Full-coverage high-resolution daily PM2.5 estimation using MAIAC AOD in the Yangtze River Delta of China

Satellite aerosol optical depth (AOD) has been used to assess population exposure to fine particulate matter (PM2.5). The emerging high-resolution satellite aerosol product, Multi-Angle Implementation of Atmospheric Correction (MAIAC), provides a valuable opportunity to characterize local-scale PM2....

Full description

Saved in:
Bibliographic Details
Published inRemote sensing of environment Vol. 199; pp. 437 - 446
Main Authors Xiao, Qingyang, Wang, Yujie, Chang, Howard H., Meng, Xia, Geng, Guannan, Lyapustin, Alexei, Liu, Yang
Format Journal Article
LanguageEnglish
Published New York Elsevier Inc 15.09.2017
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Satellite aerosol optical depth (AOD) has been used to assess population exposure to fine particulate matter (PM2.5). The emerging high-resolution satellite aerosol product, Multi-Angle Implementation of Atmospheric Correction (MAIAC), provides a valuable opportunity to characterize local-scale PM2.5 at 1-km resolution. However, non-random missing AOD due to cloud/snow cover or high surface reflectance makes this task challenging. Previous studies filled the data gap by spatially interpolating neighboring PM2.5 measurements or predictions. This strategy ignored the effect of cloud cover on aerosol loadings and has been shown to exhibit poor performance when monitoring stations are sparse or when there is seasonal large-scale missingness. Using the Yangtze River Delta of China as an example, we present a Multiple Imputation (MI) method that combines the MAIAC high-resolution satellite retrievals with chemical transport model (CTM) simulations to fill missing AOD. A two-stage statistical model driven by gap-filled AOD, meteorology and land use information was then fitted to estimate daily ground PM2.5 concentrations in 2013 and 2014 at 1km resolution with complete coverage in space and time. The daily MI models have an average R2 of 0.77, with an inter-quartile range of 0.71 to 0.82 across days. The overall model 10-fold cross-validation R2 (root mean square error) were 0.81 (25μg/m3) and 0.73 (18μg/m3) for year 2013 and 2014, respectively. Predictions with only observational AOD or only imputed AOD showed similar accuracy. Comparing with previous gap-filling methods, our MI method presented in this study performed better with higher coverage, higher accuracy, and the ability to fill missing PM2.5 predictions without ground PM2.5 measurements. This method can provide reliable PM2.5 predictions with complete coverage that can reduce bias in exposure assessment in air pollution and health studies. •Fused satellite data, chemical transport model simulations and ground measurements•Improved the annual coverage of PM2.5 prediction by about two-fold•Provided PM2.5 predictions with complete-coverage high-accuracy at 1-km resolution•Corrected sampling bias in exposure assessment due to non-random missingness in AOD
AbstractList Satellite aerosol optical depth (AOD) has been used to assess population exposure to fine particulate matter (PM2.5). The emerging high-resolution satellite aerosol product, Multi-Angle Implementation of Atmospheric Correction (MAIAC), provides a valuable opportunity to characterize local-scale PM2.5 at 1-km resolution. However, non-random missing AOD due to cloud/snow cover or high surface reflectance makes this task challenging. Previous studies filled the data gap by spatially interpolating neighboring PM2.5 measurements or predictions. This strategy ignored the effect of cloud cover on aerosol loadings and has been shown to exhibit poor performance when monitoring stations are sparse or when there is seasonal large-scale missingness. Using the Yangtze River Delta of China as an example, we present a Multiple Imputation (MI) method that combines the MAIAC high-resolution satellite retrievals with chemical transport model (CTM) simulations to fill missing AOD. A two-stage statistical model driven by gap-filled AOD, meteorology and land use information was then fitted to estimate daily ground PM2.5 concentrations in 2013 and 2014 at 1km resolution with complete coverage in space and time. The daily MI models have an average R2 of 0.77, with an inter-quartile range of 0.71 to 0.82 across days. The overall model 10-fold cross-validation R2 (root mean square error) were 0.81 (25μg/m3) and 0.73 (18μg/m3) for year 2013 and 2014, respectively. Predictions with only observational AOD or only imputed AOD showed similar accuracy. Comparing with previous gap-filling methods, our MI method presented in this study performed better with higher coverage, higher accuracy, and the ability to fill missing PM2.5 predictions without ground PM2.5 measurements. This method can provide reliable PM2.5 predictions with complete coverage that can reduce bias in exposure assessment in air pollution and health studies. •Fused satellite data, chemical transport model simulations and ground measurements•Improved the annual coverage of PM2.5 prediction by about two-fold•Provided PM2.5 predictions with complete-coverage high-accuracy at 1-km resolution•Corrected sampling bias in exposure assessment due to non-random missingness in AOD
Satellite aerosol optical depth (AOD) has been used to assess population exposure to fine particulate matter (PM2.5). The emerging high-resolution satellite aerosol product, Multi-Angle Implementation of Atmospheric Correction (MAIAC), provides a valuable opportunity to characterize local-scale PM2.5 at 1-km resolution. However, non-random missing AOD due to cloud/snow cover or high surface reflectance makes this task challenging. Previous studies filled the data gap by spatially interpolating neighboring PM2.5 measurements or predictions. This strategy ignored the effect of cloud cover on aerosol loadings and has been shown to exhibit poor performance when monitoring stations are sparse or when there is seasonal large-scale missingness. Using the Yangtze River Delta of China as an example, we present a Multiple Imputation (MI) method that combines the MAIAC high-resolution satellite retrievals with chemical transport model (CTM) simulations to fill missing AOD. A two-stage statistical model driven by gap-filled AOD, meteorology and land use information was then fitted to estimate daily ground PM2.5 concentrations in 2013 and 2014 at 1 km resolution with complete coverage in space and time. The daily MI models have an average R2 of 0.77, with an inter-quartile range of 0.71 to 0.82 across days. The overall model 10-fold cross-validation R2 (root mean square error) were 0.81 (25 µg/m3) and 0.73 (18 µg/m3) for year 2013 and 2014, respectively. Predictions with only observational AOD or only imputed AOD showed similar accuracy. Comparing with previous gap-filling methods, our MI method presented in this study performed better with higher coverage, higher accuracy, and the ability to fill missing PM2.5 predictions without ground PM2.5 measurements. This method can provide reliable PM2.5 predictions with complete coverage that can reduce bias in exposure assessment in air pollution and health studies.
Satellite aerosol optical depth (AOD) has been used to assess population exposure to fine particulate matter (PM2.5). The emerging high-resolution satellite aerosol product, Multi-Angle Implementation of Atmospheric Correction (MAIAC), provides a valuable opportunity to characterize local-scale PM2.5 at 1-km resolution. However, non-random missing AOD due to cloud/snow cover or high surface reflectance makes this task challenging. Previous studies filled the data gap by spatially interpolating neighboring PM2.5 measurements or predictions. This strategy ignored the effect of cloud cover on aerosol loadings and has been shown to exhibit poor performance when monitoring stations are sparse or when there is seasonal large-scale missingness. Using the Yangtze River Delta of China as an example, we present a Multiple Imputation (MI) method that combines the MAIAC high-resolution satellite retrievals with chemical transport model (CTM) simulations to fill missing AOD. A two-stage statistical model driven by gap-filled AOD, meteorology and land use information was then fitted to estimate daily ground PM2.5 concentrations in 2013 and 2014 at 1km resolution with complete coverage in space and time. The daily MI models have an average R2 of 0.77, with an inter-quartile range of 0.71 to 0.82 across days. The overall model 10-fold cross-validation R2 (root mean square error) were 0.81 (25μg/m3) and 0.73 (18μg/m3) for year 2013 and 2014, respectively. Predictions with only observational AOD or only imputed AOD showed similar accuracy. Comparing with previous gap-filling methods, our MI method presented in this study performed better with higher coverage, higher accuracy, and the ability to fill missing PM2.5 predictions without ground PM2.5 measurements. This method can provide reliable PM2.5 predictions with complete coverage that can reduce bias in exposure assessment in air pollution and health studies.
Author Xiao, Qingyang
Meng, Xia
Wang, Yujie
Chang, Howard H.
Geng, Guannan
Liu, Yang
Lyapustin, Alexei
Author_xml – sequence: 1
  givenname: Qingyang
  surname: Xiao
  fullname: Xiao, Qingyang
  organization: Department of Environmental Health, Emory University, Rollins School of Public Health, Atlanta, GA, USA
– sequence: 2
  givenname: Yujie
  surname: Wang
  fullname: Wang, Yujie
  organization: Goddard Earth Sciences and Technology Center, University of Maryland Baltimore County, Baltimore, MD, USA
– sequence: 3
  givenname: Howard H.
  surname: Chang
  fullname: Chang, Howard H.
  organization: Department of Biostatistics and Bioinformatics, Emory University, Rollins School of Public Health, Atlanta, GA, USA
– sequence: 4
  givenname: Xia
  surname: Meng
  fullname: Meng, Xia
  organization: Department of Environmental Health, Emory University, Rollins School of Public Health, Atlanta, GA, USA
– sequence: 5
  givenname: Guannan
  surname: Geng
  fullname: Geng, Guannan
  organization: Department of Environmental Health, Emory University, Rollins School of Public Health, Atlanta, GA, USA
– sequence: 6
  givenname: Alexei
  surname: Lyapustin
  fullname: Lyapustin, Alexei
  organization: Goddard Earth Sciences and Technology Center, University of Maryland Baltimore County, Baltimore, MD, USA
– sequence: 7
  givenname: Yang
  orcidid: 0000-0001-5477-2186
  surname: Liu
  fullname: Liu, Yang
  email: yang.liu@emory.edu
  organization: Department of Environmental Health, Emory University, Rollins School of Public Health, Atlanta, GA, USA
BookMark eNp9kMFq3DAQhkVJoJukD9CboJde7M5I1sqmp2XTtIGElNIeehKqPF5rcaRUsgPp01fJ5pRDYGBg-L-f4TthRyEGYuw9Qo2A60_7OmWqBaCuoYyQb9gKW91VoKE5YisA2VSNUPotO8l5D4Cq1bhi48UyTZWL95Tsjvjod2OVKMdpmX0MvLd-euDfr0WtOOXZ39qn85J92PHrzeVmyzc359wHPo_Ef9uwm_8R_-FLHT-nabY8Dnw7-mDP2PFgp0zvnvcp-3Xx5ef2W3V18_Vyu7mqXLPGuXKuQ2Wt7DrpNPbYS9AooZGDRWrtMKDstbJOgsJ2aBsL7aD_OEFrsmpNIE_Zx0PvXYp_l_KzufXZ0TTZQHHJRgCA0qLRTYl-eBHdxyWF8p3BTnUCnlN4SLkUc040mLtUPKQHg2Ae3Zu9Ke7No3sDZYQsjH7BOD8_qZtTMfoq-flAUnF07ymZ7DwFR71P5GbTR_8K_R9UI56b
CitedBy_id crossref_primary_10_1016_j_envint_2019_04_057
crossref_primary_10_1016_j_rse_2020_112257
crossref_primary_10_1016_j_envres_2019_108810
crossref_primary_10_1016_j_chemosphere_2019_124904
crossref_primary_10_1016_j_atmosenv_2024_120440
crossref_primary_10_1016_j_uclim_2020_100734
crossref_primary_10_3390_rs12183008
crossref_primary_10_3390_rs15153780
crossref_primary_10_5194_acp_19_8243_2019
crossref_primary_10_1016_j_isprsjprs_2021_03_018
crossref_primary_10_3390_s19051207
crossref_primary_10_1016_j_atmosenv_2019_01_027
crossref_primary_10_3390_rs14153571
crossref_primary_10_1016_j_atmosenv_2023_120159
crossref_primary_10_1016_j_envint_2020_105536
crossref_primary_10_1021_acs_est_3c10951
crossref_primary_10_1016_j_atmosenv_2023_119722
crossref_primary_10_1007_s10661_023_10951_1
crossref_primary_10_12677_AEP_2023_132042
crossref_primary_10_3389_fenvs_2023_1303152
crossref_primary_10_1007_s00477_023_02459_4
crossref_primary_10_1021_acs_est_2c03084
crossref_primary_10_1016_j_envpol_2019_02_071
crossref_primary_10_1016_j_atmosenv_2023_119724
crossref_primary_10_1007_s11430_018_9353_x
crossref_primary_10_3390_atmos15040460
crossref_primary_10_1016_j_rse_2019_01_033
crossref_primary_10_1016_j_jaci_2019_03_024
crossref_primary_10_1016_j_apr_2017_12_011
crossref_primary_10_3390_s18103456
crossref_primary_10_1016_j_scitotenv_2020_144724
crossref_primary_10_3390_su13137427
crossref_primary_10_1016_j_envint_2021_106917
crossref_primary_10_1016_j_envpol_2022_118826
crossref_primary_10_1016_j_atmosenv_2023_119956
crossref_primary_10_1016_j_atmosenv_2019_01_045
crossref_primary_10_1016_j_jenvman_2023_118145
crossref_primary_10_1016_j_atmosenv_2019_04_011
crossref_primary_10_1088_2515_7620_ad2e44
crossref_primary_10_2139_ssrn_3937107
crossref_primary_10_1016_j_jes_2023_11_019
crossref_primary_10_3390_rs14122933
crossref_primary_10_1016_j_envpol_2023_121832
crossref_primary_10_1016_j_atmosenv_2019_116973
crossref_primary_10_1016_j_trd_2023_103991
crossref_primary_10_1016_j_envpol_2021_116574
crossref_primary_10_1016_j_envint_2019_01_073
crossref_primary_10_1016_j_rse_2021_112501
crossref_primary_10_1016_j_chemosphere_2024_142820
crossref_primary_10_1016_j_atmosenv_2019_04_002
crossref_primary_10_1080_01431161_2024_2398821
crossref_primary_10_3389_fenvs_2022_934281
crossref_primary_10_3390_rs13152981
crossref_primary_10_3390_rs13112121
crossref_primary_10_1139_er_2022_0125
crossref_primary_10_3390_atmos15060679
crossref_primary_10_3390_atmos14040733
crossref_primary_10_1016_j_chemosphere_2021_130740
crossref_primary_10_1007_s40726_020_00159_z
crossref_primary_10_3390_rs13010126
crossref_primary_10_1109_JSTARS_2023_3281777
crossref_primary_10_1016_j_scitotenv_2021_146288
crossref_primary_10_1016_j_jenvman_2021_114121
crossref_primary_10_1016_j_envpol_2018_09_026
crossref_primary_10_3390_atmos11111233
crossref_primary_10_1016_j_envpol_2018_07_016
crossref_primary_10_1016_j_envpol_2018_07_012
crossref_primary_10_1016_j_biopsych_2022_05_017
crossref_primary_10_1016_j_envint_2020_105977
crossref_primary_10_1109_TGRS_2021_3051799
crossref_primary_10_3390_toxics12030197
crossref_primary_10_1016_j_apr_2023_101739
crossref_primary_10_3390_rs12020264
crossref_primary_10_3390_rs14112714
crossref_primary_10_1016_j_ecolind_2023_111079
crossref_primary_10_1007_s11430_022_9999_9
crossref_primary_10_1016_j_rse_2018_09_001
crossref_primary_10_1016_j_envint_2020_106143
crossref_primary_10_1002_acn3_51671
crossref_primary_10_5194_essd_16_2425_2024
crossref_primary_10_3390_rs12223813
crossref_primary_10_1016_j_envint_2021_106445
crossref_primary_10_1016_j_scs_2020_102180
crossref_primary_10_1109_TGRS_2021_3064191
crossref_primary_10_1016_j_apr_2023_101724
crossref_primary_10_1016_S2542_5196_23_00047_5
crossref_primary_10_1016_j_scitotenv_2020_138134
crossref_primary_10_1016_j_atmosenv_2021_118302
crossref_primary_10_1016_j_scitotenv_2020_136516
crossref_primary_10_3390_rs15020358
crossref_primary_10_1093_nsr_nwaa307
crossref_primary_10_3390_atmos11090905
crossref_primary_10_1007_s40726_020_00170_4
crossref_primary_10_3390_rs16224306
crossref_primary_10_1016_j_chemosphere_2020_127894
crossref_primary_10_3724_EE_1672_9250_2024_52_046
crossref_primary_10_3390_rs10121906
crossref_primary_10_1016_j_atmosres_2021_105628
crossref_primary_10_3390_ijerph18031132
crossref_primary_10_1053_j_gastro_2023_03_233
crossref_primary_10_1016_j_atmosenv_2020_117921
crossref_primary_10_1016_j_atmosenv_2021_118659
crossref_primary_10_1016_j_envint_2018_09_051
crossref_primary_10_5194_acp_22_13229_2022
crossref_primary_10_1080_15481603_2019_1703288
crossref_primary_10_3390_ijerph15061228
crossref_primary_10_3390_ijerph20021490
crossref_primary_10_1073_pnas_1919641117
crossref_primary_10_1117_1_JRS_18_038501
crossref_primary_10_1016_j_chemosphere_2019_05_251
crossref_primary_10_1016_j_apr_2018_12_017
crossref_primary_10_1016_j_apr_2022_101579
crossref_primary_10_1109_TGRS_2021_3074569
crossref_primary_10_1016_j_apr_2022_101334
crossref_primary_10_1016_j_scitotenv_2022_159673
crossref_primary_10_3390_rs11070841
crossref_primary_10_1016_j_envpol_2018_09_052
crossref_primary_10_1016_j_envres_2021_111799
crossref_primary_10_1016_j_apr_2021_101154
crossref_primary_10_1080_15481603_2022_2060596
crossref_primary_10_1007_s11356_021_15196_4
crossref_primary_10_3390_rs15204973
crossref_primary_10_3390_rs13183657
crossref_primary_10_1016_j_envpol_2020_114684
crossref_primary_10_1016_j_envpol_2018_06_097
crossref_primary_10_1016_j_envint_2018_04_050
crossref_primary_10_1016_j_jes_2021_01_022
crossref_primary_10_1016_j_apr_2020_10_005
crossref_primary_10_3390_rs11131558
crossref_primary_10_1109_TNNLS_2020_3017200
crossref_primary_10_1007_s11356_023_25451_5
crossref_primary_10_1016_j_jclepro_2019_04_231
crossref_primary_10_5194_amt_11_5741_2018
crossref_primary_10_3390_ijerph20031934
crossref_primary_10_1016_j_atmosres_2022_106238
crossref_primary_10_1016_j_atmosres_2020_105146
crossref_primary_10_1016_j_jenvman_2020_111061
crossref_primary_10_5194_essd_14_907_2022
crossref_primary_10_1016_j_envint_2020_105801
crossref_primary_10_1016_j_envc_2022_100548
crossref_primary_10_1016_j_isprsjprs_2022_03_002
crossref_primary_10_1016_j_envpol_2021_117713
crossref_primary_10_1016_j_rse_2024_113995
crossref_primary_10_1016_j_scitotenv_2019_03_480
crossref_primary_10_3390_atmos13071080
crossref_primary_10_1016_j_earscirev_2023_104461
crossref_primary_10_1007_s40808_023_01839_7
crossref_primary_10_1016_j_atmosres_2022_106481
crossref_primary_10_1038_s41598_024_75835_x
crossref_primary_10_1016_j_isprsjprs_2021_12_002
crossref_primary_10_1016_j_atmosenv_2021_118693
crossref_primary_10_1016_j_envpol_2017_11_016
crossref_primary_10_3390_rs13122324
crossref_primary_10_1016_j_atmosenv_2024_120989
crossref_primary_10_1109_TGRS_2024_3385397
crossref_primary_10_1016_j_envint_2023_107937
crossref_primary_10_1016_j_apr_2019_11_020
crossref_primary_10_1088_2515_7620_ac2f92
crossref_primary_10_1016_j_scitotenv_2020_141093
crossref_primary_10_1002_env_2499
crossref_primary_10_1016_j_rse_2020_112203
crossref_primary_10_1016_j_scitotenv_2021_145187
crossref_primary_10_1109_JSTARS_2024_3384964
crossref_primary_10_3390_atmos13050822
crossref_primary_10_3390_rs12030492
crossref_primary_10_3390_rs12203368
crossref_primary_10_1080_10643389_2019_1665944
crossref_primary_10_1016_j_isprsjprs_2018_08_016
crossref_primary_10_3389_fenvs_2022_842237
crossref_primary_10_1109_TGRS_2023_3324393
crossref_primary_10_1016_j_jag_2021_102366
crossref_primary_10_3390_rs12050881
crossref_primary_10_1007_s11869_022_01296_8
crossref_primary_10_1016_j_envint_2020_105821
crossref_primary_10_1016_j_srs_2023_100102
crossref_primary_10_3390_rs14040938
crossref_primary_10_1021_acs_est_0c05815
crossref_primary_10_2139_ssrn_3983971
crossref_primary_10_1016_j_atmosenv_2021_118562
crossref_primary_10_1016_j_atmosenv_2021_118448
crossref_primary_10_1021_acs_est_9b02660
crossref_primary_10_1007_s00477_017_1497_6
crossref_primary_10_1016_j_chemosphere_2020_128801
crossref_primary_10_3390_rs16234400
crossref_primary_10_3390_atmos14050822
crossref_primary_10_1080_13658816_2019_1664742
crossref_primary_10_1016_j_atmosres_2024_107514
crossref_primary_10_1016_j_asr_2022_02_032
crossref_primary_10_1016_j_rse_2019_111221
crossref_primary_10_1016_j_rse_2019_111584
crossref_primary_10_1021_acs_est_0c01769
crossref_primary_10_1016_j_atmosenv_2021_118273
crossref_primary_10_1007_s11869_022_01245_5
crossref_primary_10_1016_j_atmosenv_2019_117205
crossref_primary_10_1007_s10874_022_09436_1
crossref_primary_10_3390_rs15112769
crossref_primary_10_1109_TGRS_2023_3262785
crossref_primary_10_1016_j_jclepro_2020_124965
crossref_primary_10_1016_j_envint_2022_107110
crossref_primary_10_1088_1755_1315_616_1_012002
crossref_primary_10_5194_acp_20_3273_2020
crossref_primary_10_1360_SSTe_2022_0089
crossref_primary_10_5194_amt_13_877_2020
crossref_primary_10_1016_j_chemosphere_2019_124678
crossref_primary_10_1016_j_jag_2024_104145
crossref_primary_10_1109_JSTARS_2021_3103020
crossref_primary_10_1007_s11356_020_12204_x
crossref_primary_10_5194_essd_14_5233_2022
crossref_primary_10_1007_s11869_021_01149_w
crossref_primary_10_1016_j_scitotenv_2019_134577
crossref_primary_10_1016_j_envint_2019_105297
crossref_primary_10_1016_j_envpol_2022_120419
crossref_primary_10_1021_acs_est_1c01863
crossref_primary_10_1016_j_chemosphere_2022_134384
crossref_primary_10_3390_rs14071635
crossref_primary_10_1021_acs_est_8b02917
crossref_primary_10_2139_ssrn_4094009
crossref_primary_10_3390_atmos13111832
crossref_primary_10_1016_j_envint_2021_107022
crossref_primary_10_3390_rs11060641
crossref_primary_10_1007_s00477_022_02253_8
crossref_primary_10_1007_s00704_023_04356_w
crossref_primary_10_1016_j_envint_2021_106726
crossref_primary_10_3390_ijerph16193522
crossref_primary_10_3390_rs15082038
crossref_primary_10_1016_j_atmosenv_2023_120130
crossref_primary_10_1016_j_envpol_2023_121119
crossref_primary_10_1016_j_atmosenv_2021_118930
crossref_primary_10_1016_j_fmre_2021_04_007
crossref_primary_10_1016_j_isprsjprs_2020_05_018
crossref_primary_10_3389_fenvs_2023_1240705
crossref_primary_10_1016_j_envres_2019_108601
crossref_primary_10_1016_j_scitotenv_2021_145145
crossref_primary_10_1016_j_rse_2021_112827
crossref_primary_10_1016_j_rse_2021_112828
crossref_primary_10_1016_j_rse_2018_12_002
crossref_primary_10_1016_j_scitotenv_2020_139761
crossref_primary_10_2208_jscejoe_78_2_I_499
crossref_primary_10_3390_atmos13010085
crossref_primary_10_3390_ijerph16122137
crossref_primary_10_3390_rs15112770
crossref_primary_10_1016_j_scitotenv_2022_158624
crossref_primary_10_1007_s11869_021_01126_3
crossref_primary_10_3390_atmos9120502
crossref_primary_10_3390_rs15153724
Cites_doi 10.1016/j.atmosenv.2015.10.004
10.1007/s11869-013-0197-8
10.1021/acs.est.5b06121
10.1021/es302673e
10.1016/S0140-6736(12)61766-8
10.1289/ehp.1409481
10.1016/j.atmosenv.2008.03.036
10.4209/aaqr.2015.01.0009
10.1016/j.envres.2012.11.003
10.1016/j.atmosenv.2011.08.066
10.1016/j.jastp.2013.11.012
10.1038/nature15371
10.1016/j.atmosenv.2016.03.040
10.5194/acp-14-6301-2014
10.1021/acs.est.5b05940
10.4209/aaqr.2014.08.0168
10.1371/journal.pone.0135749
10.1021/es049352m
10.1021/acs.est.5b05134
10.1016/j.atmosenv.2014.11.049
10.1186/1471-2288-13-136
10.1038/jes.2014.49
10.1029/2001JD000807
10.1016/j.atmosres.2016.06.018
10.1016/j.atmosenv.2011.07.068
10.1016/S0034-4257(98)00031-5
10.1115/1.2128636
10.1016/j.atmosenv.2011.11.016
10.1016/j.atmosenv.2008.01.068
10.1111/j.1741-3737.2005.00191.x
10.1021/acs.est.5b00859
10.1007/s11430-012-4432-1
10.5194/acp-7-3081-2007
10.1016/j.atmosenv.2015.06.046
10.1080/10106049.2013.827750
10.1016/S0034-4257(00)00109-7
ContentType Journal Article
Copyright 2017 Elsevier Inc.
Copyright Elsevier BV Sep 15, 2017
Copyright_xml – notice: 2017 Elsevier Inc.
– notice: Copyright Elsevier BV Sep 15, 2017
DBID AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7TG
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KL.
KR7
L7M
L~C
L~D
P64
7S9
L.6
DOI 10.1016/j.rse.2017.07.023
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Meteorological & Geoastrophysical Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Meteorological & Geoastrophysical Abstracts
Biotechnology Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Materials Research Database
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
Environmental Sciences
EISSN 1879-0704
EndPage 446
ExternalDocumentID 10_1016_j_rse_2017_07_023
S0034425717303371
GeographicLocations Yangtze River Delta
Yangtze River
China
GeographicLocations_xml – name: Yangtze River
– name: Yangtze River Delta
– name: China
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABPPZ
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFS
ACIWK
ACLVX
ACPRK
ACRLP
ACSBN
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TN5
TWZ
WH7
ZCA
ZMT
~02
~G-
~KM
29P
41~
6TJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
ADXHL
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FA8
FEDTE
FGOYB
G-2
HMA
HMC
HVGLF
HZ~
H~9
OHT
R2-
SEN
SEP
SEW
SSH
VOH
WUQ
XOL
7QF
7QO
7QQ
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7TG
7U5
8BQ
8FD
C1K
EFKBS
F28
FR3
H8D
H8G
JG9
JQ2
KL.
KR7
L7M
L~C
L~D
P64
7S9
L.6
ID FETCH-LOGICAL-c461t-cc915aa3993c71d1d30713043fa1e8aff13d75ac30518f84a08f7bc2e6ea56e03
IEDL.DBID .~1
ISSN 0034-4257
IngestDate Mon Jul 21 11:09:23 EDT 2025
Wed Aug 13 09:19:30 EDT 2025
Tue Jul 01 01:34:37 EDT 2025
Thu Apr 24 23:07:53 EDT 2025
Fri Feb 23 02:30:02 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Gap filling
Chemical transport model (CTM)
MAIAC
Multiple imputation
PM2.5
Cloud fraction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c461t-cc915aa3993c71d1d30713043fa1e8aff13d75ac30518f84a08f7bc2e6ea56e03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5477-2186
PQID 1959202474
PQPubID 2045405
PageCount 10
ParticipantIDs proquest_miscellaneous_2000572474
proquest_journals_1959202474
crossref_primary_10_1016_j_rse_2017_07_023
crossref_citationtrail_10_1016_j_rse_2017_07_023
elsevier_sciencedirect_doi_10_1016_j_rse_2017_07_023
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-09-15
PublicationDateYYYYMMDD 2017-09-15
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-09-15
  day: 15
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Remote sensing of environment
PublicationYear 2017
Publisher Elsevier Inc
Elsevier BV
Publisher_xml – name: Elsevier Inc
– name: Elsevier BV
References Emili, Lyapustin, Wang, Popp, Korkin, Zebisch, Wunderle, Petitta (bb0055) 2011
Ma, Hu, Sayer, Levy, Zhang, Xue, Tong, Bi, Huang, Liu (bb0170) 2016; 124
Hu, Waller, Alhamdan, Crosson, Estes, Estes, Quattrochi, Sarnat, Liu (bb0075) 2013; 121
Strickland, Hao, Hu, Chang, Darrow, Liu (bb0210) 2016; 124
Di, Kloog, Koutrakis, Lyapustin, Wang, Schwartz (bb0045) 2016; 50
Lyapustin, Martonchik, Wang, Laszlo, Korkin (bb0155) 2011
Friberg, Zhai, Holmes, Chang, Strickland, Sarnat, Tolbert, Russell, Mulholland (bb0060) 2016; 50
Myhre, Stordal, Johnsrud, Kaufman, Rosenfeld, Storelvmo, Kristjansson, Berntsen, Myhre, Isaksen (bb0180) 2007; 7
Hu, Waller, Lyapustin, Wang, Liu (bb0080) 2014; 14
Li, Chen, Tao, Han, Wang, Su, Fan, Yu (bb0130) 2012; 55
Rohde, Muller (bb0195) 2015; 10
Lyapustin, Wang, Laszlo, Kahn, Korkin, Remer, Levy, Reid (bb0160) 2011
Kloog, Nordio, Coull, Schwartz (bb0110) 2012; 46
Punger, West (bb0185) 2013; 6
Appel, Bhave, Gilliland, Sarwar, Roselle (bb0015) 2008; 42
Appel, Chemel, Roselle, Francis, Hu, Sokhi, Rao, Galmarini (bb0020) 2012; 53
Dobson, Bright, Coleman, Durfee, Worley (bb0050) 2000; 66
Quennehen (bb0190) 2015; 1680
Chameides, Luo, Saylor, Streets, Huang, Bergin, Giorgi (bb0040) 2002
Ma, Wang, Yu, Jia, Hu (bb0165) 2016; 181
Holben, Eck, Slutsker, Tanre, Buis, Setzer, Vermote, Reagan, Kaufman, Nakajima (bb0070) 1998; 66
Smirnov, Holben, Eck, Dubovik, Slutsker (bb0200) 2000; 73
Alam, Khan, Blaschke, Mukhtiar (bb0010) 2014; 107
Junger, de Leon (bb0090) 2015; 102
Li, Gong, Chen, Wang (bb0135) 2015; 15
Lim, Vos, Flaxman, Danaei, Shibuya, Adair-Rohani, AlMazroa, Amann, Anderson, Andrews (bb0140) 2013; 380
Ma, Liu, Zhao, Liu, Zhou, Bi (bb0175) 2016; 133
Just, Wright, Schwartz, Coull, Baccarelli, Tellez-Rojo, Moody, Wang, Lyapustin, Kloog (bb0095) 2015; 49
Lelieveld, Evans, Fnais, Giannadaki, Pozzer (bb0125) 2015; 525
Zhang, Vijayaraghavan, Wen, Snell, Jacobson (bb0230) 2009; 114
Bey, Jacob, Yantosca, Logan, Field, Fiore, Li, Liu, Mickley, Schultz (bb0025) 2001; 106
Byun, Schere (bb0035) 2006; 59
Butland, Armstrong, Atkinson, Wilkinson, Heal, Doherty, Vieno (bb0030) 2013; 13
Jinnagara Puttaswamy, Nguyen, Braverman, Hu, Liu (bb0085) 2014; 29
Kang, Kumar, Yin, Diao, Yu (bb0100) 2015; 15
Yu, Di Girolamo, Chen, Zhang, Liu (bb0225) 2015; 25
Harrell (bb0065) 2016; 3
Kloog, Koutrakis, Coull, Lee, Schwartz (bb0105) 2011; 45
Stern, Builtjes, Schaap, Timmermans, Vautard, Hodzic, Memmesheimer, Feldmann, Renner, Wolke (bb0205) 2008; 42
Tao, Chen, Su, Tao (bb0215) 2012
Zheng, Zhang, Liu, Geng, He (bb0235) 2016; 124
Liu, Sarnat, Kilaru, Jacob, Koutrakis (bb0145) 2005; 39
Lv, Hu, Chang, Russell, Bai (bb0150) 2016; 50
Van Donkelaar, Martin, Levy, da Silva, Krzyzanowski, Chubarova, Semutnikova, Cohen (bb0220) 2011; 45
Acock (bb0005) 2005; 67
Kloog, Sorek-Hamer, Lyapustin, Coull, Wang, Just, Schwartz, Broday (bb0120) 2015; 122
Byun (10.1016/j.rse.2017.07.023_bb0035) 2006; 59
Jinnagara Puttaswamy (10.1016/j.rse.2017.07.023_bb0085) 2014; 29
Butland (10.1016/j.rse.2017.07.023_bb0030) 2013; 13
Kloog (10.1016/j.rse.2017.07.023_bb0105) 2011; 45
Lyapustin (10.1016/j.rse.2017.07.023_bb0155) 2011
Li (10.1016/j.rse.2017.07.023_bb0135) 2015; 15
Ma (10.1016/j.rse.2017.07.023_bb0170) 2016; 124
Tao (10.1016/j.rse.2017.07.023_bb0215) 2012
Friberg (10.1016/j.rse.2017.07.023_bb0060) 2016; 50
Smirnov (10.1016/j.rse.2017.07.023_bb0200) 2000; 73
Junger (10.1016/j.rse.2017.07.023_bb0090) 2015; 102
Kloog (10.1016/j.rse.2017.07.023_bb0120) 2015; 122
Liu (10.1016/j.rse.2017.07.023_bb0145) 2005; 39
Van Donkelaar (10.1016/j.rse.2017.07.023_bb0220) 2011; 45
Appel (10.1016/j.rse.2017.07.023_bb0015) 2008; 42
Punger (10.1016/j.rse.2017.07.023_bb0185) 2013; 6
Stern (10.1016/j.rse.2017.07.023_bb0205) 2008; 42
Kang (10.1016/j.rse.2017.07.023_bb0100) 2015; 15
Lim (10.1016/j.rse.2017.07.023_bb0140) 2013; 380
Lyapustin (10.1016/j.rse.2017.07.023_bb0160) 2011
Lv (10.1016/j.rse.2017.07.023_bb0150) 2016; 50
Bey (10.1016/j.rse.2017.07.023_bb0025) 2001; 106
Holben (10.1016/j.rse.2017.07.023_bb0070) 1998; 66
Dobson (10.1016/j.rse.2017.07.023_bb0050) 2000; 66
Ma (10.1016/j.rse.2017.07.023_bb0165) 2016; 181
Li (10.1016/j.rse.2017.07.023_bb0130) 2012; 55
Zhang (10.1016/j.rse.2017.07.023_bb0230) 2009; 114
Appel (10.1016/j.rse.2017.07.023_bb0020) 2012; 53
Quennehen (10.1016/j.rse.2017.07.023_bb0190) 2015; 1680
Di (10.1016/j.rse.2017.07.023_bb0045) 2016; 50
Rohde (10.1016/j.rse.2017.07.023_bb0195) 2015; 10
Chameides (10.1016/j.rse.2017.07.023_bb0040) 2002
Harrell (10.1016/j.rse.2017.07.023_bb0065) 2016; 3
Just (10.1016/j.rse.2017.07.023_bb0095) 2015; 49
Kloog (10.1016/j.rse.2017.07.023_bb0110) 2012; 46
Strickland (10.1016/j.rse.2017.07.023_bb0210) 2016; 124
Alam (10.1016/j.rse.2017.07.023_bb0010) 2014; 107
Zheng (10.1016/j.rse.2017.07.023_bb0235) 2016; 124
Emili (10.1016/j.rse.2017.07.023_bb0055) 2011
Hu (10.1016/j.rse.2017.07.023_bb0080) 2014; 14
Myhre (10.1016/j.rse.2017.07.023_bb0180) 2007; 7
Acock (10.1016/j.rse.2017.07.023_bb0005) 2005; 67
Hu (10.1016/j.rse.2017.07.023_bb0075) 2013; 121
Yu (10.1016/j.rse.2017.07.023_bb0225) 2015; 25
Lelieveld (10.1016/j.rse.2017.07.023_bb0125) 2015; 525
Ma (10.1016/j.rse.2017.07.023_bb0175) 2016; 133
References_xml – volume: 67
  start-page: 1012
  year: 2005
  end-page: 1028
  ident: bb0005
  article-title: Working with missing values
  publication-title: J. Marriage Fam.
– volume: 25
  start-page: 457
  year: 2015
  end-page: 466
  ident: bb0225
  article-title: Statistical evaluation of the feasibility of satellite-retrieved cloud parameters as indicators of PM2. 5 levels
  publication-title: J. Expo. Sci. Environ. Epidemiol.
– volume: 45
  start-page: 6225
  year: 2011
  end-page: 6232
  ident: bb0220
  article-title: Satellite-based estimates of ground-level fine particulate matter during extreme events: a case study of the Moscow fires in 2010
  publication-title: Atmos. Environ.
– volume: 59
  start-page: 51
  year: 2006
  end-page: 77
  ident: bb0035
  article-title: Review of the governing equations, computational algorithms, and other components of the models-3 community multiscale air quality (CMAQ) modeling system
  publication-title: Appl. Mech. Rev.
– volume: 121
  start-page: 1
  year: 2013
  end-page: 10
  ident: bb0075
  article-title: Estimating ground-level PM 2.5 concentrations in the southeastern U.S. using geographically weighted regression
  publication-title: Environ. Res.
– volume: 124
  start-page: 184
  year: 2016
  ident: bb0170
  article-title: Satellite-based spatiotemporal trends in PM2. 5 concentrations: China 2004–2013
  publication-title: Environ. Health Perspect.
– volume: 66
  start-page: 849
  year: 2000
  end-page: 857
  ident: bb0050
  article-title: LandScan: a global population database for estimating populations at risk
  publication-title: Photogramm. Eng. Remote. Sens.
– start-page: 117
  year: 2012
  ident: bb0215
  article-title: Satellite observation of regional haze pollution over the North China Plain
  publication-title: J. Geophys. Res.-Atmos.
– start-page: 107
  year: 2002
  ident: bb0040
  article-title: Correlation between model-calculated anthropogenic aerosols and satellite-derived cloud optical depths: indication of indirect effect?
  publication-title: J. Geophys. Res.-Atmos.
– volume: 107
  start-page: 104
  year: 2014
  end-page: 112
  ident: bb0010
  article-title: Variability of aerosol optical depth and their impact on cloud properties in Pakistan
  publication-title: J. Atmos. Sol. Terr. Phys.
– volume: 29
  start-page: 48
  year: 2014
  end-page: 64
  ident: bb0085
  article-title: Statistical data fusion of multi-sensor AOD over the continental United States
  publication-title: Geocarto Int.
– volume: 102
  start-page: 96
  year: 2015
  end-page: 104
  ident: bb0090
  article-title: Imputation of missing data in time series for air pollutants
  publication-title: Atmos. Environ.
– volume: 55
  start-page: 1545
  year: 2012
  end-page: 1553
  ident: bb0130
  article-title: Retrieval of aerosol optical depth over bright targets in the urban areas of North China during winter
  publication-title: Sci. China Earth Sci.
– volume: 133
  start-page: 156
  year: 2016
  end-page: 164
  ident: bb0175
  article-title: Satellite-derived high resolution PM2.5 concentrations in Yangtze River Delta region of China using improved linear mixed effects model
  publication-title: Atmos. Environ.
– volume: 50
  start-page: 4712
  year: 2016
  end-page: 4721
  ident: bb0045
  article-title: Assessing PM2. 5 exposures with high spatiotemporal resolution across the continental United States
  publication-title: Environ. Sci. Technol.
– volume: 7
  start-page: 3081
  year: 2007
  end-page: 3101
  ident: bb0180
  article-title: Aerosol-cloud interaction inferred from MODIS satellite data and global aerosol models
  publication-title: Atmos. Chem. Phys.
– volume: 525
  start-page: 367
  year: 2015
  end-page: 371
  ident: bb0125
  article-title: The contribution of outdoor air pollution sources to premature mortality on a global scale
  publication-title: Nature
– volume: 50
  start-page: 3695
  year: 2016
  end-page: 3705
  ident: bb0060
  article-title: Method for fusing observational data and chemical transport model simulations to estimate spatiotemporally resolved ambient air pollution
  publication-title: Environ. Sci. Technol.
– volume: 53
  start-page: 142
  year: 2012
  end-page: 155
  ident: bb0020
  article-title: Examination of the community multiscale air quality (CMAQ) model performance over the north American and European domains
  publication-title: Atmos. Environ.
– start-page: 116
  year: 2011
  ident: bb0155
  article-title: Multiangle implementation of atmospheric correction (MAIAC): 1 Radiative transfer basis and look-up tables
  publication-title: J. Geophys. Res.-Atmos.
– volume: 39
  start-page: 3269
  year: 2005
  end-page: 3278
  ident: bb0145
  article-title: Estimating ground-level PM2. 5 in the eastern United States using satellite remote sensing
  publication-title: Environ. Sci. Technol.
– volume: 49
  start-page: 8576
  year: 2015
  end-page: 8584
  ident: bb0095
  article-title: Using high-resolution satellite aerosol optical depth to estimate daily PM2. 5 geographical distribution in Mexico City
  publication-title: Environ. Sci. Technol.
– volume: 50
  start-page: 4752
  year: 2016
  end-page: 4759
  ident: bb0150
  article-title: Improving the accuracy of daily PM2.5 distributions derived from the fusion of ground-level measurements with aerosol optical depth observations, a case study in North China
  publication-title: Environ. Sci. Technol.
– volume: 46
  start-page: 11913
  year: 2012
  end-page: 11921
  ident: bb0110
  article-title: Incorporating local land use regression and satellite aerosol optical depth in a hybrid model of spatiotemporal PM2. 5 exposures in the Mid-Atlantic states
  publication-title: Environ. Sci. Technol.
– volume: 15
  start-page: 1347
  year: 2015
  end-page: 1356
  ident: bb0135
  article-title: Estimating ground-level pm 2.5 using fine-resolution satellite data in the megacity of Beijing, China
  publication-title: Aerosol Air Qual. Res.
– volume: 124
  year: 2016
  ident: bb0210
  article-title: Pediatric Emergency Visits and Short-Term Changes in PM2. 5 Concentrations in the US State of Georgia
  publication-title: Environ. Health Perspect.
– volume: 73
  start-page: 337
  year: 2000
  end-page: 349
  ident: bb0200
  article-title: Cloud-screening and quality control algorithms for the AERONET database
  publication-title: Remote Sens. Environ.
– volume: 14
  start-page: 6301
  year: 2014
  end-page: 6314
  ident: bb0080
  article-title: 10-year spatial and temporal trends of PM 2.5 concentrations in the southeastern US estimated using high-resolution satellite data
  publication-title: Atmos. Chem. Phys.
– volume: 6
  start-page: 563
  year: 2013
  end-page: 573
  ident: bb0185
  article-title: The effect of grid resolution on estimates of the burden of ozone and fine particulate matter on premature mortality in the USA
  publication-title: Air Qual. Atmos. Health
– volume: 124
  start-page: 232
  year: 2016
  end-page: 242
  ident: bb0235
  article-title: Estimating ground-level PM 2.5 concentrations over three megalopolises in China using satellite-derived aerosol optical depth measurements
  publication-title: Atmos. Environ.
– volume: 1680
  start-page: 7324
  year: 2015
  ident: bb0190
  article-title: Multi-model evaluation of short-lived pollutant distributions over East Asia during summer 2008
  publication-title: Atmos. Chem. Phys.
– volume: 114
  year: 2009
  ident: bb0230
  article-title: Probing into regional O3 and PM pollution in the US, Part I. A 1-year CMAQ simulation and evaluation using surface and satellite data
  publication-title: J. Geophys. Res.
– volume: 66
  start-page: 1
  year: 1998
  end-page: 16
  ident: bb0070
  article-title: AERONET—A federated instrument network and data archive for aerosol characterization
  publication-title: Remote Sens. Environ.
– volume: 15
  start-page: 958
  year: 2015
  end-page: 973
  ident: bb0100
  article-title: Correlation analysis between AOD and cloud parameters to study their relationship over China using MODIS data (2003
  publication-title: Aerosol Air Qual. Res.
– volume: 106
  start-page: 23073
  year: 2001
  end-page: 23095
  ident: bb0025
  article-title: Global modeling of tropospheric chemistry with assimilated meteorology: model description and evaluation
  publication-title: J. Geophys. Res.-Atmos.
– volume: 13
  start-page: 136
  year: 2013
  ident: bb0030
  article-title: Measurement error in time-series analysis: a simulation study comparing modelled and monitored data
  publication-title: BMC Med. Res. Methodol.
– volume: 380
  start-page: 2224
  year: 2013
  end-page: 2260
  ident: bb0140
  article-title: A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010
  publication-title: Lancet
– start-page: 116
  year: 2011
  ident: bb0055
  article-title: High spatial resolution aerosol retrieval with MAIAC: application to mountain regions
  publication-title: J. Geophys. Res.-Atmos.
– volume: 3
  year: 2016
  ident: bb0065
  article-title: Hmisc: Harrell Miscellaneous. R Package Version
– volume: 45
  start-page: 6267
  year: 2011
  end-page: 6275
  ident: bb0105
  article-title: Assessing temporally and spatially resolved PM 2.5 exposures for epidemiological studies using satellite aerosol optical depth measurements
  publication-title: Atmos. Environ.
– volume: 10
  year: 2015
  ident: bb0195
  article-title: Air pollution in China: mapping of concentrations and sources
  publication-title: PLoS One
– volume: 181
  start-page: 250
  year: 2016
  end-page: 256
  ident: bb0165
  article-title: Can MODIS AOD be employed to derive PM2. 5 in Beijing-Tianjin-Hebei over China?
  publication-title: Atmos. Res.
– volume: 42
  start-page: 4567
  year: 2008
  end-page: 4588
  ident: bb0205
  article-title: A model inter-comparison study focussing on episodes with elevated PM10 concentrations
  publication-title: Atmos. Environ.
– start-page: 116
  year: 2011
  ident: bb0160
  article-title: Multiangle implementation of atmospheric correction (MAIAC): 2 Aerosol algorithm
  publication-title: J. Geophys. Res.-Atmos.
– volume: 122
  start-page: 409
  year: 2015
  end-page: 416
  ident: bb0120
  article-title: Estimating daily PM 2.5 and PM 10 across the complex geo-climate region of Israel using MAIAC satellite-based AOD data
  publication-title: Atmos. Environ.
– volume: 42
  start-page: 6057
  year: 2008
  end-page: 6066
  ident: bb0015
  article-title: Evaluation of the community multiscale air quality (CMAQ) model version 4.5: sensitivities impacting model performance; part II—particulate matter
  publication-title: Atmos. Environ.
– start-page: 116
  year: 2011
  ident: 10.1016/j.rse.2017.07.023_bb0055
  article-title: High spatial resolution aerosol retrieval with MAIAC: application to mountain regions
  publication-title: J. Geophys. Res.-Atmos.
– volume: 122
  start-page: 409
  year: 2015
  ident: 10.1016/j.rse.2017.07.023_bb0120
  article-title: Estimating daily PM 2.5 and PM 10 across the complex geo-climate region of Israel using MAIAC satellite-based AOD data
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2015.10.004
– volume: 6
  start-page: 563
  year: 2013
  ident: 10.1016/j.rse.2017.07.023_bb0185
  article-title: The effect of grid resolution on estimates of the burden of ozone and fine particulate matter on premature mortality in the USA
  publication-title: Air Qual. Atmos. Health
  doi: 10.1007/s11869-013-0197-8
– volume: 50
  start-page: 4712
  year: 2016
  ident: 10.1016/j.rse.2017.07.023_bb0045
  article-title: Assessing PM2. 5 exposures with high spatiotemporal resolution across the continental United States
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b06121
– volume: 46
  start-page: 11913
  year: 2012
  ident: 10.1016/j.rse.2017.07.023_bb0110
  article-title: Incorporating local land use regression and satellite aerosol optical depth in a hybrid model of spatiotemporal PM2. 5 exposures in the Mid-Atlantic states
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es302673e
– volume: 380
  start-page: 2224
  year: 2013
  ident: 10.1016/j.rse.2017.07.023_bb0140
  article-title: A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010
  publication-title: Lancet
  doi: 10.1016/S0140-6736(12)61766-8
– volume: 124
  start-page: 184
  year: 2016
  ident: 10.1016/j.rse.2017.07.023_bb0170
  article-title: Satellite-based spatiotemporal trends in PM2. 5 concentrations: China 2004–2013
  publication-title: Environ. Health Perspect.
  doi: 10.1289/ehp.1409481
– volume: 42
  start-page: 6057
  year: 2008
  ident: 10.1016/j.rse.2017.07.023_bb0015
  article-title: Evaluation of the community multiscale air quality (CMAQ) model version 4.5: sensitivities impacting model performance; part II—particulate matter
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2008.03.036
– volume: 15
  start-page: 1347
  year: 2015
  ident: 10.1016/j.rse.2017.07.023_bb0135
  article-title: Estimating ground-level pm 2.5 using fine-resolution satellite data in the megacity of Beijing, China
  publication-title: Aerosol Air Qual. Res.
  doi: 10.4209/aaqr.2015.01.0009
– start-page: 116
  year: 2011
  ident: 10.1016/j.rse.2017.07.023_bb0155
  article-title: Multiangle implementation of atmospheric correction (MAIAC): 1 Radiative transfer basis and look-up tables
  publication-title: J. Geophys. Res.-Atmos.
– volume: 121
  start-page: 1
  year: 2013
  ident: 10.1016/j.rse.2017.07.023_bb0075
  article-title: Estimating ground-level PM 2.5 concentrations in the southeastern U.S. using geographically weighted regression
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2012.11.003
– volume: 45
  start-page: 6267
  year: 2011
  ident: 10.1016/j.rse.2017.07.023_bb0105
  article-title: Assessing temporally and spatially resolved PM 2.5 exposures for epidemiological studies using satellite aerosol optical depth measurements
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2011.08.066
– volume: 124
  issue: 690
  year: 2016
  ident: 10.1016/j.rse.2017.07.023_bb0210
  article-title: Pediatric Emergency Visits and Short-Term Changes in PM2. 5 Concentrations in the US State of Georgia
  publication-title: Environ. Health Perspect.
– start-page: 116
  year: 2011
  ident: 10.1016/j.rse.2017.07.023_bb0160
  article-title: Multiangle implementation of atmospheric correction (MAIAC): 2 Aerosol algorithm
  publication-title: J. Geophys. Res.-Atmos.
– volume: 107
  start-page: 104
  year: 2014
  ident: 10.1016/j.rse.2017.07.023_bb0010
  article-title: Variability of aerosol optical depth and their impact on cloud properties in Pakistan
  publication-title: J. Atmos. Sol. Terr. Phys.
  doi: 10.1016/j.jastp.2013.11.012
– volume: 1680
  start-page: 7324
  year: 2015
  ident: 10.1016/j.rse.2017.07.023_bb0190
  article-title: Multi-model evaluation of short-lived pollutant distributions over East Asia during summer 2008
  publication-title: Atmos. Chem. Phys.
– volume: 525
  start-page: 367
  year: 2015
  ident: 10.1016/j.rse.2017.07.023_bb0125
  article-title: The contribution of outdoor air pollution sources to premature mortality on a global scale
  publication-title: Nature
  doi: 10.1038/nature15371
– volume: 133
  start-page: 156
  year: 2016
  ident: 10.1016/j.rse.2017.07.023_bb0175
  article-title: Satellite-derived high resolution PM2.5 concentrations in Yangtze River Delta region of China using improved linear mixed effects model
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2016.03.040
– volume: 14
  start-page: 6301
  year: 2014
  ident: 10.1016/j.rse.2017.07.023_bb0080
  article-title: 10-year spatial and temporal trends of PM 2.5 concentrations in the southeastern US estimated using high-resolution satellite data
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-14-6301-2014
– start-page: 107
  year: 2002
  ident: 10.1016/j.rse.2017.07.023_bb0040
  article-title: Correlation between model-calculated anthropogenic aerosols and satellite-derived cloud optical depths: indication of indirect effect?
  publication-title: J. Geophys. Res.-Atmos.
– volume: 50
  start-page: 4752
  year: 2016
  ident: 10.1016/j.rse.2017.07.023_bb0150
  article-title: Improving the accuracy of daily PM2.5 distributions derived from the fusion of ground-level measurements with aerosol optical depth observations, a case study in North China
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b05940
– volume: 15
  start-page: 958
  year: 2015
  ident: 10.1016/j.rse.2017.07.023_bb0100
  article-title: Correlation analysis between AOD and cloud parameters to study their relationship over China using MODIS data (2003−2013): impact on cloud formation and climate change
  publication-title: Aerosol Air Qual. Res.
  doi: 10.4209/aaqr.2014.08.0168
– volume: 10
  year: 2015
  ident: 10.1016/j.rse.2017.07.023_bb0195
  article-title: Air pollution in China: mapping of concentrations and sources
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0135749
– volume: 39
  start-page: 3269
  year: 2005
  ident: 10.1016/j.rse.2017.07.023_bb0145
  article-title: Estimating ground-level PM2. 5 in the eastern United States using satellite remote sensing
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es049352m
– volume: 50
  start-page: 3695
  year: 2016
  ident: 10.1016/j.rse.2017.07.023_bb0060
  article-title: Method for fusing observational data and chemical transport model simulations to estimate spatiotemporally resolved ambient air pollution
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b05134
– volume: 102
  start-page: 96
  year: 2015
  ident: 10.1016/j.rse.2017.07.023_bb0090
  article-title: Imputation of missing data in time series for air pollutants
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2014.11.049
– volume: 13
  start-page: 136
  year: 2013
  ident: 10.1016/j.rse.2017.07.023_bb0030
  article-title: Measurement error in time-series analysis: a simulation study comparing modelled and monitored data
  publication-title: BMC Med. Res. Methodol.
  doi: 10.1186/1471-2288-13-136
– volume: 114
  issue: D22304
  year: 2009
  ident: 10.1016/j.rse.2017.07.023_bb0230
  article-title: Probing into regional O3 and PM pollution in the US, Part I. A 1-year CMAQ simulation and evaluation using surface and satellite data
  publication-title: J. Geophys. Res.
– volume: 25
  start-page: 457
  year: 2015
  ident: 10.1016/j.rse.2017.07.023_bb0225
  article-title: Statistical evaluation of the feasibility of satellite-retrieved cloud parameters as indicators of PM2. 5 levels
  publication-title: J. Expo. Sci. Environ. Epidemiol.
  doi: 10.1038/jes.2014.49
– volume: 106
  start-page: 23073
  year: 2001
  ident: 10.1016/j.rse.2017.07.023_bb0025
  article-title: Global modeling of tropospheric chemistry with assimilated meteorology: model description and evaluation
  publication-title: J. Geophys. Res.-Atmos.
  doi: 10.1029/2001JD000807
– volume: 3
  year: 2016
  ident: 10.1016/j.rse.2017.07.023_bb0065
– volume: 181
  start-page: 250
  year: 2016
  ident: 10.1016/j.rse.2017.07.023_bb0165
  article-title: Can MODIS AOD be employed to derive PM2. 5 in Beijing-Tianjin-Hebei over China?
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2016.06.018
– volume: 45
  start-page: 6225
  year: 2011
  ident: 10.1016/j.rse.2017.07.023_bb0220
  article-title: Satellite-based estimates of ground-level fine particulate matter during extreme events: a case study of the Moscow fires in 2010
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2011.07.068
– volume: 66
  start-page: 1
  year: 1998
  ident: 10.1016/j.rse.2017.07.023_bb0070
  article-title: AERONET—A federated instrument network and data archive for aerosol characterization
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(98)00031-5
– volume: 59
  start-page: 51
  year: 2006
  ident: 10.1016/j.rse.2017.07.023_bb0035
  article-title: Review of the governing equations, computational algorithms, and other components of the models-3 community multiscale air quality (CMAQ) modeling system
  publication-title: Appl. Mech. Rev.
  doi: 10.1115/1.2128636
– start-page: 117
  year: 2012
  ident: 10.1016/j.rse.2017.07.023_bb0215
  article-title: Satellite observation of regional haze pollution over the North China Plain
  publication-title: J. Geophys. Res.-Atmos.
– volume: 53
  start-page: 142
  year: 2012
  ident: 10.1016/j.rse.2017.07.023_bb0020
  article-title: Examination of the community multiscale air quality (CMAQ) model performance over the north American and European domains
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2011.11.016
– volume: 66
  start-page: 849
  year: 2000
  ident: 10.1016/j.rse.2017.07.023_bb0050
  article-title: LandScan: a global population database for estimating populations at risk
  publication-title: Photogramm. Eng. Remote. Sens.
– volume: 42
  start-page: 4567
  year: 2008
  ident: 10.1016/j.rse.2017.07.023_bb0205
  article-title: A model inter-comparison study focussing on episodes with elevated PM10 concentrations
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2008.01.068
– volume: 67
  start-page: 1012
  year: 2005
  ident: 10.1016/j.rse.2017.07.023_bb0005
  article-title: Working with missing values
  publication-title: J. Marriage Fam.
  doi: 10.1111/j.1741-3737.2005.00191.x
– volume: 49
  start-page: 8576
  year: 2015
  ident: 10.1016/j.rse.2017.07.023_bb0095
  article-title: Using high-resolution satellite aerosol optical depth to estimate daily PM2. 5 geographical distribution in Mexico City
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b00859
– volume: 55
  start-page: 1545
  year: 2012
  ident: 10.1016/j.rse.2017.07.023_bb0130
  article-title: Retrieval of aerosol optical depth over bright targets in the urban areas of North China during winter
  publication-title: Sci. China Earth Sci.
  doi: 10.1007/s11430-012-4432-1
– volume: 7
  start-page: 3081
  year: 2007
  ident: 10.1016/j.rse.2017.07.023_bb0180
  article-title: Aerosol-cloud interaction inferred from MODIS satellite data and global aerosol models
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-7-3081-2007
– volume: 124
  start-page: 232
  year: 2016
  ident: 10.1016/j.rse.2017.07.023_bb0235
  article-title: Estimating ground-level PM 2.5 concentrations over three megalopolises in China using satellite-derived aerosol optical depth measurements
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2015.06.046
– volume: 29
  start-page: 48
  year: 2014
  ident: 10.1016/j.rse.2017.07.023_bb0085
  article-title: Statistical data fusion of multi-sensor AOD over the continental United States
  publication-title: Geocarto Int.
  doi: 10.1080/10106049.2013.827750
– volume: 73
  start-page: 337
  year: 2000
  ident: 10.1016/j.rse.2017.07.023_bb0200
  article-title: Cloud-screening and quality control algorithms for the AERONET database
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(00)00109-7
SSID ssj0015871
Score 2.6372337
Snippet Satellite aerosol optical depth (AOD) has been used to assess population exposure to fine particulate matter (PM2.5). The emerging high-resolution satellite...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 437
SubjectTerms Accuracy
Aerosol effects
Aerosol optical depth
Aerosols
Air pollution
Atmospheric correction
Atmospheric models
Chemical transport
Chemical transport model (CTM)
China
Cloud cover
Cloud fraction
Computer simulation
exposure assessment
Gap filling
High resolution
Land use
MAIAC
Mathematical models
Meteorology
monitoring
Multiple imputation
Optical analysis
Particulate emissions
Particulate matter
particulates
PM2.5
prediction
Reflectance
remote sensing
river deltas
Rivers
Satellites
Snow cover
snowpack
space and time
Statistical models
Studies
Water depth
Yangtze River
Title Full-coverage high-resolution daily PM2.5 estimation using MAIAC AOD in the Yangtze River Delta of China
URI https://dx.doi.org/10.1016/j.rse.2017.07.023
https://www.proquest.com/docview/1959202474
https://www.proquest.com/docview/2000572474
Volume 199
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwED5NQwheEBQmysZkJJ6QvMWxUyePUbfRgToQYtJ4sq6OvXWq0mnNHroHfju-xCkCiT0g5SWxrVi-8_lO_u47gPczJbx0IToJ7TlXvig45lnCC1sJmQd3zmtKcJ6ejSbn6tNFdrEF4z4XhmCV0fZ3Nr211vHLYVzNw5v5nHJ8pSKNE0FJpWzzyJXSpOUHPzcwD5HluquaJxWn3v3NZovxul0RU6bQLX9nKv91Nv1lpduj5-Q5PIs-Iyu7ab2ALVcPYOf4d4paaIx7dDWAJ7Gu-dV6AI8_toV71y_himJNbgmwGSwII5ZiHiLtqHiswvlizb5O04OMEe9Gl9DICBV_yablaTlm5ZcjNq9ZcBjZD6wvm3vHvhGogx25RYNs6Vlbi_sVnJ8cfx9PeKyywK0aiYZbW4gMkRwVq0UlKkmBa6KkR-Fy9F7ISmdog2EQuc8VJrnXM5u6kcNs5BK5A9v1snavgRGRTWUx1ZSgKosZ6tSisIWSTqD1OISkX19jIwU5VcJYmB5rdm2CSAyJxCThSeUQPmyG3HT8Gw91Vr3QzB9KZML58NCwvV7AJu7glSHSnTQ4MFoN4d2mOew9ulDB2i3vVlTCM7i71OfN__15F57SG-FPRLYH283tnXsbnJxmtt9q8T48Kk8_T85-Aanj-cU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NITReEBQmCgOMBC9I2eLYqZMHHqp1o2XrQGiTxpNxHXsrqtJpzYTKA_8U_yB3iVMEEntAmpSnnPOhu_N9yL-7A3g1kdwLh9kJ0rNI-jyPTJbGUW4LLjIM57yiAufxUW94It-fpqdr8LOthSFYZbD9jU2vrXW4sxO4uXMxnVKNr5CkcRyVVAjFA7LywC2_Yd62eDsaoJBfJ8n-3vHuMAqjBSIre7yKrM15agx5Z6t4wQtB2VoshTfcZcZ7LgqVGou7gWc-kybOvJrYxPWcSXsuFvjeW3BbormgsQnbP1a4Ep5mqhnTJ2REv9cepdagsssFtebkqm4Ymoh_OcO_3ELt6_bvw70QpLJ-w4cHsObKDmzu_a6JQ2IwCosObIRB6ufLDtx5V08KXj6Ec0puI0sIUTRZjNoiR5jaB01nhZnOluzjONlOGTX6aCooGcHwz9i4P-rvsv6HAZuWDCNU9tmUZ9V3xz4RioQN3KwybO5ZPfz7EZzcCO83Yb2cl-4xMOqcU1iTKKqIFfnEqMQabnMpHDfWmy7ELX-1DT3PafTGTLfgtq8aRaJJJDrGKxFdeLN65KJp-HHdYtkKTf-htRod0nWPbbUC1sFkLDR1-UkwYlKyCy9XZNzsdIJjSje_WtDMUIyvac2T__vyC9gYHo8P9eHo6OAp3CUKgV94ugXr1eWVe4YRVjV5Xms0gy83vYV-AW3aNXQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Full-coverage+high-resolution+daily+PM2.5+estimation+using+MAIAC+AOD+in+the+Yangtze+River+Delta+of+China&rft.jtitle=Remote+sensing+of+environment&rft.au=Xiao%2C+Qingyang&rft.au=Wang%2C+Yujie&rft.au=Chang%2C+Howard+H&rft.au=Meng%2C+Xia&rft.date=2017-09-15&rft.issn=0034-4257&rft_id=info:doi/10.1016%2Fj.rse.2017.07.023&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4257&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4257&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4257&client=summon