Transport and retention of carbon dots (CDs) in saturated and unsaturated porous media: Role of ionic strength, pH, and collector grain size

Carbon-based engineered nanoparticles (ENPs) are widely used in consumer products due to their small size and unique physicochemical properties. Therefore, their release and distribution into the surface and subsurface environment is a subject of concern. Several studies have evaluated the transport...

Full description

Saved in:
Bibliographic Details
Published inWater research (Oxford) Vol. 133; pp. 338 - 347
Main Authors Kamrani, Salahaddin, Rezaei, Mohsen, Kord, Mehdi, Baalousha, Mohammed
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 15.04.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Carbon-based engineered nanoparticles (ENPs) are widely used in consumer products due to their small size and unique physicochemical properties. Therefore, their release and distribution into the surface and subsurface environment is a subject of concern. Several studies have evaluated the transport and retention of carbon nanotubes and fullerenes, but none investigated the transport and retention of carbon dots (CDs). The aim of this research is to fill this knowledge gap by evaluating the transport and retention of CDs in saturated and unsaturated porous medium. Here, we investigate the effects of solution ionic strength (IS, 1–700 mM NaCl) and pH (4–9), the initial concentration of CDs (50–200 mg L−1), and porous media grain size (0.20–0.50 mm, 0.50–1 mm, 1–1.5 mm and 1.5–2 mm grain diameters) on the transport and retention of CDs in saturated (upward flow) and unsaturated (downward flow) quartz porous media. A mathematical model based on the advection-dispersion equation coupled with the second-order kinetics was used to fit the breakthrough curves and to calculate the attachment and straining rates under the different experimental conditions. These analyses were underpinned by characterization of CD surface functional groups, surface charge and aggregation under the different experimental conditions, calculation of CD-CD and CD-quartz sand interaction potential according to DLVO theory. Transport and retention of CDs in quartz porous media are consistent with those observed for other types of carbon-based ENPs such as fullerenes and carbon nanotubes. Mobility of CDs in both saturated and unsaturated porous media increases with the decrease in ionic strength, increase in pH, and increase in collector grain size. Retention of CDs increases with the increase in IS, decrease in pH and decrease in grain size. Generally, CDs mobility was higher under saturated than under unsaturated flow conditions, for the same experimental conditions. Overall, CDs tend to be highly mobile and could travel for long distances at a wide range of environmental conditions. [Display omitted] •Carbon Dots displays high mobility within saturated and unsaturated sand packs.•DLVO theory can explain the observed trends in the mobility of CD within porous media.•CD solution properties has high effects on CD immobilization.•CD mobility is higher under saturated than under unsaturated flow conditions.
AbstractList Carbon-based engineered nanoparticles (ENPs) are widely used in consumer products due to their small size and unique physicochemical properties. Therefore, their release and distribution into the surface and subsurface environment is a subject of concern. Several studies have evaluated the transport and retention of carbon nanotubes and fullerenes, but none investigated the transport and retention of carbon dots (CDs). The aim of this research is to fill this knowledge gap by evaluating the transport and retention of CDs in saturated and unsaturated porous medium. Here, we investigate the effects of solution ionic strength (IS, 1-700 mM NaCl) and pH (4-9), the initial concentration of CDs (50-200 mg L ), and porous media grain size (0.20-0.50 mm, 0.50-1 mm, 1-1.5 mm and 1.5-2 mm grain diameters) on the transport and retention of CDs in saturated (upward flow) and unsaturated (downward flow) quartz porous media. A mathematical model based on the advection-dispersion equation coupled with the second-order kinetics was used to fit the breakthrough curves and to calculate the attachment and straining rates under the different experimental conditions. These analyses were underpinned by characterization of CD surface functional groups, surface charge and aggregation under the different experimental conditions, calculation of CD-CD and CD-quartz sand interaction potential according to DLVO theory. Transport and retention of CDs in quartz porous media are consistent with those observed for other types of carbon-based ENPs such as fullerenes and carbon nanotubes. Mobility of CDs in both saturated and unsaturated porous media increases with the decrease in ionic strength, increase in pH, and increase in collector grain size. Retention of CDs increases with the increase in IS, decrease in pH and decrease in grain size. Generally, CDs mobility was higher under saturated than under unsaturated flow conditions, for the same experimental conditions. Overall, CDs tend to be highly mobile and could travel for long distances at a wide range of environmental conditions.
Carbon-based engineered nanoparticles (ENPs) are widely used in consumer products due to their small size and unique physicochemical properties. Therefore, their release and distribution into the surface and subsurface environment is a subject of concern. Several studies have evaluated the transport and retention of carbon nanotubes and fullerenes, but none investigated the transport and retention of carbon dots (CDs). The aim of this research is to fill this knowledge gap by evaluating the transport and retention of CDs in saturated and unsaturated porous medium. Here, we investigate the effects of solution ionic strength (IS, 1-700 mM NaCl) and pH (4-9), the initial concentration of CDs (50-200 mg L-1), and porous media grain size (0.20-0.50 mm, 0.50-1 mm, 1-1.5 mm and 1.5-2 mm grain diameters) on the transport and retention of CDs in saturated (upward flow) and unsaturated (downward flow) quartz porous media. A mathematical model based on the advection-dispersion equation coupled with the second-order kinetics was used to fit the breakthrough curves and to calculate the attachment and straining rates under the different experimental conditions. These analyses were underpinned by characterization of CD surface functional groups, surface charge and aggregation under the different experimental conditions, calculation of CD-CD and CD-quartz sand interaction potential according to DLVO theory. Transport and retention of CDs in quartz porous media are consistent with those observed for other types of carbon-based ENPs such as fullerenes and carbon nanotubes. Mobility of CDs in both saturated and unsaturated porous media increases with the decrease in ionic strength, increase in pH, and increase in collector grain size. Retention of CDs increases with the increase in IS, decrease in pH and decrease in grain size. Generally, CDs mobility was higher under saturated than under unsaturated flow conditions, for the same experimental conditions. Overall, CDs tend to be highly mobile and could travel for long distances at a wide range of environmental conditions.Carbon-based engineered nanoparticles (ENPs) are widely used in consumer products due to their small size and unique physicochemical properties. Therefore, their release and distribution into the surface and subsurface environment is a subject of concern. Several studies have evaluated the transport and retention of carbon nanotubes and fullerenes, but none investigated the transport and retention of carbon dots (CDs). The aim of this research is to fill this knowledge gap by evaluating the transport and retention of CDs in saturated and unsaturated porous medium. Here, we investigate the effects of solution ionic strength (IS, 1-700 mM NaCl) and pH (4-9), the initial concentration of CDs (50-200 mg L-1), and porous media grain size (0.20-0.50 mm, 0.50-1 mm, 1-1.5 mm and 1.5-2 mm grain diameters) on the transport and retention of CDs in saturated (upward flow) and unsaturated (downward flow) quartz porous media. A mathematical model based on the advection-dispersion equation coupled with the second-order kinetics was used to fit the breakthrough curves and to calculate the attachment and straining rates under the different experimental conditions. These analyses were underpinned by characterization of CD surface functional groups, surface charge and aggregation under the different experimental conditions, calculation of CD-CD and CD-quartz sand interaction potential according to DLVO theory. Transport and retention of CDs in quartz porous media are consistent with those observed for other types of carbon-based ENPs such as fullerenes and carbon nanotubes. Mobility of CDs in both saturated and unsaturated porous media increases with the decrease in ionic strength, increase in pH, and increase in collector grain size. Retention of CDs increases with the increase in IS, decrease in pH and decrease in grain size. Generally, CDs mobility was higher under saturated than under unsaturated flow conditions, for the same experimental conditions. Overall, CDs tend to be highly mobile and could travel for long distances at a wide range of environmental conditions.
Carbon-based engineered nanoparticles (ENPs) are widely used in consumer products due to their small size and unique physicochemical properties. Therefore, their release and distribution into the surface and subsurface environment is a subject of concern. Several studies have evaluated the transport and retention of carbon nanotubes and fullerenes, but none investigated the transport and retention of carbon dots (CDs). The aim of this research is to fill this knowledge gap by evaluating the transport and retention of CDs in saturated and unsaturated porous medium. Here, we investigate the effects of solution ionic strength (IS, 1–700 mM NaCl) and pH (4–9), the initial concentration of CDs (50–200 mg L⁻¹), and porous media grain size (0.20–0.50 mm, 0.50–1 mm, 1–1.5 mm and 1.5–2 mm grain diameters) on the transport and retention of CDs in saturated (upward flow) and unsaturated (downward flow) quartz porous media. A mathematical model based on the advection-dispersion equation coupled with the second-order kinetics was used to fit the breakthrough curves and to calculate the attachment and straining rates under the different experimental conditions. These analyses were underpinned by characterization of CD surface functional groups, surface charge and aggregation under the different experimental conditions, calculation of CD-CD and CD-quartz sand interaction potential according to DLVO theory.Transport and retention of CDs in quartz porous media are consistent with those observed for other types of carbon-based ENPs such as fullerenes and carbon nanotubes. Mobility of CDs in both saturated and unsaturated porous media increases with the decrease in ionic strength, increase in pH, and increase in collector grain size. Retention of CDs increases with the increase in IS, decrease in pH and decrease in grain size. Generally, CDs mobility was higher under saturated than under unsaturated flow conditions, for the same experimental conditions. Overall, CDs tend to be highly mobile and could travel for long distances at a wide range of environmental conditions.
Carbon-based engineered nanoparticles (ENPs) are widely used in consumer products due to their small size and unique physicochemical properties. Therefore, their release and distribution into the surface and subsurface environment is a subject of concern. Several studies have evaluated the transport and retention of carbon nanotubes and fullerenes, but none investigated the transport and retention of carbon dots (CDs). The aim of this research is to fill this knowledge gap by evaluating the transport and retention of CDs in saturated and unsaturated porous medium. Here, we investigate the effects of solution ionic strength (IS, 1–700 mM NaCl) and pH (4–9), the initial concentration of CDs (50–200 mg L−1), and porous media grain size (0.20–0.50 mm, 0.50–1 mm, 1–1.5 mm and 1.5–2 mm grain diameters) on the transport and retention of CDs in saturated (upward flow) and unsaturated (downward flow) quartz porous media. A mathematical model based on the advection-dispersion equation coupled with the second-order kinetics was used to fit the breakthrough curves and to calculate the attachment and straining rates under the different experimental conditions. These analyses were underpinned by characterization of CD surface functional groups, surface charge and aggregation under the different experimental conditions, calculation of CD-CD and CD-quartz sand interaction potential according to DLVO theory. Transport and retention of CDs in quartz porous media are consistent with those observed for other types of carbon-based ENPs such as fullerenes and carbon nanotubes. Mobility of CDs in both saturated and unsaturated porous media increases with the decrease in ionic strength, increase in pH, and increase in collector grain size. Retention of CDs increases with the increase in IS, decrease in pH and decrease in grain size. Generally, CDs mobility was higher under saturated than under unsaturated flow conditions, for the same experimental conditions. Overall, CDs tend to be highly mobile and could travel for long distances at a wide range of environmental conditions. [Display omitted] •Carbon Dots displays high mobility within saturated and unsaturated sand packs.•DLVO theory can explain the observed trends in the mobility of CD within porous media.•CD solution properties has high effects on CD immobilization.•CD mobility is higher under saturated than under unsaturated flow conditions.
Author Kamrani, Salahaddin
Kord, Mehdi
Rezaei, Mohsen
Baalousha, Mohammed
Author_xml – sequence: 1
  givenname: Salahaddin
  surname: Kamrani
  fullname: Kamrani, Salahaddin
  email: salah.kamrani@yahoo.com
  organization: Department of Applied Geology, Faculty of Earth Sciences, Hydrogeology, Kharazmi University, Tehran, Iran
– sequence: 2
  givenname: Mohsen
  surname: Rezaei
  fullname: Rezaei, Mohsen
  organization: Department of Applied Geology, Faculty of Earth Sciences, Hydrogeology, Kharazmi University, Tehran, Iran
– sequence: 3
  givenname: Mehdi
  surname: Kord
  fullname: Kord, Mehdi
  organization: Department of Earth Sciences, Faculty of Sciences, University of Kurdistan, Iran
– sequence: 4
  givenname: Mohammed
  surname: Baalousha
  fullname: Baalousha, Mohammed
  email: mbaalous@mailbox.sc.edu
  organization: Center for Environmental Nanoscience and Risk, Arnold School of Public Health, University of South Carolina, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28864305$$D View this record in MEDLINE/PubMed
BookMark eNqFkdtqFTEYhYNU7G71DURy2UJnmtOceiGU7aFCoSD1OuTwT81mdrJNMoo-gw9tprtF8MJeTQbW-ki-dYQOfPCA0GtKakpoe76pf6gcIdWM0K4mfU1E8wytaN8NFROiP0ArQgSvKG_EITpKaUMIYYwPL9Ah6_tWcNKs0O_bqHzahZix8hZHyOCzCx6HERsVdTnZkBM-Wb9Lp9h5nFSeo8pg7_Oz__tfIGFOeAvWqQv8OUywQArLGZzKTf1d_nqGd1dn900TpglMDhHfRbVw3S94iZ6Pakrw6uF7jL58eH-7vqqubz5-Wl9eV0a0NFe245wPbCSECsVGowxnmms9Mt2YsRnMQGhTXmiF0UNrR9t21LZaM9MbxZnlx-hkz93F8G2GlOXWJQPTpDyUJ0hWTDUdI4I9GaUDb2nLeTeU6JuH6KyLBLmLbqviT_kouwQu9gETQ0oRRmlcVovtXBRMkhK5LCs3cr-sXJaVpJdl2VIW_5Qf-U_U3u5rUHx-dxBlMg68KSPFol_a4P4P-AMsX8C0
CitedBy_id crossref_primary_10_1016_j_impact_2021_100361
crossref_primary_10_1016_j_colsurfa_2022_128860
crossref_primary_10_1007_s10973_018_08002_w
crossref_primary_10_1111_gwat_12860
crossref_primary_10_1016_j_colsurfa_2020_124418
crossref_primary_10_1016_j_jclepro_2020_123069
crossref_primary_10_1029_2020WR027599
crossref_primary_10_1021_acs_jpcc_0c03022
crossref_primary_10_1021_acs_energyfuels_1c01418
crossref_primary_10_1039_D2EN00055E
crossref_primary_10_1016_j_watres_2018_07_007
crossref_primary_10_1021_acs_est_8b04444
crossref_primary_10_3390_molecules25235518
crossref_primary_10_1016_j_envpol_2019_113861
crossref_primary_10_1016_j_jhazmat_2022_129341
crossref_primary_10_1039_C8EN00443A
crossref_primary_10_1016_j_scitotenv_2020_137779
crossref_primary_10_1016_j_chemosphere_2020_125929
crossref_primary_10_1016_j_gsf_2021_101346
crossref_primary_10_1016_j_jhydrol_2024_131307
crossref_primary_10_1007_s11270_020_04492_3
crossref_primary_10_1016_j_chemosphere_2021_131965
crossref_primary_10_1007_s11243_023_00554_7
crossref_primary_10_1007_s11356_018_3225_2
crossref_primary_10_1088_2050_6120_ab0bfa
crossref_primary_10_1016_j_envres_2021_111451
crossref_primary_10_1016_j_watres_2022_118195
crossref_primary_10_1039_D0EN01033B
crossref_primary_10_1007_s11356_019_06132_8
crossref_primary_10_1016_j_carbpol_2022_120059
crossref_primary_10_1016_j_chemosphere_2020_127100
crossref_primary_10_3389_fenvs_2022_1114940
crossref_primary_10_1016_j_jhydrol_2024_132351
crossref_primary_10_1007_s42452_019_1635_5
crossref_primary_10_1016_j_jhazmat_2024_133487
crossref_primary_10_1016_j_jes_2021_06_025
crossref_primary_10_1039_D1EN00698C
crossref_primary_10_1080_10643389_2019_1694823
crossref_primary_10_1016_j_ecoenv_2024_117297
crossref_primary_10_1016_j_ecoenv_2024_117467
crossref_primary_10_1007_s11356_022_24878_6
crossref_primary_10_1039_D4EN00563E
crossref_primary_10_1007_s11270_024_07152_y
crossref_primary_10_1016_j_scitotenv_2022_159261
crossref_primary_10_1016_j_scitotenv_2024_176195
crossref_primary_10_1021_acs_est_4c05753
crossref_primary_10_1080_19768354_2024_2409452
crossref_primary_10_1007_s11242_021_01651_w
crossref_primary_10_1016_j_chemosphere_2023_139604
crossref_primary_10_1016_j_scitotenv_2024_171937
crossref_primary_10_1002_hyp_13390
crossref_primary_10_1016_j_apt_2023_103979
crossref_primary_10_1016_j_ptlrs_2024_04_004
crossref_primary_10_1016_j_scitotenv_2021_148175
crossref_primary_10_1016_j_jconhyd_2022_104046
crossref_primary_10_1016_j_jcis_2020_12_089
crossref_primary_10_1021_acs_est_0c07359
crossref_primary_10_1007_s00216_019_01779_1
crossref_primary_10_1007_s40831_019_00249_3
crossref_primary_10_1016_j_jece_2023_111111
crossref_primary_10_1002_INMD_20230059
crossref_primary_10_1007_s41742_020_00298_7
crossref_primary_10_1016_j_chemosphere_2021_130214
crossref_primary_10_1016_j_jhazmat_2021_126488
crossref_primary_10_1016_j_scitotenv_2022_160415
crossref_primary_10_1016_j_jhydrol_2024_132017
crossref_primary_10_1021_acs_energyfuels_4c03984
crossref_primary_10_1515_ract_2021_1096
crossref_primary_10_1021_acs_est_9b05537
crossref_primary_10_1007_s11356_022_24056_8
crossref_primary_10_1016_j_envpol_2021_117098
crossref_primary_10_1007_s11270_025_07773_x
crossref_primary_10_1016_j_jhydrol_2024_132176
crossref_primary_10_1016_j_jhazmat_2023_133204
crossref_primary_10_1016_j_ecoenv_2020_110641
crossref_primary_10_1016_j_cherd_2023_02_022
crossref_primary_10_1021_acs_est_9b07437
crossref_primary_10_1016_j_scitotenv_2020_137427
crossref_primary_10_1021_acs_est_9b01453
Cites_doi 10.1016/j.colsurfa.2013.01.065
10.1021/ar400023s
10.1007/s12665-013-2769-1
10.1007/s100400050141
10.1021/es901340d
10.1002/etc.2525
10.1021/es801641v
10.1016/j.jhazmat.2012.01.088
10.1007/s11051-016-3365-6
10.1021/am505765e
10.1021/es801305y
10.1021/es0009323
10.1016/0927-7757(95)03343-2
10.1021/la062072v
