Spatiotemporal Patterns of Air Pollutants over the Epidemic Course: A National Study in China

Air pollution has been standing as one of the most pressing global challenges. The changing patterns of air pollutants at different spatial and temporal scales have been substantially studied all over the world, which, however, were intricately disturbed by COVID-19 and subsequent containment measur...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 16; no. 7; p. 1298
Main Authors Qin, Kun, Wang, Zhanpeng, Dai, Shaoqing, Li, Yuchen, Li, Manyao, Li, Chen, Qiu, Ge, Shi, Yuanyuan, Yin, Chun, Yang, Shujuan, Jia, Peng
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.04.2024
Subjects
Online AccessGet full text
ISSN2072-4292
2072-4292
DOI10.3390/rs16071298

Cover

Loading…
Abstract Air pollution has been standing as one of the most pressing global challenges. The changing patterns of air pollutants at different spatial and temporal scales have been substantially studied all over the world, which, however, were intricately disturbed by COVID-19 and subsequent containment measures. Understanding fine-scale changing patterns of air pollutants at different stages over the epidemic’s course is necessary for better identifying region-specific drivers of air pollution and preparing for environmental decision making during future epidemics. Taking China as an example, this study developed a multi-output LightGBM approach to estimate monthly concentrations of the six major air pollutants (i.e., PM2.5, PM10, NO2, SO2, O3, and CO) in China and revealed distinct spatiotemporal patterns for each pollutant over the epidemic’s course. The 5-year period of 2019–2023 was selected to observe changes in the concentrations of air pollutants from the pre-COVID-19 era to the lifting of all containment measures. The performance of our model, assessed by cross-validation R2, demonstrated high accuracy with values of 0.92 for PM2.5, 0.95 for PM10, 0.95 for O3, 0.90 for NO2, 0.79 for SO2, and 0.82 for CO. Notably, there was an improvement in the concentrations of particulate matter, particularly for PM2.5, although PM10 exhibited a rebound in northern regions. The concentrations of SO2 and CO consistently declined across the country over the epidemic’s course (p < 0.001 and p < 0.05, respectively), while O3 concentrations in southern regions experienced a notable increase. Concentrations of air pollutants in the Beijing–Tianjin–Hebei region were effectively controlled and mitigated. The findings of this study provide critical insights into changing trends of air quality during public health emergencies, help guide the development of targeted interventions, and inform policy making aimed at reducing disease burdens associated with air pollution.
AbstractList Air pollution has been standing as one of the most pressing global challenges. The changing patterns of air pollutants at different spatial and temporal scales have been substantially studied all over the world, which, however, were intricately disturbed by COVID-19 and subsequent containment measures. Understanding fine-scale changing patterns of air pollutants at different stages over the epidemic’s course is necessary for better identifying region-specific drivers of air pollution and preparing for environmental decision making during future epidemics. Taking China as an example, this study developed a multi-output LightGBM approach to estimate monthly concentrations of the six major air pollutants (i.e., PM₂.₅, PM₁₀, NO₂, SO₂, O₃, and CO) in China and revealed distinct spatiotemporal patterns for each pollutant over the epidemic’s course. The 5-year period of 2019–2023 was selected to observe changes in the concentrations of air pollutants from the pre-COVID-19 era to the lifting of all containment measures. The performance of our model, assessed by cross-validation R², demonstrated high accuracy with values of 0.92 for PM₂.₅, 0.95 for PM₁₀, 0.95 for O₃, 0.90 for NO₂, 0.79 for SO₂, and 0.82 for CO. Notably, there was an improvement in the concentrations of particulate matter, particularly for PM₂.₅, although PM₁₀ exhibited a rebound in northern regions. The concentrations of SO₂ and CO consistently declined across the country over the epidemic’s course (p < 0.001 and p < 0.05, respectively), while O₃ concentrations in southern regions experienced a notable increase. Concentrations of air pollutants in the Beijing–Tianjin–Hebei region were effectively controlled and mitigated. The findings of this study provide critical insights into changing trends of air quality during public health emergencies, help guide the development of targeted interventions, and inform policy making aimed at reducing disease burdens associated with air pollution.
Air pollution has been standing as one of the most pressing global challenges. The changing patterns of air pollutants at different spatial and temporal scales have been substantially studied all over the world, which, however, were intricately disturbed by COVID-19 and subsequent containment measures. Understanding fine-scale changing patterns of air pollutants at different stages over the epidemic’s course is necessary for better identifying region-specific drivers of air pollution and preparing for environmental decision making during future epidemics. Taking China as an example, this study developed a multi-output LightGBM approach to estimate monthly concentrations of the six major air pollutants (i.e., PM2.5, PM10, NO2, SO2, O3, and CO) in China and revealed distinct spatiotemporal patterns for each pollutant over the epidemic’s course. The 5-year period of 2019–2023 was selected to observe changes in the concentrations of air pollutants from the pre-COVID-19 era to the lifting of all containment measures. The performance of our model, assessed by cross-validation R2, demonstrated high accuracy with values of 0.92 for PM2.5, 0.95 for PM10, 0.95 for O3, 0.90 for NO2, 0.79 for SO2, and 0.82 for CO. Notably, there was an improvement in the concentrations of particulate matter, particularly for PM2.5, although PM10 exhibited a rebound in northern regions. The concentrations of SO2 and CO consistently declined across the country over the epidemic’s course (p < 0.001 and p < 0.05, respectively), while O3 concentrations in southern regions experienced a notable increase. Concentrations of air pollutants in the Beijing–Tianjin–Hebei region were effectively controlled and mitigated. The findings of this study provide critical insights into changing trends of air quality during public health emergencies, help guide the development of targeted interventions, and inform policy making aimed at reducing disease burdens associated with air pollution.
Air pollution has been standing as one of the most pressing global challenges. The changing patterns of air pollutants at different spatial and temporal scales have been substantially studied all over the world, which, however, were intricately disturbed by COVID-19 and subsequent containment measures. Understanding fine-scale changing patterns of air pollutants at different stages over the epidemic’s course is necessary for better identifying region-specific drivers of air pollution and preparing for environmental decision making during future epidemics. Taking China as an example, this study developed a multi-output LightGBM approach to estimate monthly concentrations of the six major air pollutants (i.e., PM[sub.2.5] , PM[sub.10] , NO[sub.2] , SO[sub.2] , O[sub.3] , and CO) in China and revealed distinct spatiotemporal patterns for each pollutant over the epidemic’s course. The 5-year period of 2019–2023 was selected to observe changes in the concentrations of air pollutants from the pre-COVID-19 era to the lifting of all containment measures. The performance of our model, assessed by cross-validation R[sup.2] , demonstrated high accuracy with values of 0.92 for PM[sub.2.5] , 0.95 for PM[sub.10] , 0.95 for O[sub.3] , 0.90 for NO[sub.2] , 0.79 for SO[sub.2] , and 0.82 for CO. Notably, there was an improvement in the concentrations of particulate matter, particularly for PM[sub.2.5] , although PM[sub.10] exhibited a rebound in northern regions. The concentrations of SO[sub.2] and CO consistently declined across the country over the epidemic’s course (p < 0.001 and p < 0.05, respectively), while O[sub.3] concentrations in southern regions experienced a notable increase. Concentrations of air pollutants in the Beijing–Tianjin–Hebei region were effectively controlled and mitigated. The findings of this study provide critical insights into changing trends of air quality during public health emergencies, help guide the development of targeted interventions, and inform policy making aimed at reducing disease burdens associated with air pollution.
Audience Academic
Author Li, Chen
Li, Yuchen
Qin, Kun
Li, Manyao
Wang, Zhanpeng
Qiu, Ge
Shi, Yuanyuan
Yang, Shujuan
Jia, Peng
Yin, Chun
Dai, Shaoqing
Author_xml – sequence: 1
  givenname: Kun
  orcidid: 0009-0006-3901-7207
  surname: Qin
  fullname: Qin, Kun
– sequence: 2
  givenname: Zhanpeng
  surname: Wang
  fullname: Wang, Zhanpeng
– sequence: 3
  givenname: Shaoqing
  orcidid: 0000-0003-0858-4728
  surname: Dai
  fullname: Dai, Shaoqing
– sequence: 4
  givenname: Yuchen
  surname: Li
  fullname: Li, Yuchen
– sequence: 5
  givenname: Manyao
  surname: Li
  fullname: Li, Manyao
– sequence: 6
  givenname: Chen
  surname: Li
  fullname: Li, Chen
– sequence: 7
  givenname: Ge
  surname: Qiu
  fullname: Qiu, Ge
– sequence: 8
  givenname: Yuanyuan
  surname: Shi
  fullname: Shi, Yuanyuan
– sequence: 9
  givenname: Chun
  orcidid: 0000-0002-1539-049X
  surname: Yin
  fullname: Yin, Chun
– sequence: 10
  givenname: Shujuan
  surname: Yang
  fullname: Yang, Shujuan
– sequence: 11
  givenname: Peng
  orcidid: 0000-0003-0110-3637
  surname: Jia
  fullname: Jia, Peng
BookMark eNptkt9rFDEQx4NUsNa--BcEfBHhan5dsvHtOKotFC1UHyXMZmfbHHubNckK_e_N3RWrpclDwvCZ72S-k9fkaIwjEvKWszMpLfuYMtfMcGGbF-RYMCMWSlhx9M_9FTnNecPqkpJbpo7Jz5sJSogFt1NMMNBrKAXTmGns6Sokeh2HYS4wlhr5jYmWO6TnU-hwGzxdxzll_ERX9OtOZKz5N2Xu7mkY6foujPCGvOxhyHj6cJ6QH5_Pv68vFlffvlyuV1cLrzQvC981LTaArdTCaNVIVFYCX0puoO2Byx5rV9qIhnG1tFItjWqY922LgMJKeUIuD7pdhI2bUthCuncRgtsHYrp1kErwAzoQmqNEbqTlijfcCi0F91p2uPSa86r1_qA1pfhrxlzcNmSPwwAjxjk7uX-XqgZW9N0TdFMdqTZUikmjJbNaP1K3UOuHsY8lgd-JupWxjAnOtKnU2TNU3Xur66D7UOP_JXw4JPgUc07Y_-2bM7f7D-7xP1SYPYF9KPuZ1SpheC7lDwmntKA
CitedBy_id crossref_primary_10_1016_j_lanwpc_2024_101100
crossref_primary_10_3389_fpubh_2024_1522631
crossref_primary_10_1007_s00134_024_07700_4
crossref_primary_10_1007_s10980_024_02039_z
Cites_doi 10.1007/s44212-022-00021-1
10.1016/j.envsci.2023.04.009
10.1021/acs.est.5b05134
10.1002/essoar.10504175.1
10.1038/d41586-020-01079-0
10.1016/j.scitotenv.2022.159339
10.1016/j.scitotenv.2020.140879
10.1002/sd.2432
10.1016/j.atmosenv.2023.119795
10.1002/qj.3803
10.1016/S2213-2600(22)00142-4
10.5194/acp-21-18195-2021
10.2105/AJPH.2020.305732
10.1016/j.ecolecon.2021.107153
10.4081/gh.2022.1023
10.1016/j.atmosenv.2021.118684
10.3390/atmos12020205
10.1016/S0140-6736(02)11274-8
10.1289/ehp.1206016
10.1093/nsr/nwaa307
10.1016/j.scitotenv.2022.154363
10.1016/j.jes.2022.03.036
10.1016/j.scitotenv.2022.160064
10.1038/s41586-021-04229-0
10.5194/acp-22-10875-2022
10.1007/s00477-023-02450-z
10.1146/annurev-publhealth-040218-043807
10.1016/j.apr.2023.101782
10.1073/pnas.2006853117
10.1038/nature15371
10.1016/j.scitotenv.2022.155940
10.1038/nclimate3354
10.3390/rs15051295
10.1016/S2468-2667(16)30023-8
10.1093/ije/dyw365
10.1038/s41612-023-00407-1
10.5194/acp-20-3273-2020
10.1016/j.rse.2011.09.027
10.1088/1748-9326/ab6614
10.1016/j.rse.2021.112573
10.1146/annurev-publhealth-051920-093141
10.1111/j.1538-4632.1995.tb00912.x
10.1007/s11222-009-9153-8
10.1016/j.rse.2021.112828
10.1016/j.healthplace.2019.102243
10.1016/j.atmosres.2022.106539
10.1021/acs.est.1c03818
10.1016/j.rse.2023.113514
10.1016/j.envpol.2021.116456
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
COVID
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
DOA
DOI 10.3390/rs16071298
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
Coronavirus Research Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Publicly Available Content Database

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Public Health
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_a261e3e173914181926321c63de5c611
A790021067
10_3390_rs16071298
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
TR2
TUS
PMFND
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
COVID
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c461t-cd8be8aeb36276483e493a15317abfa13fe1296728014593457480ccbbeae2933
IEDL.DBID 8FG
ISSN 2072-4292
IngestDate Wed Aug 27 01:19:33 EDT 2025
Fri Jul 11 09:09:47 EDT 2025
Fri Jul 25 09:37:33 EDT 2025
Tue Jun 17 21:58:26 EDT 2025
Tue Jun 10 21:00:59 EDT 2025
Tue Jul 01 03:11:33 EDT 2025
Thu Apr 24 23:09:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c461t-cd8be8aeb36276483e493a15317abfa13fe1296728014593457480ccbbeae2933
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0006-3901-7207
0000-0002-1539-049X
0000-0003-0858-4728
0000-0003-0110-3637
OpenAccessLink https://www.proquest.com/docview/3037630966?pq-origsite=%requestingapplication%
PQID 3037630966
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_a261e3e173914181926321c63de5c611
proquest_miscellaneous_3153174331
proquest_journals_3037630966
gale_infotracmisc_A790021067
gale_infotracacademiconefile_A790021067
crossref_primary_10_3390_rs16071298
crossref_citationtrail_10_3390_rs16071298
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Lv (ref_19) 2023; 857
ref_50
Pedregosa (ref_37) 2011; 12
Mann (ref_43) 1945; 13
Hersbach (ref_28) 2020; 146
Brunekreef (ref_4) 2002; 360
ref_12
ref_11
Jacquemin (ref_31) 2013; 121
Dienesch (ref_7) 2021; 189
ref_53
Ord (ref_42) 1995; 27
Jia (ref_57) 2019; 40
Wu (ref_25) 2021; 273
Zuo (ref_29) 2023; 305
Ma (ref_36) 2022; 827
Thunis (ref_45) 2021; 21
Zhong (ref_35) 2021; 8
Lelieveld (ref_1) 2015; 525
Silva (ref_5) 2017; 7
Rudke (ref_9) 2023; 289
Gao (ref_17) 2023; 283
ref_21
ref_20
Qin (ref_23) 2021; 264
Yang (ref_38) 2023; 6
Yang (ref_33) 2022; 269
Wei (ref_32) 2020; 20
Cooper (ref_6) 2022; 601
Fushiki (ref_40) 2011; 21
Chen (ref_56) 2022; 1
Zhou (ref_2) 2023; 14
Yang (ref_52) 2022; 838
ref_34
ref_39
Jia (ref_13) 2020; 580
Pei (ref_16) 2020; 743
Sicard (ref_8) 2023; 858
Wang (ref_22) 2023; 123
Kim (ref_26) 2021; 264
Silva (ref_48) 2023; 31
Jia (ref_58) 2023; 44
Goldberg (ref_27) 2022; 22
Friberg (ref_46) 2016; 50
Zhang (ref_51) 2020; 15
Veefkind (ref_24) 2012; 120
Zhang (ref_18) 2023; 145
ref_44
Venter (ref_10) 2020; 117
ref_41
Li (ref_47) 2023; 37
Jia (ref_55) 2017; 46
Liu (ref_15) 2020; 110
Mu (ref_30) 2023; 118
Wang (ref_49) 2021; 55
Landrigan (ref_3) 2017; 2
Burki (ref_14) 2022; 10
Jia (ref_54) 2020; 61
References_xml – volume: 1
  start-page: 22
  year: 2022
  ident: ref_56
  article-title: A Systematic Review of the Modifiable Areal Unit Problem (MAUP) in Community Food Environmental Research
  publication-title: Urban Inform.
  doi: 10.1007/s44212-022-00021-1
– volume: 145
  start-page: 50
  year: 2023
  ident: ref_18
  article-title: Impact of the Emergency Response to COVID-19 on Air Quality and Its Policy Implications: Evidence from 290 Cities in China
  publication-title: Environ. Sci. Policy
  doi: 10.1016/j.envsci.2023.04.009
– volume: 50
  start-page: 3695
  year: 2016
  ident: ref_46
  article-title: Method for Fusing Observational Data and Chemical Transport Model Simulations to Estimate Spatiotemporally Resolved Ambient Air Pollution
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b05134
– ident: ref_11
  doi: 10.1002/essoar.10504175.1
– volume: 580
  start-page: 321
  year: 2020
  ident: ref_13
  article-title: Are We Ready for a New Era of High-Impact and High-Frequency Epidemics?
  publication-title: Nature
  doi: 10.1038/d41586-020-01079-0
– volume: 857
  start-page: 159339
  year: 2023
  ident: ref_19
  article-title: Understanding and Revealing the Intrinsic Impacts of the COVID-19 Lockdown on Air Quality and Public Health in North China Using Machine Learning
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2022.159339
– ident: ref_39
– volume: 743
  start-page: 140879
  year: 2020
  ident: ref_16
  article-title: Response of Major Air Pollutants to COVID-19 Lockdowns in China
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.140879
– volume: 31
  start-page: 959
  year: 2023
  ident: ref_48
  article-title: Sustainable Policies for Air Pollution Reduction after COVID-19 Pandemic: Lessons Learnt from the Impact of the Different Lockdown Periods on Air Quality
  publication-title: Sustain. Dev.
  doi: 10.1002/sd.2432
– volume: 305
  start-page: 119795
  year: 2023
  ident: ref_29
  article-title: Evaluation of Four Meteorological Reanalysis Datasets for Satellite-Based PM2.5 Retrieval over China
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2023.119795
– volume: 146
  start-page: 1999
  year: 2020
  ident: ref_28
  article-title: The ERA5 Global Reanalysis
  publication-title: Q. J. R. Meteorol. Soc.
  doi: 10.1002/qj.3803
– volume: 10
  start-page: e58
  year: 2022
  ident: ref_14
  article-title: Dynamic Zero COVID Policy in the Fight against COVID
  publication-title: Lancet Respir. Med.
  doi: 10.1016/S2213-2600(22)00142-4
– volume: 21
  start-page: 18195
  year: 2021
  ident: ref_45
  article-title: Why Is the City’s Responsibility for Its Air Pollution Often Underestimated? A Focus on PM2.5
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-21-18195-2021
– volume: 110
  start-page: 1145
  year: 2020
  ident: ref_15
  article-title: Policy Lessons from Early Reactions to the COVID-19 Virus in China
  publication-title: Am. J. Public Health
  doi: 10.2105/AJPH.2020.305732
– volume: 118
  start-page: 103284
  year: 2023
  ident: ref_30
  article-title: Full-Coverage Spatiotemporal Estimation of Surface Ozone over China Based on a High-Efficiency Deep Learning Model
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 189
  start-page: 107153
  year: 2021
  ident: ref_7
  article-title: Air Pollution in an Urban World: A Global View on Density, Cities and Emissions
  publication-title: Ecol. Econ.
  doi: 10.1016/j.ecolecon.2021.107153
– ident: ref_12
  doi: 10.4081/gh.2022.1023
– volume: 264
  start-page: 118684
  year: 2021
  ident: ref_23
  article-title: MODIS High-Resolution MAIAC Aerosol Product: Global Validation and Analysis
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2021.118684
– ident: ref_41
– ident: ref_50
  doi: 10.3390/atmos12020205
– volume: 360
  start-page: 1233
  year: 2002
  ident: ref_4
  article-title: Air Pollution and Health
  publication-title: Lancet
  doi: 10.1016/S0140-6736(02)11274-8
– volume: 121
  start-page: 1054
  year: 2013
  ident: ref_31
  article-title: Impact of Geocoding Methods on Associations between Long-Term Exposure to Urban Air Pollution and Lung Function
  publication-title: Environ. Health Perspect.
  doi: 10.1289/ehp.1206016
– volume: 8
  start-page: nwaa307
  year: 2021
  ident: ref_35
  article-title: Robust Prediction of Hourly PM2.5 from Meteorological Data Using LightGBM
  publication-title: Natl. Sci. Rev.
  doi: 10.1093/nsr/nwaa307
– volume: 827
  start-page: 154363
  year: 2022
  ident: ref_36
  article-title: MERRA-2 PM2. 5 Mass Concentration Reconstruction in China Mainland Based on LightGBM Machine Learning
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2022.154363
– volume: 123
  start-page: 255
  year: 2023
  ident: ref_22
  article-title: Prospect of China’s Ambient Air Quality Standards
  publication-title: J. Environ. Sci.
  doi: 10.1016/j.jes.2022.03.036
– volume: 13
  start-page: 245
  year: 1945
  ident: ref_43
  article-title: Nonparametric Tests against Trend
  publication-title: Econom. J. Econom. Soc.
– ident: ref_53
– volume: 858
  start-page: 160064
  year: 2023
  ident: ref_8
  article-title: Trends in Urban Air Pollution over the Last Two Decades: A Global Perspective
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2022.160064
– volume: 601
  start-page: 380
  year: 2022
  ident: ref_6
  article-title: Global Fine-Scale Changes in Ambient NO2 during COVID-19 Lockdowns
  publication-title: Nature
  doi: 10.1038/s41586-021-04229-0
– volume: 22
  start-page: 10875
  year: 2022
  ident: ref_27
  article-title: Evaluating NOx Emissions and Their Effect on O3 Production in Texas Using TROPOMI NO2 and HCHO
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-22-10875-2022
– volume: 37
  start-page: 3343
  year: 2023
  ident: ref_47
  article-title: The Impact of COVID-19 on Economy, Air Pollution and Income: Evidence from China
  publication-title: Stoch. Environ. Res. Risk Assess.
  doi: 10.1007/s00477-023-02450-z
– ident: ref_34
– volume: 40
  start-page: 85
  year: 2019
  ident: ref_57
  article-title: Earth Observation: Investigating Noncommunicable Diseases from Space
  publication-title: Annu. Rev. Public Health
  doi: 10.1146/annurev-publhealth-040218-043807
– volume: 14
  start-page: 101782
  year: 2023
  ident: ref_2
  article-title: Spatio-Temporal Variations and Socio-Economic Drivers of Air Pollution: Evidence from 332 Chinese Prefecture-Level Cities
  publication-title: Atmos. Pollut. Res.
  doi: 10.1016/j.apr.2023.101782
– volume: 117
  start-page: 18984
  year: 2020
  ident: ref_10
  article-title: COVID-19 Lockdowns Cause Global Air Pollution Declines
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2006853117
– volume: 525
  start-page: 367
  year: 2015
  ident: ref_1
  article-title: The Contribution of Outdoor Air Pollution Sources to Premature Mortality on a Global Scale
  publication-title: Nature
  doi: 10.1038/nature15371
– volume: 12
  start-page: 2825
  year: 2011
  ident: ref_37
  article-title: Scikit-Learn: Machine Learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 838
  start-page: 155940
  year: 2022
  ident: ref_52
  article-title: Ethnic Disparities in the Association between Ambient Air Pollution and Risk for Cardiometabolic Abnormalities in China
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2022.155940
– ident: ref_44
– volume: 7
  start-page: 647
  year: 2017
  ident: ref_5
  article-title: Future Global Mortality from Changes in Air Pollution Attributable to Climate Change
  publication-title: Nat. Clim. Chang.
  doi: 10.1038/nclimate3354
– ident: ref_20
  doi: 10.3390/rs15051295
– ident: ref_21
– volume: 2
  start-page: e4
  year: 2017
  ident: ref_3
  article-title: Air Pollution and Health
  publication-title: Lancet Public Health
  doi: 10.1016/S2468-2667(16)30023-8
– volume: 46
  start-page: 1343
  year: 2017
  ident: ref_55
  article-title: Using Remote Sensing Technology to Measure Environmental Determinants of Non-Communicable Diseases
  publication-title: Int. J. Epidemiol.
  doi: 10.1093/ije/dyw365
– volume: 6
  start-page: 94
  year: 2023
  ident: ref_38
  article-title: A Synchronized Estimation of Hourly Surface Concentrations of Six Criteria Air Pollutants with GEMS Data
  publication-title: NPJ Clim. Atmos. Sci.
  doi: 10.1038/s41612-023-00407-1
– volume: 20
  start-page: 3273
  year: 2020
  ident: ref_32
  article-title: Improved 1 Km Resolution PM2.5 Estimates across China Using Enhanced Space–Time Extremely Randomized Trees
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-20-3273-2020
– volume: 120
  start-page: 70
  year: 2012
  ident: ref_24
  article-title: TROPOMI on the ESA Sentinel-5 Precursor: A GMES Mission for Global Observations of the Atmospheric Composition for Climate, Air Quality and Ozone Layer Applications
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.09.027
– volume: 15
  start-page: 044009
  year: 2020
  ident: ref_51
  article-title: Obesogenic Environmental Factors of Adult Obesity in China: A Nationally Representative Cross-Sectional Study
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/ab6614
– volume: 264
  start-page: 112573
  year: 2021
  ident: ref_26
  article-title: Importance of Satellite Observations for High-Resolution Mapping of near-Surface NO2 by Machine Learning
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112573
– volume: 44
  start-page: 55
  year: 2023
  ident: ref_58
  article-title: Innovations in Public Health Surveillance for Emerging Infections
  publication-title: Annu. Rev. Public Health
  doi: 10.1146/annurev-publhealth-051920-093141
– volume: 27
  start-page: 286
  year: 1995
  ident: ref_42
  article-title: Local Spatial Autocorrelation Statistics: Distributional Issues and an Application
  publication-title: Geogr. Anal.
  doi: 10.1111/j.1538-4632.1995.tb00912.x
– volume: 21
  start-page: 137
  year: 2011
  ident: ref_40
  article-title: Estimation of Prediction Error by Using K-Fold Cross-Validation
  publication-title: Stat. Comput.
  doi: 10.1007/s11222-009-9153-8
– volume: 269
  start-page: 112828
  year: 2022
  ident: ref_33
  article-title: Geographical and Temporal Encoding for Improving the Estimation of PM2.5 Concentrations in China Using End-to-End Gradient Boosting
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112828
– volume: 61
  start-page: 102243
  year: 2020
  ident: ref_54
  article-title: Spatial Lifecourse Epidemiology Reporting Standards (ISLE-ReSt) Statement
  publication-title: Health Place
  doi: 10.1016/j.healthplace.2019.102243
– volume: 283
  start-page: 106539
  year: 2023
  ident: ref_17
  article-title: Spatial Characteristics of Change Trends of Air Pollutants in Chinese Urban Areas during 2016–2020: The Impact of Air Pollution Controls and the COVID-19 Pandemic
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2022.106539
– volume: 55
  start-page: 13571
  year: 2021
  ident: ref_49
  article-title: Monitoring Compliance in Pandemic Management with Air Pollution Data: A Lesson from COVID-19
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.1c03818
– volume: 289
  start-page: 113514
  year: 2023
  ident: ref_9
  article-title: Evaluating TROPOMI and MODIS Performance to Capture the Dynamic of Air Pollution in São Paulo State: A Case Study during the COVID-19 Outbreak
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2023.113514
– volume: 273
  start-page: 116456
  year: 2021
  ident: ref_25
  article-title: Spatiotemporal Mapping and Assessment of Daily Ground NO2 Concentrations in China Using High-Resolution TROPOMI Retrievals
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2021.116456
SSID ssj0000331904
Score 2.3857944
Snippet Air pollution has been standing as one of the most pressing global challenges. The changing patterns of air pollutants at different spatial and temporal scales...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 1298
SubjectTerms Aerosols
air
air pollutant
Air pollution
Air pollution measurements
Air quality
China
Climate change
Containment
Coronaviruses
COVID-19
COVID-19 infection
Decision making
emerging hot spot analysis
Emissions
Environmental aspects
Epidemics
issues and policy
multi-output LightGBM
national surveys
Nitrogen dioxide
Outdoor air quality
Particulate emissions
Particulate matter
particulates
PM10
PM2.5
Pollutants
Public health
Radiation
Satellites
Sulfur dioxide
Trends
Viral diseases
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iRS_iE-uLiIJ4KDZNmrbeVlFEUAQVvEhI0gSFpSv7OPjvnUnj6oLixUsP6RSSmWQeZfJ9hBxipdNUmUtFk8Mjr0WqM89S40sNDpMx5_F_x82tvHoU10_F0zeqL-wJ6-CBO8WdaEjxHXes5DUTDOG7JM-ZlbxxhZXdrV6Ied-KqeCDOWytTHR4pBzq-pPhKECp5XU1E4ECUP9v7jjEmMtlshSTQ9rrJrVC5ly7ShYiT_nL-xp5vg8N0BFPqk_vAjpmO6IDT3uvQ3qHxMXICwwjsEcpZHf0ouOAtRTp6UbulPZoBMPuU-wifKevLQ002uvk8fLi4fwqjQQJqRWSjVPbVMZVGuphmZdSVNyJmmvwYazUxmvGvYMFS2SgYqKouShKUWXWGuO0gzjPN8h8O2jdJqHcyKb2VktvjCh4UfnSMO0zzSEnc8Yk5PhTacpG9HAksegrqCJQwepLwQk5mMq-dZgZP0qdoe6nEohzHQbA-ipaX_1l_YQcoeUUnkaYjtXxUgEsCnGtVK-sQ1Ury4TszEjCKbKzrz9tr-IpHikI7-B-ociTCdmfvsYvsTOtdYMJyAR1472zrf9Y0DZZzCFt6nqDdsj8eDhxu5D2jM1e2OEfCMP7WA
  priority: 102
  providerName: Directory of Open Access Journals
Title Spatiotemporal Patterns of Air Pollutants over the Epidemic Course: A National Study in China
URI https://www.proquest.com/docview/3037630966
https://www.proquest.com/docview/3153174331
https://doaj.org/article/a261e3e173914181926321c63de5c611
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Rb9MwELZgewAJIRigBUZlBBLiIVocO07CC8qgZUJsqhiT9oIs27FhUpWMpnvYv-fOcTtVAl5aKblW6fnufHc9fx8hb7DSaavMpaLN4SWvRaozz1LjSw0BkzHnsd9xciqPz8WXi-IiNtyGOFa5jokhULe9xR75IYRacAVIuOWHq98pskbhv6uRQuMu2WWw06CFV7PPmx5LxsHAMjGiknKo7g-XQwBUy-tqax8KcP3_Csphp5k9Ig9jikibcU0fkzuu2yP3Ilv5r5s98mDstdHxCNET8uMsjEVHlKkFnQfMzG6gvafN5ZLOkc4Y2YLhClguhZyPTkdmWEuRtG5w72lDI0T2guJs4Q297Ggg135KzmfT7x-P00ibkFoh2Sq1bWVcpaFKlnkpRcWdqLmGyMZKbbxm3DtQgEReKiaKmouiFFVmrTFOO9j9-TOy0_Wd2yeUG9nW3mrpjREFLypfGqZ9pjlkas6YhLxbK1HZiCmO1BYLBbUFKlzdKjwhrzeyVyOSxl-ljnAtNhKIfh0u9MufKjqT0lD2Oe5YyWsmGEK6SZ4zK3nrCgv2lZC3uJIKfRQex-p41AB-FKJdqaasQ60ry4QcbEmCb9nt22tbUNG3B3VriQl5tbmNn8R5tc711yAT1I2n0Z7__ytekPs5pEnjLNAB2Vktr91LSHNWZhJseUJ2m08nX8_g_Wh6Ov82CU2DP0FF_dA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFD7U-lBBRKtitOqIivgQmslMJokgsmrXrb1QsIW-SJyZTLSwJHWzRfZP-Rs9Z5JsWVDf-pKHzNmQzJzr7JnvA3hBlU6ZRS6UZYyXOJehjioemirV6DA5dxXtdxwcqsmJ_HyanK7B7-EsDLVVDj7RO-qysbRHvo2uFk0BE2717vxnSKxR9O_qQKHRqcWeW_zCkq19u_sR1_dlHI93jj9Mwp5VILRS8Xloy8y4TGMRqeJUyUw4mQuNhs9TbSrNReUwBiqibeIyyYVMUplF1hrjtMPgKPC51-C6FCKnFsJs_Gm5pxMJVOhIdiioOB5tz1oP4Bbn2Urc8_QA_woCPrKNb8OtPiVlo06H7sCaqzdho2dH_7HYhJvd3h7rjizdha9ffBt2j2o1ZUceo7NuWVOx0dmMHRF9MrET4x20FIY5JtvpmGgtI5K81r1hI9ZDck8Z9TIu2FnNPJn3PTi5kgm9D-t1U7sHwIRRZV5ZrSpjZCKSrEoN11WkBWaGzpgAXg-TWNgew5yoNKYF1jI04cXlhAfwfCl73iF3_FXqPa3FUoLQtv2NZva96I230FhmOuF4KnIuOUHIKRFzq0TpEov6HMArWsmCfAK-jtX90Qb8KELXKkZp7mtrlQawtSKJtmxXhwddKHpf0haXmh_As-Uw_ZL642rXXKCMn246_fbw_494ChuT44P9Yn_3cO8R3IgxRev6kLZgfT67cI8xxZqbJ16vGXy7akP6A5ZRNaY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fa9RAEB5qBRVEtCqeVl1RER_CZbObTSKInLZna7UcaKEvEnc3u1o4knp3Re5f869zZpNcOVDf-nIPyVy4zM7PvdnvA3hGnU6Vxy6SVYIfSSEjHXseGZ9pDJicO0_7HZ8O1d6R_HCcHm_A7_4sDI1V9jExBOqqsbRHPsRQi66ABbca-m4sYrIzfnP6MyIGKfqntafTaE3kwC1_Yfs2f72_g2v9PEnGu1_e7UUdw0BkpeKLyFa5cbnGhlIlmZK5cLIQGoMAz7TxmgvvMB8qonDiMi2ETDOZx9Ya47TDRCnwuZfgcibymNgT8vH71f5OLNC4Y9kiogpRxMPZPIC5JUW-lgMDVcC_EkLIcuObcKMrT9motadbsOHqLbjaMaX_WG7B9Xafj7XHl27D189hJLtDuJqyScDrrOes8Wx0MmMTolImpmK8gl7DsN5kuy0rrWVEmDd3r9iIdfDcU0ZzjUt2UrNA7H0Hji5EoXdhs25qdw-YMKoqvNXKGyNTkeY-M1z7WAusEp0xA3jZK7G0HZ450WpMS-xrSOHlucIH8HQle9qiePxV6i2txUqCkLfDhWb2vewcudTYcjrheCYKLjnBySmRcKtE5VKLtj2AF7SSJcUH_DlWd8cc8KUIaascZUXos1U2gO01SfRru367t4Wyiyvz8twLBvBkdZu-SbNytWvOUCaom07C3f__Ix7DFXSh8uP-4cEDuJZgtdaOJG3D5mJ25h5itbUwj4JZM_h20X70B_MSOdM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatiotemporal+Patterns+of+Air+Pollutants+over+the+Epidemic+Course%3A+A+National+Study+in+China&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Qin%2C+Kun&rft.au=Wang%2C+Zhanpeng&rft.au=Dai%2C+Shaoqing&rft.au=Li%2C+Yuchen&rft.date=2024-04-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=16&rft.issue=7&rft.spage=1298&rft_id=info:doi/10.3390%2Frs16071298&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon