper showed high electrical conductivity of 5.36 × 104 S m−1 with the sheet resistance of 8.87 Ω sq−1. However, after 1000 continuous bending cycles, the BN/GrP sheet resistance increased just about 8.7% which indicated good flexibility of the paper. Furthermore, as-prepared BN/GrP showed excellent specific capacitance of 321.95 F g−1 at current density of 0.5 A g−1. In addition, the power and energy densities were obtained as 3588.3 W kg−1, and 44.7 W h kg−1, respectively. The stability of the prepared flexible electrode was tested in galvanostatic charge/discharge cycles, where the results showed the 96.3% retention even after 6000 cycles. These results exhibited that the proposed BN/GrP may be useful to prepare flexible energy-storage systems.
Author Rajendran, Jerome
Sundramoorthy, Ashok K
Reshetilov, Anatoly N
AuthorAffiliation Department of Chemistry
SRM Institute of Science and Technology
Subdivision of "Federal Research Center Pushchino Biological Research Center of the Russian Academy of Sciences" (FRC PBRC RAS)
G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of Sciences (IBPM RAS)
AuthorAffiliation_xml – name: SRM Institute of Science and Technology
– name: Department of Chemistry
– name: Subdivision of "Federal Research Center Pushchino Biological Research Center of the Russian Academy of Sciences" (FRC PBRC RAS)
– name: G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of Sciences (IBPM RAS)
Author_xml – sequence: 1
  givenname: Jerome
  surname: Rajendran
  fullname: Rajendran, Jerome
– sequence: 2
  givenname: Anatoly N
  surname: Reshetilov
  fullname: Reshetilov, Anatoly N
– sequence: 3
  givenname: Ashok K
  surname: Sundramoorthy
  fullname: Sundramoorthy, Ashok K
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35424276$$D View this record in MEDLINE/PubMed
BookMark eNqFks9rFTEQx4NUbK29eFcCXoqwmmSz2d2LUOtPKCjSe5gks--l7EvWZFfav6P_sGlfW2sRzGUm5DPfmczMU7ITYkBCnnP2hrO6f-tYAs7aujGPyJ5gUlWCqX7nnr9LDnI-Y-WohgvFn5DdupFCilbtkcvvCSdIMPsYaBzo-sIk7-gEEyaKI9o5RYfUQEZHC7LGc1jFACM1MZV78HPhkfow46rIFKqYaY0BaYAQbdxMMfsZ6RATHRJilWcIzocVHUY892ZEmpeSzcIE1s8x5Wfk8QBjxoMbu09OP308Pf5SnXz7_PX46KSyUvG5cp2A3vatw6YxtoXOgWOmUxK4EqpWTBgExY3p2k72BgRa5MVpnJQDtvU-ebeVnRazQWcxzAlGPSW_gXShI3j990vwa72Kv3Snesk4LwKHNwIp_lwwz3rjs8VxhIBxyVqUfquuY1z9H23KPGQnuCzoqwfoWVxS6Xih5JVY07KuUC_vF39X9e1kC8C2gE0x54SDLs29HnP5ix81Z_pqf_QH9uPoen_el5DXD0JuVf8Jv9jCKds77s8y1r8BOiPTDw
CitedBy_id crossref_primary_10_1016_j_jhazmat_2022_129705
crossref_primary_10_3390_en15031162
