Preparation of hybrid paper electrode based on hexagonal boron nitride integrated graphene nanocomposite for free-standing flexible supercapacitors
Flexible energy storage devices have received great interest due to the increasing demand for wearable and flexible electronic devices with high-power energy sources. Herein, a novel hybrid flexible hexagonal boron nitride integrated graphene paper (BN/GrP) is fabricated from 2D hexagonal boron nitr...
Saved in:
Published in | RSC advances Vol. 11; no. 6; pp. 3445 - 3451 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
15.01.2021
The Royal Society of Chemistry |
Subjects | |
Online Access | Get full text |
ISSN | 2046-2069 2046-2069 |
DOI | 10.1039/d0ra10735b |
Cover
Loading…
Abstract | Flexible energy storage devices have received great interest due to the increasing demand for wearable and flexible electronic devices with high-power energy sources. Herein, a novel hybrid flexible hexagonal boron nitride integrated graphene paper (BN/GrP) is fabricated from 2D hexagonal boron nitride (h-BN) nanosheets integrated with graphene sheets dispersion
via
a simple vacuum filtration method. FE-SEM indicated that layered graphene nanosheets tightly confined with h-BN nanosheets. Further, the Raman spectroscopy confirmed successful integration of BN with graphene. As-prepared BN/GrP free-standing flexible conductive paper showed high electrical conductivity of 5.36 × 10
4
S m
−1
with the sheet resistance of 8.87 Ω sq
−1
. However, after 1000 continuous bending cycles, the BN/GrP sheet resistance increased just about 8.7% which indicated good flexibility of the paper. Furthermore, as-prepared BN/GrP showed excellent specific capacitance of 321.95 F g
−1
at current density of 0.5 A g
−1
. In addition, the power and energy densities were obtained as 3588.3 W kg
−1
, and 44.7 W h kg
−1
, respectively. The stability of the prepared flexible electrode was tested in galvanostatic charge/discharge cycles, where the results showed the 96.3% retention even after 6000 cycles. These results exhibited that the proposed BN/GrP may be useful to prepare flexible energy-storage systems.
As-prepared BN/GrP free-standing flexible conductive paper showed high electrical conductivity of 5.36 × 10
4
S m
−1
with the sheet resistance of 8.87 Ω sq
−1
. Furthermore, BN/GrP showed excellent specific capacitance of 321.95 F g
−1
at current density of 0.5 A g
−1
. In addition, the power and energy densities were obtained as 3588.3 W kg
−1
, and 44.7 W h kg
−1
. |
---|---|
AbstractList | Flexible energy storage devices have received great interest due to the increasing demand for wearable and flexible electronic devices with high-power energy sources. Herein, a novel hybrid flexible hexagonal boron nitride integrated graphene paper (BN/GrP) is fabricated from 2D hexagonal boron nitride (h-BN) nanosheets integrated with graphene sheets dispersion via a simple vacuum filtration method. FE-SEM indicated that layered graphene nanosheets tightly confined with h-BN nanosheets. Further, the Raman spectroscopy confirmed successful integration of BN with graphene. As-prepared BN/GrP free-standing flexible conductive paper showed high electrical conductivity of 5.36 × 10⁴ S m⁻¹ with the sheet resistance of 8.87 Ω sq⁻¹. However, after 1000 continuous bending cycles, the BN/GrP sheet resistance increased just about 8.7% which indicated good flexibility of the paper. Furthermore, as-prepared BN/GrP showed excellent specific capacitance of 321.95 F g⁻¹ at current density of 0.5 A g⁻¹. In addition, the power and energy densities were obtained as 3588.3 W kg⁻¹, and 44.7 W h kg⁻¹, respectively. The stability of the prepared flexible electrode was tested in galvanostatic charge/discharge cycles, where the results showed the 96.3% retention even after 6000 cycles. These results exhibited that the proposed BN/GrP may be useful to prepare flexible energy-storage systems. Flexible energy storage devices have received great interest due to the increasing demand for wearable and flexible electronic devices with high-power energy sources. Herein, a novel hybrid flexible hexagonal boron nitride integrated graphene paper (BN/GrP) is fabricated from 2D hexagonal boron nitride (h-BN) nanosheets integrated with graphene sheets dispersion a simple vacuum filtration method. FE-SEM indicated that layered graphene nanosheets tightly confined with h-BN nanosheets. Further, the Raman spectroscopy confirmed successful integration of BN with graphene. As-prepared BN/GrP free-standing flexible conductive paper showed high electrical conductivity of 5.36 × 10 S m with the sheet resistance of 8.87 Ω sq . However, after 1000 continuous bending cycles, the BN/GrP sheet resistance increased just about 8.7% which indicated good flexibility of the paper. Furthermore, as-prepared BN/GrP showed excellent specific capacitance of 321.95 F g at current density of 0.5 A g . In addition, the power and energy densities were obtained as 3588.3 W kg , and 44.7 W h kg , respectively. The stability of the prepared flexible electrode was tested in galvanostatic charge/discharge cycles, where the results showed the 96.3% retention even after 6000 cycles. These results exhibited that the proposed BN/GrP may be useful to prepare flexible energy-storage systems. Flexible energy storage devices have received great interest due to the increasing demand for wearable and flexible electronic devices with high-power energy sources. Herein, a novel hybrid flexible hexagonal boron nitride integrated graphene paper (BN/GrP) is fabricated from 2D hexagonal boron nitride (h-BN) nanosheets integrated with graphene sheets dispersion via a simple vacuum filtration method. FE-SEM indicated that layered graphene nanosheets tightly confined with h-BN nanosheets. Further, the Raman spectroscopy confirmed successful integration of BN with graphene. As-prepared BN/GrP free-standing flexible conductive paper showed high electrical conductivity of 5.36 × 10 4 S m −1 with the sheet resistance of 8.87 Ω sq −1 . However, after 1000 continuous bending cycles, the BN/GrP sheet resistance increased just about 8.7% which indicated good flexibility of the paper. Furthermore, as-prepared BN/GrP showed excellent specific capacitance of 321.95 F g −1 at current density of 0.5 A g −1 . In addition, the power and energy densities were obtained as 3588.3 W kg −1 , and 44.7 W h kg −1 , respectively. The stability of the prepared flexible electrode was tested in galvanostatic charge/discharge cycles, where the results showed the 96.3% retention even after 6000 cycles. These results exhibited that the proposed BN/GrP may be useful to prepare flexible energy-storage systems. As-prepared BN/GrP free-standing flexible conductive paper showed high electrical conductivity of 5.36 × 10 4 S m −1 with the sheet resistance of 8.87 Ω sq −1 . Furthermore, BN/GrP showed excellent specific capacitance of 321.95 F g −1 at current density of 0.5 A g −1 . In addition, the power and energy densities were obtained as 3588.3 W kg −1 , and 44.7 W h kg −1 . Flexible energy storage devices have received great interest due to the increasing demand for wearable and flexible electronic devices with high-power energy sources. Herein, a novel hybrid flexible hexagonal boron nitride integrated graphene paper (BN/GrP) is fabricated from 2D hexagonal boron nitride (h-BN) nanosheets integrated with graphene sheets dispersion via a simple vacuum filtration method. FE-SEM indicated that layered graphene nanosheets tightly confined with h-BN nanosheets. Further, the Raman spectroscopy confirmed successful integration of BN with graphene. As-prepared BN/GrP free-standing flexible conductive paper showed high electrical conductivity of 5.36 × 104 S m-1 with the sheet resistance of 8.87 Ω sq-1. However, after 1000 continuous bending cycles, the BN/GrP sheet resistance increased just about 8.7% which indicated good flexibility of the paper. Furthermore, as-prepared BN/GrP showed excellent specific capacitance of 321.95 F g-1 at current density of 0.5 A g-1. In addition, the power and energy densities were obtained as 3588.3 W kg-1, and 44.7 W h kg-1, respectively. The stability of the prepared flexible electrode was tested in galvanostatic charge/discharge cycles, where the results showed the 96.3% retention even after 6000 cycles. These results exhibited that the proposed BN/GrP may be useful to prepare flexible energy-storage systems.Flexible energy storage devices have received great interest due to the increasing demand for wearable and flexible electronic devices with high-power energy sources. Herein, a novel hybrid flexible hexagonal boron nitride integrated graphene paper (BN/GrP) is fabricated from 2D hexagonal boron nitride (h-BN) nanosheets integrated with graphene sheets dispersion via a simple vacuum filtration method. FE-SEM indicated that layered graphene nanosheets tightly confined with h-BN nanosheets. Further, the Raman spectroscopy confirmed successful integration of BN with graphene. As-prepared BN/GrP free-standing flexible conductive paper showed high electrical conductivity of 5.36 × 104 S m-1 with the sheet resistance of 8.87 Ω sq-1. However, after 1000 continuous bending cycles, the BN/GrP sheet resistance increased just about 8.7% which indicated good flexibility of the paper. Furthermore, as-prepared BN/GrP showed excellent specific capacitance of 321.95 F g-1 at current density of 0.5 A g-1. In addition, the power and energy densities were obtained as 3588.3 W kg-1, and 44.7 W h kg-1, respectively. The stability of the prepared flexible electrode was tested in galvanostatic charge/discharge cycles, where the results showed the 96.3% retention even after 6000 cycles. These results exhibited that the proposed BN/GrP may be useful to prepare flexible energy-storage systems. Flexible energy storage devices have received great interest due to the increasing demand for wearable and flexible electronic devices with high-power energy sources. Herein, a novel hybrid flexible hexagonal boron nitride integrated graphene paper (BN/GrP) is fabricated from 2D hexagonal boron nitride (h-BN) nanosheets integrated with graphene sheets dispersion via a simple vacuum filtration method. FE-SEM indicated that layered graphene nanosheets tightly confined with h-BN nanosheets. Further, the Raman spectroscopy confirmed successful integration of BN with graphene. As-prepared BN/GrP free-standing flexible conductive paper showed high electrical conductivity of 5.36 × 10 4 S m −1 with the sheet resistance of 8.87 Ω sq −1 . However, after 1000 continuous bending cycles, the BN/GrP sheet resistance increased just about 8.7% which indicated good flexibility of the paper. Furthermore, as-prepared BN/GrP showed excellent specific capacitance of 321.95 F g −1 at current density of 0.5 A g −1 . In addition, the power and energy densities were obtained as 3588.3 W kg −1 , and 44.7 W h kg −1 , respectively. The stability of the prepared flexible electrode was tested in galvanostatic charge/discharge cycles, where the results showed the 96.3% retention even after 6000 cycles. These results exhibited that the proposed BN/GrP may be useful to prepare flexible energy-storage systems. Flexible energy storage devices have received great interest due to the increasing demand for wearable and flexible electronic devices with high-power energy sources. Herein, a novel hybrid flexible hexagonal boron nitride integrated graphene paper (BN/GrP) is fabricated from 2D hexagonal boron nitride (h-BN) nanosheets integrated with graphene sheets dispersion via a simple vacuum filtration method. FE-SEM indicated that layered graphene nanosheets tightly confined with h-BN nanosheets. Further, the Raman spectroscopy confirmed successful integration of BN with graphene. As-prepared BN/GrP free-standing flexible conductive paper showed high electrical conductivity of 5.36 × 104 S m−1 with the sheet resistance of 8.87 Ω sq−1. However, after 1000 continuous bending cycles, the BN/GrP sheet resistance increased just about 8.7% which indicated good flexibility of the paper. Furthermore, as-prepared BN/GrP showed excellent specific capacitance of 321.95 F g−1 at current density of 0.5 A g−1. In addition, the power and energy densities were obtained as 3588.3 W kg−1, and 44.7 W h kg−1, respectively. The stability of the prepared flexible electrode was tested in galvanostatic charge/discharge cycles, where the results showed the 96.3% retention even after 6000 cycles. These results exhibited that the proposed BN/GrP may be useful to prepare flexible energy-storage systems. |
Author | Rajendran, Jerome Sundramoorthy, Ashok K Reshetilov, Anatoly N |
AuthorAffiliation | Department of Chemistry SRM Institute of Science and Technology Subdivision of "Federal Research Center Pushchino Biological Research Center of the Russian Academy of Sciences" (FRC PBRC RAS) G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of Sciences (IBPM RAS) |
AuthorAffiliation_xml | – name: SRM Institute of Science and Technology – name: Department of Chemistry – name: Subdivision of "Federal Research Center Pushchino Biological Research Center of the Russian Academy of Sciences" (FRC PBRC RAS) – name: G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of Sciences (IBPM RAS) |
Author_xml | – sequence: 1 givenname: Jerome surname: Rajendran fullname: Rajendran, Jerome – sequence: 2 givenname: Anatoly N surname: Reshetilov fullname: Reshetilov, Anatoly N – sequence: 3 givenname: Ashok K surname: Sundramoorthy fullname: Sundramoorthy, Ashok K |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35424276$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks9rFTEQx4NUbK29eFcCXoqwmmSz2d2LUOtPKCjSe5gks--l7EvWZFfav6P_sGlfW2sRzGUm5DPfmczMU7ITYkBCnnP2hrO6f-tYAs7aujGPyJ5gUlWCqX7nnr9LDnI-Y-WohgvFn5DdupFCilbtkcvvCSdIMPsYaBzo-sIk7-gEEyaKI9o5RYfUQEZHC7LGc1jFACM1MZV78HPhkfow46rIFKqYaY0BaYAQbdxMMfsZ6RATHRJilWcIzocVHUY892ZEmpeSzcIE1s8x5Wfk8QBjxoMbu09OP308Pf5SnXz7_PX46KSyUvG5cp2A3vatw6YxtoXOgWOmUxK4EqpWTBgExY3p2k72BgRa5MVpnJQDtvU-ebeVnRazQWcxzAlGPSW_gXShI3j990vwa72Kv3Snesk4LwKHNwIp_lwwz3rjs8VxhIBxyVqUfquuY1z9H23KPGQnuCzoqwfoWVxS6Xih5JVY07KuUC_vF39X9e1kC8C2gE0x54SDLs29HnP5ix81Z_pqf_QH9uPoen_el5DXD0JuVf8Jv9jCKds77s8y1r8BOiPTDw |
CitedBy_id | crossref_primary_10_1016_j_jhazmat_2022_129705 crossref_primary_10_3390_en15031162 crossref_primary_10_1007_s44174_024_00226_9 crossref_primary_10_1016_j_nanoen_2022_108060 crossref_primary_10_1039_D3RA06352F crossref_primary_10_1039_D3RA08208C crossref_primary_10_1016_j_chemosphere_2021_132106 crossref_primary_10_1039_D1RA03425A crossref_primary_10_1039_D3RA08312H crossref_primary_10_3390_cryst15010027 crossref_primary_10_1016_j_est_2024_114968 crossref_primary_10_1002_elan_202300093 crossref_primary_10_1021_acs_energyfuels_4c02987 crossref_primary_10_1039_D4RA00361F crossref_primary_10_3390_bios13090839 crossref_primary_10_1039_D3RA06904D crossref_primary_10_1039_D4RA05473C crossref_primary_10_1002_ece2_22 crossref_primary_10_1039_D0MA00974A crossref_primary_10_1016_j_molstruc_2025_141407 crossref_primary_10_1021_acsaelm_4c00709 |
Cites_doi | 10.1021/nn1006495 10.1021/cm049685i 10.1016/j.snb.2013.11.113 10.1021/ar300253f 10.1038/nmat3944 10.1016/j.electacta.2004.12.032 10.1021/nn304833s 10.1016/j.jcis.2020.04.045 10.1016/j.electacta.2017.06.123 10.1016/j.carbon.2018.05.076 10.1021/nl404349g 10.1016/j.jpowsour.2005.04.012 10.1039/C7RA07908G 10.1016/j.jmst.2019.05.074 10.1021/acsami.7b04802 10.1039/c1jm10697j 10.1021/nn204200w 10.1021/acsnano.7b01311 10.1038/nnano.2008.215 10.1016/j.micromeso.2013.08.007 10.1002/aenm.201400064 10.1016/j.carbon.2007.02.034 10.1016/j.electacta.2018.12.096 10.1016/j.ceramint.2018.11.101 10.1021/acsnano.9b03225 10.1038/ncomms7713 10.1039/C4NR07564A 10.1021/acsnano.5b06857 10.1002/adma.201104691 10.1016/j.carbon.2010.08.007 10.1021/acsami.5b03562 10.1039/C3CS60217F 10.1016/j.snb.2011.05.062 10.1016/j.jcis.2020.01.113 10.1038/nature09379 10.1002/adma.201201948 10.1021/acsanm.9b00797 10.1021/acs.chemmater.8b00765 10.1039/C5NR06113J 10.1016/j.cej.2018.03.104 10.1002/adma.201401513 10.1021/acsomega.7b01311 10.1021/acsnano.7b03878 10.1039/C9RA01539F 10.1149/2.0041909jes 10.1016/j.cej.2020.124396 10.1039/c2jm32659k 10.1039/C8NR06429F 10.1021/nn202020w 10.1016/j.jpowsour.2016.02.047 10.1021/acsnano.9b00211 10.1016/j.aca.2020.07.060 10.1039/C7TA02613G 10.1021/acssuschemeng.6b02863 10.1016/j.snb.2019.127132 10.1038/nature07719 10.3390/en13226124 10.1021/cr300263a 10.1126/science.1200770 10.1039/C6RA16291F 10.1002/slct.202002105 |
ContentType | Journal Article |
Copyright | This journal is © The Royal Society of Chemistry. Copyright Royal Society of Chemistry 2021 This journal is © The Royal Society of Chemistry 2021 The Royal Society of Chemistry |
Copyright_xml | – notice: This journal is © The Royal Society of Chemistry. – notice: Copyright Royal Society of Chemistry 2021 – notice: This journal is © The Royal Society of Chemistry 2021 The Royal Society of Chemistry |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7S9 L.6 7X8 5PM |
DOI | 10.1039/d0ra10735b |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | AGRICOLA PubMed MEDLINE - Academic CrossRef Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2046-2069 |
EndPage | 3451 |
ExternalDocumentID | PMC8694011 35424276 10_1039_D0RA10735B d0ra10735b |
Genre | Journal Article |
GrantInformation_xml | – fundername: ; grantid: INT/RUS/RFBR/385 |
GroupedDBID | 0-7 0R AAGNR AAIWI ABGFH ACGFS ADBBV ADMRA AENEX AFVBQ AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ASKNT AUDPV BCNDV BLAPV BSQNT C6K CKLOX EBS EE0 EF- GROUPED_DOAJ HZ H~N J3I JG O9- OK1 R7C R7E R7G RCNCU ROYLF RPMJG RRC RSCEA RVUXY SLH SMJ ZCN 0R~ 53G AAFWJ AAHBH AAJAE AARTK AAWGC AAXHV AAYXX ABEMK ABIQK ABPDG ABXOH AEFDR AESAV AFLYV AFPKN AGEGJ AGRSR AHGCF AKBGW ANUXI APEMP CITATION H13 HZ~ M~E PGMZT RPM -JG NPM 7SR 8BQ 8FD JG9 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c461t-d82a9c97de55bc7a8dad0b864a16263602bea61bb87849ba2ece149b5d44fe73 |
ISSN | 2046-2069 |
IngestDate | Thu Aug 21 18:32:03 EDT 2025 Thu Jul 10 17:16:59 EDT 2025 Fri Jul 11 03:09:49 EDT 2025 Mon Jun 30 05:26:56 EDT 2025 Thu Jan 02 22:54:22 EST 2025 Tue Jul 01 04:05:39 EDT 2025 Thu Apr 24 22:51:26 EDT 2025 Sat Jan 08 03:52:05 EST 2022 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | This journal is © The Royal Society of Chemistry. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c461t-d82a9c97de55bc7a8dad0b864a16263602bea61bb87849ba2ece149b5d44fe73 |
Notes | 1 b value of the BN/GrP anodic curve; galvanostatic charge/discharge (GCD) curves for GrP and BN/GrP electrodes at a current density of 1 A g comparison of specific capacitances, retention and power density of the reported supercapacitors were provided. See DOI Electronic supplementary information (ESI) available: Schematic illustration for the preparation of freestanding BN/GrP flexible paper using BN/graphene dispersion, preparation of BN/GrP electrode for electrochemical measurements of supercapacitor; EDX mapping analysis of BN/GrP; the peak current was plotted against the scan rate to determine the 10.1039/d0ra10735b ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8512-9393 |
OpenAccessLink | http://dx.doi.org/10.1039/d0ra10735b |
PMID | 35424276 |
PQID | 2480165708 |
PQPubID | 2047525 |
PageCount | 7 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8694011 pubmed_primary_35424276 crossref_citationtrail_10_1039_D0RA10735B proquest_journals_2480165708 proquest_miscellaneous_2651688016 crossref_primary_10_1039_D0RA10735B rsc_primary_d0ra10735b proquest_miscellaneous_2524248214 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-15 |
PublicationDateYYYYMMDD | 2021-01-15 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | RSC advances |
PublicationTitleAlternate | RSC Adv |
PublicationYear | 2021 |
Publisher | Royal Society of Chemistry The Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry – name: The Royal Society of Chemistry |
References | Garrigue (D0RA10735B-(cit36)/*[position()=1]) 2004; 16 Suo (D0RA10735B-(cit7)/*[position()=1]) 2020; 388 Fang (D0RA10735B-(cit19)/*[position()=1]) 2013; 182 Ji (D0RA10735B-(cit44)/*[position()=1]) 2017; 5 Jerome (D0RA10735B-(cit30)/*[position()=1]) 2020; 5 Nagarajan (D0RA10735B-(cit28)/*[position()=1]) 2019; 301 Paton (D0RA10735B-(cit32)/*[position()=1]) 2014; 13 Jung (D0RA10735B-(cit41)/*[position()=1]) 2015; 7 Kovtyukhova (D0RA10735B-(cit45)/*[position()=1]) 2017; 11 Teli (D0RA10735B-(cit59)/*[position()=1]) 2020; 13 Ciesielski (D0RA10735B-(cit12)/*[position()=1]) 2014; 43 Sadak (D0RA10735B-(cit4)/*[position()=1]) 2019; 2 Golberg (D0RA10735B-(cit25)/*[position()=1]) 2010; 4 Yang (D0RA10735B-(cit21)/*[position()=1]) 2011; 21 Hernandez (D0RA10735B-(cit31)/*[position()=1]) 2008; 3 Wu (D0RA10735B-(cit2)/*[position()=1]) 2012; 24 Li (D0RA10735B-(cit6)/*[position()=1]) 2019; 45 El-Gendy (D0RA10735B-(cit52)/*[position()=1]) 2019; 9 Liang (D0RA10735B-(cit51)/*[position()=1]) 2018; 345 He (D0RA10735B-(cit62)/*[position()=1]) 2013; 7 Strong (D0RA10735B-(cit39)/*[position()=1]) 2012; 6 Stankovich (D0RA10735B-(cit56)/*[position()=1]) 2007; 45 Saha (D0RA10735B-(cit60)/*[position()=1]) 2015; 7 Liu (D0RA10735B-(cit46)/*[position()=1]) 2012; 22 Iqbal (D0RA10735B-(cit50)/*[position()=1]) 2017; 246 Sundramoorthy (D0RA10735B-(cit49)/*[position()=1]) 2018 Liu (D0RA10735B-(cit37)/*[position()=1]) 2014; 26 Choi (D0RA10735B-(cit1)/*[position()=1]) 2011; 5 Wang (D0RA10735B-(cit57)/*[position()=1]) 2019; 13 Corso (D0RA10735B-(cit61)/*[position()=1]) 2014; 14 Zhu (D0RA10735B-(cit24)/*[position()=1]) 2011; 332 Ba (D0RA10735B-(cit35)/*[position()=1]) 2017; 2 Lv (D0RA10735B-(cit40)/*[position()=1]) 2017; 7 Munuera (D0RA10735B-(cit48)/*[position()=1]) 2017; 9 Khairy (D0RA10735B-(cit53)/*[position()=1]) 2014; 193 Fang (D0RA10735B-(cit20)/*[position()=1]) 2006; 155 Wang (D0RA10735B-(cit33)/*[position()=1]) 2018; 30 Ma (D0RA10735B-(cit55)/*[position()=1]) 2016; 6 Sadak (D0RA10735B-(cit3)/*[position()=1]) 2018; 138 Gao (D0RA10735B-(cit22)/*[position()=1]) 2010; 48 Xu (D0RA10735B-(cit11)/*[position()=1]) 2013; 113 Fang (D0RA10735B-(cit17)/*[position()=1]) 2005; 50 Sheng (D0RA10735B-(cit13)/*[position()=1]) 2019; 13 Li (D0RA10735B-(cit54)/*[position()=1]) 2016; 312 Yamoah (D0RA10735B-(cit14)/*[position()=1]) 2017; 11 Fang (D0RA10735B-(cit18)/*[position()=1]) 2013; 46 Suo (D0RA10735B-(cit9)/*[position()=1]) 2020; 55 Kim (D0RA10735B-(cit23)/*[position()=1]) 2009; 457 Jerome (D0RA10735B-(cit15)/*[position()=1]) 2019; 166 Jerome (D0RA10735B-(cit29)/*[position()=1]) 2020; 1132 Zhang (D0RA10735B-(cit43)/*[position()=1]) 2014; 4 Suo (D0RA10735B-(cit5)/*[position()=1]) 2020; 566 Sakamoto (D0RA10735B-(cit34)/*[position()=1]) 2015; 6 Chen (D0RA10735B-(cit10)/*[position()=1]) 2019; 298 Deng (D0RA10735B-(cit26)/*[position()=1]) 2011; 158 Li (D0RA10735B-(cit8)/*[position()=1]) 2020; 574 Sha (D0RA10735B-(cit38)/*[position()=1]) 2016; 10 Garaj (D0RA10735B-(cit27)/*[position()=1]) 2010; 467 Li (D0RA10735B-(cit42)/*[position()=1]) 2015; 7 Liu (D0RA10735B-(cit47)/*[position()=1]) 2012; 24 Guerra (D0RA10735B-(cit58)/*[position()=1]) 2018; 10 Wang (D0RA10735B-(cit16)/*[position()=1]) 2017; 5 |
References_xml | – issn: 2018 end-page: p 267-306 publication-title: Advanced Nanomaterials doi: Sundramoorthy Vignesh Kumar Gunasekaran – volume: 4 start-page: 2979 year: 2010 ident: D0RA10735B-(cit25)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn1006495 – volume: 16 start-page: 2984 year: 2004 ident: D0RA10735B-(cit36)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/cm049685i – volume: 193 start-page: 644 year: 2014 ident: D0RA10735B-(cit53)/*[position()=1] publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2013.11.113 – volume: 46 start-page: 1397 year: 2013 ident: D0RA10735B-(cit18)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar300253f – volume: 13 start-page: 624 year: 2014 ident: D0RA10735B-(cit32)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat3944 – volume: 50 start-page: 3616 year: 2005 ident: D0RA10735B-(cit17)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2004.12.032 – volume: 7 start-page: 174 year: 2013 ident: D0RA10735B-(cit62)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn304833s – volume: 574 start-page: 174 year: 2020 ident: D0RA10735B-(cit8)/*[position()=1] publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2020.04.045 – volume: 246 start-page: 1097 year: 2017 ident: D0RA10735B-(cit50)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.06.123 – volume: 138 start-page: 108 year: 2018 ident: D0RA10735B-(cit3)/*[position()=1] publication-title: Carbon doi: 10.1016/j.carbon.2018.05.076 – volume: 14 start-page: 1329 year: 2014 ident: D0RA10735B-(cit61)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl404349g – volume: 155 start-page: 487 year: 2006 ident: D0RA10735B-(cit20)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2005.04.012 – volume: 7 start-page: 43512 year: 2017 ident: D0RA10735B-(cit40)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C7RA07908G – volume: 55 start-page: 167 year: 2020 ident: D0RA10735B-(cit9)/*[position()=1] publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2019.05.074 – volume: 9 start-page: 24085 year: 2017 ident: D0RA10735B-(cit48)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b04802 – volume: 21 start-page: 8096 year: 2011 ident: D0RA10735B-(cit21)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/c1jm10697j – volume: 6 start-page: 1395 year: 2012 ident: D0RA10735B-(cit39)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn204200w – volume: 11 start-page: 6746 year: 2017 ident: D0RA10735B-(cit45)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.7b01311 – volume: 3 start-page: 563 year: 2008 ident: D0RA10735B-(cit31)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2008.215 – volume: 182 start-page: 1 year: 2013 ident: D0RA10735B-(cit19)/*[position()=1] publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2013.08.007 – volume: 4 start-page: 1400064 year: 2014 ident: D0RA10735B-(cit43)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201400064 – volume: 45 start-page: 1558 year: 2007 ident: D0RA10735B-(cit56)/*[position()=1] publication-title: Carbon doi: 10.1016/j.carbon.2007.02.034 – volume: 298 start-page: 313 year: 2019 ident: D0RA10735B-(cit10)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.12.096 – volume: 45 start-page: 4283 year: 2019 ident: D0RA10735B-(cit6)/*[position()=1] publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2018.11.101 – volume: 13 start-page: 7402 year: 2019 ident: D0RA10735B-(cit57)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.9b03225 – volume-title: Advanced Nanomaterials year: 2018 ident: D0RA10735B-(cit49)/*[position()=1] – volume: 6 start-page: 6713 year: 2015 ident: D0RA10735B-(cit34)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms7713 – volume: 7 start-page: 4386 year: 2015 ident: D0RA10735B-(cit41)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C4NR07564A – volume: 10 start-page: 1411 year: 2016 ident: D0RA10735B-(cit38)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.5b06857 – volume: 24 start-page: 1089 year: 2012 ident: D0RA10735B-(cit47)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201104691 – volume: 48 start-page: 4475 year: 2010 ident: D0RA10735B-(cit22)/*[position()=1] publication-title: Carbon doi: 10.1016/j.carbon.2010.08.007 – volume: 7 start-page: 14211 year: 2015 ident: D0RA10735B-(cit60)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b03562 – volume: 43 start-page: 381 year: 2014 ident: D0RA10735B-(cit12)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C3CS60217F – volume: 158 start-page: 176 year: 2011 ident: D0RA10735B-(cit26)/*[position()=1] publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2011.05.062 – volume: 566 start-page: 427 year: 2020 ident: D0RA10735B-(cit5)/*[position()=1] publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2020.01.113 – volume: 467 start-page: 190 year: 2010 ident: D0RA10735B-(cit27)/*[position()=1] publication-title: Nature doi: 10.1038/nature09379 – volume: 24 start-page: 5130 year: 2012 ident: D0RA10735B-(cit2)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201201948 – volume: 2 start-page: 4386 year: 2019 ident: D0RA10735B-(cit4)/*[position()=1] publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.9b00797 – volume: 30 start-page: 3048 year: 2018 ident: D0RA10735B-(cit33)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b00765 – volume: 7 start-page: 18459 year: 2015 ident: D0RA10735B-(cit42)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C5NR06113J – volume: 345 start-page: 186 year: 2018 ident: D0RA10735B-(cit51)/*[position()=1] publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.03.104 – volume: 26 start-page: 4855 year: 2014 ident: D0RA10735B-(cit37)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201401513 – volume: 2 start-page: 8610 year: 2017 ident: D0RA10735B-(cit35)/*[position()=1] publication-title: ACS Omega doi: 10.1021/acsomega.7b01311 – volume: 11 start-page: 9914 year: 2017 ident: D0RA10735B-(cit14)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.7b03878 – volume: 9 start-page: 12555 year: 2019 ident: D0RA10735B-(cit52)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C9RA01539F – volume: 166 start-page: B3017 year: 2019 ident: D0RA10735B-(cit15)/*[position()=1] publication-title: J. Electrochem. Soc. doi: 10.1149/2.0041909jes – volume: 388 start-page: 124396 year: 2020 ident: D0RA10735B-(cit7)/*[position()=1] publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.124396 – volume: 22 start-page: 17245 year: 2012 ident: D0RA10735B-(cit46)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/c2jm32659k – volume: 10 start-page: 19469 year: 2018 ident: D0RA10735B-(cit58)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C8NR06429F – volume: 5 start-page: 7205 year: 2011 ident: D0RA10735B-(cit1)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn202020w – volume: 312 start-page: 156 year: 2016 ident: D0RA10735B-(cit54)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.02.047 – volume: 13 start-page: 4530 year: 2019 ident: D0RA10735B-(cit13)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.9b00211 – volume: 1132 start-page: 110 year: 2020 ident: D0RA10735B-(cit29)/*[position()=1] publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2020.07.060 – volume: 5 start-page: 11263 year: 2017 ident: D0RA10735B-(cit44)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C7TA02613G – volume: 5 start-page: 2509 year: 2017 ident: D0RA10735B-(cit16)/*[position()=1] publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.6b02863 – volume: 301 start-page: 127132 year: 2019 ident: D0RA10735B-(cit28)/*[position()=1] publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2019.127132 – volume: 457 start-page: 706 year: 2009 ident: D0RA10735B-(cit23)/*[position()=1] publication-title: Nature doi: 10.1038/nature07719 – volume: 13 start-page: 6124 year: 2020 ident: D0RA10735B-(cit59)/*[position()=1] publication-title: Energies doi: 10.3390/en13226124 – volume: 113 start-page: 3766 year: 2013 ident: D0RA10735B-(cit11)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr300263a – volume: 332 start-page: 1537 year: 2011 ident: D0RA10735B-(cit24)/*[position()=1] publication-title: Science doi: 10.1126/science.1200770 – volume: 6 start-page: 82995 year: 2016 ident: D0RA10735B-(cit55)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C6RA16291F – volume: 5 start-page: 9111 year: 2020 ident: D0RA10735B-(cit30)/*[position()=1] publication-title: ChemistrySelect doi: 10.1002/slct.202002105 |
SSID | ssj0000651261 |
Score | 2.4184642 |
Snippet | Flexible energy storage devices have received great interest due to the increasing demand for wearable and flexible electronic devices with high-power energy... |
SourceID | pubmedcentral proquest pubmed crossref rsc |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3445 |
SubjectTerms | Boron Boron nitride capacitance Chemistry Current density Discharge Dispersion electrical conductivity Electrical resistivity electrochemical capacitors Electrodes Electronic devices energy Energy storage filtration Graphene Nanocomposites nanosheets Nanostructure Raman spectroscopy Storage systems Supercapacitors Vacuum filtration |
Title | Preparation of hybrid paper electrode based on hexagonal boron nitride integrated graphene nanocomposite for free-standing flexible supercapacitors |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35424276 https://www.proquest.com/docview/2480165708 https://www.proquest.com/docview/2524248214 https://www.proquest.com/docview/2651688016 https://pubmed.ncbi.nlm.nih.gov/PMC8694011 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtNAEF2FIkFfELdCoKBF8IIsh9he3x5DAFVFraoSpL5Fu941CaR25CSI8ht8D__GzK6vTYWgL1ZkT9aW53hnZnfmDCGvfOnGAimGuIwjm8mhZ8euFHYkwFxwcPCFj4XCR8fBwWd2eOaf9Xq_W1lLm7UYJD-vrCu5jlbhHOgVq2T_Q7P1oHACfoN-4QgahuM_6fikUIa6u3T6LrD8ylrypSqssr-NVBYaKombAjP1g3_RK38CeQss-JpBXjWUEdLS_NUw_VkZz3JMN8ecLsMLnhZK2XUZTIpEmlh1tdrA3RIwuckcG_e0nd3TT-Mqx6DJqOdfVSYLs-x6qGqyBLykVjO1ni_y7ybTkq_zxYV1PGj2rfCP5znuNGlojFaz_Jv1cdBeuXBx2cI2tZuDqvbNrJFUCao6AaVsc2fsk54IXYjhQe-mpUs9azstdLanYI8ZfsrSnHvMENpumYqhh0yrclhwiIA9v2NPQM3Lcw0az2fgxISX2Lq1_T85GkdBDPEpBN83XYhS3FZEbxwB8KYCpyLF9eI3zd12ya1q6K5HtBXmbGfr3iiq5jTaCZrcJXfK6IWODBTvkZ7K7pPb9dt8QH61IEnzlBpIUg1JWkOSakhSEKkhSTUkaQlJ2kCSVpCkHUhSgCTtQJJWkKSXIPmQTD68n4wP7LLvh52wwFnbMnJ5nMShVL4vkpBHksuhiALGHeROCoauUDxwhIjCiMWCuypREOgLXzKWqtDbIztZnqnHhDoKFxSYmyZKsIg5IuYpWtQUvFgOp_rkdfXqp0nJiY-tWRZTnZvhxdN3w9OR1tjbPnlZyy4NE8yVUvuVBqflTLGausjRhDlmUZ-8qC-DZnBzjmcq34CMj4Vakeuwv8gAoIIIx-qTRwYU9aNUaOqTsAOXWgB55LtXsvlM88mXKO6TPQBWLd9g9cm1h3xKdpsPf5_srIuNegZO_Fo815_KH4L5AKc |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Preparation+of+hybrid+paper+electrode+based+on+hexagonal+boron+nitride+integrated+graphene+nanocomposite+for+free-standing+flexible+supercapacitors&rft.jtitle=RSC+advances&rft.au=Rajendran%2C+Jerome&rft.au=Reshetilov%2C+Anatoly+N.&rft.au=Sundramoorthy%2C+Ashok+K.&rft.date=2021-01-15&rft.pub=The+Royal+Society+of+Chemistry&rft.eissn=2046-2069&rft.volume=11&rft.issue=6&rft.spage=3445&rft.epage=3451&rft_id=info:doi/10.1039%2Fd0ra10735b&rft_id=info%3Apmid%2F35424276&rft.externalDocID=PMC8694011 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-2069&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-2069&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-2069&client=summon |