Spatiotemporal Patterns of Air Pollutants over the Epidemic Course: A National Study in China
Air pollution has been standing as one of the most pressing global challenges. The changing patterns of air pollutants at different spatial and temporal scales have been substantially studied all over the world, which, however, were intricately disturbed by COVID-19 and subsequent containment measur...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 16; no. 7; p. 1298 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.04.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2072-4292 2072-4292 |
DOI | 10.3390/rs16071298 |
Cover
Loading…
Abstract | Air pollution has been standing as one of the most pressing global challenges. The changing patterns of air pollutants at different spatial and temporal scales have been substantially studied all over the world, which, however, were intricately disturbed by COVID-19 and subsequent containment measures. Understanding fine-scale changing patterns of air pollutants at different stages over the epidemic’s course is necessary for better identifying region-specific drivers of air pollution and preparing for environmental decision making during future epidemics. Taking China as an example, this study developed a multi-output LightGBM approach to estimate monthly concentrations of the six major air pollutants (i.e., PM2.5, PM10, NO2, SO2, O3, and CO) in China and revealed distinct spatiotemporal patterns for each pollutant over the epidemic’s course. The 5-year period of 2019–2023 was selected to observe changes in the concentrations of air pollutants from the pre-COVID-19 era to the lifting of all containment measures. The performance of our model, assessed by cross-validation R2, demonstrated high accuracy with values of 0.92 for PM2.5, 0.95 for PM10, 0.95 for O3, 0.90 for NO2, 0.79 for SO2, and 0.82 for CO. Notably, there was an improvement in the concentrations of particulate matter, particularly for PM2.5, although PM10 exhibited a rebound in northern regions. The concentrations of SO2 and CO consistently declined across the country over the epidemic’s course (p < 0.001 and p < 0.05, respectively), while O3 concentrations in southern regions experienced a notable increase. Concentrations of air pollutants in the Beijing–Tianjin–Hebei region were effectively controlled and mitigated. The findings of this study provide critical insights into changing trends of air quality during public health emergencies, help guide the development of targeted interventions, and inform policy making aimed at reducing disease burdens associated with air pollution. |
---|---|
AbstractList | Air pollution has been standing as one of the most pressing global challenges. The changing patterns of air pollutants at different spatial and temporal scales have been substantially studied all over the world, which, however, were intricately disturbed by COVID-19 and subsequent containment measures. Understanding fine-scale changing patterns of air pollutants at different stages over the epidemic’s course is necessary for better identifying region-specific drivers of air pollution and preparing for environmental decision making during future epidemics. Taking China as an example, this study developed a multi-output LightGBM approach to estimate monthly concentrations of the six major air pollutants (i.e., PM₂.₅, PM₁₀, NO₂, SO₂, O₃, and CO) in China and revealed distinct spatiotemporal patterns for each pollutant over the epidemic’s course. The 5-year period of 2019–2023 was selected to observe changes in the concentrations of air pollutants from the pre-COVID-19 era to the lifting of all containment measures. The performance of our model, assessed by cross-validation R², demonstrated high accuracy with values of 0.92 for PM₂.