Inverting the Generator of a Generative Adversarial Network

Generative adversarial networks (GANs) learn a deep generative model that is able to synthesize novel, high-dimensional data samples. New data samples are synthesized by passing latent samples, drawn from a chosen prior distribution, through the generative model. Once trained, the latent space exhib...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 30; no. 7; pp. 1967 - 1974
Main Authors Creswell, Antonia, Bharath, Anil Anthony
Format Journal Article
LanguageEnglish
Published United States IEEE 01.07.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2162-237X
2162-2388
2162-2388
DOI10.1109/TNNLS.2018.2875194

Cover

Loading…
Abstract Generative adversarial networks (GANs) learn a deep generative model that is able to synthesize novel, high-dimensional data samples. New data samples are synthesized by passing latent samples, drawn from a chosen prior distribution, through the generative model. Once trained, the latent space exhibits interesting properties that may be useful for downstream tasks such as classification or retrieval. Unfortunately, GANs do not offer an "inverse model," a mapping from data space back to latent space, making it difficult to infer a latent representation for a given data sample. In this paper, we introduce a technique, inversion , to project data samples, specifically images, to the latent space using a pretrained GAN. Using our proposed inversion technique, we are able to identify which attributes of a data set a trained GAN is able to model and quantify GAN performance, based on a reconstruction loss. We demonstrate how our proposed inversion technique may be used to quantitatively compare the performance of various GAN models trained on three image data sets. We provide codes for all of our experiments in the website ( https://github.com/ToniCreswell/InvertingGAN ).
AbstractList Generative adversarial networks (GANs) learn a deep generative model that is able to synthesize novel, high-dimensional data samples. New data samples are synthesized by passing latent samples, drawn from a chosen prior distribution, through the generative model. Once trained, the latent space exhibits interesting properties that may be useful for downstream tasks such as classification or retrieval. Unfortunately, GANs do not offer an “inverse model,” a mapping from data space back to latent space, making it difficult to infer a latent representation for a given data sample. In this paper, we introduce a technique, inversion , to project data samples, specifically images, to the latent space using a pretrained GAN. Using our proposed inversion technique, we are able to identify which attributes of a data set a trained GAN is able to model and quantify GAN performance, based on a reconstruction loss. We demonstrate how our proposed inversion technique may be used to quantitatively compare the performance of various GAN models trained on three image data sets. We provide codes for all of our experiments in the website ( https://github.com/ToniCreswell/InvertingGAN ).
Generative adversarial networks (GANs) learn a deep generative model that is able to synthesize novel, high-dimensional data samples. New data samples are synthesized by passing latent samples, drawn from a chosen prior distribution, through the generative model. Once trained, the latent space exhibits interesting properties that may be useful for downstream tasks such as classification or retrieval. Unfortunately, GANs do not offer an ``inverse model,'' a mapping from data space back to latent space, making it difficult to infer a latent representation for a given data sample. In this paper, we introduce a technique, inversion, to project data samples, specifically images, to the latent space using a pretrained GAN. Using our proposed inversion technique, we are able to identify which attributes of a data set a trained GAN is able to model and quantify GAN performance, based on a reconstruction loss. We demonstrate how our proposed inversion technique may be used to quantitatively compare the performance of various GAN models trained on three image data sets. We provide codes for all of our experiments in the website (https://github.com/ToniCreswell/InvertingGAN).Generative adversarial networks (GANs) learn a deep generative model that is able to synthesize novel, high-dimensional data samples. New data samples are synthesized by passing latent samples, drawn from a chosen prior distribution, through the generative model. Once trained, the latent space exhibits interesting properties that may be useful for downstream tasks such as classification or retrieval. Unfortunately, GANs do not offer an ``inverse model,'' a mapping from data space back to latent space, making it difficult to infer a latent representation for a given data sample. In this paper, we introduce a technique, inversion, to project data samples, specifically images, to the latent space using a pretrained GAN. Using our proposed inversion technique, we are able to identify which attributes of a data set a trained GAN is able to model and quantify GAN performance, based on a reconstruction loss. We demonstrate how our proposed inversion technique may be used to quantitatively compare the performance of various GAN models trained on three image data sets. We provide codes for all of our experiments in the website (https://github.com/ToniCreswell/InvertingGAN).
Author Creswell, Antonia
Bharath, Anil Anthony
Author_xml – sequence: 1
  givenname: Antonia
  orcidid: 0000-0003-1037-9395
  surname: Creswell
  fullname: Creswell, Antonia
  email: ac2211@ic.ac.uk
  organization: BICV, Imperial College London, London, U.K
– sequence: 2
  givenname: Anil Anthony
  orcidid: 0000-0001-8808-2714
  surname: Bharath
  fullname: Bharath, Anil Anthony
  email: aab01@ic.ac.uk
  organization: BICV, Imperial College London, London, U.K
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30403640$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1LAzEURYMoflT_gIIMuHHTmrxkMgmuRPwolLpQwV3IzLzo6HSiyVTx3xtt68KF2SSBcx6Xd3fIeuc7JGSf0RFjVJ_cTaeT2xFQpkagipxpsUa2gUkYAldq_fddPGyRvRifaTqS5lLoTbLFqaBcCrpNTsfdO4a-6R6z_gmzK-ww2N6HzLvMrr7NO2ZndeKiDY1tsyn2Hz687JINZ9uIe8t7QO4vL-7Or4eTm6vx-dlkWAnJ-mEta3QyBRUpAVQ1CiU0A8d1TR240lKp65LnIGhZaulsXhS2qF1VaAUVVHxAjhdzX4N_m2PszayJFbat7dDPowHGGQieS53Qoz_os5-HLqUzACIxVApI1OGSmpczrM1raGY2fJrVWhKgFkAVfIwBnamaPu3Bd32wTWsYNd8lmJ8SzHcJZllCUuGPupr-r3SwkBpE_BVUDlRpzb8AJ46QTA
CODEN ITNNAL
CitedBy_id crossref_primary_10_2478_amns_2025_0603
crossref_primary_10_1007_s42979_021_00720_7
crossref_primary_10_1109_ACCESS_2023_3259236
crossref_primary_10_1109_TASLP_2021_3061885
crossref_primary_10_3934_mbe_2023863
crossref_primary_10_7717_peerj_cs_1313
crossref_primary_10_1007_s11263_023_01878_8
crossref_primary_10_1109_OJSP_2020_3045829
crossref_primary_10_1007_s11042_022_13663_9
crossref_primary_10_1007_s11227_024_06280_w
crossref_primary_10_1016_j_eswa_2023_120982
crossref_primary_10_1007_s10462_023_10504_5
crossref_primary_10_1109_TIP_2023_3247167
crossref_primary_10_1016_j_cose_2023_103212
crossref_primary_10_4018_IJDCF_288548
crossref_primary_10_1109_JIOT_2020_3024800
crossref_primary_10_1007_s11263_024_02085_9
crossref_primary_10_1007_s41315_024_00353_y
crossref_primary_10_1111_cgf_14503
crossref_primary_10_3390_electronics10101216
crossref_primary_10_1016_j_asoc_2024_112201
crossref_primary_10_1016_j_ins_2024_120130
crossref_primary_10_1016_j_patrec_2021_11_026
crossref_primary_10_1007_s00521_022_07890_2
crossref_primary_10_1109_ACCESS_2023_3336401
crossref_primary_10_3390_rs16142569
crossref_primary_10_3103_S0146411621080241
crossref_primary_10_1109_ACCESS_2020_2992850
crossref_primary_10_1016_j_eswa_2024_125182
crossref_primary_10_1109_TNNLS_2020_2969327
crossref_primary_10_1109_TNNLS_2023_3238397
crossref_primary_10_1109_TIP_2021_3065845
crossref_primary_10_1016_j_neunet_2021_10_017
crossref_primary_10_1109_TNNLS_2020_2979800
crossref_primary_10_32604_csse_2023_027139
crossref_primary_10_1007_s00530_023_01255_y
crossref_primary_10_1109_TCDS_2022_3182650
crossref_primary_10_1007_s00138_024_01573_9
crossref_primary_10_1016_j_asoc_2024_112677
crossref_primary_10_1145_3544777
crossref_primary_10_1109_ACCESS_2022_3151186
crossref_primary_10_1007_s10489_021_02401_7
crossref_primary_10_1109_TMM_2022_3160360
crossref_primary_10_1109_TPAMI_2021_3115428
crossref_primary_10_1109_TPAMI_2022_3181070
crossref_primary_10_1016_j_ijepes_2025_110627
crossref_primary_10_1049_ipr2_12485
crossref_primary_10_1109_ACCESS_2020_3035674
crossref_primary_10_1109_ACCESS_2023_3244741
crossref_primary_10_3390_app13116487
crossref_primary_10_1007_s00371_023_02810_4
crossref_primary_10_1016_j_ins_2023_119234
crossref_primary_10_1016_j_patcog_2023_109477
crossref_primary_10_1007_s00371_022_02708_7
crossref_primary_10_1016_j_apenergy_2022_120300
crossref_primary_10_1016_j_dsp_2024_104694
crossref_primary_10_1049_bme2_12034
crossref_primary_10_1109_TITS_2022_3183379
crossref_primary_10_1109_TPAMI_2020_3034267
crossref_primary_10_1111_exsy_13618
crossref_primary_10_1007_s11004_019_09832_6
crossref_primary_10_1016_j_prime_2023_100286
crossref_primary_10_2139_ssrn_3987065
crossref_primary_10_1016_j_cag_2023_06_022
crossref_primary_10_1109_TCSVT_2024_3454549
crossref_primary_10_1007_s00371_024_03310_9
crossref_primary_10_1016_j_knosys_2023_111270
crossref_primary_10_1016_j_engappai_2024_109287
crossref_primary_10_1088_1361_6501_ac0744
crossref_primary_10_1109_TFUZZ_2024_3355000
crossref_primary_10_1007_s12559_024_10291_3
crossref_primary_10_1029_2019WR025787
crossref_primary_10_1002_sam_11610
crossref_primary_10_1109_TII_2022_3167663
crossref_primary_10_1145_3476576_3476683
crossref_primary_10_1109_TIP_2021_3089905
crossref_primary_10_1007_s10489_022_03744_5
crossref_primary_10_1029_2021JB021687
crossref_primary_10_1016_j_knosys_2022_110186
crossref_primary_10_1016_j_apenergy_2020_116069
crossref_primary_10_1109_TNNLS_2020_3007790
crossref_primary_10_1109_TRPMS_2024_3391285
crossref_primary_10_3390_cancers14184399
crossref_primary_10_1109_TMM_2021_3065230
crossref_primary_10_1109_TVCG_2022_3178734
crossref_primary_10_1002_widm_1438
crossref_primary_10_1109_TPAMI_2023_3310872
crossref_primary_10_1137_21M1406313
crossref_primary_10_1016_j_jvcir_2022_103566
crossref_primary_10_3390_electronics13153091
crossref_primary_10_1016_j_image_2024_117242
crossref_primary_10_1016_j_cag_2023_09_003
crossref_primary_10_1007_s00500_019_04602_2
crossref_primary_10_1016_j_ins_2024_120974
crossref_primary_10_1016_j_imavis_2022_104517
crossref_primary_10_1145_3527168
crossref_primary_10_1038_s41598_021_03880_x
crossref_primary_10_1016_j_mlwa_2025_100621
crossref_primary_10_1007_s11263_020_01310_5
crossref_primary_10_1109_TNNLS_2020_3028042
crossref_primary_10_1007_s44196_023_00187_9
crossref_primary_10_1109_ACCESS_2022_3206771
crossref_primary_10_1145_3450626_3459860
crossref_primary_10_1109_TIP_2022_3140603
crossref_primary_10_1109_JSTSP_2023_3238552
crossref_primary_10_1109_TPS_2023_3268170
crossref_primary_10_1016_j_knosys_2025_113231
crossref_primary_10_1016_j_tics_2021_06_006
crossref_primary_10_1016_j_ins_2024_120307
crossref_primary_10_3390_drones8120740
crossref_primary_10_1007_s11432_022_3679_0
crossref_primary_10_3390_s22249628
crossref_primary_10_1016_j_asoc_2023_110028
crossref_primary_10_3934_ipi_2021060
crossref_primary_10_1016_j_asoc_2024_112107
crossref_primary_10_1007_s11263_024_02301_6
crossref_primary_10_1109_TSP_2020_2977256
crossref_primary_10_1109_TCSS_2024_3447692
Cites_doi 10.1007/978-3-319-46454-1_36
10.1109/CVPR.2015.7298594
10.1109/CVPR.2015.7299155
10.1109/CVPR.2014.32
10.1109/CVPR.2015.7298878
10.1126/science.aab3050
10.1109/CVPR.2018.00917
10.1007/978-3-319-70096-0_22
10.1109/ICCV.2017.629
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2018.2875194
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList Materials Research Database
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 1974
ExternalDocumentID 30403640
10_1109_TNNLS_2018_2875194
8520899
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Engineering and Physical Sciences Research Council
  grantid: EP/L504786/1
  funderid: 10.13039/501100000266
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c461t-d6def601840062cde484912f39d0f2fba069db35240bb96fa577a7dfc7982c2c3
IEDL.DBID RIE
ISSN 2162-237X
2162-2388
IngestDate Fri Jul 11 04:25:43 EDT 2025
Mon Jun 30 06:07:37 EDT 2025
Thu Jan 02 22:35:05 EST 2025