crossref_primary_10_1007_s44174_024_00226_9
crossref_primary_10_1016_j_nanoen_2022_108060
crossref_primary_10_1039_D3RA06352F
crossref_primary_10_1039_D3RA08208C
crossref_primary_10_1016_j_chemosphere_2021_132106
crossref_primary_10_1039_D1RA03425A
crossref_primary_10_1039_D3RA08312H
crossref_primary_10_3390_cryst15010027
crossref_primary_10_1016_j_est_2024_114968
crossref_primary_10_1002_elan_202300093
crossref_primary_10_1021_acs_energyfuels_4c02987
crossref_primary_10_1039_D4RA00361F
crossref_primary_10_3390_bios13090839
crossref_primary_10_1039_D3RA06904D
crossref_primary_10_1039_D4RA05473C
crossref_primary_10_1002_ece2_22
crossref_primary_10_1039_D0MA00974A
crossref_primary_10_1016_j_molstruc_2025_141407
crossref_primary_10_1021_acsaelm_4c00709
Cites_doi 10.1021/nn1006495
10.1021/cm049685i
10.1016/j.snb.2013.11.113
10.1021/ar300253f
10.1038/nmat3944
10.1016/j.electacta.2004.12.032
10.1021/nn304833s
10.1016/j.jcis.2020.04.045
10.1016/j.electacta.2017.06.123
10.1016/j.carbon.2018.05.076
10.1021/nl404349g
10.1016/j.jpowsour.2005.04.012
10.1039/C7RA07908G
10.1016/j.jmst.2019.05.074
10.1021/acsami.7b04802
10.1039/c1jm10697j
10.1021/nn204200w
10.1021/acsnano.7b01311
10.1038/nnano.2008.215
10.1016/j.micromeso.2013.08.007
10.1002/aenm.201400064
10.1016/j.carbon.2007.02.034
10.1016/j.electacta.2018.12.096
10.1016/j.ceramint.2018.11.101
10.1021/acsnano.9b03225
10.1038/ncomms7713
10.1039/C4NR07564A
10.1021/acsnano.5b06857
10.1002/adma.201104691
10.1016/j.carbon.2010.08.007
10.1021/acsami.5b03562
10.1039/C3CS60217F
10.1016/j.snb.2011.05.062
10.1016/j.jcis.2020.01.113
10.1038/nature09379
10.1002/adma.201201948
10.1021/acsanm.9b00797
10.1021/acs.chemmater.8b00765
10.1039/C5NR06113J
10.1016/j.cej.2018.03.104
10.1002/adma.201401513
10.1021/acsomega.7b01311
10.1021/acsnano.7b03878
10.1039/C9RA01539F
10.1149/2.0041909jes
10.1016/j.cej.2020.124396
10.1039/c2jm32659k
10.1039/C8NR06429F
10.1021/nn202020w
10.1016/j.jpowsour.2016.02.047
10.1021/acsnano.9b00211
10.1016/j.aca.2020.07.060
10.1039/C7TA02613G
10.1021/acssuschemeng.6b02863
10.1016/j.snb.2019.127132
10.1038/nature07719
10.3390/en13226124
10.1021/cr300263a
10.1126/science.1200770
10.1039/C6RA16291F
10.1002/slct.202002105
ContentType Journal Article
Copyright This journal is © The Royal Society of Chemistry.
Copyright Royal Society of Chemistry 2021
This journal is © The Royal Society of Chemistry 2021 The Royal Society of Chemistry
Copyright_xml – notice: This journal is © The Royal Society of Chemistry.
– notice: Copyright Royal Society of Chemistry 2021
– notice: This journal is © The Royal Society of Chemistry 2021 The Royal Society of Chemistry
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7S9
L.6
7X8
5PM
DOI 10.1039/d0ra10735b
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList AGRICOLA
PubMed

MEDLINE - Academic

CrossRef
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2046-2069
EndPage 3451
ExternalDocumentID PMC8694011
35424276
10_1039_D0RA10735B
d0ra10735b
Genre Journal Article
GrantInformation_xml – fundername: ;
  grantid: INT/RUS/RFBR/385
GroupedDBID 0-7
0R
AAGNR
AAIWI
ABGFH
ACGFS
ADBBV
ADMRA
AENEX
AFVBQ
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ASKNT
AUDPV
BCNDV
BLAPV
BSQNT
C6K
CKLOX
EBS
EE0
EF-
GROUPED_DOAJ
HZ
H~N
J3I
JG
O9-
OK1
R7C
R7E
R7G
RCNCU
ROYLF
RPMJG
RRC
RSCEA
RVUXY
SLH
SMJ
ZCN
0R~
53G
AAFWJ
AAHBH
AAJAE
AARTK
AAWGC
AAXHV
AAYXX
ABEMK
ABIQK
ABPDG
ABXOH
AEFDR
AESAV
AFLYV
AFPKN
AGEGJ
AGRSR
AHGCF
AKBGW
ANUXI
APEMP
CITATION
H13
HZ~
M~E
PGMZT
RPM
-JG
NPM
7SR
8BQ
8FD
JG9
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c461t-d82a9c97de55bc7a8dad0b864a16263602bea61bb87849ba2ece149b5d44fe73
ISSN 2046-2069
IngestDate Thu Aug 21 18:32:03 EDT 2025
Thu Jul 10 17:16:59 EDT 2025
Fri Jul 11 03:09:49 EDT 2025
Mon Jun 30 05:26:56 EDT 2025
Thu Jan 02 22:54:22 EST 2025
Tue Jul 01 04:05:39 EDT 2025
Thu Apr 24 22:51:26 EDT 2025
Sat Jan 08 03:52:05 EST 2022
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License This journal is © The Royal Society of Chemistry.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c461t-d82a9c97de55bc7a8dad0b864a16263602bea61bb87849ba2ece149b5d44fe73
Notes 1
b
value of the BN/GrP anodic curve; galvanostatic charge/discharge (GCD) curves for GrP and BN/GrP electrodes at a current density of 1 A g
comparison of specific capacitances, retention and power density of the reported supercapacitors were provided. See DOI
Electronic supplementary information (ESI) available: Schematic illustration for the preparation of freestanding BN/GrP flexible paper using BN/graphene dispersion, preparation of BN/GrP electrode for electrochemical measurements of supercapacitor; EDX mapping analysis of BN/GrP; the peak current was plotted against the scan rate to determine the
10.1039/d0ra10735b
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8512-9393
OpenAccessLink http://dx.doi.org/10.1039/d0ra10735b
PMID 35424276
PQID 2480165708
PQPubID 2047525
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8694011
pubmed_primary_35424276
crossref_citationtrail_10_1039_D0RA10735B
proquest_journals_2480165708
proquest_miscellaneous_2651688016
crossref_primary_10_1039_D0RA10735B
rsc_primary_d0ra10735b
proquest_miscellaneous_2524248214
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-15
PublicationDateYYYYMMDD 2021-01-15
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-15
  day: 15
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle RSC advances
PublicationTitleAlternate RSC Adv
PublicationYear 2021
Publisher Royal Society of Chemistry
The Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
– name: The Royal Society of Chemistry
References Garrigue (D0RA10735B-(cit36)/*[position()=1]) 2004; 16
Suo (D0RA10735B-(cit7)/*[position()=1]) 2020; 388
Fang (D0RA10735B-(cit19)/*[position()=1]) 2013; 182
Ji (D0RA10735B-(cit44)/*[position()=1]) 2017; 5
Jerome (D0RA10735B-(cit30)/*[position()=1]) 2020; 5
Nagarajan (D0RA10735B-(cit28)/*[position()=1]) 2019; 301
Paton (D0RA10735B-(cit32)/*[position()=1]) 2014; 13
Jung (D0RA10735B-(cit41)/*[position()=1]) 2015; 7
Kovtyukhova (D0RA10735B-(cit45)/*[position()=1]) 2017; 11
Teli (D0RA10735B-(cit59)/*[position()=1]) 2020; 13
Ciesielski (D0RA10735B-(cit12)/*[position()=1]) 2014; 43
Sadak (D0RA10735B-(cit4)/*[position()=1]) 2019; 2
Golberg (D0RA10735B-(cit25)/*[position()=1]) 2010; 4
Yang (D0RA10735B-(cit21)/*[position()=1]) 2011; 21
Hernandez (D0RA10735B-(cit31)/*[position()=1]) 2008; 3
Wu (D0RA10735B-(cit2)/*[position()=1]) 2012; 24
Li (D0RA10735B-(cit6)/*[position()=1]) 2019; 45
El-Gendy (D0RA10735B-(cit52)/*[position()=1]) 2019; 9
Liang (D0RA10735B-(cit51)/*[position()=1]) 2018; 345
He (D0RA10735B-(cit62)/*[position()=1]) 2013; 7
Strong (D0RA10735B-(cit39)/*[position()=1]) 2012; 6
Stankovich (D0RA10735B-(cit56)/*[position()=1]) 2007; 45
Saha (D0RA10735B-(cit60)/*[position()=1]) 2015; 7
Liu (D0RA10735B-(cit46)/*[position()=1]) 2012; 22
Iqbal (D0RA10735B-(cit50)/*[position()=1]) 2017; 246
Sundramoorthy (D0RA10735B-(cit49)/*[position()=1]) 2018
Liu (D0RA10735B-(cit37)/*[position()=1]) 2014; 26
Choi (D0RA10735B-(cit1)/*[position()=1]) 2011; 5
Wang (D0RA10735B-(cit57)/*[position()=1]) 2019; 13
Corso (D0RA10735B-(cit61)/*[position()=1]) 2014; 14
Zhu (D0RA10735B-(cit24)/*[position()=1]) 2011; 332
Ba (D0RA10735B-(cit35)/*[position()=1]) 2017; 2
Lv (D0RA10735B-(cit40)/*[position()=1]) 2017; 7
Munuera (D0RA10735B-(cit48)/*[position()=1]) 2017; 9
Khairy (D0RA10735B-(cit53)/*[position()=1]) 2014; 193
Fang (D0RA10735B-(cit20)/*[position()=1]) 2006; 155
Wang (D0RA10735B-(cit33)/*[position()=1]) 2018; 30
Ma (D0RA10735B-(cit55)/*[position()=1]) 2016; 6
Sadak (D0RA10735B-(cit3)/*[position()=1]) 2018; 138
Gao (D0RA10735B-(cit22)/*[position()=1]) 2010; 48
Xu (D0RA10735B-(cit11)/*[position()=1]) 2013; 113
Fang (D0RA10735B-(cit17)/*[position()=1]) 2005; 50
Sheng (D0RA10735B-(cit13)/*[position()=1]) 2019; 13
Li (D0RA10735B-(cit54)/*[position()=1]) 2016; 312
Yamoah (D0RA10735B-(cit14)/*[position()=1]) 2017; 11
Fang (D0RA10735B-(cit18)/*[position()=1]) 2013; 46
Suo (D0RA10735B-(cit9)/*[position()=1]) 2020; 55
Kim (D0RA10735B-(cit23)/*[position()=1]) 2009; 457
Jerome (D0RA10735B-(cit15)/*[position()=1]) 2019; 166
Jerome (D0RA10735B-(cit29)/*[position()=1]) 2020; 1132
Zhang (D0RA10735B-(cit43)/*[position()=1]) 2014; 4
Suo (D0RA10735B-(cit5)/*[position()=1]) 2020; 566
Sakamoto (D0RA10735B-(cit34)/*[position()=1]) 2015; 6
Chen (D0RA10735B-(cit10)/*[position()=1]) 2019; 298
Deng (D0RA10735B-(cit26)/*[position()=1]) 2011; 158
Li (D0RA10735B-(cit8)/*[position()=1]) 2020; 574
Sha (D0RA10735B-(cit38)/*[position()=1]) 2016; 10
Garaj (D0RA10735B-(cit27)/*[position()=1]) 2010; 467
Li (D0RA10735B-(cit42)/*[position()=1]) 2015; 7
Liu (D0RA10735B-(cit47)/*[position()=1]) 2012; 24
Guerra (D0RA10735B-(cit58)/*[position()=1]) 2018; 10
Wang (D0RA10735B-(cit16)/*[position()=1]) 2017; 5
References_xml – issn: 2018
  end-page: p 267-306
  publication-title: Advanced Nanomaterials
  doi: Sundramoorthy Vignesh Kumar Gunasekaran
– volume: 4
  start-page: 2979
  year: 2010
  ident: D0RA10735B-(cit25)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn1006495
– volume: 16
  start-page: 2984
  year: 2004
  ident: D0RA10735B-(cit36)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm049685i
– volume: 193
  start-page: 644
  year: 2014
  ident: D0RA10735B-(cit53)/*[position()=1]
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2013.11.113
– volume: 46
  start-page: 1397
  year: 2013
  ident: D0RA10735B-(cit18)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar300253f
– volume: 13
  start-page: 624
  year: 2014
  ident: D0RA10735B-(cit32)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3944
– volume: 50
  start-page: 3616
  year: 2005
  ident: D0RA10735B-(cit17)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2004.12.032
– volume: 7
  start-page: 174
  year: 2013
  ident: D0RA10735B-(cit62)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn304833s
– volume: 574
  start-page: 174
  year: 2020
  ident: D0RA10735B-(cit8)/*[position()=1]
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2020.04.045
– volume: 246
  start-page: 1097
  year: 2017
  ident: D0RA10735B-(cit50)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.06.123
– volume: 138
  start-page: 108
  year: 2018
  ident: D0RA10735B-(cit3)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2018.05.076
– volume: 14
  start-page: 1329
  year: 2014
  ident: D0RA10735B-(cit61)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl404349g
– volume: 155
  start-page: 487
  year: 2006
  ident: D0RA10735B-(cit20)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2005.04.012
– volume: 7
  start-page: 43512
  year: 2017
  ident: D0RA10735B-(cit40)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C7RA07908G
– volume: 55
  start-page: 167
  year: 2020
  ident: D0RA10735B-(cit9)/*[position()=1]
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2019.05.074
– volume: 9
  start-page: 24085
  year: 2017
  ident: D0RA10735B-(cit48)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b04802
– volume: 21
  start-page: 8096
  year: 2011
  ident: D0RA10735B-(cit21)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/c1jm10697j
– volume: 6
  start-page: 1395
  year: 2012
  ident: D0RA10735B-(cit39)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn204200w
– volume: 11
  start-page: 6746
  year: 2017
  ident: D0RA10735B-(cit45)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b01311
– volume: 3
  start-page: 563
  year: 2008
  ident: D0RA10735B-(cit31)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2008.215
– volume: 182
  start-page: 1
  year: 2013
  ident: D0RA10735B-(cit19)/*[position()=1]
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2013.08.007
– volume: 4
  start-page: 1400064
  year: 2014
  ident: D0RA10735B-(cit43)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201400064
– volume: 45
  start-page: 1558
  year: 2007
  ident: D0RA10735B-(cit56)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2007.02.034
– volume: 298
  start-page: 313
  year: 2019
  ident: D0RA10735B-(cit10)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.12.096
– volume: 45
  start-page: 4283
  year: 2019
  ident: D0RA10735B-(cit6)/*[position()=1]
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2018.11.101
– volume: 13
  start-page: 7402
  year: 2019
  ident: D0RA10735B-(cit57)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b03225
– volume-title: Advanced Nanomaterials
  year: 2018
  ident: D0RA10735B-(cit49)/*[position()=1]
– volume: 6
  start-page: 6713
  year: 2015
  ident: D0RA10735B-(cit34)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7713
– volume: 7
  start-page: 4386
  year: 2015
  ident: D0RA10735B-(cit41)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C4NR07564A
– volume: 10
  start-page: 1411
  year: 2016
  ident: D0RA10735B-(cit38)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b06857
– volume: 24
  start-page: 1089
  year: 2012
  ident: D0RA10735B-(cit47)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201104691
– volume: 48
  start-page: 4475
  year: 2010
  ident: D0RA10735B-(cit22)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2010.08.007
– volume: 7
  start-page: 14211
  year: 2015
  ident: D0RA10735B-(cit60)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b03562
– volume: 43
  start-page: 381
  year: 2014
  ident: D0RA10735B-(cit12)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C3CS60217F
– volume: 158
  start-page: 176
  year: 2011
  ident: D0RA10735B-(cit26)/*[position()=1]
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2011.05.062
– volume: 566
  start-page: 427
  year: 2020
  ident: D0RA10735B-(cit5)/*[position()=1]
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2020.01.113
– volume: 467
  start-page: 190
  year: 2010
  ident: D0RA10735B-(cit27)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature09379
– volume: 24
  start-page: 5130
  year: 2012
  ident: D0RA10735B-(cit2)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201201948
– volume: 2
  start-page: 4386
  year: 2019
  ident: D0RA10735B-(cit4)/*[position()=1]
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.9b00797
– volume: 30
  start-page: 3048
  year: 2018
  ident: D0RA10735B-(cit33)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b00765
– volume: 7
  start-page: 18459
  year: 2015
  ident: D0RA10735B-(cit42)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C5NR06113J
– volume: 345
  start-page: 186
  year: 2018
  ident: D0RA10735B-(cit51)/*[position()=1]
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.03.104
– volume: 26
  start-page: 4855
  year: 2014
  ident: D0RA10735B-(cit37)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201401513
– volume: 2
  start-page: 8610
  year: 2017
  ident: D0RA10735B-(cit35)/*[position()=1]
  publication-title: ACS Omega
  doi: 10.1021/acsomega.7b01311
– volume: 11
  start-page: 9914
  year: 2017
  ident: D0RA10735B-(cit14)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b03878
– volume: 9
  start-page: 12555
  year: 2019
  ident: D0RA10735B-(cit52)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C9RA01539F
– volume: 166
  start-page: B3017
  year: 2019
  ident: D0RA10735B-(cit15)/*[position()=1]
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0041909jes
– volume: 388
  start-page: 124396
  year: 2020
  ident: D0RA10735B-(cit7)/*[position()=1]
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.124396
– volume: 22
  start-page: 17245
  year: 2012
  ident: D0RA10735B-(cit46)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm32659k
– volume: 10
  start-page: 19469
  year: 2018
  ident: D0RA10735B-(cit58)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C8NR06429F
– volume: 5
  start-page: 7205
  year: 2011
  ident: D0RA10735B-(cit1)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn202020w
– volume: 312
  start-page: 156
  year: 2016
  ident: D0RA10735B-(cit54)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.02.047
– volume: 13
  start-page: 4530
  year: 2019
  ident: D0RA10735B-(cit13)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b00211
– volume: 1132
  start-page: 110
  year: 2020
  ident: D0RA10735B-(cit29)/*[position()=1]
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2020.07.060
– volume: 5
  start-page: 11263
  year: 2017
  ident: D0RA10735B-(cit44)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA02613G
– volume: 5
  start-page: 2509
  year: 2017
  ident: D0RA10735B-(cit16)/*[position()=1]
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.6b02863
– volume: 301
  start-page: 127132
  year: 2019
  ident: D0RA10735B-(cit28)/*[position()=1]
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2019.127132
– volume: 457
  start-page: 706
  year: 2009
  ident: D0RA10735B-(cit23)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature07719
– volume: 13
  start-page: 6124
  year: 2020
  ident: D0RA10735B-(cit59)/*[position()=1]
  publication-title: Energies
  doi: 10.3390/en13226124
– volume: 113
  start-page: 3766
  year: 2013
  ident: D0RA10735B-(cit11)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr300263a
– volume: 332
  start-page: 1537
  year: 2011
  ident: D0RA10735B-(cit24)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1200770
– volume: 6
  start-page: 82995
  year: 2016
  ident: D0RA10735B-(cit55)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C6RA16291F
– volume: 5
  start-page: 9111
  year: 2020
  ident: D0RA10735B-(cit30)/*[position()=1]
  publication-title: ChemistrySelect
  doi: 10.1002/slct.202002105
SSID ssj0000651261
Score 2.4184642
Snippet Flexible energy storage devices have received great interest due to the increasing demand for wearable and flexible electronic devices with high-power energy...
SourceID pubmedcentral
proquest
pubmed
crossref
rsc
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3445
SubjectTerms Boron
Boron nitride
capacitance
Chemistry
Current density
Discharge
Dispersion
electrical conductivity
Electrical resistivity
electrochemical capacitors
Electrodes
Electronic devices
energy
Energy storage
filtration
Graphene
Nanocomposites
nanosheets
Nanostructure
Raman spectroscopy
Storage systems
Supercapacitors
Vacuum filtration
Title Preparation of hybrid paper electrode based on hexagonal boron nitride integrated graphene nanocomposite for free-standing flexible supercapacitors
URI https://www.ncbi.nlm.nih.gov/pubmed/35424276
https://www.proquest.com/docview/2480165708
https://www.proquest.com/docview/2524248214
https://www.proquest.com/docview/2651688016
https://pubmed.ncbi.nlm.nih.gov/PMC8694011
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtNAEF2FIkFfELdCoKBF8IIsh9he3x5DAFVFraoSpL5Fu941CaR25CSI8ht8D__GzK6vTYWgL1ZkT9aW53hnZnfmDCGvfOnGAimGuIwjm8mhZ8euFHYkwFxwcPCFj4XCR8fBwWd2eOaf9Xq_W1lLm7UYJD-vrCu5jlbhHOgVq2T_Q7P1oHACfoN-4QgahuM_6fikUIa6u3T6LrD8ylrypSqssr-NVBYaKombAjP1g3_RK38CeQss-JpBXjWUEdLS_NUw_VkZz3JMN8ecLsMLnhZK2XUZTIpEmlh1tdrA3RIwuckcG_e0nd3TT-Mqx6DJqOdfVSYLs-x6qGqyBLykVjO1ni_y7ybTkq_zxYV1PGj2rfCP5znuNGlojFaz_Jv1cdBeuXBx2cI2tZuDqvbNrJFUCao6AaVsc2fsk54IXYjhQe-mpUs9azstdLanYI8ZfsrSnHvMENpumYqhh0yrclhwiIA9v2NPQM3Lcw0az2fgxISX2Lq1_T85GkdBDPEpBN83XYhS3FZEbxwB8KYCpyLF9eI3zd12ya1q6K5HtBXmbGfr3iiq5jTaCZrcJXfK6IWODBTvkZ7K7pPb9dt8QH61IEnzlBpIUg1JWkOSakhSEKkhSTUkaQlJ2kCSVpCkHUhSgCTtQJJWkKSXIPmQTD68n4wP7LLvh52wwFnbMnJ5nMShVL4vkpBHksuhiALGHeROCoauUDxwhIjCiMWCuypREOgLXzKWqtDbIztZnqnHhDoKFxSYmyZKsIg5IuYpWtQUvFgOp_rkdfXqp0nJiY-tWRZTnZvhxdN3w9OR1tjbPnlZyy4NE8yVUvuVBqflTLGausjRhDlmUZ-8qC-DZnBzjmcq34CMj4Vakeuwv8gAoIIIx-qTRwYU9aNUaOqTsAOXWgB55LtXsvlM88mXKO6TPQBWLd9g9cm1h3xKdpsPf5_srIuNegZO_Fo815_KH4L5AKc
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Preparation+of+hybrid+paper+electrode+based+on+hexagonal+boron+nitride+integrated+graphene+nanocomposite+for+free-standing+flexible+supercapacitors&rft.jtitle=RSC+advances&rft.au=Rajendran%2C+Jerome&rft.au=Reshetilov%2C+Anatoly+N.&rft.au=Sundramoorthy%2C+Ashok+K.&rft.date=2021-01-15&rft.pub=The+Royal+Society+of+Chemistry&rft.eissn=2046-2069&rft.volume=11&rft.issue=6&rft.spage=3445&rft.epage=3451&rft_id=info:doi/10.1039%2Fd0ra10735b&rft_id=info%3Apmid%2F35424276&rft.externalDocID=PMC8694011
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-2069&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-2069&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-2069&client=summon