10.1016/S0016-7037(98)00119-7
10.1002/etc.1786
10.1021/es9604323
10.1007/s11270-016-3097-3
10.1039/c2jm34690g
10.1021/es071888v
10.1007/s11242-006-9082-3
10.1021/es2017076
10.1021/es0708767
10.1039/C6CC02874H
10.1016/j.jhazmat.2012.07.041
10.1016/j.watres.2013.11.038
10.1016/j.watres.2012.11.019
10.1016/j.cej.2013.06.030
10.1021/es301167x
10.1021/es025899u
10.1039/C4TC00988F
10.1016/j.watres.2014.09.025
10.1021/es034049r
10.1021/ja040082h
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright © 2017 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2017 Elsevier Ltd
– notice: Copyright © 2017 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.watres.2017.08.045
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2448
EndPage 347
ExternalDocumentID 28864305
10_1016_j_watres_2017_08_045
S0043135417307078
Genre Journal Article
GroupedDBID ---
--K
--M
-DZ
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFO
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMC
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TAE
TN5
TWZ
WH7
XPP
ZCA
ZMT
~02
~G-
~KM
.55
186
29R
6TJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACKIV
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HMA
HVGLF
HZ~
H~9
MVM
OHT
R2-
SEN
SEP
SEW
SSH
WUQ
X7M
XOL
YHZ
YV5
ZXP
ZY4
~A~
NPM
7X8
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c461t-d733392f0014a2fcac32b3bbf2b5cf59c9015886d4cb96dfd671d6bb2c8ca32d3
IEDL.DBID .~1
ISSN 0043-1354
1879-2448
IngestDate Wed Jul 30 11:34:33 EDT 2025
Fri Jul 11 01:58:15 EDT 2025
Wed Feb 19 02:43:19 EST 2025
Tue Jul 01 01:20:50 EDT 2025
Thu Apr 24 23:01:12 EDT 2025
Fri Feb 23 02:48:19 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Saturated sand column
Carbon dot nanoparticle
Unsaturated sand column
Transport
Retention
DLVO theory
Language English
License Copyright © 2017 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c461t-d733392f0014a2fcac32b3bbf2b5cf59c9015886d4cb96dfd671d6bb2c8ca32d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 28864305
PQID 1936163379
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_2000572042
proquest_miscellaneous_1936163379
pubmed_primary_28864305
crossref_citationtrail_10_1016_j_watres_2017_08_045
crossref_primary_10_1016_j_watres_2017_08_045
elsevier_sciencedirect_doi_10_1016_j_watres_2017_08_045
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-04-15
PublicationDateYYYYMMDD 2018-04-15
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-15
  day: 15
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Water research (Oxford)
PublicationTitleAlternate Water Res
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Hedayati, Sharma, Katyal, Fagerlunf (bib12) 2016
Kasel, Bradford, Simunek, Heggen, Vereecken, Klumpp (bib15) 2013; 47
Raychoudhury, Tufenkji, Ghoshal (bib27) 2014; 50
Borgnino (bib4) 2013; 423
Zhang, Yao, Lu, Li, Wang (bib37) 2014; 6
Baalousha, Lead (bib2) 2012; 46
Liu, Gao, Wu, Morales, Yang, Zhou, Wang (bib22) 2013; 229
Mekonen, Sharma, Fagerlund (bib24) 2014; 71
Tong, Ma, Johnson (bib33) 2008; 42
Wang, Lu, Peng, Xu, Wang, Qi, Xu, Zhang (bib36) 2016; 52
Liu, O'Carroll, Petersen, Huang, Anderson (bib21) 2009; 43
Lanphere, Rogers, Luth, Bolster, Walker (bib17) 2014; 31
Eggleston, Jordan (bib9) 1998; 62
Espinasse, Hotze, Wiesner (bib10) 2007; 41
Li, Wang, Pennell, Abriola (bib18) 2008; 42
Li, Kang, Liu, Lee (bib19) 2012; 22
Šimůnek, Šejna, Saito, Sakai, van Genuchten (bib29) 2008
Stephens, Hsu, Prieksat, Ankeny, Blandford, Roth, Kelsey, Whitworth (bib300) 1998; 6
Tian, Gao, Wang, Morales, Carpena, Huang, Yang (bib32) 2012; 213–214
Baalousha, Ju-Nam, Cole, Hriljac, Jones, Tyler, Stone, Fernandes, Jepson, Lead (bib3) 2012; 31
Ko, Elimelech (bib16) 2000; 34
Alvarez, Hime, Marchesin, Bedrikovetsky (bib1) 2007; 70
Sun, Gao, Bradford, Wu, Chen, Shi, Wu (bib31) 2014; 68
Ding, Zhu, Tian (bib8) 2014; 47
Feriancikova, Xu (bib11) 2012; 235
Brantley (bib6) 1998
Mattison, O'Carroll, Kerry Rowe, Petersen (bib23) 2011; 45
Chen, Elimelech (bib7) 2006; 22
Bradford, Šimůnek, Bettahar, Van Genuchten, Yates (bib5) 2003; 37
Tufenkji, Elimelech (bib34) 2004; 38
Wang, Hu (bib35) 2014; 2
NRC (bib25) 2012
Qi, Zhang, Wang, Hou, Chen (bib26) 2014; 33
Jaisi, Saleh, Blake, Elimelech (bib13) 2008; 42
Litton, Olson (bib20) 1996; 107
Saberinasr, Rezaei, Nakhaei, Hosseini (bib28) 2016; 227
Jin, Yates, Thompson, Jury (bib14) 1997; 31
Xu, Ray, Gu, Ploehn, Gearheart, Raker, Scrivens (bib400) 2004; 126
Singh (bib30) 2002; 128
Lanphere (10.1016/j.watres.2017.08.045_bib17) 2014; 31
Tufenkji (10.1016/j.watres.2017.08.045_bib34) 2004; 38
Jaisi (10.1016/j.watres.2017.08.045_bib13) 2008; 42
Kasel (10.1016/j.watres.2017.08.045_bib15) 2013; 47
Baalousha (10.1016/j.watres.2017.08.045_bib2) 2012; 46
Sun (10.1016/j.watres.2017.08.045_bib31) 2014; 68
Alvarez (10.1016/j.watres.2017.08.045_bib1) 2007; 70
Qi (10.1016/j.watres.2017.08.045_bib26) 2014; 33
Feriancikova (10.1016/j.watres.2017.08.045_bib11) 2012; 235
Zhang (10.1016/j.watres.2017.08.045_bib37) 2014; 6
Mattison (10.1016/j.watres.2017.08.045_bib23) 2011; 45
Wang (10.1016/j.watres.2017.08.045_bib36) 2016; 52
Tian (10.1016/j.watres.2017.08.045_bib32) 2012; 213–214
Eggleston (10.1016/j.watres.2017.08.045_bib9) 1998; 62
Baalousha (10.1016/j.watres.2017.08.045_bib3) 2012; 31
Liu (10.1016/j.watres.2017.08.045_bib22) 2013; 229
Litton (10.1016/j.watres.2017.08.045_bib20) 1996; 107
NRC (10.1016/j.watres.2017.08.045_bib25) 2012
Jin (10.1016/j.watres.2017.08.045_bib14) 1997; 31
Liu (10.1016/j.watres.2017.08.045_bib21) 2009; 43
Stephens (10.1016/j.watres.2017.08.045_bib300) 1998; 6
Li (10.1016/j.watres.2017.08.045_bib18) 2008; 42
Šimůnek (10.1016/j.watres.2017.08.045_bib29) 2008
Mekonen (10.1016/j.watres.2017.08.045_bib24) 2014; 71
Wang (10.1016/j.watres.2017.08.045_bib35) 2014; 2
Ding (10.1016/j.watres.2017.08.045_bib8) 2014; 47
Brantley (10.1016/j.watres.2017.08.045_bib6) 1998
Saberinasr (10.1016/j.watres.2017.08.045_bib28) 2016; 227
Singh (10.1016/j.watres.2017.08.045_bib30) 2002; 128
Chen (10.1016/j.watres.2017.08.045_bib7) 2006; 22
Raychoudhury (10.1016/j.watres.2017.08.045_bib27) 2014; 50
Xu (10.1016/j.watres.2017.08.045_bib400) 2004; 126
Borgnino (10.1016/j.watres.2017.08.045_bib4) 2013; 423
Ko (10.1016/j.watres.2017.08.045_bib16) 2000; 34
Hedayati (10.1016/j.watres.2017.08.045_bib12) 2016
Tong (10.1016/j.watres.2017.08.045_bib33) 2008; 42
Espinasse (10.1016/j.watres.2017.08.045_bib10) 2007; 41
Li (10.1016/j.watres.2017.08.045_bib19) 2012; 22
Bradford (10.1016/j.watres.2017.08.045_bib5) 2003; 37
References_xml – volume: 229
  start-page: 444
  year: 2013
  end-page: 449
  ident: bib22
  article-title: Deposition and transport of graphene oxide in saturated and unsaturated porous media
  publication-title: Chem. Eng. J.
– volume: 43
  start-page: 8153
  year: 2009
  end-page: 8158
  ident: bib21
  article-title: Mobility of multiwalled carbon nanotubes in porous media
  publication-title: Environ. Sci. Technol.
– volume: 50
  start-page: 80
  year: 2014
  end-page: 89
  ident: bib27
  article-title: Straining of polyelectrolyte-stabilized nanoscale zero valent iron particles during transport through granular porous. media
  publication-title: water Res.
– volume: 6
  start-page: 20225
  year: 2014
  end-page: 20233
  ident: bib37
  article-title: Layered double hydroxide-carbon dot composite: high-performance adsorbent for removal of anionic organic dye
  publication-title: ACS Appl. Mater Interface
– volume: 71
  start-page: 3751
  year: 2014
  end-page: 3760
  ident: bib24
  article-title: Transport and mobilization of multiwall carbon nanotubes in quartz sand under varying saturation
  publication-title: Environ. Earth Sci.
– volume: 31
  year: 2014
  ident: bib17
  article-title: Stability and transport of graphene oxide nanoparticles in groundwater and surface water
  publication-title: Environ. Eng. Sci.
– volume: 62
  start-page: 1919
  year: 1998
  end-page: 1923
  ident: bib9
  article-title: A new approach to pH of point of zero charge measurement: crystal-face specificity by scanning force microscopy (SFM)
  publication-title: Geochim. Cosmochim. Acta
– year: 2012
  ident: bib25
  article-title: A Research Strategy for Environmental, Health, and Safety Aspects of Engineered Nanomaterials
– volume: 52
  start-page: 9247
  year: 2016
  end-page: 9250
  ident: bib36
  article-title: Multi-doped carbon dots with ratiometric pH sensing property for monitoring enzyme catalytic reactions
  publication-title: Chem. Commun.
– volume: 2
  start-page: 6921
  year: 2014
  end-page: 6939
  ident: bib35
  article-title: Carbon quantum dots: synthesis, properties and applications
  publication-title: J. Mater. Chem. C
– volume: 22
  start-page: 10994
  year: 2006
  end-page: 11001
  ident: bib7
  article-title: Aggregation and deposition kinetics of fullerene (C60) nanoparticles
  publication-title: Langmuir
– volume: 42
  start-page: 2826
  year: 2008
  end-page: 2832
  ident: bib33
  article-title: Funneling of flow into grain to grain contacts drives colloid-colloid aggregation in the presence of an energy barrier
  publication-title: Environ. Sci. Technol.
– volume: 42
  start-page: 8317
  year: 2008
  end-page: 8323
  ident: bib13
  article-title: Transport of single-walled carbon nanotubes in porous media: filtration mechanisms and reversibility
  publication-title: Environ. Sci. Technol.
– volume: 33
  start-page: 998
  year: 2014
  end-page: 1004
  ident: bib26
  article-title: Factors controlling transport of graphene oxide nanoparticles in saturated sand columns
  publication-title: Environ. Toxic. Chem.
– volume: 107
  start-page: 273
  year: 1996
  end-page: 283
  ident: bib20
  article-title: Particle size effects on colloid deposition kinetics: evidence of secondary minimum deposition
  publication-title: Colloid. Surface A Physicochem. Eng. Asp.
– volume: 6
  start-page: 156
  year: 1998
  end-page: 165
  ident: bib300
  article-title: A comparison of estimated and calculated effective porosity
  publication-title: Hydrogeol. J.
– volume: 31
  start-page: 548
  year: 1997
  end-page: 555
  ident: bib14
  article-title: Sorption of viruses during flow through saturated sand columns
  publication-title: Environ. Sci. Technol.
– volume: 47
  start-page: 20
  year: 2014
  end-page: 30
  ident: bib8
  article-title: Functional surface engineering of C-Dots for fluorescent biosensing and in vivo bioimaging
  publication-title: Acc. Chem. Res.
– volume: 227
  start-page: 394
  year: 2016
  ident: bib28
  article-title: Transport of CMC-stabilized nZVI in saturated sand column: the effect of particle concentration and soil grain size
  publication-title: Water Air Soil Pollut.
– year: 2016
  ident: bib12
  article-title: Transport and retention of carbon-based engineered and natural nanoparticles through saturated porous media
  publication-title: J. Nanoparticle Res.
– volume: 38
  start-page: 529
  year: 2004
  end-page: 536
  ident: bib34
  article-title: Correlation equation for predicting single-collector efficiency in physiochemical filtration in saturated porous media
  publication-title: Environ. Sci. Technol.
– volume: 46
  start-page: 6134
  year: 2012
  end-page: 6142
  ident: bib2
  article-title: Rationalizing nanomaterial sizes measured by atomic force microscopy, flow field-flow fractionation, and dynamic light scattering: sample preparation, polydispersity, and particle structure
  publication-title: Environ. Sci. Technol.
– volume: 423
  start-page: 178
  year: 2013
  end-page: 187
  ident: bib4
  article-title: Experimental determination of the colloidal stability of Fe(III)-montmorillonite: effects of organic matter, ionic strength and pH conditions
  publication-title: Colloid. Surfaces A Physicochem. Eng. Aspect
– volume: 45
  start-page: 9765
  year: 2011
  end-page: 9775
  ident: bib23
  article-title: Impact of porous media grain size on the transport of multi-walled carbon nanotubes
  publication-title: Environ. Sci. Technol.
– volume: 126
  start-page: 12736
  year: 2004
  end-page: 12737
  ident: bib400
  article-title: Electrophoretic analysis and purification of fluorescent single walled carbon nanotube fragments
  publication-title: J. Am. Chem. Soc.
– volume: 34
  start-page: 3681
  year: 2000
  end-page: 3689
  ident: bib16
  article-title: The “shadow effect” in colloid transport and deposition dynamics in granular porous media: measurement and mechanisms
  publication-title: Environ. Sci. Technol.
– year: 2008
  ident: bib29
  article-title: The HYDRUS-1D Software Package for Simulating the Movement of Water, Heat, and Multiple Solutes in Variably Saturated Media
  publication-title: HYDRUS Software Series 3
– volume: 235
  start-page: 194
  year: 2012
  ident: bib11
  article-title: Deposition and remobilization of graphene oxide within saturated sand packs
  publication-title: J. Hazard. Mater.
– volume: 47
  start-page: 933
  year: 2013
  end-page: 944
  ident: bib15
  article-title: Transport and retention of multi-walled carbon nanotubes in saturated porous media: effects of input concentration and grain size
  publication-title: Water Res.
– year: 1998
  ident: bib6
  article-title: Surface area and porosity of primary silicate minerals
  publication-title: Goldschmidt Conference Toulouse 1998
– volume: 213–214
  start-page: 265
  year: 2012
  end-page: 272
  ident: bib32
  article-title: Deposition and transport of functionalized carbon nanotubes in water-saturated sand columns
  publication-title: J. Hazard. Mater.
– volume: 42
  start-page: 7174
  year: 2008
  end-page: 7180
  ident: bib18
  article-title: Investigation of the transport and deposition of fullerene (C60) nanoparticles in quartz sands under varying flow conditions
  publication-title: Environ. Sci. Technol.
– volume: 31
  start-page: 994
  year: 2012
  end-page: 1003
  ident: bib3
  article-title: Characterization of cerium oxide nanoparticles-part 2: non size measurements
  publication-title: Environ. Toxicol. Chem.
– volume: 37
  start-page: 2242
  year: 2003
  end-page: 2250
  ident: bib5
  article-title: Modeling colloid attachment, straining and exclusion in saturated porous media
  publication-title: Environ. Sci. Technol.
– volume: 128
  start-page: 1095
  year: 2002
  ident: bib30
  article-title: Estimating dispersion coefficient and porosity from soil-column tests
– volume: 68
  start-page: 24
  year: 2014
  end-page: 33
  ident: bib31
  article-title: Transport, retention, and size perturbation of graphene oxide in saturated porous media: effects of input concentration and grain size
  publication-title: Water Res.
– volume: 70
  start-page: 43
  year: 2007
  end-page: 62
  ident: bib1
  article-title: The inverse problem of determining the filtration function and permeability reduction in flow of water with particles in porous media
  publication-title: Transp. Porous Media
– volume: 41
  start-page: 7396
  year: 2007
  end-page: 7402
  ident: bib10
  article-title: Transport and retention of colloidal aggregates of C-60 in porous media: effects of organic macromolecules, ionic composition, and preparation method
  publication-title: Environ. Sci. Technol.
– volume: 22
  start-page: 24230
  year: 2012
  end-page: 24253
  ident: bib19
  article-title: Carbon nanodots: synthesis, properties and applications
  publication-title: J. Mater. Chem.
– volume: 423
  start-page: 178
  year: 2013
  ident: 10.1016/j.watres.2017.08.045_bib4
  article-title: Experimental determination of the colloidal stability of Fe(III)-montmorillonite: effects of organic matter, ionic strength and pH conditions
  publication-title: Colloid. Surfaces A Physicochem. Eng. Aspect
  doi: 10.1016/j.colsurfa.2013.01.065
– volume: 47
  start-page: 20
  year: 2014
  ident: 10.1016/j.watres.2017.08.045_bib8
  article-title: Functional surface engineering of C-Dots for fluorescent biosensing and in vivo bioimaging
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar400023s
– volume: 71
  start-page: 3751
  year: 2014
  ident: 10.1016/j.watres.2017.08.045_bib24
  article-title: Transport and mobilization of multiwall carbon nanotubes in quartz sand under varying saturation
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-013-2769-1
– volume: 6
  start-page: 156
  issue: 1
  year: 1998
  ident: 10.1016/j.watres.2017.08.045_bib300
  article-title: A comparison of estimated and calculated effective porosity
  publication-title: Hydrogeol. J.
  doi: 10.1007/s100400050141
– volume: 43
  start-page: 8153
  year: 2009
  ident: 10.1016/j.watres.2017.08.045_bib21
  article-title: Mobility of multiwalled carbon nanotubes in porous media
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es901340d
– volume: 33
  start-page: 998
  issue: 5
  year: 2014
  ident: 10.1016/j.watres.2017.08.045_bib26
  article-title: Factors controlling transport of graphene oxide nanoparticles in saturated sand columns
  publication-title: Environ. Toxic. Chem.
  doi: 10.1002/etc.2525
– volume: 42
  start-page: 8317
  year: 2008
  ident: 10.1016/j.watres.2017.08.045_bib13
  article-title: Transport of single-walled carbon nanotubes in porous media: filtration mechanisms and reversibility
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es801641v
– volume: 213–214
  start-page: 265
  year: 2012
  ident: 10.1016/j.watres.2017.08.045_bib32
  article-title: Deposition and transport of functionalized carbon nanotubes in water-saturated sand columns
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2012.01.088
– year: 2016
  ident: 10.1016/j.watres.2017.08.045_bib12
  article-title: Transport and retention of carbon-based engineered and natural nanoparticles through saturated porous media
  publication-title: J. Nanoparticle Res.
  doi: 10.1007/s11051-016-3365-6
– volume: 6
  start-page: 20225
  issue: 22
  year: 2014
  ident: 10.1016/j.watres.2017.08.045_bib37
  article-title: Layered double hydroxide-carbon dot composite: high-performance adsorbent for removal of anionic organic dye
  publication-title: ACS Appl. Mater Interface
  doi: 10.1021/am505765e
– year: 1998
  ident: 10.1016/j.watres.2017.08.045_bib6
  article-title: Surface area and porosity of primary silicate minerals
– volume: 42
  start-page: 7174
  issue: 19
  year: 2008
  ident: 10.1016/j.watres.2017.08.045_bib18
  article-title: Investigation of the transport and deposition of fullerene (C60) nanoparticles in quartz sands under varying flow conditions
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es801305y
– volume: 34
  start-page: 3681
  issue: 17
  year: 2000
  ident: 10.1016/j.watres.2017.08.045_bib16
  article-title: The “shadow effect” in colloid transport and deposition dynamics in granular porous media: measurement and mechanisms
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0009323
– volume: 107
  start-page: 273
  year: 1996
  ident: 10.1016/j.watres.2017.08.045_bib20
  article-title: Particle size effects on colloid deposition kinetics: evidence of secondary minimum deposition
  publication-title: Colloid. Surface A Physicochem. Eng. Asp.
  doi: 10.1016/0927-7757(95)03343-2
– volume: 128
  start-page: 1095
  issue: 11
  year: 2002
  ident: 10.1016/j.watres.2017.08.045_bib30
  article-title: Estimating dispersion coefficient and porosity from soil-column tests
– volume: 22
  start-page: 10994
  issue: 26
  year: 2006
  ident: 10.1016/j.watres.2017.08.045_bib7
  article-title: Aggregation and deposition kinetics of fullerene (C60) nanoparticles
  publication-title: Langmuir
  doi: 10.1021/la062072v
– year: 2008
  ident: 10.1016/j.watres.2017.08.045_bib29
  article-title: The HYDRUS-1D Software Package for Simulating the Movement of Water, Heat, and Multiple Solutes in Variably Saturated Media
– volume: 62
  start-page: 1919
  issue: 11
  year: 1998
  ident: 10.1016/j.watres.2017.08.045_bib9
  article-title: A new approach to pH of point of zero charge measurement: crystal-face specificity by scanning force microscopy (SFM)
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/S0016-7037(98)00119-7
– volume: 31
  start-page: 994
  issue: 5
  year: 2012
  ident: 10.1016/j.watres.2017.08.045_bib3
  article-title: Characterization of cerium oxide nanoparticles-part 2: non size measurements
  publication-title: Environ. Toxicol. Chem.
  doi: 10.1002/etc.1786
– volume: 31
  start-page: 548
  issue: 4
  year: 1997
  ident: 10.1016/j.watres.2017.08.045_bib14
  article-title: Sorption of viruses during flow through saturated sand columns
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es9604323
– volume: 227
  start-page: 394
  year: 2016
  ident: 10.1016/j.watres.2017.08.045_bib28
  article-title: Transport of CMC-stabilized nZVI in saturated sand column: the effect of particle concentration and soil grain size
  publication-title: Water Air Soil Pollut.
  doi: 10.1007/s11270-016-3097-3
– volume: 22
  start-page: 24230
  year: 2012
  ident: 10.1016/j.watres.2017.08.045_bib19
  article-title: Carbon nanodots: synthesis, properties and applications
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm34690g
– volume: 42
  start-page: 2826
  issue: 8
  year: 2008
  ident: 10.1016/j.watres.2017.08.045_bib33
  article-title: Funneling of flow into grain to grain contacts drives colloid-colloid aggregation in the presence of an energy barrier
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es071888v
– volume: 70
  start-page: 43
  year: 2007
  ident: 10.1016/j.watres.2017.08.045_bib1
  article-title: The inverse problem of determining the filtration function and permeability reduction in flow of water with particles in porous media
  publication-title: Transp. Porous Media
  doi: 10.1007/s11242-006-9082-3
– volume: 31
  issue: 5
  year: 2014
  ident: 10.1016/j.watres.2017.08.045_bib17
  article-title: Stability and transport of graphene oxide nanoparticles in groundwater and surface water
  publication-title: Environ. Eng. Sci.
– volume: 45
  start-page: 9765
  year: 2011
  ident: 10.1016/j.watres.2017.08.045_bib23
  article-title: Impact of porous media grain size on the transport of multi-walled carbon nanotubes
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es2017076
– volume: 41
  start-page: 7396
  year: 2007
  ident: 10.1016/j.watres.2017.08.045_bib10
  article-title: Transport and retention of colloidal aggregates of C-60 in porous media: effects of organic macromolecules, ionic composition, and preparation method
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0708767
– volume: 52
  start-page: 9247
  year: 2016
  ident: 10.1016/j.watres.2017.08.045_bib36
  article-title: Multi-doped carbon dots with ratiometric pH sensing property for monitoring enzyme catalytic reactions
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC02874H
– volume: 235
  start-page: 194
  year: 2012
  ident: 10.1016/j.watres.2017.08.045_bib11
  article-title: Deposition and remobilization of graphene oxide within saturated sand packs
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2012.07.041
– volume: 50
  start-page: 80
  year: 2014
  ident: 10.1016/j.watres.2017.08.045_bib27
  article-title: Straining of polyelectrolyte-stabilized nanoscale zero valent iron particles during transport through granular porous. media
  publication-title: water Res.
  doi: 10.1016/j.watres.2013.11.038
– volume: 47
  start-page: 933
  year: 2013
  ident: 10.1016/j.watres.2017.08.045_bib15
  article-title: Transport and retention of multi-walled carbon nanotubes in saturated porous media: effects of input concentration and grain size
  publication-title: Water Res.
  doi: 10.1016/j.watres.2012.11.019
– volume: 229
  start-page: 444
  year: 2013
  ident: 10.1016/j.watres.2017.08.045_bib22
  article-title: Deposition and transport of graphene oxide in saturated and unsaturated porous media
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2013.06.030
– year: 2012
  ident: 10.1016/j.watres.2017.08.045_bib25
– volume: 46
  start-page: 6134
  issue: 11
  year: 2012
  ident: 10.1016/j.watres.2017.08.045_bib2
  article-title: Rationalizing nanomaterial sizes measured by atomic force microscopy, flow field-flow fractionation, and dynamic light scattering: sample preparation, polydispersity, and particle structure
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es301167x
– volume: 37
  start-page: 2242
  year: 2003
  ident: 10.1016/j.watres.2017.08.045_bib5
  article-title: Modeling colloid attachment, straining and exclusion in saturated porous media
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es025899u
– volume: 2
  start-page: 6921
  year: 2014
  ident: 10.1016/j.watres.2017.08.045_bib35
  article-title: Carbon quantum dots: synthesis, properties and applications
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C4TC00988F
– volume: 68
  start-page: 24
  year: 2014
  ident: 10.1016/j.watres.2017.08.045_bib31
  article-title: Transport, retention, and size perturbation of graphene oxide in saturated porous media: effects of input concentration and grain size
  publication-title: Water Res.
  doi: 10.1016/j.watres.2014.09.025
– volume: 38
  start-page: 529
  year: 2004
  ident: 10.1016/j.watres.2017.08.045_bib34
  article-title: Correlation equation for predicting single-collector efficiency in physiochemical filtration in saturated porous media
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es034049r
– volume: 126
  start-page: 12736
  issue: 40
  year: 2004
  ident: 10.1016/j.watres.2017.08.045_bib400
  article-title: Electrophoretic analysis and purification of fluorescent single walled carbon nanotube fragments
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja040082h
SSID ssj0002239
Score 2.5281632
Snippet Carbon-based engineered nanoparticles (ENPs) are widely used in consumer products due to their small size and unique physicochemical properties. Therefore,...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 338
SubjectTerms Carbon dot nanoparticle
carbon nanotubes
carbon quantum dots
diameter
DLVO theory
environmental factors
equations
fullerene
ionic strength
mathematical models
porous media
quartz
Retention
sand
Saturated sand column
sodium chloride
Transport
travel
unsaturated flow
Unsaturated sand column
Title Transport and retention of carbon dots (CDs) in saturated and unsaturated porous media: Role of ionic strength, pH, and collector grain size
URI https://dx.doi.org/10.1016/j.watres.2017.08.045
https://www.ncbi.nlm.nih.gov/pubmed/28864305
https://www.proquest.com/docview/1936163379
https://www.proquest.com/docview/2000572042
Volume 133
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhvbSHkvS5SRpU6KGFuFlbL7u3sG3YpDSH0kBuQs9kQ_Au610COeQX5Ed3RrY3LTQEerOMJMRorPnkmW-GkA88KuNFYTNvrMx4FYeZMSrPohM8mhDBBKFH98eJHJ_y4zNxtkZGPRcGwyq7s78909Np3b3Z76S5P5tMkOMLxo8JniuWctYgg50r1PLPt_dhHmD-qt7LjL17-lyK8bo2SMjAAC-VEnkiqenf5ukh-JnM0OEGed7hR3rQLnGTrIX6BXn2R1bBl-RulbCcmtrTOcJiFD-dRurM3MITXEUb-nH0tflEJzVtMLknYE6f-i_r-zZMMl02NNFLvtCf06uAk-AvXEeRZVKfLy726Gy8l0aiTiUnAD3HwhO0mdyEV-T08Nuv0Tjrii5kjst8kXnFGGCmiHcnU0RnHCssszYWVrgoKocAoiyl585W0kcvVe6ltYUrnWGFZ6_Jej2tw1tCMdca597DgABzw10Y4E0chlJINzS-GhDWy1q7LiM5Fsa40n3o2aVud0jjDmmsl8nFgGSrUbM2I8cj_VW_jfovzdJgNB4Z-b7fdQ0fHXpSTB1A7BpQrwQgy1T1cB_kQAksAVQMyJtWZVbrLUCAmGtt67_Xtk2eQqtEv1Yudsj6Yr4M7wAeLexu0v9d8uTg6Pv45DfxzBEN
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbK9gAcUHmVLS0YiQNIjbqJH0m4VQtVSts9oFbqzfKzLKqyq82uKvEb-NHMOMlSJKpK3PLwWNaM4_mc8XxDyHsecu1EZhKnjUx4GUaJ1nmaBCt40D6AC8KI7tlEVhf866W43CDjPhcGj1V2a3-7psfVunty0GnzYD6dYo4vOD8meJqzyFnzgGwiO5UYkM3D45Nqsl6QwQOWfaAZBfoMunjM60ZjTgae8cojlyfmNf3bQ92FQKMnOtoiTzoISQ_bUT4lG75-Rh7fIhZ8Tn6tOcuprh1dIDJGC9BZoFYvDFzBbrShH8afm490WtMG-T0BdrrYflX_uYdOZquGxgyTT_Tb7NpjJ_gX11JMNKmvlt_36bzaj5I4rWIcgF5h7QnaTH_6F-Ti6Mv5uEq6uguJ5TJdJi5nDGBTwO2TzoLVlmWGGRMyI2wQpUUMURTScWtK6YKTeeqkMZktrGaZYy_JoJ7V_hWhSLfGuXMg4KFv2A4DwgkjXwhpR9qVQ8J6XSvbkZJjbYxr1Z8--6FaCym0kMKSmVwMSbKWmrekHPe0z3szqr8mlwK_cY_ku97qCr47DKbo2oPaFQBfCViW5eXdbTANSmAVoGxIttspsx5vBgpEurWd_x7bW_KwOj87VafHk5PX5BG8KTDMlYpdMlguVn4P0NLSvOm-ht89SRO-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transport+and+retention+of+carbon+dots+%28CDs%29+in+saturated+and+unsaturated+porous+media%3A+Role+of+ionic+strength%2C+pH%2C+and+collector+grain+size&rft.jtitle=Water+research+%28Oxford%29&rft.au=Kamrani%2C+Salahaddin&rft.au=Rezaei%2C+Mohsen&rft.au=Kord%2C+Mehdi&rft.au=Baalousha%2C+Mohammed&rft.date=2018-04-15&rft.eissn=1879-2448&rft.volume=133&rft.spage=338&rft_id=info:doi/10.1016%2Fj.watres.2017.08.045&rft_id=info%3Apmid%2F28864305&rft.externalDocID=28864305
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1354&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1354&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1354&client=summon