Tue Jul 01 00:27:28 EDT 2025
Thu Apr 24 23:01:25 EDT 2025
Wed Aug 27 05:56:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 7
Language English
License https://creativecommons.org/licenses/by/3.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c461t-d6def601840062cde484912f39d0f2fba069db35240bb96fa577a7dfc7982c2c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8808-2714
0000-0003-1037-9395
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/8520899
PMID 30403640
PQID 2244350642
PQPubID 85436
PageCount 8
ParticipantIDs proquest_miscellaneous_2131243569
pubmed_primary_30403640
proquest_journals_2244350642
crossref_citationtrail_10_1109_TNNLS_2018_2875194
crossref_primary_10_1109_TNNLS_2018_2875194
ieee_primary_8520899
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-07-01
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref15
im (ref12) 2016
krizhevsky (ref14) 2012
ref17
arjovsky (ref1) 2017
creswell (ref5) 2016
ref18
donahue (ref8) 2016
goodfellow (ref10) 2014
gulrajani (ref11) 2017
srivastava (ref22) 2017
chen (ref4) 2016
ref24
ref23
radford (ref20) 2016
ref26
ref25
ref27
ref7
metz (ref19) 2017
li (ref16) 2017
creswell (ref6) 2018
salimans (ref21) 2016
arjovsky (ref2) 2017
dumoulin (ref9) 2016
karras (ref13) 2018
ballester (ref3) 2016
References_xml – start-page: 2234
  year: 2016
  ident: ref21
  article-title: Improved techniques for training GANs
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref27
  doi: 10.1007/978-3-319-46454-1_36
– start-page: 214
  year: 2017
  ident: ref2
  article-title: Wasserstein generative adversarial networks
  publication-title: Proc Int Conf Mach Learn
– start-page: 2172
  year: 2016
  ident: ref4
  article-title: InfoGAN: Interpretable representation learning by information maximizing generative adversarial nets
  publication-title: Proc Neural Inf Process Syst
– year: 2017
  ident: ref1
  publication-title: Towards Principled Methods for Training Generative Adversarial Networks
– ident: ref23
  doi: 10.1109/CVPR.2015.7298594
– start-page: 2672
  year: 2014
  ident: ref10
  article-title: Generative adversarial nets
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref18
  doi: 10.1109/CVPR.2015.7299155
– year: 2018
  ident: ref6
  publication-title: Inverting The Generator Of A Generative Adversarial Network
– ident: ref25
  doi: 10.1109/CVPR.2014.32
– year: 2016
  ident: ref12
  article-title: Generating images with recurrent adversarial networks
  publication-title: Proc 4th Int Conf Learn Represent (ICLR) Workshop Track
– ident: ref7
  doi: 10.1109/CVPR.2015.7298878
– year: 2016
  ident: ref9
  publication-title: Adversarially learned inference
– start-page: 1124
  year: 2016
  ident: ref3
  article-title: On the performance of GoogLeNet and AlexNet applied to sketches
  publication-title: Proc AAAI
– ident: ref15
  doi: 10.1126/science.aab3050
– ident: ref24
  doi: 10.1109/CVPR.2018.00917
– start-page: 5767
  year: 2017
  ident: ref11
  article-title: Improved training of wasserstein GANs
  publication-title: Proc Adv Neural Inf Process Syst
– start-page: 5501
  year: 2017
  ident: ref16
  article-title: ALICE: Towards understanding adversarial learning for joint distribution matching
  publication-title: Proc Adv Neural Inf Process Syst
– year: 2016
  ident: ref20
  article-title: Unsupervised representation learning with deep convolutional generative adversarial networks
  publication-title: Proc 4th Int Conf Learn Represent (ICLR) Workshop Track
– year: 2018
  ident: ref13
  article-title: Progressive growing of gans for improved quality, stability, and variation
  publication-title: Proc Int Conf Learn Represent
– year: 2017
  ident: ref19
  article-title: Unrolled generative adversarial networks
  publication-title: Proc Int Conf Learn Represent
– start-page: 1097
  year: 2012
  ident: ref14
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Proc Adv Neural Inf Process Syst
– year: 2016
  ident: ref8
  publication-title: Adversarial feature learning
– start-page: 3308
  year: 2017
  ident: ref22
  article-title: VEEGAN: Reducing mode collapse in GANs using implicit variational learning
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref17
  doi: 10.1007/978-3-319-70096-0_22
– ident: ref26
  doi: 10.1109/ICCV.2017.629
– year: 2016
  ident: ref5
  publication-title: Task specific adversarial cost function
SSID ssj0000605649
Score 2.667837
Snippet Generative adversarial networks (GANs) learn a deep generative model that is able to synthesize novel, high-dimensional data samples. New data samples are...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1967
SubjectTerms Backpropagation
Data models
Datasets
Energy management
feature extraction
Gallium nitride
Generative adversarial networks
Generators
image generation
Image reconstruction
Inversion
Learning systems
Mapping
multilayer neural network
pattern recognition
Synthesis
Training
unsupervised learning
Websites
Title Inverting the Generator of a Generative Adversarial Network
URI https://ieeexplore.ieee.org/document/8520899
https://www.ncbi.nlm.nih.gov/pubmed/30403640
https://www.proquest.com/docview/2244350642
https://www.proquest.com/docview/2131243569
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VTiwUKI9CQUZig7SO4ziJmBCiqhDtQit1ixI_GEANou3Cr-fsPCQQIDYncRzHPtvf5zvfAVyGmR8brqVHMeGhUFAcczL2qMbbCqUg5_aA82QqxnP-sAgXLbhuzsJorZ3xmR7YpNPlq0Ju7FbZMA6Z1VJtwRYSt_KsVrOfQhGXC4d2mS-Yx4JoUZ-RoclwNp0-PllDrniAFAFRi43Hg0zeauHolyXJxVj5HW66ZWfUgUld4dLa5GWwWecD-fHNl-N__2gXdir8SW5LgdmDll7uQ6eO7UCqod6FG-uAw3oYeCYIEUnpnRr5OSkMyepLnCmJi-i8yqwck2lpU34A89H97G7sVYEWPMmFv_aUUNogM0OyRwWTSvOYJz4zQaKoYSbPqEhUjlCN0zxPhMnCKMoiZWSUxEwyGRxCe1ks9TEQRA9cZZLhPBpy5uuYKqpyibzFqFBFfg_8uq1TWXkht8EwXlPHRmiSuq5KbVelVVf14Kp55630wfFn7q5t5yZn1cQ96NddmlbDdJUifkG4aDlYDy6axzjArNYkW-pig3n8ADFQEAos4qgUhabsWoJOfv7mKWxjzZLSurcP7fX7Rp8hhlnn5054PwEmyOil
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB6V7gEu210KbKEsXokbpGs7jpNoTwhRdaHNZVuptyjxgwMoWW2bC7-esfOQQIC4OYnjOJ4Z-xvPeAbgbVSwxAqjAoqFAJmCosypJKAGb2vkglK4A86bTK524vM-2o_g_XAWxhjjnc_MwhW9LV_XqnFbZddJxJ2V6hGc4Lofsfa01rCjQhGZS493OZM84GG870_J0PR6m2XrO-fKlSxQSUDc4jLyoC7v7HD0l0XJZ1n5O-D0C89yApu-y62_ybdFcywX6sdv0Rz_95_O4LRDoORDyzLnMDLVU5j02R1IJ-xTuHEhOFyMga8EQSJp41Ojhk5qS4r-EudK4nM6HwrHySRrvcqfwW75aftxFXSpFgIlJDsGWmpjUTdDdY9KrrQRiUgZt2GqqeW2LKhMdYlgTdCyTKUtojguYm1VnCZccRU-h3FVV-YCCOIHoQvFcSaNBGcmoZrqUqHmYnWkYzYD1o91rro45C4dxvfc6yM0zT2pckeqvCPVDN4N79y3UTj-WXvqxnmo2Q3xDOY9SfNOUA85IhgEjE4Lm8HV8BhFzNlNisrUDdZhIaKgMJLYxIuWFYa2ew56-edvvoHHq-1mna9vsy-v4An2Mm19fecwPj405jUimmN56Rn5J3QX6-4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inverting+the+Generator+of+a+Generative+Adversarial+Network&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Creswell%2C+Antonia&rft.au=Bharath%2C+Anil+Anthony&rft.date=2019-07-01&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=30&rft.issue=7&rft.spage=1967&rft.epage=1974&rft_id=info:doi/10.1109%2FTNNLS.2018.2875194&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNNLS_2018_2875194
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon