Effects of ambient temperature and precipitation on the risk of dengue fever: A systematic review and updated meta-analysis
We systematically reviewed the published studies on the relationship between dengue fever and meteorological factors and applied a meta-analysis to explore the effects of ambient temperature and precipitation on dengue fever. We completed the literature search by the end of September 1st, 2019 using...
Saved in:
Published in | Environmental research Vol. 191; p. 110043 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Inc
01.12.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We systematically reviewed the published studies on the relationship between dengue fever and meteorological factors and applied a meta-analysis to explore the effects of ambient temperature and precipitation on dengue fever.
We completed the literature search by the end of September 1st, 2019 using databases including Science Direct, PubMed, Web of Science, and Google Scholar. We extracted relative risks (RRs) in selected studies and converted all effect estimates to the RRs per 1 °C increase in temperature and 10 mm increase in precipitation, and combined all standardized RRs together using random-effect meta-analysis.
Our results show that dengue fever was significantly associated with both temperature and precipitation. Our subgroup analyses suggested that the effect of temperature on dengue fever was most pronounced in high-income subtropical areas. The pooled RR of dengue fever associated with the maximum temperature was much lower than the overall effect.
Temperature and precipitation are important risk factors for dengue fever. Future studies should focus on factors that can distort the effects of temperature and precipitation.
•Both temperature and precipitation were significantly associated with risk of dengue fever.•The effect of temperature on dengue fever is greatest when exposure was on a weekly basis.•High-income countries in the subtropical region are at higher risk of dengue fever. |
---|---|
AbstractList | We systematically reviewed the published studies on the relationship between dengue fever and meteorological factors and applied a meta-analysis to explore the effects of ambient temperature and precipitation on dengue fever. We completed the literature search by the end of September 1st, 2019 using databases including Science Direct, PubMed, Web of Science, and Google Scholar. We extracted relative risks (RRs) in selected studies and converted all effect estimates to the RRs per 1 °C increase in temperature and 10 mm increase in precipitation, and combined all standardized RRs together using random-effect meta-analysis. Our results show that dengue fever was significantly associated with both temperature and precipitation. Our subgroup analyses suggested that the effect of temperature on dengue fever was most pronounced in high-income subtropical areas. The pooled RR of dengue fever associated with the maximum temperature was much lower than the overall effect. Temperature and precipitation are important risk factors for dengue fever. Future studies should focus on factors that can distort the effects of temperature and precipitation. We systematically reviewed the published studies on the relationship between dengue fever and meteorological factors and applied a meta-analysis to explore the effects of ambient temperature and precipitation on dengue fever. We completed the literature search by the end of September 1st, 2019 using databases including Science Direct, PubMed, Web of Science, and Google Scholar. We extracted relative risks (RRs) in selected studies and converted all effect estimates to the RRs per 1 °C increase in temperature and 10 mm increase in precipitation, and combined all standardized RRs together using random-effect meta-analysis. Our results show that dengue fever was significantly associated with both temperature and precipitation. Our subgroup analyses suggested that the effect of temperature on dengue fever was most pronounced in high-income subtropical areas. The pooled RR of dengue fever associated with the maximum temperature was much lower than the overall effect. Temperature and precipitation are important risk factors for dengue fever. Future studies should focus on factors that can distort the effects of temperature and precipitation. •Both temperature and precipitation were significantly associated with risk of dengue fever.•The effect of temperature on dengue fever is greatest when exposure was on a weekly basis.•High-income countries in the subtropical region are at higher risk of dengue fever. We systematically reviewed the published studies on the relationship between dengue fever and meteorological factors and applied a meta-analysis to explore the effects of ambient temperature and precipitation on dengue fever.OBJECTIVESWe systematically reviewed the published studies on the relationship between dengue fever and meteorological factors and applied a meta-analysis to explore the effects of ambient temperature and precipitation on dengue fever.We completed the literature search by the end of September 1st, 2019 using databases including Science Direct, PubMed, Web of Science, and Google Scholar. We extracted relative risks (RRs) in selected studies and converted all effect estimates to the RRs per 1 °C increase in temperature and 10 mm increase in precipitation, and combined all standardized RRs together using random-effect meta-analysis.METHODSWe completed the literature search by the end of September 1st, 2019 using databases including Science Direct, PubMed, Web of Science, and Google Scholar. We extracted relative risks (RRs) in selected studies and converted all effect estimates to the RRs per 1 °C increase in temperature and 10 mm increase in precipitation, and combined all standardized RRs together using random-effect meta-analysis.Our results show that dengue fever was significantly associated with both temperature and precipitation. Our subgroup analyses suggested that the effect of temperature on dengue fever was most pronounced in high-income subtropical areas. The pooled RR of dengue fever associated with the maximum temperature was much lower than the overall effect.RESULTSOur results show that dengue fever was significantly associated with both temperature and precipitation. Our subgroup analyses suggested that the effect of temperature on dengue fever was most pronounced in high-income subtropical areas. The pooled RR of dengue fever associated with the maximum temperature was much lower than the overall effect.Temperature and precipitation are important risk factors for dengue fever. Future studies should focus on factors that can distort the effects of temperature and precipitation.CONCLUSIONSTemperature and precipitation are important risk factors for dengue fever. Future studies should focus on factors that can distort the effects of temperature and precipitation. We systematically reviewed the published studies on the relationship between dengue fever and meteorological factors and applied a meta-analysis to explore the effects of ambient temperature and precipitation on dengue fever. We completed the literature search by the end of September 1st, 2019 using databases including Science Direct, PubMed, Web of Science, and Google Scholar. We extracted relative risks (RRs) in selected studies and converted all effect estimates to the RRs per 1 °C increase in temperature and 10 mm increase in precipitation, and combined all standardized RRs together using random-effect meta-analysis. Our results show that dengue fever was significantly associated with both temperature and precipitation. Our subgroup analyses suggested that the effect of temperature on dengue fever was most pronounced in high-income subtropical areas. The pooled RR of dengue fever associated with the maximum temperature was much lower than the overall effect. Temperature and precipitation are important risk factors for dengue fever. Future studies should focus on factors that can distort the effects of temperature and precipitation. |
ArticleNumber | 110043 |
Author | Yu, Xuejie Dou, Qiujun Lu, Yuanan Liu, Suyang Xiang, Hao Li, Yanbing |
Author_xml | – sequence: 1 givenname: Yanbing surname: Li fullname: Li, Yanbing organization: School of Health Sciences, Wuhan University, 115 Donghu Road, 430071, Wuhan, China – sequence: 2 givenname: Qiujun surname: Dou fullname: Dou, Qiujun organization: School of Health Sciences, Wuhan University, 115 Donghu Road, 430071, Wuhan, China – sequence: 3 givenname: Yuanan surname: Lu fullname: Lu, Yuanan organization: Environmental Health Laboratory, Department of Public Health Sciences, University Hawaii at Manoa, 1960 East West Rd, Biomed Bldg, D105, Honolulu, USA – sequence: 4 givenname: Hao surname: Xiang fullname: Xiang, Hao organization: School of Health Sciences, Wuhan University, 115 Donghu Road, 430071, Wuhan, China – sequence: 5 givenname: Xuejie surname: Yu fullname: Yu, Xuejie organization: School of Health Sciences, Wuhan University, 115 Donghu Road, 430071, Wuhan, China – sequence: 6 givenname: Suyang surname: Liu fullname: Liu, Suyang email: dayangwater@hotmail.com organization: School of Health Sciences, Wuhan University, 115 Donghu Road, 430071, Wuhan, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32810500$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1rFTEYhYNU7G31H4hk6Waub5JJOtOFUEr9gIIbXYdM8kZznS-TzC0X_7y5zu3GhYVASDjPWZzngpyN04iEvGawZcDUu90Wx33EtOXAyxcDqMUzsmHQqgpaKc7IBoCJqhWSnZOLlHblyaSAF-Rc8IaBBNiQ33feo82JTp6aoQs4ZppxmDGavESkZnR0jmjDHLLJYRppOfkH0hjSzyPkcPy-IPW4x3hNb2g6pMKXqKUR9wEf_lYsszMZHR0wm8qMpj-kkF6S5970CV-d7kvy7cPd19tP1f2Xj59vb-4rWyuWK6fAXjWeuZopLxrgrTeeG6tMp1pfd6qGztReirrBK9kB806JhvnWd95JlOKSvF175zj9WjBlPYRkse_NiNOSNJeStVwp3j4drYWUvGkbKNE3p-jSDej0HMNg4kE_blsC12vAximliF7b04Y5mtBrBvooUu_0KlIfRepVZIHrf-DH_iew9yuGZc-yftTJFqcWXSgSs3ZT-H_BHyWduok |
CitedBy_id | crossref_primary_10_1016_j_ebiom_2023_104611 crossref_primary_10_3390_math12213386 crossref_primary_10_3389_fpubh_2024_1420457 crossref_primary_10_1038_s41598_022_09489_y crossref_primary_10_3389_fpubh_2023_1252910 crossref_primary_10_3390_insects13020163 crossref_primary_10_1016_j_actatropica_2023_106964 crossref_primary_10_3390_su13126754 crossref_primary_10_3390_v15091917 crossref_primary_10_2147_RMHP_S361106 crossref_primary_10_1126_sciadv_adq1901 crossref_primary_10_3390_geographies3040035 crossref_primary_10_3390_ijerph192215265 crossref_primary_10_1016_j_onehlt_2022_100427 crossref_primary_10_1029_2024GH001059 crossref_primary_10_1371_journal_pone_0308271 crossref_primary_10_1186_s12879_022_07779_4 crossref_primary_10_3889_oamjms_2022_8533 crossref_primary_10_1093_imammb_dqab021 crossref_primary_10_1371_journal_pntd_0011700 crossref_primary_10_1016_j_chaos_2021_110654 crossref_primary_10_3390_tropicalmed7120408 crossref_primary_10_3390_v13112232 crossref_primary_10_1371_journal_pclm_0000152 crossref_primary_10_1371_journal_pntd_0009122 crossref_primary_10_1007_s11356_023_28453_5 crossref_primary_10_1016_j_envres_2022_113279 crossref_primary_10_1029_2022GH000653 crossref_primary_10_3390_fractalfract8110624 crossref_primary_10_1371_journal_pntd_0011400 crossref_primary_10_1007_s00484_024_02643_3 crossref_primary_10_1038_s41467_022_35462_4 crossref_primary_10_1038_s41598_024_67553_1 crossref_primary_10_1186_s12889_025_21527_8 crossref_primary_10_1016_j_crsus_2024_100150 crossref_primary_10_1016_j_apm_2024_06_003 crossref_primary_10_1136_bmj_2024_079343 crossref_primary_10_1088_1748_9326_aca59f crossref_primary_10_3390_v15071563 crossref_primary_10_1016_j_ebiom_2023_104582 |
Cites_doi | 10.1017/S0950268813001519 10.1016/j.scitotenv.2017.11.326 10.1186/s13071-017-2025-8 10.1016/j.ijid.2017.02.007 10.1080/09603123.2013.865713 10.1017/S0950268819000608 10.1038/scientificamerican0800-50 10.1371/journal.pone.0193246 10.1016/j.scitotenv.2018.01.006 10.1016/j.sste.2018.03.001 10.1016/j.accre.2019.03.006 10.1111/j.1365-3156.2011.02734.x 10.1186/s12879-019-4379-3 10.1016/j.scitotenv.2008.11.034 10.1016/j.envres.2019.05.021 10.1016/j.envint.2014.06.018 10.1371/journal.pntd.0002682 10.1289/EHP218 10.1016/j.jiph.2017.12.006 10.1371/journal.pone.0199205 10.1371/journal.pntd.0003808 10.1046/j.1365-2915.2000.00207.x 10.1128/CMR.11.3.480 10.1017/S095026881600265X 10.1289/ehp.1306556 10.1080/09603123.2011.572279 10.1098/rstb.2013.0551 10.1186/s12879-017-2326-8 10.1111/tmi.12754 10.1186/1471-2334-11-166 10.3390/ijerph10126319 10.4269/ajtmh.13-0303 10.1289/ehp.98106147 10.1186/s13071-017-2588-4 10.1016/j.mbs.2012.11.013 10.3402/gha.v7.23119 10.3390/ijerph120100001 10.1016/j.scitotenv.2017.12.200 10.1016/j.ebiom.2016.02.034 10.1371/journal.pone.0178698 10.1007/s00477-015-1053-1 10.1590/S0102-311X2012001100018 10.4269/ajtmh.1997.57.285 10.1016/j.jinsphys.2012.09.015 10.1016/j.actatropica.2015.12.013 10.1016/j.actatropica.2013.08.008 10.1016/j.scitotenv.2017.11.314 10.1371/journal.pntd.0000382 10.1016/j.scitotenv.2018.02.136 10.1016/j.envint.2013.11.002 10.1186/s12889-018-5532-4 10.1016/j.apjtm.2016.07.033 10.1007/s00477-016-1328-1 10.1016/j.envint.2015.09.007 10.1186/s13104-019-4185-4 10.1038/srep35028 10.1073/pnas.1213349110 10.1371/journal.pone.0220106 10.1016/j.actatropica.2016.02.018 10.1371/journal.pntd.0000646 10.1186/1471-2288-14-45 10.1016/j.envint.2017.03.011 10.1007/s11356-017-9914-4 10.1016/S0140-6736(14)60572-9 10.1016/j.envres.2016.11.009 10.1136/bmj.315.7109.629 10.1136/bmj.327.7414.557 10.1016/j.apm.2017.06.003 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Inc. Copyright © 2020 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2020 Elsevier Inc. – notice: Copyright © 2020 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.envres.2020.110043 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health Environmental Sciences |
EISSN | 1096-0953 |
ExternalDocumentID | 32810500 10_1016_j_envres_2020_110043 S0013935120309403 |
Genre | Meta-Analysis Systematic Review Journal Article |
GroupedDBID | --- --K --M -~X .DC .GJ .~1 0R~ 1B1 1RT 1~. 1~5 29G 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYJJ ABEFU ABFNM ABFYP ABJNI ABLST ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNCT ACRLP ADBBV ADEZE ADFGL ADMUD AEBSH AEKER AENEX AFDAS AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC C45 CAG COF CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F3I F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMC HVGLF HZ~ IHE J1W KCYFY KOM L7B LG5 LY8 M41 MO0 N9A O-L O9- OAUVE OHT OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SEN SES SEW SPCBC SSJ SSZ T5K TAE TEORI TN5 TWZ UPT VOH WH7 WUQ XOL XPP ZCA ZGI ZKB ZMT ZU3 ZXP ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ACRPL ACVFH ADCNI ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EFKBS EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c461t-d60c78f1d416f38029faf2ac6ab69f4b640ba4f5348e75b01fd6381f9fbfd5e53 |
IEDL.DBID | .~1 |
ISSN | 0013-9351 1096-0953 |
IngestDate | Fri Jul 11 04:16:27 EDT 2025 Thu Jul 10 22:03:08 EDT 2025 Mon Jul 21 05:49:29 EDT 2025 Tue Jul 01 03:05:55 EDT 2025 Thu Apr 24 23:10:00 EDT 2025 Fri Feb 23 02:39:37 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Rainfall Temperature Precipitation Dengue fever Meta-analysis |
Language | English |
License | Copyright © 2020 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c461t-d60c78f1d416f38029faf2ac6ab69f4b640ba4f5348e75b01fd6381f9fbfd5e53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3 |
PMID | 32810500 |
PQID | 2435528980 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2551926629 proquest_miscellaneous_2435528980 pubmed_primary_32810500 crossref_citationtrail_10_1016_j_envres_2020_110043 crossref_primary_10_1016_j_envres_2020_110043 elsevier_sciencedirect_doi_10_1016_j_envres_2020_110043 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2020 2020-12-00 20201201 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: December 2020 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Environmental research |
PublicationTitleAlternate | Environ Res |
PublicationYear | 2020 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Fan, Liu (bib21) 2019; 10 Guzman, Harris (bib28) 2015; 385 Liu, Wang, Huang, Wang, Xia, Zhang (bib40) 2017; 145 Duarte, Diaz-Quijano, Batista, Giatti (bib16) 2019; vol. 52 Stolerman, Maia, Kutz (bib59) 2019; 14 Robert, Christofferson, Weber, Wearing (bib53) 2019 Lutambi, Penny, Smith, Chitnis (bib43) 2013; 241 Parham, Waldock, Christophides, Hemming, Agusto, Evans (bib46) 2015; 370 Butterworth, Morin, Comrie (bib7) 2016; 125 Wang, Wei, Jiang, He, Xu, Peng (bib63) 2016; 156 (bib66) 2019 Jetten, Focks (bib32) 1997; 57 Wu, Lay, Guo, Lin, Lung, Su (bib67) 2009; 407 Enduri, Jolad (bib19) 2018; 25 Atique, Abdul, Hsu, Chuang (bib2) 2016; 9 Tuladhar, Singh, Varma, Choudhary (bib61) 2019; 12 Tun-Lin, Burkot, Kay (bib62) 2000; 14 Kakarla, Caminade, Mutheneni, Morse, Upadhyayula, Kadiri, Kumaraswamy (bib34) 2019; 147 Sang, Gu, Bi, Yang, Yang, Xu (bib55) 2015; 9 Cheong, Burkart, Leitão, Lakes (bib10) 2013; 10 Wu, Lu, Zhou, Chen, Xu (bib69) 2016; 86 Cucunawangsih, Lugito (bib14) 2017; 8 Cheng, Bai, Zhang, Zhang, Wang, Xie (bib9) 2018; 625 Zhu, Xiao, Zhang, Liu, Lin, Li (bib75) 2018; 622 Servadio, Rosenthal, Carlson, Bauer (bib56) 2018; 11 Phung, Talukder, Rutherford, Chu (bib50) 2016; 21 Attaway, Jacobsen, Falconer, Manca, Waters (bib3) 2016; 158 Pinto, Coelho, Oliver, Massad (bib51) 2011; 21 Johansson, Dominici, Glass (bib33) 2009; 3 Banu, Hu, Hurst, Tong (bib5) 2011; 16 Stoddard, Forshey, Morrison, Paz-Soldan, Vazquez-Prokopec, Astete (bib58) 2013; 110 Arino (bib1) 2017; 2 Chien, Yu (bib11) 2014; 73 Xiang, Hansen, Liu, Liu, Tong, Sun (bib70) 2017; 153 Egger, Smith, Schneider, Minder (bib18) 1997; 315 Lambrechts, Scott, Gubler (bib35) 2010; 4 Gharbi, Quenel, Gustave, Cassadou, La Ruche, Girdary, Marrama (bib24) 2011; 11 Shi, Liu, Zhou, Yang (bib57) 2014; 8 Wangdi, Clements, Du, Nery (bib64) 2018; 11 Gomes, Nobre, Cruz (bib25) 2012; 28 Xiao, Liu, Lin, Zhu, Zeng, Li (bib71) 2018; 624 da Cruz Ferreira, Degener, de Almeida Marques-Toledo, Bendati, Fetzer, Teixeira, Eiras (bib15) 2017; 10 Li, Lu, Liu, Wu (bib38) 2018; 622 Iguchi, Seposo, Honda (bib31) 2018; 18 Bunker, Wildenhain, Vandenbergh, Henschke, Rocklöv, Hajat, Sauerborn (bib6) 2016; 6 Lee, Nguyen-Viet, Nam, Lee, Won, Duc, Grace (bib36) 2017; 17 Sun, Lu, Wu, Yang, Xu, Sang, Liu (bib60) 2017; 57 Epstein (bib20) 2000; 283 Xuan, Van Hau, Thu, Toan (bib73) 2014; 7 Phung, Nguyen, Nguyen, Luong, Do, Dai Tran, Chu (bib49) 2018; 13 Fan, Lin, Wang, Bai, Yang, Chu (bib22) 2014; 142 Eastin, Delmelle, Casas, Wexler, Self (bib17) 2014; 91 Lowe, Cazelles, Paul, Rodó (bib42) 2016; 30 Gubler (bib26) 1998; 27 Rogers, Suk, Semenza (bib54) 2014; 129 Morin, Comrie, Ernst (bib44) 2013; 121 Patz, Martens, Focks, Jetten (bib47) 1998; 106 Phanitchat, Zhao, Haque, Pientong, Ekalaksananan, Aromseree (bib48) 2019; 19 Xu, Bambrick, Yakob, Devine, Frentiu, Marina (bib72) 2019; 175 Gubler (bib27) 1998; 11 World Bank (bib65) 2019 Chang, Chen, Shih, Lee, Wu, Wu (bib8) 2016; 6 Lo, Mertz, Loeb (bib41) 2014; 14 Wu, Lang, Ma, Song, Kang, He (bib68) 2018; 628 Banu, Hu, Guo, Hurst, Tong (bib4) 2014; 63 Lee, Kim, Lee, Lee (bib37) 2018; 13 Liang, Gong (bib39) 2017; 103 Pliego, Velázquez-Castro, Collar (bib52) 2017; 50 Chuang, Chaves, Chen (bib12) 2017; 12 Higgins, Thompson, Deeks, Altman (bib29) 2003; 327 Horta, Bruniera, Ker, Catita, Ferreira (bib30) 2014; 24 Padmanabha, Correa, Legros, Nijhout, Lord, Lounibos (bib45) 2012; 58 Cong, Xu, Zhang, Wang, Xu, Huo (bib13) 2017; 24 Fan, Wei, Bai, Fan, Li, Liu, Yang (bib23) 2015; 12 Yu, Lee, Chien (bib74) 2016; 3 Liang (10.1016/j.envres.2020.110043_bib39) 2017; 103 Morin (10.1016/j.envres.2020.110043_bib44) 2013; 121 Tuladhar (10.1016/j.envres.2020.110043_bib61) 2019; 12 Bunker (10.1016/j.envres.2020.110043_bib6) 2016; 6 Lambrechts (10.1016/j.envres.2020.110043_bib35) 2010; 4 Fan (10.1016/j.envres.2020.110043_bib23) 2015; 12 Padmanabha (10.1016/j.envres.2020.110043_bib45) 2012; 58 Cheng (10.1016/j.envres.2020.110043_bib9) 2018; 625 Lutambi (10.1016/j.envres.2020.110043_bib43) 2013; 241 Tun-Lin (10.1016/j.envres.2020.110043_bib62) 2000; 14 World Bank (10.1016/j.envres.2020.110043_bib65) 2019 Pinto (10.1016/j.envres.2020.110043_bib51) 2011; 21 Banu (10.1016/j.envres.2020.110043_bib4) 2014; 63 Shi (10.1016/j.envres.2020.110043_bib57) 2014; 8 Higgins (10.1016/j.envres.2020.110043_bib29) 2003; 327 Kakarla (10.1016/j.envres.2020.110043_bib34) 2019; 147 Li (10.1016/j.envres.2020.110043_bib38) 2018; 622 Lowe (10.1016/j.envres.2020.110043_bib42) 2016; 30 Chang (10.1016/j.envres.2020.110043_bib8) 2016; 6 Banu (10.1016/j.envres.2020.110043_bib5) 2011; 16 Fan (10.1016/j.envres.2020.110043_bib22) 2014; 142 Guzman (10.1016/j.envres.2020.110043_bib28) 2015; 385 Phanitchat (10.1016/j.envres.2020.110043_bib48) 2019; 19 Egger (10.1016/j.envres.2020.110043_bib18) 1997; 315 Servadio (10.1016/j.envres.2020.110043_bib56) 2018; 11 Chien (10.1016/j.envres.2020.110043_bib11) 2014; 73 Xuan (10.1016/j.envres.2020.110043_bib73) 2014; 7 Epstein (10.1016/j.envres.2020.110043_bib20) 2000; 283 Jetten (10.1016/j.envres.2020.110043_bib32) 1997; 57 Liu (10.1016/j.envres.2020.110043_bib40) 2017; 145 Phung (10.1016/j.envres.2020.110043_bib49) 2018; 13 Lee (10.1016/j.envres.2020.110043_bib36) 2017; 17 Cong (10.1016/j.envres.2020.110043_bib13) 2017; 24 Fan (10.1016/j.envres.2020.110043_bib21) 2019; 10 Pliego (10.1016/j.envres.2020.110043_bib52) 2017; 50 Parham (10.1016/j.envres.2020.110043_bib46) 2015; 370 Patz (10.1016/j.envres.2020.110043_bib47) 1998; 106 Stoddard (10.1016/j.envres.2020.110043_bib58) 2013; 110 Eastin (10.1016/j.envres.2020.110043_bib17) 2014; 91 Rogers (10.1016/j.envres.2020.110043_bib54) 2014; 129 da Cruz Ferreira (10.1016/j.envres.2020.110043_bib15) 2017; 10 Stolerman (10.1016/j.envres.2020.110043_bib59) 2019; 14 Chuang (10.1016/j.envres.2020.110043_bib12) 2017; 12 Xiao (10.1016/j.envres.2020.110043_bib71) 2018; 624 Horta (10.1016/j.envres.2020.110043_bib30) 2014; 24 Arino (10.1016/j.envres.2020.110043_bib1) 2017; 2 Sun (10.1016/j.envres.2020.110043_bib60) 2017; 57 Wu (10.1016/j.envres.2020.110043_bib67) 2009; 407 Wangdi (10.1016/j.envres.2020.110043_bib64) 2018; 11 Iguchi (10.1016/j.envres.2020.110043_bib31) 2018; 18 Xu (10.1016/j.envres.2020.110043_bib72) 2019; 175 Sang (10.1016/j.envres.2020.110043_bib55) 2015; 9 Wu (10.1016/j.envres.2020.110043_bib68) 2018; 628 Xiang (10.1016/j.envres.2020.110043_bib70) 2017; 153 Gomes (10.1016/j.envres.2020.110043_bib25) 2012; 28 Zhu (10.1016/j.envres.2020.110043_bib75) 2018; 622 Atique (10.1016/j.envres.2020.110043_bib2) 2016; 9 Lee (10.1016/j.envres.2020.110043_bib37) 2018; 13 (10.1016/j.envres.2020.110043_bib66) 2019 Attaway (10.1016/j.envres.2020.110043_bib3) 2016; 158 Enduri (10.1016/j.envres.2020.110043_bib19) 2018; 25 Gharbi (10.1016/j.envres.2020.110043_bib24) 2011; 11 Wang (10.1016/j.envres.2020.110043_bib63) 2016; 156 Duarte (10.1016/j.envres.2020.110043_bib16) 2019; vol. 52 Robert (10.1016/j.envres.2020.110043_bib53) 2019 Butterworth (10.1016/j.envres.2020.110043_bib7) 2016; 125 Johansson (10.1016/j.envres.2020.110043_bib33) 2009; 3 Cheong (10.1016/j.envres.2020.110043_bib10) 2013; 10 Lo (10.1016/j.envres.2020.110043_bib41) 2014; 14 Wu (10.1016/j.envres.2020.110043_bib69) 2016; 86 Yu (10.1016/j.envres.2020.110043_bib74) 2016; 30 Gubler (10.1016/j.envres.2020.110043_bib27) 1998; 11 Cucunawangsih (10.1016/j.envres.2020.110043_bib14) 2017; 8 Gubler (10.1016/j.envres.2020.110043_bib26) 1998; 27 Phung (10.1016/j.envres.2020.110043_bib50) 2016; 21 |
References_xml | – volume: 12 start-page: 1 year: 2015 end-page: 15 ident: bib23 article-title: A systematic review and meta-analysis of dengue risk with temperature change publication-title: Int. J. Environ. Res. Publ. Health – volume: 10 start-page: 78 year: 2017 ident: bib15 article-title: Meteorological variables and mosquito monitoring are good predictors for infestation trends of Aedes aegypti, the vector of dengue, chikungunya and Zika publication-title: Parasites Vectors – volume: 370 start-page: 20130551 year: 2015 ident: bib46 article-title: Climate, environmental and socio-economic change: weighing up the balance in vector-borne disease transmission publication-title: Phil. Trans. Biol. Sci. – volume: 4 start-page: e646 year: 2010 ident: bib35 article-title: Consequences of the expanding global distribution of Aedes albopictus for dengue virus transmission publication-title: PLoS Neglected Trop. Dis. – volume: 315 start-page: 629 year: 1997 end-page: 634 ident: bib18 article-title: Bias in meta-analysis detected by a simple, graphical test publication-title: BMJ – volume: 21 start-page: 1324 year: 2016 end-page: 1333 ident: bib50 article-title: A climate‐based prediction model in the high‐risk clusters of the Mekong Delta region, Vietnam: towards improving dengue prevention and control publication-title: Trop. Med. Int. Health – volume: 622 start-page: 493 year: 2018 end-page: 501 ident: bib38 article-title: Climate change and dengue fever transmission in China: evidences and challenges publication-title: Sci. Total Environ. – volume: 12 start-page: 131 year: 2019 ident: bib61 article-title: Climatic factors influencing dengue incidence in an epidemic area of Nepal publication-title: BMC Res. Notes – volume: 86 start-page: 14 year: 2016 end-page: 23 ident: bib69 article-title: Impact of climate change on human infectious diseases: empirical evidence and human adaptation publication-title: Environ. Int. – volume: 57 start-page: 285 year: 1997 end-page: 297 ident: bib32 article-title: Potential changes in the distribution of dengue transmission under climate warming publication-title: Am. J. Trop. Med. Hyg. – year: 2019 ident: bib66 article-title: Dengue and Severe Dengue – volume: 106 start-page: 147 year: 1998 end-page: 153 ident: bib47 article-title: Dengue fever epidemic potential as projected by general circulation models of global climate change publication-title: Environ. Health Perspect. – volume: 121 start-page: 1264 year: 2013 end-page: 1272 ident: bib44 article-title: Climate and dengue transmission: evidence and implications publication-title: Environ. Health Perspect. – volume: 21 start-page: 415 year: 2011 end-page: 426 ident: bib51 article-title: The influence of climate variables on dengue in Singapore publication-title: Int. J. Environ. Health Res. – volume: vol. 52 year: 2019 ident: bib16 article-title: Climatic Variables Associated with Dengue Incidence in a City of the Western Brazilian Amazon Region – volume: 13 year: 2018 ident: bib49 article-title: The effects of socioecological factors on variation of communicable diseases: a multiple-disease study at the national scale of Vietnam publication-title: PloS One – volume: 3 start-page: 2127 year: 2016 end-page: 2141 ident: bib74 article-title: A spatiotemporal dengue fever early warning model accounting for nonlinear associations with hydrological factors: a Bayesian maximum entropy approach publication-title: Stoch. Environ. Res. Risk Assess. – volume: 16 start-page: 598 year: 2011 end-page: 607 ident: bib5 article-title: Dengue transmission in the Asia-Pacific region: impact of climate change and socio‐environmental factors publication-title: Trop. Med. Int. Health – start-page: 100344 year: 2019 ident: bib53 article-title: Temperature Impacts on Dengue Emergence in the United States: Investigating the Role of Seasonality and Climate Change – volume: 11 start-page: 9 year: 2018 ident: bib64 article-title: Spatial and temporal patterns of dengue infections in Timor-Leste, 2005–2013 publication-title: Parasites Vectors – volume: 18 start-page: 629 year: 2018 ident: bib31 article-title: Meteorological factors affecting dengue incidence in Davao, Philippines publication-title: BMC Publ. Health – volume: 58 start-page: 1597 year: 2012 end-page: 1608 ident: bib45 article-title: An eco-physiological model of the impact of temperature on Aedes aegypti life history traits publication-title: J. Insect Physiol. – volume: 9 start-page: e0003808 year: 2015 ident: bib55 article-title: Predicting unprecedented dengue outbreak using imported cases and climatic factors in Guangzhou, 2014 publication-title: PLoS Neglected Trop. Dis. – volume: 125 start-page: 579 year: 2016 end-page: 585 ident: bib7 article-title: An analysis of the potential impact of climate change on dengue transmission in the southeastern United States publication-title: Environ. Health Perspect. – volume: 625 start-page: 828 year: 2018 end-page: 836 ident: bib9 article-title: Ambient temperature, humidity and hand, foot, and mouth disease: a systematic review and meta-analysis publication-title: Sci. Total Environ. – volume: 622 start-page: 252 year: 2018 end-page: 259 ident: bib75 article-title: The spatiotemporal transmission of dengue and its driving mechanism: a case study on the 2014 dengue outbreak in Guangdong, China publication-title: Sci. Total Environ. – volume: 147 year: 2019 ident: bib34 article-title: Lag effect of climatic variables on dengue burden in India publication-title: Epidemiol. Infect. – volume: 110 start-page: 994 year: 2013 end-page: 999 ident: bib58 article-title: House-to-house human movement drives dengue virus transmission publication-title: Proc. Natl. Acad. Sci. Unit. States Am. – volume: 8 year: 2017 ident: bib14 article-title: Trends of dengue disease epidemiology publication-title: Virol. Res. Treat. – volume: 11 start-page: 480 year: 1998 end-page: 496 ident: bib27 article-title: Dengue and dengue hemorrhagic fever publication-title: Clin. Microbiol. Rev. – volume: 103 start-page: 99 year: 2017 end-page: 108 ident: bib39 article-title: Climate change and human infectious diseases: a synthesis of research findings from global and spatio-temporal perspectives publication-title: Environ. Int. – volume: 63 start-page: 137 year: 2014 end-page: 142 ident: bib4 article-title: Projecting the impact of climate change on dengue transmission in Dhaka, Bangladesh publication-title: Environ. Int. – volume: 241 start-page: 198 year: 2013 end-page: 216 ident: bib43 article-title: Mathematical modelling of mosquito dispersal in a heterogeneous environment publication-title: Math. Biosci. – volume: 9 start-page: 954 year: 2016 end-page: 961 ident: bib2 article-title: Meteorological influences on dengue transmission in Pakistan publication-title: Asian Pac. J. Trop. Med. – volume: 12 year: 2017 ident: bib12 article-title: Effects of local and regional climatic fluctuations on dengue outbreaks in southern Taiwan publication-title: PloS One – volume: 24 start-page: 471 year: 2014 end-page: 481 ident: bib30 article-title: Temporal relationship between environmental factors and the occurrence of dengue fever publication-title: Int. J. Environ. Health Res. – volume: 385 start-page: 453 year: 2015 end-page: 465 ident: bib28 article-title: Dengue publication-title: Lancet – volume: 28 start-page: 2189 year: 2012 end-page: 2197 ident: bib25 article-title: Temporal analysis of the relationship between dengue and meteorological variables in the city of Rio de Janeiro, Brazil, 2001-2009 publication-title: Cad. Saúde Pública – volume: 624 start-page: 926 year: 2018 end-page: 934 ident: bib71 article-title: Weather variables and the el nino southern oscillation may drive the epidemics of dengue in Guangdong Province, China publication-title: Sci. Total Environ. – volume: 11 start-page: 566 year: 2018 end-page: 571 ident: bib56 article-title: Climate patterns and mosquito-borne disease outbreaks in South and Southeast Asia publication-title: J. Infect. Public Health – volume: 3 start-page: e382 year: 2009 ident: bib33 article-title: Local and global effects of climate on dengue transmission in Puerto Rico publication-title: PLoS Neglected Trop. Dis. – volume: 407 start-page: 2224 year: 2009 end-page: 2233 ident: bib67 article-title: Higher temperature and urbanization affect the spatial patterns of dengue fever transmission in subtropical Taiwan publication-title: Sci. Total Environ. – volume: 19 start-page: 743 year: 2019 ident: bib48 article-title: Spatial and temporal patterns of dengue incidence in northeastern Thailand 2006–2016 publication-title: BMC Infect. Dis. – volume: 14 start-page: 31 year: 2000 end-page: 37 ident: bib62 article-title: Effects of temperature and larval diet on development rates and survival of the dengue vector Aedes aegypti in north Queensland, Australia publication-title: Med. Vet. Entomol. – volume: 628 start-page: 766 year: 2018 end-page: 771 ident: bib68 article-title: Non-linear effects of mean temperature and relative humidity on dengue incidence in Guangzhou, China publication-title: Sci. Total Environ. – volume: 57 start-page: 86 year: 2017 end-page: 91 ident: bib60 article-title: Epidemiological trends of dengue in mainland China, 2005–2015 publication-title: Int. J. Infect. Dis. – volume: 142 start-page: 634 year: 2014 end-page: 643 ident: bib22 article-title: Identifying the high-risk areas and associated meteorological factors of dengue transmission in Guangdong Province, China from 2005 to 2011 publication-title: Epidemiol. Infect. – volume: 14 start-page: 45 year: 2014 ident: bib41 article-title: Newcastle-Ottawa Scale: comparing reviewers' to authors' assessments publication-title: BMC Med. Res. Methodol. – volume: 30 start-page: 2067 year: 2016 end-page: 2078 ident: bib42 article-title: Quantifying the added value of climate information in a spatio-temporal dengue model publication-title: Stoch. Environ. Res. Risk Assess. – volume: 283 start-page: 50 year: 2000 end-page: 57 ident: bib20 article-title: Is global warming harmful to health? publication-title: Sci. Am. – volume: 8 year: 2014 ident: bib57 article-title: Inferring Plasmodium vivax transmission networks from tempo-spatial surveillance data publication-title: PLoS Neglected Trop. Dis. – volume: 91 start-page: 598 year: 2014 end-page: 610 ident: bib17 article-title: Intra-and interseasonal autoregressive prediction of dengue outbreaks using local weather and regional climate for a tropical environment in Colombia publication-title: Am. J. Trop. Med. Hyg. – volume: 11 start-page: 166 year: 2011 ident: bib24 article-title: Time series analysis of dengue incidence in Guadeloupe, French West Indies: forecasting models using climate variables as predictors publication-title: BMC Infect. Dis. – volume: 13 year: 2018 ident: bib37 article-title: Potential effects of climate change on dengue transmission dynamics in Korea publication-title: PloS One – volume: 6 start-page: 35028 year: 2016 ident: bib8 article-title: Time-lagging interplay effect and excess risk of meteorological/mosquito parameters and petrochemical gas explosion on dengue incidence publication-title: Sci. Rep. – volume: 24 start-page: 22535 year: 2017 end-page: 22546 ident: bib13 article-title: Temperature drop and the risk of asthma: a systematic review and meta-analysis publication-title: Environ. Sci. Pollut. Res. – volume: 327 start-page: 557 year: 2003 end-page: 560 ident: bib29 article-title: Measuring inconsistency in meta-analyses publication-title: BMJ – volume: 14 year: 2019 ident: bib59 article-title: Forecasting dengue fever in Brazil: an assessment of climate conditions publication-title: PloS One – volume: 27 start-page: 227 year: 1998 end-page: 234 ident: bib26 article-title: The global pandemic of dengue/dengue haemorrhagic fever: current status and prospects for the future publication-title: Ann. Acad. Med. Singapore – volume: 7 start-page: 23119 year: 2014 ident: bib73 article-title: Estimates of meteorological variability in association with dengue cases in a coastal city in northern Vietnam: an ecological study publication-title: Glob. Health Action – volume: 10 start-page: 6319 year: 2013 end-page: 6334 ident: bib10 article-title: Assessing weather effects on dengue disease in Malaysia publication-title: Int. J. Environ. Res. Publ. Health – volume: 25 start-page: 57 year: 2018 end-page: 66 ident: bib19 article-title: Dynamics of dengue disease with human and vector mobility publication-title: Spat. Spatiotemporal Epidemiol. – volume: 158 start-page: 248 year: 2016 end-page: 257 ident: bib3 article-title: Risk analysis for dengue suitability in Africa using the ArcGIS predictive analysis tools (PA tools) publication-title: Acta Trop. – volume: 129 start-page: 1 year: 2014 end-page: 14 ident: bib54 article-title: Using global maps to predict the risk of dengue in Europe publication-title: Acta Trop. – volume: 175 start-page: 213 year: 2019 end-page: 220 ident: bib72 article-title: Using dengue epidemics and local weather in Bali, Indonesia to predict imported dengue in Australia publication-title: Environ. Res. – volume: 50 start-page: 484 year: 2017 end-page: 496 ident: bib52 article-title: Seasonality on the life cycle of Aedes aegypti mosquito and its statistical relation with dengue outbreaks publication-title: Appl. Math. Model. – volume: 145 start-page: 451 year: 2017 end-page: 461 ident: bib40 article-title: Risk assessment of dengue fever in Zhongshan, China: a time-series regression tree analysis publication-title: Epidemiol. Infect. – volume: 156 start-page: 130 year: 2016 end-page: 136 ident: bib63 article-title: Evaluation of aminotransferase abnormality in dengue patients: a meta analysis publication-title: Acta Trop. – volume: 17 start-page: 218 year: 2017 ident: bib36 article-title: Seasonal patterns of dengue fever and associated climate factors in 4 provinces in Vietnam from 1994 to 2013 publication-title: BMC Infect. Dis. – volume: 153 start-page: 17 year: 2017 end-page: 26 ident: bib70 article-title: Association between dengue fever incidence and meteorological factors in Guangzhou, China, 2005–2014 publication-title: Environ. Res. – volume: 73 start-page: 46 year: 2014 end-page: 56 ident: bib11 article-title: Impact of meteorological factors on the spatiotemporal patterns of dengue fever incidence publication-title: Environ. Int. – year: 2019 ident: bib65 article-title: World Bank List of Economies – volume: 6 start-page: 258 year: 2016 end-page: 268 ident: bib6 article-title: Effects of air temperature on climate-sensitive mortality and morbidity outcomes in the elderly; a systematic review and meta-analysis of epidemiological evidence publication-title: EBioMedicine – volume: 10 start-page: 1 year: 2019 end-page: 8 ident: bib21 article-title: Potential impacts of climate change on dengue fever distribution using RCP scenarios in China publication-title: Adv. Clim. Change Res. – volume: 2 start-page: 218 year: 2017 end-page: 228 ident: bib1 article-title: Spatio-temporal spread of infectious pathogens of humans publication-title: Infect. Dis. Model. – volume: 142 start-page: 634 issue: 3 year: 2014 ident: 10.1016/j.envres.2020.110043_bib22 article-title: Identifying the high-risk areas and associated meteorological factors of dengue transmission in Guangdong Province, China from 2005 to 2011 publication-title: Epidemiol. Infect. doi: 10.1017/S0950268813001519 – volume: 622 start-page: 493 year: 2018 ident: 10.1016/j.envres.2020.110043_bib38 article-title: Climate change and dengue fever transmission in China: evidences and challenges publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.11.326 – volume: 10 start-page: 78 issue: 1 year: 2017 ident: 10.1016/j.envres.2020.110043_bib15 article-title: Meteorological variables and mosquito monitoring are good predictors for infestation trends of Aedes aegypti, the vector of dengue, chikungunya and Zika publication-title: Parasites Vectors doi: 10.1186/s13071-017-2025-8 – volume: 57 start-page: 86 year: 2017 ident: 10.1016/j.envres.2020.110043_bib60 article-title: Epidemiological trends of dengue in mainland China, 2005–2015 publication-title: Int. J. Infect. Dis. doi: 10.1016/j.ijid.2017.02.007 – volume: 24 start-page: 471 issue: 5 year: 2014 ident: 10.1016/j.envres.2020.110043_bib30 article-title: Temporal relationship between environmental factors and the occurrence of dengue fever publication-title: Int. J. Environ. Health Res. doi: 10.1080/09603123.2013.865713 – volume: 147 year: 2019 ident: 10.1016/j.envres.2020.110043_bib34 article-title: Lag effect of climatic variables on dengue burden in India publication-title: Epidemiol. Infect. doi: 10.1017/S0950268819000608 – volume: 283 start-page: 50 issue: 2 year: 2000 ident: 10.1016/j.envres.2020.110043_bib20 article-title: Is global warming harmful to health? publication-title: Sci. Am. doi: 10.1038/scientificamerican0800-50 – volume: 13 issue: 3 year: 2018 ident: 10.1016/j.envres.2020.110043_bib49 article-title: The effects of socioecological factors on variation of communicable diseases: a multiple-disease study at the national scale of Vietnam publication-title: PloS One doi: 10.1371/journal.pone.0193246 – volume: 625 start-page: 828 year: 2018 ident: 10.1016/j.envres.2020.110043_bib9 article-title: Ambient temperature, humidity and hand, foot, and mouth disease: a systematic review and meta-analysis publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.01.006 – volume: 2 start-page: 218 issue: 2 year: 2017 ident: 10.1016/j.envres.2020.110043_bib1 article-title: Spatio-temporal spread of infectious pathogens of humans publication-title: Infect. Dis. Model. – volume: 25 start-page: 57 year: 2018 ident: 10.1016/j.envres.2020.110043_bib19 article-title: Dynamics of dengue disease with human and vector mobility publication-title: Spat. Spatiotemporal Epidemiol. doi: 10.1016/j.sste.2018.03.001 – volume: 10 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.envres.2020.110043_bib21 article-title: Potential impacts of climate change on dengue fever distribution using RCP scenarios in China publication-title: Adv. Clim. Change Res. doi: 10.1016/j.accre.2019.03.006 – year: 2019 ident: 10.1016/j.envres.2020.110043_bib66 – volume: 16 start-page: 598 issue: 5 year: 2011 ident: 10.1016/j.envres.2020.110043_bib5 article-title: Dengue transmission in the Asia-Pacific region: impact of climate change and socio‐environmental factors publication-title: Trop. Med. Int. Health doi: 10.1111/j.1365-3156.2011.02734.x – volume: 27 start-page: 227 issue: 2 year: 1998 ident: 10.1016/j.envres.2020.110043_bib26 article-title: The global pandemic of dengue/dengue haemorrhagic fever: current status and prospects for the future publication-title: Ann. Acad. Med. Singapore – volume: 19 start-page: 743 issue: 1 year: 2019 ident: 10.1016/j.envres.2020.110043_bib48 article-title: Spatial and temporal patterns of dengue incidence in northeastern Thailand 2006–2016 publication-title: BMC Infect. Dis. doi: 10.1186/s12879-019-4379-3 – volume: 407 start-page: 2224 issue: 7 year: 2009 ident: 10.1016/j.envres.2020.110043_bib67 article-title: Higher temperature and urbanization affect the spatial patterns of dengue fever transmission in subtropical Taiwan publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2008.11.034 – volume: 175 start-page: 213 year: 2019 ident: 10.1016/j.envres.2020.110043_bib72 article-title: Using dengue epidemics and local weather in Bali, Indonesia to predict imported dengue in Australia publication-title: Environ. Res. doi: 10.1016/j.envres.2019.05.021 – volume: 73 start-page: 46 year: 2014 ident: 10.1016/j.envres.2020.110043_bib11 article-title: Impact of meteorological factors on the spatiotemporal patterns of dengue fever incidence publication-title: Environ. Int. doi: 10.1016/j.envint.2014.06.018 – volume: 8 issue: 2 year: 2014 ident: 10.1016/j.envres.2020.110043_bib57 article-title: Inferring Plasmodium vivax transmission networks from tempo-spatial surveillance data publication-title: PLoS Neglected Trop. Dis. doi: 10.1371/journal.pntd.0002682 – volume: 125 start-page: 579 issue: 4 year: 2016 ident: 10.1016/j.envres.2020.110043_bib7 article-title: An analysis of the potential impact of climate change on dengue transmission in the southeastern United States publication-title: Environ. Health Perspect. doi: 10.1289/EHP218 – volume: 11 start-page: 566 issue: 4 year: 2018 ident: 10.1016/j.envres.2020.110043_bib56 article-title: Climate patterns and mosquito-borne disease outbreaks in South and Southeast Asia publication-title: J. Infect. Public Health doi: 10.1016/j.jiph.2017.12.006 – volume: 13 issue: 6 year: 2018 ident: 10.1016/j.envres.2020.110043_bib37 article-title: Potential effects of climate change on dengue transmission dynamics in Korea publication-title: PloS One doi: 10.1371/journal.pone.0199205 – volume: 9 start-page: e0003808 issue: 5 year: 2015 ident: 10.1016/j.envres.2020.110043_bib55 article-title: Predicting unprecedented dengue outbreak using imported cases and climatic factors in Guangzhou, 2014 publication-title: PLoS Neglected Trop. Dis. doi: 10.1371/journal.pntd.0003808 – volume: 14 start-page: 31 issue: 1 year: 2000 ident: 10.1016/j.envres.2020.110043_bib62 article-title: Effects of temperature and larval diet on development rates and survival of the dengue vector Aedes aegypti in north Queensland, Australia publication-title: Med. Vet. Entomol. doi: 10.1046/j.1365-2915.2000.00207.x – volume: 11 start-page: 480 issue: 3 year: 1998 ident: 10.1016/j.envres.2020.110043_bib27 article-title: Dengue and dengue hemorrhagic fever publication-title: Clin. Microbiol. Rev. doi: 10.1128/CMR.11.3.480 – volume: 145 start-page: 451 issue: 3 year: 2017 ident: 10.1016/j.envres.2020.110043_bib40 article-title: Risk assessment of dengue fever in Zhongshan, China: a time-series regression tree analysis publication-title: Epidemiol. Infect. doi: 10.1017/S095026881600265X – volume: 121 start-page: 1264 issue: 11–12 year: 2013 ident: 10.1016/j.envres.2020.110043_bib44 article-title: Climate and dengue transmission: evidence and implications publication-title: Environ. Health Perspect. doi: 10.1289/ehp.1306556 – volume: 21 start-page: 415 issue: 6 year: 2011 ident: 10.1016/j.envres.2020.110043_bib51 article-title: The influence of climate variables on dengue in Singapore publication-title: Int. J. Environ. Health Res. doi: 10.1080/09603123.2011.572279 – volume: 370 start-page: 20130551 issue: 1665 year: 2015 ident: 10.1016/j.envres.2020.110043_bib46 article-title: Climate, environmental and socio-economic change: weighing up the balance in vector-borne disease transmission publication-title: Phil. Trans. Biol. Sci. doi: 10.1098/rstb.2013.0551 – volume: 8 year: 2017 ident: 10.1016/j.envres.2020.110043_bib14 article-title: Trends of dengue disease epidemiology publication-title: Virol. Res. Treat. – volume: 17 start-page: 218 issue: 1 year: 2017 ident: 10.1016/j.envres.2020.110043_bib36 article-title: Seasonal patterns of dengue fever and associated climate factors in 4 provinces in Vietnam from 1994 to 2013 publication-title: BMC Infect. Dis. doi: 10.1186/s12879-017-2326-8 – volume: 21 start-page: 1324 issue: 10 year: 2016 ident: 10.1016/j.envres.2020.110043_bib50 article-title: A climate‐based prediction model in the high‐risk clusters of the Mekong Delta region, Vietnam: towards improving dengue prevention and control publication-title: Trop. Med. Int. Health doi: 10.1111/tmi.12754 – volume: vol. 52 year: 2019 ident: 10.1016/j.envres.2020.110043_bib16 – volume: 11 start-page: 166 issue: 1 year: 2011 ident: 10.1016/j.envres.2020.110043_bib24 article-title: Time series analysis of dengue incidence in Guadeloupe, French West Indies: forecasting models using climate variables as predictors publication-title: BMC Infect. Dis. doi: 10.1186/1471-2334-11-166 – volume: 10 start-page: 6319 issue: 12 year: 2013 ident: 10.1016/j.envres.2020.110043_bib10 article-title: Assessing weather effects on dengue disease in Malaysia publication-title: Int. J. Environ. Res. Publ. Health doi: 10.3390/ijerph10126319 – volume: 91 start-page: 598 issue: 3 year: 2014 ident: 10.1016/j.envres.2020.110043_bib17 article-title: Intra-and interseasonal autoregressive prediction of dengue outbreaks using local weather and regional climate for a tropical environment in Colombia publication-title: Am. J. Trop. Med. Hyg. doi: 10.4269/ajtmh.13-0303 – volume: 106 start-page: 147 issue: 3 year: 1998 ident: 10.1016/j.envres.2020.110043_bib47 article-title: Dengue fever epidemic potential as projected by general circulation models of global climate change publication-title: Environ. Health Perspect. doi: 10.1289/ehp.98106147 – volume: 11 start-page: 9 issue: 1 year: 2018 ident: 10.1016/j.envres.2020.110043_bib64 article-title: Spatial and temporal patterns of dengue infections in Timor-Leste, 2005–2013 publication-title: Parasites Vectors doi: 10.1186/s13071-017-2588-4 – volume: 241 start-page: 198 issue: 2 year: 2013 ident: 10.1016/j.envres.2020.110043_bib43 article-title: Mathematical modelling of mosquito dispersal in a heterogeneous environment publication-title: Math. Biosci. doi: 10.1016/j.mbs.2012.11.013 – volume: 7 start-page: 23119 issue: 1 year: 2014 ident: 10.1016/j.envres.2020.110043_bib73 article-title: Estimates of meteorological variability in association with dengue cases in a coastal city in northern Vietnam: an ecological study publication-title: Glob. Health Action doi: 10.3402/gha.v7.23119 – volume: 12 start-page: 1 issue: 1 year: 2015 ident: 10.1016/j.envres.2020.110043_bib23 article-title: A systematic review and meta-analysis of dengue risk with temperature change publication-title: Int. J. Environ. Res. Publ. Health doi: 10.3390/ijerph120100001 – volume: 624 start-page: 926 year: 2018 ident: 10.1016/j.envres.2020.110043_bib71 article-title: Weather variables and the el nino southern oscillation may drive the epidemics of dengue in Guangdong Province, China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.12.200 – volume: 6 start-page: 258 year: 2016 ident: 10.1016/j.envres.2020.110043_bib6 article-title: Effects of air temperature on climate-sensitive mortality and morbidity outcomes in the elderly; a systematic review and meta-analysis of epidemiological evidence publication-title: EBioMedicine doi: 10.1016/j.ebiom.2016.02.034 – year: 2019 ident: 10.1016/j.envres.2020.110043_bib65 – volume: 12 issue: 6 year: 2017 ident: 10.1016/j.envres.2020.110043_bib12 article-title: Effects of local and regional climatic fluctuations on dengue outbreaks in southern Taiwan publication-title: PloS One doi: 10.1371/journal.pone.0178698 – volume: 30 start-page: 2067 issue: 8 year: 2016 ident: 10.1016/j.envres.2020.110043_bib42 article-title: Quantifying the added value of climate information in a spatio-temporal dengue model publication-title: Stoch. Environ. Res. Risk Assess. doi: 10.1007/s00477-015-1053-1 – volume: 28 start-page: 2189 issue: 11 year: 2012 ident: 10.1016/j.envres.2020.110043_bib25 article-title: Temporal analysis of the relationship between dengue and meteorological variables in the city of Rio de Janeiro, Brazil, 2001-2009 publication-title: Cad. Saúde Pública doi: 10.1590/S0102-311X2012001100018 – volume: 57 start-page: 285 issue: 3 year: 1997 ident: 10.1016/j.envres.2020.110043_bib32 article-title: Potential changes in the distribution of dengue transmission under climate warming publication-title: Am. J. Trop. Med. Hyg. doi: 10.4269/ajtmh.1997.57.285 – volume: 58 start-page: 1597 issue: 12 year: 2012 ident: 10.1016/j.envres.2020.110043_bib45 article-title: An eco-physiological model of the impact of temperature on Aedes aegypti life history traits publication-title: J. Insect Physiol. doi: 10.1016/j.jinsphys.2012.09.015 – volume: 156 start-page: 130 year: 2016 ident: 10.1016/j.envres.2020.110043_bib63 article-title: Evaluation of aminotransferase abnormality in dengue patients: a meta analysis publication-title: Acta Trop. doi: 10.1016/j.actatropica.2015.12.013 – volume: 129 start-page: 1 year: 2014 ident: 10.1016/j.envres.2020.110043_bib54 article-title: Using global maps to predict the risk of dengue in Europe publication-title: Acta Trop. doi: 10.1016/j.actatropica.2013.08.008 – volume: 622 start-page: 252 year: 2018 ident: 10.1016/j.envres.2020.110043_bib75 article-title: The spatiotemporal transmission of dengue and its driving mechanism: a case study on the 2014 dengue outbreak in Guangdong, China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.11.314 – volume: 3 start-page: e382 issue: 2 year: 2009 ident: 10.1016/j.envres.2020.110043_bib33 article-title: Local and global effects of climate on dengue transmission in Puerto Rico publication-title: PLoS Neglected Trop. Dis. doi: 10.1371/journal.pntd.0000382 – volume: 628 start-page: 766 year: 2018 ident: 10.1016/j.envres.2020.110043_bib68 article-title: Non-linear effects of mean temperature and relative humidity on dengue incidence in Guangzhou, China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.02.136 – volume: 63 start-page: 137 year: 2014 ident: 10.1016/j.envres.2020.110043_bib4 article-title: Projecting the impact of climate change on dengue transmission in Dhaka, Bangladesh publication-title: Environ. Int. doi: 10.1016/j.envint.2013.11.002 – volume: 18 start-page: 629 issue: 1 year: 2018 ident: 10.1016/j.envres.2020.110043_bib31 article-title: Meteorological factors affecting dengue incidence in Davao, Philippines publication-title: BMC Publ. Health doi: 10.1186/s12889-018-5532-4 – start-page: 100344 year: 2019 ident: 10.1016/j.envres.2020.110043_bib53 – volume: 9 start-page: 954 issue: 10 year: 2016 ident: 10.1016/j.envres.2020.110043_bib2 article-title: Meteorological influences on dengue transmission in Pakistan publication-title: Asian Pac. J. Trop. Med. doi: 10.1016/j.apjtm.2016.07.033 – volume: 30 start-page: 2127 issue: 8 year: 2016 ident: 10.1016/j.envres.2020.110043_bib74 article-title: A spatiotemporal dengue fever early warning model accounting for nonlinear associations with hydrological factors: a Bayesian maximum entropy approach publication-title: Stoch. Environ. Res. Risk Assess. doi: 10.1007/s00477-016-1328-1 – volume: 86 start-page: 14 year: 2016 ident: 10.1016/j.envres.2020.110043_bib69 article-title: Impact of climate change on human infectious diseases: empirical evidence and human adaptation publication-title: Environ. Int. doi: 10.1016/j.envint.2015.09.007 – volume: 12 start-page: 131 issue: 1 year: 2019 ident: 10.1016/j.envres.2020.110043_bib61 article-title: Climatic factors influencing dengue incidence in an epidemic area of Nepal publication-title: BMC Res. Notes doi: 10.1186/s13104-019-4185-4 – volume: 6 start-page: 35028 year: 2016 ident: 10.1016/j.envres.2020.110043_bib8 article-title: Time-lagging interplay effect and excess risk of meteorological/mosquito parameters and petrochemical gas explosion on dengue incidence publication-title: Sci. Rep. doi: 10.1038/srep35028 – volume: 110 start-page: 994 issue: 3 year: 2013 ident: 10.1016/j.envres.2020.110043_bib58 article-title: House-to-house human movement drives dengue virus transmission publication-title: Proc. Natl. Acad. Sci. Unit. States Am. doi: 10.1073/pnas.1213349110 – volume: 14 issue: 8 year: 2019 ident: 10.1016/j.envres.2020.110043_bib59 article-title: Forecasting dengue fever in Brazil: an assessment of climate conditions publication-title: PloS One doi: 10.1371/journal.pone.0220106 – volume: 158 start-page: 248 year: 2016 ident: 10.1016/j.envres.2020.110043_bib3 article-title: Risk analysis for dengue suitability in Africa using the ArcGIS predictive analysis tools (PA tools) publication-title: Acta Trop. doi: 10.1016/j.actatropica.2016.02.018 – volume: 4 start-page: e646 issue: 5 year: 2010 ident: 10.1016/j.envres.2020.110043_bib35 article-title: Consequences of the expanding global distribution of Aedes albopictus for dengue virus transmission publication-title: PLoS Neglected Trop. Dis. doi: 10.1371/journal.pntd.0000646 – volume: 14 start-page: 45 issue: 1 year: 2014 ident: 10.1016/j.envres.2020.110043_bib41 article-title: Newcastle-Ottawa Scale: comparing reviewers' to authors' assessments publication-title: BMC Med. Res. Methodol. doi: 10.1186/1471-2288-14-45 – volume: 103 start-page: 99 year: 2017 ident: 10.1016/j.envres.2020.110043_bib39 article-title: Climate change and human infectious diseases: a synthesis of research findings from global and spatio-temporal perspectives publication-title: Environ. Int. doi: 10.1016/j.envint.2017.03.011 – volume: 24 start-page: 22535 issue: 28 year: 2017 ident: 10.1016/j.envres.2020.110043_bib13 article-title: Temperature drop and the risk of asthma: a systematic review and meta-analysis publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-017-9914-4 – volume: 385 start-page: 453 issue: 9966 year: 2015 ident: 10.1016/j.envres.2020.110043_bib28 article-title: Dengue publication-title: Lancet doi: 10.1016/S0140-6736(14)60572-9 – volume: 153 start-page: 17 year: 2017 ident: 10.1016/j.envres.2020.110043_bib70 article-title: Association between dengue fever incidence and meteorological factors in Guangzhou, China, 2005–2014 publication-title: Environ. Res. doi: 10.1016/j.envres.2016.11.009 – volume: 315 start-page: 629 issue: 7109 year: 1997 ident: 10.1016/j.envres.2020.110043_bib18 article-title: Bias in meta-analysis detected by a simple, graphical test publication-title: BMJ doi: 10.1136/bmj.315.7109.629 – volume: 327 start-page: 557 issue: 7414 year: 2003 ident: 10.1016/j.envres.2020.110043_bib29 article-title: Measuring inconsistency in meta-analyses publication-title: BMJ doi: 10.1136/bmj.327.7414.557 – volume: 50 start-page: 484 year: 2017 ident: 10.1016/j.envres.2020.110043_bib52 article-title: Seasonality on the life cycle of Aedes aegypti mosquito and its statistical relation with dengue outbreaks publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2017.06.003 |
SSID | ssj0011530 |
Score | 2.5170848 |
SecondaryResourceType | review_article |
Snippet | We systematically reviewed the published studies on the relationship between dengue fever and meteorological factors and applied a meta-analysis to explore the... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 110043 |
SubjectTerms | ambient temperature Databases, Factual dengue Dengue - epidemiology Dengue fever Humans Incidence Meta-analysis Precipitation Rainfall Risk Factors systematic review Temperature |
Title | Effects of ambient temperature and precipitation on the risk of dengue fever: A systematic review and updated meta-analysis |
URI | https://dx.doi.org/10.1016/j.envres.2020.110043 https://www.ncbi.nlm.nih.gov/pubmed/32810500 https://www.proquest.com/docview/2435528980 https://www.proquest.com/docview/2551926629 |
Volume | 191 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RS90wFD6Ivggyppvubk4y2Gs1bdKk9e0iyt3GfFLwrSRNIo7ZW-a9exH87TunSa_sQQWhFNomJe3JSb4k5_sC8FVXXNmg86wSrSVRbZcZLYrMceuM0nkRAnGHf56r2aX8flVercHJyIWhsMrU9sc2fWit052j9DeP-psb4vjmxCvNC1olkIPip5SaavnhwyrMAwGP4OMuBpR6pM8NMV6--4uDWhwlFkM8PJfiqe7pKfg5dENnb-FNwo9sGou4DWu-24Hd00e6Gj5M_nq3A1txVo5FstE7uI9ixXdsHpi5tcSFZCROlZSVmekc60nvok_S3QwPhIiMItApE7ZS10vPgkcPOGZT9igEzSIJZnjFsqd5BMdu_cJkJsmevIfLs9OLk1mWtl_IWqnyReYUb3UVcoeYLYiKF3UwoTCtMlbVQVoluTUylEJWXpeW58GhM-ehDja40pdiF9a7eec_APOVJu3FGvPUUrc1noKzQmiS-pFCTUCMf71p0wfSFhm_mzEI7VcTbdWQrZpoqwlkq1x91OZ4Ib0eDdr8V8ca7D5eyPlltH-D7kdrKqbz8yUmQrhZ4qC14s-kQVRaIxAq6gnsxcqzKq8oKkS4nH98ddk-wSZdxRCbfVhf_Fn6zwiUFvZg8IQD2Jh--zE7_wcuRxM8 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fa9UwFA5je1AQ0en0zqkR9LEuTdKmFXwYunHnfjxtsLeYNMmYuN6ye68yBP8p_8Gd06R3-DAHwqD0oU1KmpOcfGnP9x1C3qqKlTaoPKtEY1FU22VGCZ45Zp0pVc5DQO7wwWE5PpZfToqTJfJn4MJgWGXy_dGn9946XdlMvbnZnZ0hxzdHXmnO8S-BZEMG6z1_-RP2bdOPu5_ByO8439k--jTOUmqBrJFlPstcyRpVhdwBHgmiYrwOJnDTlMaWdZC2lMwaGQohK68Ky_LgYKDmoQ42uMJjqgjw-ysS3AWmTXj_exFXAghLsCFtAjZv4Ov1QWW-_QG7aNiW8j4An0lx03p4E97t172dR-RhAqx0K_bJY7Lk21Wytn3Nj4ObyUFMV8mD-BmQRnbTE_IrqiNP6SRQc26RfElRDStJOVPTOtqhwEaXtMIpHIBJKYa8YyVwi6dzT4OHKfeBbtFr5WkaWTf9I-Ydfrhw9NzPTGaSzspTcnwnRlkjy-2k9c8J9ZVCscca6tRSNTWcgrNCKNQWkqIcETH0um7SC2JOju96iHr7pqOtNNpKR1uNSLao1UUxkFvKq8Gg-q9BrWG9uqXmm8H-GuY7_sQxrZ_MoRDg2wJ2yRX7RxmAwTUgL16PyLM4eBbtFbwCSM3Y-n-37TW5Nz462Nf7u4d7L8h9vBPjezbI8uxi7l8CSpvZV_2soOTrXU_DK6D0T9Y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+ambient+temperature+and+precipitation+on+the+risk+of+dengue+fever%3A+A+systematic+review+and+updated+meta-analysis&rft.jtitle=Environmental+research&rft.au=Li%2C+Yanbing&rft.au=Dou%2C+Qiujun&rft.au=Lu%2C+Yuanan&rft.au=Xiang%2C+Hao&rft.date=2020-12-01&rft.issn=0013-9351&rft.volume=191&rft.spage=110043&rft_id=info:doi/10.1016%2Fj.envres.2020.110043&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_envres_2020_110043 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-9351&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-9351&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-9351&client=summon |