₅, 0.95 for PM₁₀, 0.95 for O₃, 0.90 for NO₂, 0.79 for SO₂, and 0.82 for CO. Notably, there was an improvement in the concentrations of particulate matter, particularly for PM₂.₅, although PM₁₀ exhibited a rebound in northern regions. The concentrations of SO₂ and CO consistently declined across the country over the epidemic’s course (p < 0.001 and p < 0.05, respectively), while O₃ concentrations in southern regions experienced a notable increase. Concentrations of air pollutants in the Beijing–Tianjin–Hebei region were effectively controlled and mitigated. The findings of this study provide critical insights into changing trends of air quality during public health emergencies, help guide the development of targeted interventions, and inform policy making aimed at reducing disease burdens associated with air pollution. Air pollution has been standing as one of the most pressing global challenges. The changing patterns of air pollutants at different spatial and temporal scales have been substantially studied all over the world, which, however, were intricately disturbed by COVID-19 and subsequent containment measures. Understanding fine-scale changing patterns of air pollutants at different stages over the epidemic’s course is necessary for better identifying region-specific drivers of air pollution and preparing for environmental decision making during future epidemics. Taking China as an example, this study developed a multi-output LightGBM approach to estimate monthly concentrations of the six major air pollutants (i.e., PM2.5, PM10, NO2, SO2, O3, and CO) in China and revealed distinct spatiotemporal patterns for each pollutant over the epidemic’s course. The 5-year period of 2019–2023 was selected to observe changes in the concentrations of air pollutants from the pre-COVID-19 era to the lifting of all containment measures. The performance of our model, assessed by cross-validation R2, demonstrated high accuracy with values of 0.92 for PM2.5, 0.95 for PM10, 0.95 for O3, 0.90 for NO2, 0.79 for SO2, and 0.82 for CO. Notably, there was an improvement in the concentrations of particulate matter, particularly for PM2.5, although PM10 exhibited a rebound in northern regions. The concentrations of SO2 and CO consistently declined across the country over the epidemic’s course (p < 0.001 and p < 0.05, respectively), while O3 concentrations in southern regions experienced a notable increase. Concentrations of air pollutants in the Beijing–Tianjin–Hebei region were effectively controlled and mitigated. The findings of this study provide critical insights into changing trends of air quality during public health emergencies, help guide the development of targeted interventions, and inform policy making aimed at reducing disease burdens associated with air pollution. Air pollution has been standing as one of the most pressing global challenges. The changing patterns of air pollutants at different spatial and temporal scales have been substantially studied all over the world, which, however, were intricately disturbed by COVID-19 and subsequent containment measures. Understanding fine-scale changing patterns of air pollutants at different stages over the epidemic’s course is necessary for better identifying region-specific drivers of air pollution and preparing for environmental decision making during future epidemics. Taking China as an example, this study developed a multi-output LightGBM approach to estimate monthly concentrations of the six major air pollutants (i.e., PM[sub.2.5] , PM[sub.10] , NO[sub.2] , SO[sub.2] , O[sub.3] , and CO) in China and revealed distinct spatiotemporal patterns for each pollutant over the epidemic’s course. The 5-year period of 2019–2023 was selected to observe changes in the concentrations of air pollutants from the pre-COVID-19 era to the lifting of all containment measures. The performance of our model, assessed by cross-validation R[sup.2] , demonstrated high accuracy with values of 0.92 for PM[sub.2.5] , 0.95 for PM[sub.10] , 0.95 for O[sub.3] , 0.90 for NO[sub.2] , 0.79 for SO[sub.2] , and 0.82 for CO. Notably, there was an improvement in the concentrations of particulate matter, particularly for PM[sub.2.5] , although PM[sub.10] exhibited a rebound in northern regions. The concentrations of SO[sub.2] and CO consistently declined across the country over the epidemic’s course (p < 0.001 and p < 0.05, respectively), while O[sub.3] concentrations in southern regions experienced a notable increase. Concentrations of air pollutants in the Beijing–Tianjin–Hebei region were effectively controlled and mitigated. The findings of this study provide critical insights into changing trends of air quality during public health emergencies, help guide the development of targeted interventions, and inform policy making aimed at reducing disease burdens associated with air pollution. |
Audience | Academic |
Author | Li, Chen Li, Yuchen Qin, Kun Li, Manyao Wang, Zhanpeng Qiu, Ge Shi, Yuanyuan Yang, Shujuan Jia, Peng Yin, Chun Dai, Shaoqing |
Author_xml | – sequence: 1 givenname: Kun orcidid: 0009-0006-3901-7207 surname: Qin fullname: Qin, Kun – sequence: 2 givenname: Zhanpeng surname: Wang fullname: Wang, Zhanpeng – sequence: 3 givenname: Shaoqing orcidid: 0000-0003-0858-4728 surname: Dai fullname: Dai, Shaoqing – sequence: 4 givenname: Yuchen surname: Li fullname: Li, Yuchen – sequence: 5 givenname: Manyao surname: Li fullname: Li, Manyao – sequence: 6 givenname: Chen surname: Li fullname: Li, Chen – sequence: 7 givenname: Ge surname: Qiu fullname: Qiu, Ge – sequence: 8 givenname: Yuanyuan surname: Shi fullname: Shi, Yuanyuan – sequence: 9 givenname: Chun orcidid: 0000-0002-1539-049X surname: Yin fullname: Yin, Chun – sequence: 10 givenname: Shujuan surname: Yang fullname: Yang, Shujuan – sequence: 11 givenname: Peng orcidid: 0000-0003-0110-3637 surname: Jia fullname: Jia, Peng |
BookMark | eNptkt9rFDEQx4NUsNa--BcEfBHhan5dsvHtOKotFC1UHyXMZmfbHHubNckK_e_N3RWrpclDwvCZ72S-k9fkaIwjEvKWszMpLfuYMtfMcGGbF-RYMCMWSlhx9M_9FTnNecPqkpJbpo7Jz5sJSogFt1NMMNBrKAXTmGns6Sokeh2HYS4wlhr5jYmWO6TnU-hwGzxdxzll_ERX9OtOZKz5N2Xu7mkY6foujPCGvOxhyHj6cJ6QH5_Pv68vFlffvlyuV1cLrzQvC981LTaArdTCaNVIVFYCX0puoO2Byx5rV9qIhnG1tFItjWqY922LgMJKeUIuD7pdhI2bUthCuncRgtsHYrp1kErwAzoQmqNEbqTlijfcCi0F91p2uPSa86r1_qA1pfhrxlzcNmSPwwAjxjk7uX-XqgZW9N0TdFMdqTZUikmjJbNaP1K3UOuHsY8lgd-JupWxjAnOtKnU2TNU3Xur66D7UOP_JXw4JPgUc07Y_-2bM7f7D-7xP1SYPYF9KPuZ1SpheC7lDwmntKA |
CitedBy_id | crossref_primary_10_1016_j_lanwpc_2024_101100 crossref_primary_10_3389_fpubh_2024_1522631 crossref_primary_10_1007_s00134_024_07700_4 crossref_primary_10_1007_s10980_024_02039_z |
Cites_doi | 10.1007/s44212-022-00021-1 10.1016/j.envsci.2023.04.009 10.1021/acs.est.5b05134 10.1002/essoar.10504175.1 10.1038/d41586-020-01079-0 10.1016/j.scitotenv.2022.159339 10.1016/j.scitotenv.2020.140879 10.1002/sd.2432 10.1016/j.atmosenv.2023.119795 10.1002/qj.3803 10.1016/S2213-2600(22)00142-4 10.5194/acp-21-18195-2021 10.2105/AJPH.2020.305732 10.1016/j.ecolecon.2021.107153 10.4081/gh.2022.1023 10.1016/j.atmosenv.2021.118684 10.3390/atmos12020205 10.1016/S0140-6736(02)11274-8 10.1289/ehp.1206016 10.1093/nsr/nwaa307 10.1016/j.scitotenv.2022.154363 10.1016/j.jes.2022.03.036 10.1016/j.scitotenv.2022.160064 10.1038/s41586-021-04229-0 10.5194/acp-22-10875-2022 10.1007/s00477-023-02450-z 10.1146/annurev-publhealth-040218-043807 10.1016/j.apr.2023.101782 10.1073/pnas.2006853117 10.1038/nature15371 10.1016/j.scitotenv.2022.155940 10.1038/nclimate3354 10.3390/rs15051295 10.1016/S2468-2667(16)30023-8 10.1093/ije/dyw365 10.1038/s41612-023-00407-1 10.5194/acp-20-3273-2020 10.1016/j.rse.2011.09.027 10.1088/1748-9326/ab6614 10.1016/j.rse.2021.112573 10.1146/annurev-publhealth-051920-093141 10.1111/j.1538-4632.1995.tb00912.x 10.1007/s11222-009-9153-8 10.1016/j.rse.2021.112828 10.1016/j.healthplace.2019.102243 10.1016/j.atmosres.2022.106539 10.1021/acs.est.1c03818 10.1016/j.rse.2023.113514 10.1016/j.envpol.2021.116456 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU COVID DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 DOA |
DOI | 10.3390/rs16071298 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College Coronavirus Research Database ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database Coronavirus Research Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Public Health |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_a261e3e173914181926321c63de5c611 A790021067 10_3390_rs16071298 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS TR2 TUS PMFND 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K COVID DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c461t-cd8be8aeb36276483e493a15317abfa13fe1296728014593457480ccbbeae2933 |
IEDL.DBID | 8FG |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 01:19:33 EDT 2025 Fri Jul 11 09:09:47 EDT 2025 Fri Jul 25 09:37:33 EDT 2025 Tue Jun 17 21:58:26 EDT 2025 Tue Jun 10 21:00:59 EDT 2025 Tue Jul 01 03:11:33 EDT 2025 Thu Apr 24 23:09:09 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c461t-cd8be8aeb36276483e493a15317abfa13fe1296728014593457480ccbbeae2933 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0009-0006-3901-7207 0000-0002-1539-049X 0000-0003-0858-4728 0000-0003-0110-3637 |
OpenAccessLink | https://www.proquest.com/docview/3037630966?pq-origsite=%requestingapplication% |
PQID | 3037630966 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a261e3e173914181926321c63de5c611 proquest_miscellaneous_3153174331 proquest_journals_3037630966 gale_infotracmisc_A790021067 gale_infotracacademiconefile_A790021067 crossref_primary_10_3390_rs16071298 crossref_citationtrail_10_3390_rs16071298 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-04-01 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Lv (ref_19) 2023; 857 ref_50 Pedregosa (ref_37) 2011; 12 Mann (ref_43) 1945; 13 Hersbach (ref_28) 2020; 146 Brunekreef (ref_4) 2002; 360 ref_12 ref_11 Jacquemin (ref_31) 2013; 121 Dienesch (ref_7) 2021; 189 ref_53 Ord (ref_42) 1995; 27 Jia (ref_57) 2019; 40 Wu (ref_25) 2021; 273 Zuo (ref_29) 2023; 305 Ma (ref_36) 2022; 827 Thunis (ref_45) 2021; 21 Zhong (ref_35) 2021; 8 Lelieveld (ref_1) 2015; 525 Silva (ref_5) 2017; 7 Rudke (ref_9) 2023; 289 Gao (ref_17) 2023; 283 ref_21 ref_20 Qin (ref_23) 2021; 264 Yang (ref_38) 2023; 6 Yang (ref_33) 2022; 269 Wei (ref_32) 2020; 20 Cooper (ref_6) 2022; 601 Fushiki (ref_40) 2011; 21 Chen (ref_56) 2022; 1 Zhou (ref_2) 2023; 14 Yang (ref_52) 2022; 838 ref_34 ref_39 Jia (ref_13) 2020; 580 Pei (ref_16) 2020; 743 Sicard (ref_8) 2023; 858 Wang (ref_22) 2023; 123 Kim (ref_26) 2021; 264 Silva (ref_48) 2023; 31 Jia (ref_58) 2023; 44 Goldberg (ref_27) 2022; 22 Friberg (ref_46) 2016; 50 Zhang (ref_51) 2020; 15 Veefkind (ref_24) 2012; 120 Zhang (ref_18) 2023; 145 ref_44 Venter (ref_10) 2020; 117 ref_41 Li (ref_47) 2023; 37 Jia (ref_55) 2017; 46 Liu (ref_15) 2020; 110 Mu (ref_30) 2023; 118 Wang (ref_49) 2021; 55 Landrigan (ref_3) 2017; 2 Burki (ref_14) 2022; 10 Jia (ref_54) 2020; 61 |
References_xml | – volume: 1 start-page: 22 year: 2022 ident: ref_56 article-title: A Systematic Review of the Modifiable Areal Unit Problem (MAUP) in Community Food Environmental Research publication-title: Urban Inform. doi: 10.1007/s44212-022-00021-1 – volume: 145 start-page: 50 year: 2023 ident: ref_18 article-title: Impact of the Emergency Response to COVID-19 on Air Quality and Its Policy Implications: Evidence from 290 Cities in China publication-title: Environ. Sci. Policy doi: 10.1016/j.envsci.2023.04.009 – volume: 50 start-page: 3695 year: 2016 ident: ref_46 article-title: Method for Fusing Observational Data and Chemical Transport Model Simulations to Estimate Spatiotemporally Resolved Ambient Air Pollution publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b05134 – ident: ref_11 doi: 10.1002/essoar.10504175.1 – volume: 580 start-page: 321 year: 2020 ident: ref_13 article-title: Are We Ready for a New Era of High-Impact and High-Frequency Epidemics? publication-title: Nature doi: 10.1038/d41586-020-01079-0 – volume: 857 start-page: 159339 year: 2023 ident: ref_19 article-title: Understanding and Revealing the Intrinsic Impacts of the COVID-19 Lockdown on Air Quality and Public Health in North China Using Machine Learning publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2022.159339 – ident: ref_39 – volume: 743 start-page: 140879 year: 2020 ident: ref_16 article-title: Response of Major Air Pollutants to COVID-19 Lockdowns in China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.140879 – volume: 31 start-page: 959 year: 2023 ident: ref_48 article-title: Sustainable Policies for Air Pollution Reduction after COVID-19 Pandemic: Lessons Learnt from the Impact of the Different Lockdown Periods on Air Quality publication-title: Sustain. Dev. doi: 10.1002/sd.2432 – volume: 305 start-page: 119795 year: 2023 ident: ref_29 article-title: Evaluation of Four Meteorological Reanalysis Datasets for Satellite-Based PM2.5 Retrieval over China publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2023.119795 – volume: 146 start-page: 1999 year: 2020 ident: ref_28 article-title: The ERA5 Global Reanalysis publication-title: Q. J. R. Meteorol. Soc. doi: 10.1002/qj.3803 – volume: 10 start-page: e58 year: 2022 ident: ref_14 article-title: Dynamic Zero COVID Policy in the Fight against COVID publication-title: Lancet Respir. Med. doi: 10.1016/S2213-2600(22)00142-4 – volume: 21 start-page: 18195 year: 2021 ident: ref_45 article-title: Why Is the City’s Responsibility for Its Air Pollution Often Underestimated? A Focus on PM2.5 publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-21-18195-2021 – volume: 110 start-page: 1145 year: 2020 ident: ref_15 article-title: Policy Lessons from Early Reactions to the COVID-19 Virus in China publication-title: Am. J. Public Health doi: 10.2105/AJPH.2020.305732 – volume: 118 start-page: 103284 year: 2023 ident: ref_30 article-title: Full-Coverage Spatiotemporal Estimation of Surface Ozone over China Based on a High-Efficiency Deep Learning Model publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 189 start-page: 107153 year: 2021 ident: ref_7 article-title: Air Pollution in an Urban World: A Global View on Density, Cities and Emissions publication-title: Ecol. Econ. doi: 10.1016/j.ecolecon.2021.107153 – ident: ref_12 doi: 10.4081/gh.2022.1023 – volume: 264 start-page: 118684 year: 2021 ident: ref_23 article-title: MODIS High-Resolution MAIAC Aerosol Product: Global Validation and Analysis publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2021.118684 – ident: ref_41 – ident: ref_50 doi: 10.3390/atmos12020205 – volume: 360 start-page: 1233 year: 2002 ident: ref_4 article-title: Air Pollution and Health publication-title: Lancet doi: 10.1016/S0140-6736(02)11274-8 – volume: 121 start-page: 1054 year: 2013 ident: ref_31 article-title: Impact of Geocoding Methods on Associations between Long-Term Exposure to Urban Air Pollution and Lung Function publication-title: Environ. Health Perspect. doi: 10.1289/ehp.1206016 – volume: 8 start-page: nwaa307 year: 2021 ident: ref_35 article-title: Robust Prediction of Hourly PM2.5 from Meteorological Data Using LightGBM publication-title: Natl. Sci. Rev. doi: 10.1093/nsr/nwaa307 – volume: 827 start-page: 154363 year: 2022 ident: ref_36 article-title: MERRA-2 PM2. 5 Mass Concentration Reconstruction in China Mainland Based on LightGBM Machine Learning publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2022.154363 – volume: 123 start-page: 255 year: 2023 ident: ref_22 article-title: Prospect of China’s Ambient Air Quality Standards publication-title: J. Environ. Sci. doi: 10.1016/j.jes.2022.03.036 – volume: 13 start-page: 245 year: 1945 ident: ref_43 article-title: Nonparametric Tests against Trend publication-title: Econom. J. Econom. Soc. – ident: ref_53 – volume: 858 start-page: 160064 year: 2023 ident: ref_8 article-title: Trends in Urban Air Pollution over the Last Two Decades: A Global Perspective publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2022.160064 – volume: 601 start-page: 380 year: 2022 ident: ref_6 article-title: Global Fine-Scale Changes in Ambient NO2 during COVID-19 Lockdowns publication-title: Nature doi: 10.1038/s41586-021-04229-0 – volume: 22 start-page: 10875 year: 2022 ident: ref_27 article-title: Evaluating NOx Emissions and Their Effect on O3 Production in Texas Using TROPOMI NO2 and HCHO publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-22-10875-2022 – volume: 37 start-page: 3343 year: 2023 ident: ref_47 article-title: The Impact of COVID-19 on Economy, Air Pollution and Income: Evidence from China publication-title: Stoch. Environ. Res. Risk Assess. doi: 10.1007/s00477-023-02450-z – ident: ref_34 – volume: 40 start-page: 85 year: 2019 ident: ref_57 article-title: Earth Observation: Investigating Noncommunicable Diseases from Space publication-title: Annu. Rev. Public Health doi: 10.1146/annurev-publhealth-040218-043807 – volume: 14 start-page: 101782 year: 2023 ident: ref_2 article-title: Spatio-Temporal Variations and Socio-Economic Drivers of Air Pollution: Evidence from 332 Chinese Prefecture-Level Cities publication-title: Atmos. Pollut. Res. doi: 10.1016/j.apr.2023.101782 – volume: 117 start-page: 18984 year: 2020 ident: ref_10 article-title: COVID-19 Lockdowns Cause Global Air Pollution Declines publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2006853117 – volume: 525 start-page: 367 year: 2015 ident: ref_1 article-title: The Contribution of Outdoor Air Pollution Sources to Premature Mortality on a Global Scale publication-title: Nature doi: 10.1038/nature15371 – volume: 12 start-page: 2825 year: 2011 ident: ref_37 article-title: Scikit-Learn: Machine Learning in Python publication-title: J. Mach. Learn. Res. – volume: 838 start-page: 155940 year: 2022 ident: ref_52 article-title: Ethnic Disparities in the Association between Ambient Air Pollution and Risk for Cardiometabolic Abnormalities in China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2022.155940 – ident: ref_44 – volume: 7 start-page: 647 year: 2017 ident: ref_5 article-title: Future Global Mortality from Changes in Air Pollution Attributable to Climate Change publication-title: Nat. Clim. Chang. doi: 10.1038/nclimate3354 – ident: ref_20 doi: 10.3390/rs15051295 – ident: ref_21 – volume: 2 start-page: e4 year: 2017 ident: ref_3 article-title: Air Pollution and Health publication-title: Lancet Public Health doi: 10.1016/S2468-2667(16)30023-8 – volume: 46 start-page: 1343 year: 2017 ident: ref_55 article-title: Using Remote Sensing Technology to Measure Environmental Determinants of Non-Communicable Diseases publication-title: Int. J. Epidemiol. doi: 10.1093/ije/dyw365 – volume: 6 start-page: 94 year: 2023 ident: ref_38 article-title: A Synchronized Estimation of Hourly Surface Concentrations of Six Criteria Air Pollutants with GEMS Data publication-title: NPJ Clim. Atmos. Sci. doi: 10.1038/s41612-023-00407-1 – volume: 20 start-page: 3273 year: 2020 ident: ref_32 article-title: Improved 1 Km Resolution PM2.5 Estimates across China Using Enhanced Space–Time Extremely Randomized Trees publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-20-3273-2020 – volume: 120 start-page: 70 year: 2012 ident: ref_24 article-title: TROPOMI on the ESA Sentinel-5 Precursor: A GMES Mission for Global Observations of the Atmospheric Composition for Climate, Air Quality and Ozone Layer Applications publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.09.027 – volume: 15 start-page: 044009 year: 2020 ident: ref_51 article-title: Obesogenic Environmental Factors of Adult Obesity in China: A Nationally Representative Cross-Sectional Study publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/ab6614 – volume: 264 start-page: 112573 year: 2021 ident: ref_26 article-title: Importance of Satellite Observations for High-Resolution Mapping of near-Surface NO2 by Machine Learning publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2021.112573 – volume: 44 start-page: 55 year: 2023 ident: ref_58 article-title: Innovations in Public Health Surveillance for Emerging Infections publication-title: Annu. Rev. Public Health doi: 10.1146/annurev-publhealth-051920-093141 – volume: 27 start-page: 286 year: 1995 ident: ref_42 article-title: Local Spatial Autocorrelation Statistics: Distributional Issues and an Application publication-title: Geogr. Anal. doi: 10.1111/j.1538-4632.1995.tb00912.x – volume: 21 start-page: 137 year: 2011 ident: ref_40 article-title: Estimation of Prediction Error by Using K-Fold Cross-Validation publication-title: Stat. Comput. doi: 10.1007/s11222-009-9153-8 – volume: 269 start-page: 112828 year: 2022 ident: ref_33 article-title: Geographical and Temporal Encoding for Improving the Estimation of PM2.5 Concentrations in China Using End-to-End Gradient Boosting publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2021.112828 – volume: 61 start-page: 102243 year: 2020 ident: ref_54 article-title: Spatial Lifecourse Epidemiology Reporting Standards (ISLE-ReSt) Statement publication-title: Health Place doi: 10.1016/j.healthplace.2019.102243 – volume: 283 start-page: 106539 year: 2023 ident: ref_17 article-title: Spatial Characteristics of Change Trends of Air Pollutants in Chinese Urban Areas during 2016–2020: The Impact of Air Pollution Controls and the COVID-19 Pandemic publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2022.106539 – volume: 55 start-page: 13571 year: 2021 ident: ref_49 article-title: Monitoring Compliance in Pandemic Management with Air Pollution Data: A Lesson from COVID-19 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.1c03818 – volume: 289 start-page: 113514 year: 2023 ident: ref_9 article-title: Evaluating TROPOMI and MODIS Performance to Capture the Dynamic of Air Pollution in São Paulo State: A Case Study during the COVID-19 Outbreak publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2023.113514 – volume: 273 start-page: 116456 year: 2021 ident: ref_25 article-title: Spatiotemporal Mapping and Assessment of Daily Ground NO2 Concentrations in China Using High-Resolution TROPOMI Retrievals publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2021.116456 |
SSID | ssj0000331904 |
Score | 2.3857944 |
Snippet | Air pollution has been standing as one of the most pressing global challenges. The changing patterns of air pollutants at different spatial and temporal scales... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 1298 |
SubjectTerms | Aerosols air air pollutant Air pollution Air pollution measurements Air quality China Climate change Containment Coronaviruses COVID-19 COVID-19 infection Decision making emerging hot spot analysis Emissions Environmental aspects Epidemics issues and policy multi-output LightGBM national surveys Nitrogen dioxide Outdoor air quality Particulate emissions Particulate matter particulates PM10 PM2.5 Pollutants Public health Radiation Satellites Sulfur dioxide Trends Viral diseases |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iRS_iE-uLiIJ4KDZNmrbeVlFEUAQVvEhI0gSFpSv7OPjvnUnj6oLixUsP6RSSmWQeZfJ9hBxipdNUmUtFk8Mjr0WqM89S40sNDpMx5_F_x82tvHoU10_F0zeqL-wJ6-CBO8WdaEjxHXes5DUTDOG7JM-ZlbxxhZXdrV6Ied-KqeCDOWytTHR4pBzq-pPhKECp5XU1E4ECUP9v7jjEmMtlshSTQ9rrJrVC5ly7ShYiT_nL-xp5vg8N0BFPqk_vAjpmO6IDT3uvQ3qHxMXICwwjsEcpZHf0ouOAtRTp6UbulPZoBMPuU-wifKevLQ002uvk8fLi4fwqjQQJqRWSjVPbVMZVGuphmZdSVNyJmmvwYazUxmvGvYMFS2SgYqKouShKUWXWGuO0gzjPN8h8O2jdJqHcyKb2VktvjCh4UfnSMO0zzSEnc8Yk5PhTacpG9HAksegrqCJQwepLwQk5mMq-dZgZP0qdoe6nEohzHQbA-ipaX_1l_YQcoeUUnkaYjtXxUgEsCnGtVK-sQ1Ury4TszEjCKbKzrz9tr-IpHikI7-B-ociTCdmfvsYvsTOtdYMJyAR1472zrf9Y0DZZzCFt6nqDdsj8eDhxu5D2jM1e2OEfCMP7WA priority: 102 providerName: Directory of Open Access Journals |
Title | Spatiotemporal Patterns of Air Pollutants over the Epidemic Course: A National Study in China |
URI | https://www.proquest.com/docview/3037630966 https://www.proquest.com/docview/3153174331 https://doaj.org/article/a261e3e173914181926321c63de5c611 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Rb9MwELZgewAJIRigBUZlBBLiIVocO07CC8qgZUJsqhiT9oIs27FhUpWMpnvYv-fOcTtVAl5aKblW6fnufHc9fx8hb7DSaavMpaLN4SWvRaozz1LjSw0BkzHnsd9xciqPz8WXi-IiNtyGOFa5jokhULe9xR75IYRacAVIuOWHq98pskbhv6uRQuMu2WWw06CFV7PPmx5LxsHAMjGiknKo7g-XQwBUy-tqax8KcP3_Csphp5k9Ig9jikibcU0fkzuu2yP3Ilv5r5s98mDstdHxCNET8uMsjEVHlKkFnQfMzG6gvafN5ZLOkc4Y2YLhClguhZyPTkdmWEuRtG5w72lDI0T2guJs4Q297Ggg135KzmfT7x-P00ibkFoh2Sq1bWVcpaFKlnkpRcWdqLmGyMZKbbxm3DtQgEReKiaKmouiFFVmrTFOO9j9-TOy0_Wd2yeUG9nW3mrpjREFLypfGqZ9pjlkas6YhLxbK1HZiCmO1BYLBbUFKlzdKjwhrzeyVyOSxl-ljnAtNhKIfh0u9MufKjqT0lD2Oe5YyWsmGEK6SZ4zK3nrCgv2lZC3uJIKfRQex-p41AB-FKJdqaasQ60ry4QcbEmCb9nt22tbUNG3B3VriQl5tbmNn8R5tc711yAT1I2n0Z7__ytekPs5pEnjLNAB2Vktr91LSHNWZhJseUJ2m08nX8_g_Wh6Ov82CU2DP0FF_dA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFD7U-lBBRKtitOqIivgQmslMJokgsmrXrb1QsIW-SJyZTLSwJHWzRfZP-Rs9Z5JsWVDf-pKHzNmQzJzr7JnvA3hBlU6ZRS6UZYyXOJehjioemirV6DA5dxXtdxwcqsmJ_HyanK7B7-EsDLVVDj7RO-qysbRHvo2uFk0BE2717vxnSKxR9O_qQKHRqcWeW_zCkq19u_sR1_dlHI93jj9Mwp5VILRS8Xloy8y4TGMRqeJUyUw4mQuNhs9TbSrNReUwBiqibeIyyYVMUplF1hrjtMPgKPC51-C6FCKnFsJs_Gm5pxMJVOhIdiioOB5tz1oP4Bbn2Urc8_QA_woCPrKNb8OtPiVlo06H7sCaqzdho2dH_7HYhJvd3h7rjizdha9ffBt2j2o1ZUceo7NuWVOx0dmMHRF9MrET4x20FIY5JtvpmGgtI5K81r1hI9ZDck8Z9TIu2FnNPJn3PTi5kgm9D-t1U7sHwIRRZV5ZrSpjZCKSrEoN11WkBWaGzpgAXg-TWNgew5yoNKYF1jI04cXlhAfwfCl73iF3_FXqPa3FUoLQtv2NZva96I230FhmOuF4KnIuOUHIKRFzq0TpEov6HMArWsmCfAK-jtX90Qb8KELXKkZp7mtrlQawtSKJtmxXhwddKHpf0haXmh_As-Uw_ZL642rXXKCMn246_fbw_494ChuT44P9Yn_3cO8R3IgxRev6kLZgfT67cI8xxZqbJ16vGXy7akP6A5ZRNaY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fa9RAEB5qBRVEtCqeVl1RER_CZbObTSKInLZna7UcaKEvEnc3u1o4knp3Re5f869zZpNcOVDf-nIPyVy4zM7PvdnvA3hGnU6Vxy6SVYIfSSEjHXseGZ9pDJicO0_7HZ8O1d6R_HCcHm_A7_4sDI1V9jExBOqqsbRHPsRQi66ABbca-m4sYrIzfnP6MyIGKfqntafTaE3kwC1_Yfs2f72_g2v9PEnGu1_e7UUdw0BkpeKLyFa5cbnGhlIlmZK5cLIQGoMAz7TxmgvvMB8qonDiMi2ETDOZx9Ya47TDRCnwuZfgcibymNgT8vH71f5OLNC4Y9kiogpRxMPZPIC5JUW-lgMDVcC_EkLIcuObcKMrT9motadbsOHqLbjaMaX_WG7B9Xafj7XHl27D189hJLtDuJqyScDrrOes8Wx0MmMTolImpmK8gl7DsN5kuy0rrWVEmDd3r9iIdfDcU0ZzjUt2UrNA7H0Hji5EoXdhs25qdw-YMKoqvNXKGyNTkeY-M1z7WAusEp0xA3jZK7G0HZ450WpMS-xrSOHlucIH8HQle9qiePxV6i2txUqCkLfDhWb2vewcudTYcjrheCYKLjnBySmRcKtE5VKLtj2AF7SSJcUH_DlWd8cc8KUIaascZUXos1U2gO01SfRru367t4Wyiyvz8twLBvBkdZu-SbNytWvOUCaom07C3f__Ix7DFXSh8uP-4cEDuJZgtdaOJG3D5mJ25h5itbUwj4JZM_h20X70B_MSOdM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatiotemporal+Patterns+of+Air+Pollutants+over+the+Epidemic+Course%3A+A+National+Study+in+China&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Qin%2C+Kun&rft.au=Wang%2C+Zhanpeng&rft.au=Dai%2C+Shaoqing&rft.au=Li%2C+Yuchen&rft.date=2024-04-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=16&rft.issue=7&rft.spage=1298&rft_id=info:doi/10.3390%2Frs16071298&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |