Full-coverage high-resolution daily PM2.5 estimation using MAIAC AOD in the Yangtze River Delta of China
Satellite aerosol optical depth (AOD) has been used to assess population exposure to fine particulate matter (PM2.5). The emerging high-resolution satellite aerosol product, Multi-Angle Implementation of Atmospheric Correction (MAIAC), provides a valuable opportunity to characterize local-scale PM2....
Saved in:
Published in | Remote sensing of environment Vol. 199; pp. 437 - 446 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Elsevier Inc
15.09.2017
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Satellite aerosol optical depth (AOD) has been used to assess population exposure to fine particulate matter (PM2.5). The emerging high-resolution satellite aerosol product, Multi-Angle Implementation of Atmospheric Correction (MAIAC), provides a valuable opportunity to characterize local-scale PM2.5 at 1-km resolution. However, non-random missing AOD due to cloud/snow cover or high surface reflectance makes this task challenging. Previous studies filled the data gap by spatially interpolating neighboring PM2.5 measurements or predictions. This strategy ignored the effect of cloud cover on aerosol loadings and has been shown to exhibit poor performance when monitoring stations are sparse or when there is seasonal large-scale missingness. Using the Yangtze River Delta of China as an example, we present a Multiple Imputation (MI) method that combines the MAIAC high-resolution satellite retrievals with chemical transport model (CTM) simulations to fill missing AOD. A two-stage statistical model driven by gap-filled AOD, meteorology and land use information was then fitted to estimate daily ground PM2.5 concentrations in 2013 and 2014 at 1km resolution with complete coverage in space and time. The daily MI models have an average R2 of 0.77, with an inter-quartile range of 0.71 to 0.82 across days. The overall model 10-fold cross-validation R2 (root mean square error) were 0.81 (25μg/m3) and 0.73 (18μg/m3) for year 2013 and 2014, respectively. Predictions with only observational AOD or only imputed AOD showed similar accuracy. Comparing with previous gap-filling methods, our MI method presented in this study performed better with higher coverage, higher accuracy, and the ability to fill missing PM2.5 predictions without ground PM2.5 measurements. This method can provide reliable PM2.5 predictions with complete coverage that can reduce bias in exposure assessment in air pollution and health studies.
•Fused satellite data, chemical transport model simulations and ground measurements•Improved the annual coverage of PM2.5 prediction by about two-fold•Provided PM2.5 predictions with complete-coverage high-accuracy at 1-km resolution•Corrected sampling bias in exposure assessment due to non-random missingness in AOD |
---|---|
AbstractList | Satellite aerosol optical depth (AOD) has been used to assess population exposure to fine particulate matter (PM2.5). The emerging high-resolution satellite aerosol product, Multi-Angle Implementation of Atmospheric Correction (MAIAC), provides a valuable opportunity to characterize local-scale PM2.5 at 1-km resolution. However, non-random missing AOD due to cloud/snow cover or high surface reflectance makes this task challenging. Previous studies filled the data gap by spatially interpolating neighboring PM2.5 measurements or predictions. This strategy ignored the effect of cloud cover on aerosol loadings and has been shown to exhibit poor performance when monitoring stations are sparse or when there is seasonal large-scale missingness. Using the Yangtze River Delta of China as an example, we present a Multiple Imputation (MI) method that combines the MAIAC high-resolution satellite retrievals with chemical transport model (CTM) simulations to fill missing AOD. A two-stage statistical model driven by gap-filled AOD, meteorology and land use information was then fitted to estimate daily ground PM2.5 concentrations in 2013 and 2014 at 1km resolution with complete coverage in space and time. The daily MI models have an average R2 of 0.77, with an inter-quartile range of 0.71 to 0.82 across days. The overall model 10-fold cross-validation R2 (root mean square error) were 0.81 (25μg/m3) and 0.73 (18μg/m3) for year 2013 and 2014, respectively. Predictions with only observational AOD or only imputed AOD showed similar accuracy. Comparing with previous gap-filling methods, our MI method presented in this study performed better with higher coverage, higher accuracy, and the ability to fill missing PM2.5 predictions without ground PM2.5 measurements. This method can provide reliable PM2.5 predictions with complete coverage that can reduce bias in exposure assessment in air pollution and health studies.
•Fused satellite data, chemical transport model simulations and ground measurements•Improved the annual coverage of PM2.5 prediction by about two-fold•Provided PM2.5 predictions with complete-coverage high-accuracy at 1-km resolution•Corrected sampling bias in exposure assessment due to non-random missingness in AOD Satellite aerosol optical depth (AOD) has been used to assess population exposure to fine particulate matter (PM2.5). The emerging high-resolution satellite aerosol product, Multi-Angle Implementation of Atmospheric Correction (MAIAC), provides a valuable opportunity to characterize local-scale PM2.5 at 1-km resolution. However, non-random missing AOD due to cloud/snow cover or high surface reflectance makes this task challenging. Previous studies filled the data gap by spatially interpolating neighboring PM2.5 measurements or predictions. This strategy ignored the effect of cloud cover on aerosol loadings and has been shown to exhibit poor performance when monitoring stations are sparse or when there is seasonal large-scale missingness. Using the Yangtze River Delta of China as an example, we present a Multiple Imputation (MI) method that combines the MAIAC high-resolution satellite retrievals with chemical transport model (CTM) simulations to fill missing AOD. A two-stage statistical model driven by gap-filled AOD, meteorology and land use information was then fitted to estimate daily ground PM2.5 concentrations in 2013 and 2014 at 1 km resolution with complete coverage in space and time. The daily MI models have an average R2 of 0.77, with an inter-quartile range of 0.71 to 0.82 across days. The overall model 10-fold cross-validation R2 (root mean square error) were 0.81 (25 µg/m3) and 0.73 (18 µg/m3) for year 2013 and 2014, respectively. Predictions with only observational AOD or only imputed AOD showed similar accuracy. Comparing with previous gap-filling methods, our MI method presented in this study performed better with higher coverage, higher accuracy, and the ability to fill missing PM2.5 predictions without ground PM2.5 measurements. This method can provide reliable PM2.5 predictions with complete coverage that can reduce bias in exposure assessment in air pollution and health studies. Satellite aerosol optical depth (AOD) has been used to assess population exposure to fine particulate matter (PM2.5). The emerging high-resolution satellite aerosol product, Multi-Angle Implementation of Atmospheric Correction (MAIAC), provides a valuable opportunity to characterize local-scale PM2.5 at 1-km resolution. However, non-random missing AOD due to cloud/snow cover or high surface reflectance makes this task challenging. Previous studies filled the data gap by spatially interpolating neighboring PM2.5 measurements or predictions. This strategy ignored the effect of cloud cover on aerosol loadings and has been shown to exhibit poor performance when monitoring stations are sparse or when there is seasonal large-scale missingness. Using the Yangtze River Delta of China as an example, we present a Multiple Imputation (MI) method that combines the MAIAC high-resolution satellite retrievals with chemical transport model (CTM) simulations to fill missing AOD. A two-stage statistical model driven by gap-filled AOD, meteorology and land use information was then fitted to estimate daily ground PM2.5 concentrations in 2013 and 2014 at 1km resolution with complete coverage in space and time. The daily MI models have an average R2 of 0.77, with an inter-quartile range of 0.71 to 0.82 across days. The overall model 10-fold cross-validation R2 (root mean square error) were 0.81 (25μg/m3) and 0.73 (18μg/m3) for year 2013 and 2014, respectively. Predictions with only observational AOD or only imputed AOD showed similar accuracy. Comparing with previous gap-filling methods, our MI method presented in this study performed better with higher coverage, higher accuracy, and the ability to fill missing PM2.5 predictions without ground PM2.5 measurements. This method can provide reliable PM2.5 predictions with complete coverage that can reduce bias in exposure assessment in air pollution and health studies. |
Author | Xiao, Qingyang Meng, Xia Wang, Yujie Chang, Howard H. Geng, Guannan Liu, Yang Lyapustin, Alexei |
Author_xml | – sequence: 1 givenname: Qingyang surname: Xiao fullname: Xiao, Qingyang organization: Department of Environmental Health, Emory University, Rollins School of Public Health, Atlanta, GA, USA – sequence: 2 givenname: Yujie surname: Wang fullname: Wang, Yujie organization: Goddard Earth Sciences and Technology Center, University of Maryland Baltimore County, Baltimore, MD, USA – sequence: 3 givenname: Howard H. surname: Chang fullname: Chang, Howard H. organization: Department of Biostatistics and Bioinformatics, Emory University, Rollins School of Public Health, Atlanta, GA, USA – sequence: 4 givenname: Xia surname: Meng fullname: Meng, Xia organization: Department of Environmental Health, Emory University, Rollins School of Public Health, Atlanta, GA, USA – sequence: 5 givenname: Guannan surname: Geng fullname: Geng, Guannan organization: Department of Environmental Health, Emory University, Rollins School of Public Health, Atlanta, GA, USA – sequence: 6 givenname: Alexei surname: Lyapustin fullname: Lyapustin, Alexei organization: Goddard Earth Sciences and Technology Center, University of Maryland Baltimore County, Baltimore, MD, USA – sequence: 7 givenname: Yang orcidid: 0000-0001-5477-2186 surname: Liu fullname: Liu, Yang email: yang.liu@emory.edu organization: Department of Environmental Health, Emory University, Rollins School of Public Health, Atlanta, GA, USA |
BookMark | eNp9kMFq3DAQhkVJoJukD9CboJde7M5I1sqmp2XTtIGElNIeehKqPF5rcaRUsgPp01fJ5pRDYGBg-L-f4TthRyEGYuw9Qo2A60_7OmWqBaCuoYyQb9gKW91VoKE5YisA2VSNUPotO8l5D4Cq1bhi48UyTZWL95Tsjvjod2OVKMdpmX0MvLd-euDfr0WtOOXZ39qn85J92PHrzeVmyzc359wHPo_Ef9uwm_8R_-FLHT-nabY8Dnw7-mDP2PFgp0zvnvcp-3Xx5ef2W3V18_Vyu7mqXLPGuXKuQ2Wt7DrpNPbYS9AooZGDRWrtMKDstbJOgsJ2aBsL7aD_OEFrsmpNIE_Zx0PvXYp_l_KzufXZ0TTZQHHJRgCA0qLRTYl-eBHdxyWF8p3BTnUCnlN4SLkUc040mLtUPKQHg2Ae3Zu9Ke7No3sDZYQsjH7BOD8_qZtTMfoq-flAUnF07ymZ7DwFR71P5GbTR_8K_R9UI56b |
CitedBy_id | crossref_primary_10_1016_j_envint_2019_04_057 crossref_primary_10_1016_j_rse_2020_112257 crossref_primary_10_1016_j_envres_2019_108810 crossref_primary_10_1016_j_chemosphere_2019_124904 crossref_primary_10_1016_j_atmosenv_2024_120440 crossref_primary_10_1016_j_uclim_2020_100734 crossref_primary_10_3390_rs12183008 crossref_primary_10_3390_rs15153780 crossref_primary_10_5194_acp_19_8243_2019 crossref_primary_10_1016_j_isprsjprs_2021_03_018 crossref_primary_10_3390_s19051207 crossref_primary_10_1016_j_atmosenv_2019_01_027 crossref_primary_10_3390_rs14153571 crossref_primary_10_1016_j_atmosenv_2023_120159 crossref_primary_10_1016_j_envint_2020_105536 crossref_primary_10_1021_acs_est_3c10951 crossref_primary_10_1016_j_atmosenv_2023_119722 crossref_primary_10_1007_s10661_023_10951_1 crossref_primary_10_12677_AEP_2023_132042 crossref_primary_10_3389_fenvs_2023_1303152 crossref_primary_10_1007_s00477_023_02459_4 crossref_primary_10_1021_acs_est_2c03084 crossref_primary_10_1016_j_envpol_2019_02_071 crossref_primary_10_1016_j_atmosenv_2023_119724 crossref_primary_10_1007_s11430_018_9353_x crossref_primary_10_3390_atmos15040460 crossref_primary_10_1016_j_rse_2019_01_033 crossref_primary_10_1016_j_jaci_2019_03_024 crossref_primary_10_1016_j_apr_2017_12_011 crossref_primary_10_3390_s18103456 crossref_primary_10_1016_j_scitotenv_2020_144724 crossref_primary_10_3390_su13137427 crossref_primary_10_1016_j_envint_2021_106917 crossref_primary_10_1016_j_envpol_2022_118826 crossref_primary_10_1016_j_atmosenv_2023_119956 crossref_primary_10_1016_j_atmosenv_2019_01_045 crossref_primary_10_1016_j_jenvman_2023_118145 crossref_primary_10_1016_j_atmosenv_2019_04_011 crossref_primary_10_1088_2515_7620_ad2e44 crossref_primary_10_2139_ssrn_3937107 crossref_primary_10_1016_j_jes_2023_11_019 crossref_primary_10_3390_rs14122933 crossref_primary_10_1016_j_envpol_2023_121832 crossref_primary_10_1016_j_atmosenv_2019_116973 crossref_primary_10_1016_j_trd_2023_103991 crossref_primary_10_1016_j_envpol_2021_116574 crossref_primary_10_1016_j_envint_2019_01_073 crossref_primary_10_1016_j_rse_2021_112501 crossref_primary_10_1016_j_chemosphere_2024_142820 crossref_primary_10_1016_j_atmosenv_2019_04_002 crossref_primary_10_1080_01431161_2024_2398821 crossref_primary_10_3389_fenvs_2022_934281 crossref_primary_10_3390_rs13152981 crossref_primary_10_3390_rs13112121 crossref_primary_10_1139_er_2022_0125 crossref_primary_10_3390_atmos15060679 crossref_primary_10_3390_atmos14040733 crossref_primary_10_1016_j_chemosphere_2021_130740 crossref_primary_10_1007_s40726_020_00159_z crossref_primary_10_3390_rs13010126 crossref_primary_10_1109_JSTARS_2023_3281777 crossref_primary_10_1016_j_scitotenv_2021_146288 crossref_primary_10_1016_j_jenvman_2021_114121 crossref_primary_10_1016_j_envpol_2018_09_026 crossref_primary_10_3390_atmos11111233 crossref_primary_10_1016_j_envpol_2018_07_016 crossref_primary_10_1016_j_envpol_2018_07_012 crossref_primary_10_1016_j_biopsych_2022_05_017 crossref_primary_10_1016_j_envint_2020_105977 crossref_primary_10_1109_TGRS_2021_3051799 crossref_primary_10_3390_toxics12030197 crossref_primary_10_1016_j_apr_2023_101739 crossref_primary_10_3390_rs12020264 crossref_primary_10_3390_rs14112714 crossref_primary_10_1016_j_ecolind_2023_111079 crossref_primary_10_1007_s11430_022_9999_9 crossref_primary_10_1016_j_rse_2018_09_001 crossref_primary_10_1016_j_envint_2020_106143 crossref_primary_10_1002_acn3_51671 crossref_primary_10_5194_essd_16_2425_2024 crossref_primary_10_3390_rs12223813 crossref_primary_10_1016_j_envint_2021_106445 crossref_primary_10_1016_j_scs_2020_102180 crossref_primary_10_1109_TGRS_2021_3064191 crossref_primary_10_1016_j_apr_2023_101724 crossref_primary_10_1016_S2542_5196_23_00047_5 crossref_primary_10_1016_j_scitotenv_2020_138134 crossref_primary_10_1016_j_atmosenv_2021_118302 crossref_primary_10_1016_j_scitotenv_2020_136516 crossref_primary_10_3390_rs15020358 crossref_primary_10_1093_nsr_nwaa307 crossref_primary_10_3390_atmos11090905 crossref_primary_10_1007_s40726_020_00170_4 crossref_primary_10_3390_rs16224306 crossref_primary_10_1016_j_chemosphere_2020_127894 crossref_primary_10_3724_EE_1672_9250_2024_52_046 crossref_primary_10_3390_rs10121906 crossref_primary_10_1016_j_atmosres_2021_105628 crossref_primary_10_3390_ijerph18031132 crossref_primary_10_1053_j_gastro_2023_03_233 crossref_primary_10_1016_j_atmosenv_2020_117921 crossref_primary_10_1016_j_atmosenv_2021_118659 crossref_primary_10_1016_j_envint_2018_09_051 crossref_primary_10_5194_acp_22_13229_2022 crossref_primary_10_1080_15481603_2019_1703288 crossref_primary_10_3390_ijerph15061228 crossref_primary_10_3390_ijerph20021490 crossref_primary_10_1073_pnas_1919641117 crossref_primary_10_1117_1_JRS_18_038501 crossref_primary_10_1016_j_chemosphere_2019_05_251 crossref_primary_10_1016_j_apr_2018_12_017 crossref_primary_10_1016_j_apr_2022_101579 crossref_primary_10_1109_TGRS_2021_3074569 crossref_primary_10_1016_j_apr_2022_101334 crossref_primary_10_1016_j_scitotenv_2022_159673 crossref_primary_10_3390_rs11070841 crossref_primary_10_1016_j_envpol_2018_09_052 crossref_primary_10_1016_j_envres_2021_111799 crossref_primary_10_1016_j_apr_2021_101154 crossref_primary_10_1080_15481603_2022_2060596 crossref_primary_10_1007_s11356_021_15196_4 crossref_primary_10_3390_rs15204973 crossref_primary_10_3390_rs13183657 crossref_primary_10_1016_j_envpol_2020_114684 crossref_primary_10_1016_j_envpol_2018_06_097 crossref_primary_10_1016_j_envint_2018_04_050 crossref_primary_10_1016_j_jes_2021_01_022 crossref_primary_10_1016_j_apr_2020_10_005 crossref_primary_10_3390_rs11131558 crossref_primary_10_1109_TNNLS_2020_3017200 crossref_primary_10_1007_s11356_023_25451_5 crossref_primary_10_1016_j_jclepro_2019_04_231 crossref_primary_10_5194_amt_11_5741_2018 crossref_primary_10_3390_ijerph20031934 crossref_primary_10_1016_j_atmosres_2022_106238 crossref_primary_10_1016_j_atmosres_2020_105146 crossref_primary_10_1016_j_jenvman_2020_111061 crossref_primary_10_5194_essd_14_907_2022 crossref_primary_10_1016_j_envint_2020_105801 crossref_primary_10_1016_j_envc_2022_100548 crossref_primary_10_1016_j_isprsjprs_2022_03_002 crossref_primary_10_1016_j_envpol_2021_117713 crossref_primary_10_1016_j_rse_2024_113995 crossref_primary_10_1016_j_scitotenv_2019_03_480 crossref_primary_10_3390_atmos13071080 crossref_primary_10_1016_j_earscirev_2023_104461 crossref_primary_10_1007_s40808_023_01839_7 crossref_primary_10_1016_j_atmosres_2022_106481 crossref_primary_10_1038_s41598_024_75835_x crossref_primary_10_1016_j_isprsjprs_2021_12_002 crossref_primary_10_1016_j_atmosenv_2021_118693 crossref_primary_10_1016_j_envpol_2017_11_016 crossref_primary_10_3390_rs13122324 crossref_primary_10_1016_j_atmosenv_2024_120989 crossref_primary_10_1109_TGRS_2024_3385397 crossref_primary_10_1016_j_envint_2023_107937 crossref_primary_10_1016_j_apr_2019_11_020 crossref_primary_10_1088_2515_7620_ac2f92 crossref_primary_10_1016_j_scitotenv_2020_141093 crossref_primary_10_1002_env_2499 crossref_primary_10_1016_j_rse_2020_112203 crossref_primary_10_1016_j_scitotenv_2021_145187 crossref_primary_10_1109_JSTARS_2024_3384964 crossref_primary_10_3390_atmos13050822 crossref_primary_10_3390_rs12030492 crossref_primary_10_3390_rs12203368 crossref_primary_10_1080_10643389_2019_1665944 crossref_primary_10_1016_j_isprsjprs_2018_08_016 crossref_primary_10_3389_fenvs_2022_842237 crossref_primary_10_1109_TGRS_2023_3324393 crossref_primary_10_1016_j_jag_2021_102366 crossref_primary_10_3390_rs12050881 crossref_primary_10_1007_s11869_022_01296_8 crossref_primary_10_1016_j_envint_2020_105821 crossref_primary_10_1016_j_srs_2023_100102 crossref_primary_10_3390_rs14040938 crossref_primary_10_1021_acs_est_0c05815 crossref_primary_10_2139_ssrn_3983971 crossref_primary_10_1016_j_atmosenv_2021_118562 crossref_primary_10_1016_j_atmosenv_2021_118448 crossref_primary_10_1021_acs_est_9b02660 crossref_primary_10_1007_s00477_017_1497_6 crossref_primary_10_1016_j_chemosphere_2020_128801 crossref_primary_10_3390_rs16234400 crossref_primary_10_3390_atmos14050822 crossref_primary_10_1080_13658816_2019_1664742 crossref_primary_10_1016_j_atmosres_2024_107514 crossref_primary_10_1016_j_asr_2022_02_032 crossref_primary_10_1016_j_rse_2019_111221 crossref_primary_10_1016_j_rse_2019_111584 crossref_primary_10_1021_acs_est_0c01769 crossref_primary_10_1016_j_atmosenv_2021_118273 crossref_primary_10_1007_s11869_022_01245_5 crossref_primary_10_1016_j_atmosenv_2019_117205 crossref_primary_10_1007_s10874_022_09436_1 crossref_primary_10_3390_rs15112769 crossref_primary_10_1109_TGRS_2023_3262785 crossref_primary_10_1016_j_jclepro_2020_124965 crossref_primary_10_1016_j_envint_2022_107110 crossref_primary_10_1088_1755_1315_616_1_012002 crossref_primary_10_5194_acp_20_3273_2020 crossref_primary_10_1360_SSTe_2022_0089 crossref_primary_10_5194_amt_13_877_2020 crossref_primary_10_1016_j_chemosphere_2019_124678 crossref_primary_10_1016_j_jag_2024_104145 crossref_primary_10_1109_JSTARS_2021_3103020 crossref_primary_10_1007_s11356_020_12204_x crossref_primary_10_5194_essd_14_5233_2022 crossref_primary_10_1007_s11869_021_01149_w crossref_primary_10_1016_j_scitotenv_2019_134577 crossref_primary_10_1016_j_envint_2019_105297 crossref_primary_10_1016_j_envpol_2022_120419 crossref_primary_10_1021_acs_est_1c01863 crossref_primary_10_1016_j_chemosphere_2022_134384 crossref_primary_10_3390_rs14071635 crossref_primary_10_1021_acs_est_8b02917 crossref_primary_10_2139_ssrn_4094009 crossref_primary_10_3390_atmos13111832 crossref_primary_10_1016_j_envint_2021_107022 crossref_primary_10_3390_rs11060641 crossref_primary_10_1007_s00477_022_02253_8 crossref_primary_10_1007_s00704_023_04356_w crossref_primary_10_1016_j_envint_2021_106726 crossref_primary_10_3390_ijerph16193522 crossref_primary_10_3390_rs15082038 crossref_primary_10_1016_j_atmosenv_2023_120130 crossref_primary_10_1016_j_envpol_2023_121119 crossref_primary_10_1016_j_atmosenv_2021_118930 crossref_primary_10_1016_j_fmre_2021_04_007 crossref_primary_10_1016_j_isprsjprs_2020_05_018 crossref_primary_10_3389_fenvs_2023_1240705 crossref_primary_10_1016_j_envres_2019_108601 crossref_primary_10_1016_j_scitotenv_2021_145145 crossref_primary_10_1016_j_rse_2021_112827 crossref_primary_10_1016_j_rse_2021_112828 crossref_primary_10_1016_j_rse_2018_12_002 crossref_primary_10_1016_j_scitotenv_2020_139761 crossref_primary_10_2208_jscejoe_78_2_I_499 crossref_primary_10_3390_atmos13010085 crossref_primary_10_3390_ijerph16122137 crossref_primary_10_3390_rs15112770 crossref_primary_10_1016_j_scitotenv_2022_158624 crossref_primary_10_1007_s11869_021_01126_3 crossref_primary_10_3390_atmos9120502 crossref_primary_10_3390_rs15153724 |
Cites_doi | 10.1016/j.atmosenv.2015.10.004 10.1007/s11869-013-0197-8 10.1021/acs.est.5b06121 10.1021/es302673e 10.1016/S0140-6736(12)61766-8 10.1289/ehp.1409481 10.1016/j.atmosenv.2008.03.036 10.4209/aaqr.2015.01.0009 10.1016/j.envres.2012.11.003 10.1016/j.atmosenv.2011.08.066 10.1016/j.jastp.2013.11.012 10.1038/nature15371 10.1016/j.atmosenv.2016.03.040 10.5194/acp-14-6301-2014 10.1021/acs.est.5b05940 10.4209/aaqr.2014.08.0168 10.1371/journal.pone.0135749 10.1021/es049352m 10.1021/acs.est.5b05134 10.1016/j.atmosenv.2014.11.049 10.1186/1471-2288-13-136 10.1038/jes.2014.49 10.1029/2001JD000807 10.1016/j.atmosres.2016.06.018 10.1016/j.atmosenv.2011.07.068 10.1016/S0034-4257(98)00031-5 10.1115/1.2128636 10.1016/j.atmosenv.2011.11.016 10.1016/j.atmosenv.2008.01.068 10.1111/j.1741-3737.2005.00191.x 10.1021/acs.est.5b00859 10.1007/s11430-012-4432-1 10.5194/acp-7-3081-2007 10.1016/j.atmosenv.2015.06.046 10.1080/10106049.2013.827750 10.1016/S0034-4257(00)00109-7 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Inc. Copyright Elsevier BV Sep 15, 2017 |
Copyright_xml | – notice: 2017 Elsevier Inc. – notice: Copyright Elsevier BV Sep 15, 2017 |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7TG 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KL. KR7 L7M L~C L~D P64 7S9 L.6 |
DOI | 10.1016/j.rse.2017.07.023 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Meteorological & Geoastrophysical Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Meteorological & Geoastrophysical Abstracts Biotechnology Research Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Meteorological & Geoastrophysical Abstracts - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Materials Research Database AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Geology Environmental Sciences |
EISSN | 1879-0704 |
EndPage | 446 |
ExternalDocumentID | 10_1016_j_rse_2017_07_023 S0034425717303371 |
GeographicLocations | Yangtze River Delta Yangtze River China |
GeographicLocations_xml | – name: Yangtze River – name: Yangtze River Delta – name: China |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABPPZ ABQEM ABQYD ABYKQ ACDAQ ACGFS ACIWK ACLVX ACPRK ACRLP ACSBN ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSE SSJ SSZ T5K TN5 TWZ WH7 ZCA ZMT ~02 ~G- ~KM 29P 41~ 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABEFU ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN ADXHL AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FA8 FEDTE FGOYB G-2 HMA HMC HVGLF HZ~ H~9 OHT R2- SEN SEP SEW SSH VOH WUQ XOL 7QF 7QO 7QQ 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7TG 7U5 8BQ 8FD C1K EFKBS F28 FR3 H8D H8G JG9 JQ2 KL. KR7 L7M L~C L~D P64 7S9 L.6 |
ID | FETCH-LOGICAL-c461t-cc915aa3993c71d1d30713043fa1e8aff13d75ac30518f84a08f7bc2e6ea56e03 |
IEDL.DBID | .~1 |
ISSN | 0034-4257 |
IngestDate | Mon Jul 21 11:09:23 EDT 2025 Wed Aug 13 09:19:30 EDT 2025 Tue Jul 01 01:34:37 EDT 2025 Thu Apr 24 23:07:53 EDT 2025 Fri Feb 23 02:30:02 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Gap filling Chemical transport model (CTM) MAIAC Multiple imputation PM2.5 Cloud fraction |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c461t-cc915aa3993c71d1d30713043fa1e8aff13d75ac30518f84a08f7bc2e6ea56e03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5477-2186 |
PQID | 1959202474 |
PQPubID | 2045405 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2000572474 proquest_journals_1959202474 crossref_primary_10_1016_j_rse_2017_07_023 crossref_citationtrail_10_1016_j_rse_2017_07_023 elsevier_sciencedirect_doi_10_1016_j_rse_2017_07_023 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-09-15 |
PublicationDateYYYYMMDD | 2017-09-15 |
PublicationDate_xml | – month: 09 year: 2017 text: 2017-09-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Remote sensing of environment |
PublicationYear | 2017 |
Publisher | Elsevier Inc Elsevier BV |
Publisher_xml | – name: Elsevier Inc – name: Elsevier BV |
References | Emili, Lyapustin, Wang, Popp, Korkin, Zebisch, Wunderle, Petitta (bb0055) 2011 Ma, Hu, Sayer, Levy, Zhang, Xue, Tong, Bi, Huang, Liu (bb0170) 2016; 124 Hu, Waller, Alhamdan, Crosson, Estes, Estes, Quattrochi, Sarnat, Liu (bb0075) 2013; 121 Strickland, Hao, Hu, Chang, Darrow, Liu (bb0210) 2016; 124 Di, Kloog, Koutrakis, Lyapustin, Wang, Schwartz (bb0045) 2016; 50 Lyapustin, Martonchik, Wang, Laszlo, Korkin (bb0155) 2011 Friberg, Zhai, Holmes, Chang, Strickland, Sarnat, Tolbert, Russell, Mulholland (bb0060) 2016; 50 Myhre, Stordal, Johnsrud, Kaufman, Rosenfeld, Storelvmo, Kristjansson, Berntsen, Myhre, Isaksen (bb0180) 2007; 7 Hu, Waller, Lyapustin, Wang, Liu (bb0080) 2014; 14 Li, Chen, Tao, Han, Wang, Su, Fan, Yu (bb0130) 2012; 55 Rohde, Muller (bb0195) 2015; 10 Lyapustin, Wang, Laszlo, Kahn, Korkin, Remer, Levy, Reid (bb0160) 2011 Kloog, Nordio, Coull, Schwartz (bb0110) 2012; 46 Punger, West (bb0185) 2013; 6 Appel, Bhave, Gilliland, Sarwar, Roselle (bb0015) 2008; 42 Appel, Chemel, Roselle, Francis, Hu, Sokhi, Rao, Galmarini (bb0020) 2012; 53 Dobson, Bright, Coleman, Durfee, Worley (bb0050) 2000; 66 Quennehen (bb0190) 2015; 1680 Chameides, Luo, Saylor, Streets, Huang, Bergin, Giorgi (bb0040) 2002 Ma, Wang, Yu, Jia, Hu (bb0165) 2016; 181 Holben, Eck, Slutsker, Tanre, Buis, Setzer, Vermote, Reagan, Kaufman, Nakajima (bb0070) 1998; 66 Smirnov, Holben, Eck, Dubovik, Slutsker (bb0200) 2000; 73 Alam, Khan, Blaschke, Mukhtiar (bb0010) 2014; 107 Junger, de Leon (bb0090) 2015; 102 Li, Gong, Chen, Wang (bb0135) 2015; 15 Lim, Vos, Flaxman, Danaei, Shibuya, Adair-Rohani, AlMazroa, Amann, Anderson, Andrews (bb0140) 2013; 380 Ma, Liu, Zhao, Liu, Zhou, Bi (bb0175) 2016; 133 Just, Wright, Schwartz, Coull, Baccarelli, Tellez-Rojo, Moody, Wang, Lyapustin, Kloog (bb0095) 2015; 49 Lelieveld, Evans, Fnais, Giannadaki, Pozzer (bb0125) 2015; 525 Zhang, Vijayaraghavan, Wen, Snell, Jacobson (bb0230) 2009; 114 Bey, Jacob, Yantosca, Logan, Field, Fiore, Li, Liu, Mickley, Schultz (bb0025) 2001; 106 Byun, Schere (bb0035) 2006; 59 Butland, Armstrong, Atkinson, Wilkinson, Heal, Doherty, Vieno (bb0030) 2013; 13 Jinnagara Puttaswamy, Nguyen, Braverman, Hu, Liu (bb0085) 2014; 29 Kang, Kumar, Yin, Diao, Yu (bb0100) 2015; 15 Yu, Di Girolamo, Chen, Zhang, Liu (bb0225) 2015; 25 Harrell (bb0065) 2016; 3 Kloog, Koutrakis, Coull, Lee, Schwartz (bb0105) 2011; 45 Stern, Builtjes, Schaap, Timmermans, Vautard, Hodzic, Memmesheimer, Feldmann, Renner, Wolke (bb0205) 2008; 42 Tao, Chen, Su, Tao (bb0215) 2012 Zheng, Zhang, Liu, Geng, He (bb0235) 2016; 124 Liu, Sarnat, Kilaru, Jacob, Koutrakis (bb0145) 2005; 39 Lv, Hu, Chang, Russell, Bai (bb0150) 2016; 50 Van Donkelaar, Martin, Levy, da Silva, Krzyzanowski, Chubarova, Semutnikova, Cohen (bb0220) 2011; 45 Acock (bb0005) 2005; 67 Kloog, Sorek-Hamer, Lyapustin, Coull, Wang, Just, Schwartz, Broday (bb0120) 2015; 122 Byun (10.1016/j.rse.2017.07.023_bb0035) 2006; 59 Jinnagara Puttaswamy (10.1016/j.rse.2017.07.023_bb0085) 2014; 29 Butland (10.1016/j.rse.2017.07.023_bb0030) 2013; 13 Kloog (10.1016/j.rse.2017.07.023_bb0105) 2011; 45 Lyapustin (10.1016/j.rse.2017.07.023_bb0155) 2011 Li (10.1016/j.rse.2017.07.023_bb0135) 2015; 15 Ma (10.1016/j.rse.2017.07.023_bb0170) 2016; 124 Tao (10.1016/j.rse.2017.07.023_bb0215) 2012 Friberg (10.1016/j.rse.2017.07.023_bb0060) 2016; 50 Smirnov (10.1016/j.rse.2017.07.023_bb0200) 2000; 73 Junger (10.1016/j.rse.2017.07.023_bb0090) 2015; 102 Kloog (10.1016/j.rse.2017.07.023_bb0120) 2015; 122 Liu (10.1016/j.rse.2017.07.023_bb0145) 2005; 39 Van Donkelaar (10.1016/j.rse.2017.07.023_bb0220) 2011; 45 Appel (10.1016/j.rse.2017.07.023_bb0015) 2008; 42 Punger (10.1016/j.rse.2017.07.023_bb0185) 2013; 6 Stern (10.1016/j.rse.2017.07.023_bb0205) 2008; 42 Kang (10.1016/j.rse.2017.07.023_bb0100) 2015; 15 Lim (10.1016/j.rse.2017.07.023_bb0140) 2013; 380 Lyapustin (10.1016/j.rse.2017.07.023_bb0160) 2011 Lv (10.1016/j.rse.2017.07.023_bb0150) 2016; 50 Bey (10.1016/j.rse.2017.07.023_bb0025) 2001; 106 Holben (10.1016/j.rse.2017.07.023_bb0070) 1998; 66 Dobson (10.1016/j.rse.2017.07.023_bb0050) 2000; 66 Ma (10.1016/j.rse.2017.07.023_bb0165) 2016; 181 Li (10.1016/j.rse.2017.07.023_bb0130) 2012; 55 Zhang (10.1016/j.rse.2017.07.023_bb0230) 2009; 114 Appel (10.1016/j.rse.2017.07.023_bb0020) 2012; 53 Quennehen (10.1016/j.rse.2017.07.023_bb0190) 2015; 1680 Di (10.1016/j.rse.2017.07.023_bb0045) 2016; 50 Rohde (10.1016/j.rse.2017.07.023_bb0195) 2015; 10 Chameides (10.1016/j.rse.2017.07.023_bb0040) 2002 Harrell (10.1016/j.rse.2017.07.023_bb0065) 2016; 3 Just (10.1016/j.rse.2017.07.023_bb0095) 2015; 49 Kloog (10.1016/j.rse.2017.07.023_bb0110) 2012; 46 Strickland (10.1016/j.rse.2017.07.023_bb0210) 2016; 124 Alam (10.1016/j.rse.2017.07.023_bb0010) 2014; 107 Zheng (10.1016/j.rse.2017.07.023_bb0235) 2016; 124 Emili (10.1016/j.rse.2017.07.023_bb0055) 2011 Hu (10.1016/j.rse.2017.07.023_bb0080) 2014; 14 Myhre (10.1016/j.rse.2017.07.023_bb0180) 2007; 7 Acock (10.1016/j.rse.2017.07.023_bb0005) 2005; 67 Hu (10.1016/j.rse.2017.07.023_bb0075) 2013; 121 Yu (10.1016/j.rse.2017.07.023_bb0225) 2015; 25 Lelieveld (10.1016/j.rse.2017.07.023_bb0125) 2015; 525 Ma (10.1016/j.rse.2017.07.023_bb0175) 2016; 133 |
References_xml | – volume: 67 start-page: 1012 year: 2005 end-page: 1028 ident: bb0005 article-title: Working with missing values publication-title: J. Marriage Fam. – volume: 25 start-page: 457 year: 2015 end-page: 466 ident: bb0225 article-title: Statistical evaluation of the feasibility of satellite-retrieved cloud parameters as indicators of PM2. 5 levels publication-title: J. Expo. Sci. Environ. Epidemiol. – volume: 45 start-page: 6225 year: 2011 end-page: 6232 ident: bb0220 article-title: Satellite-based estimates of ground-level fine particulate matter during extreme events: a case study of the Moscow fires in 2010 publication-title: Atmos. Environ. – volume: 59 start-page: 51 year: 2006 end-page: 77 ident: bb0035 article-title: Review of the governing equations, computational algorithms, and other components of the models-3 community multiscale air quality (CMAQ) modeling system publication-title: Appl. Mech. Rev. – volume: 121 start-page: 1 year: 2013 end-page: 10 ident: bb0075 article-title: Estimating ground-level PM 2.5 concentrations in the southeastern U.S. using geographically weighted regression publication-title: Environ. Res. – volume: 124 start-page: 184 year: 2016 ident: bb0170 article-title: Satellite-based spatiotemporal trends in PM2. 5 concentrations: China 2004–2013 publication-title: Environ. Health Perspect. – volume: 66 start-page: 849 year: 2000 end-page: 857 ident: bb0050 article-title: LandScan: a global population database for estimating populations at risk publication-title: Photogramm. Eng. Remote. Sens. – start-page: 117 year: 2012 ident: bb0215 article-title: Satellite observation of regional haze pollution over the North China Plain publication-title: J. Geophys. Res.-Atmos. – start-page: 107 year: 2002 ident: bb0040 article-title: Correlation between model-calculated anthropogenic aerosols and satellite-derived cloud optical depths: indication of indirect effect? publication-title: J. Geophys. Res.-Atmos. – volume: 107 start-page: 104 year: 2014 end-page: 112 ident: bb0010 article-title: Variability of aerosol optical depth and their impact on cloud properties in Pakistan publication-title: J. Atmos. Sol. Terr. Phys. – volume: 29 start-page: 48 year: 2014 end-page: 64 ident: bb0085 article-title: Statistical data fusion of multi-sensor AOD over the continental United States publication-title: Geocarto Int. – volume: 102 start-page: 96 year: 2015 end-page: 104 ident: bb0090 article-title: Imputation of missing data in time series for air pollutants publication-title: Atmos. Environ. – volume: 55 start-page: 1545 year: 2012 end-page: 1553 ident: bb0130 article-title: Retrieval of aerosol optical depth over bright targets in the urban areas of North China during winter publication-title: Sci. China Earth Sci. – volume: 133 start-page: 156 year: 2016 end-page: 164 ident: bb0175 article-title: Satellite-derived high resolution PM2.5 concentrations in Yangtze River Delta region of China using improved linear mixed effects model publication-title: Atmos. Environ. – volume: 50 start-page: 4712 year: 2016 end-page: 4721 ident: bb0045 article-title: Assessing PM2. 5 exposures with high spatiotemporal resolution across the continental United States publication-title: Environ. Sci. Technol. – volume: 7 start-page: 3081 year: 2007 end-page: 3101 ident: bb0180 article-title: Aerosol-cloud interaction inferred from MODIS satellite data and global aerosol models publication-title: Atmos. Chem. Phys. – volume: 525 start-page: 367 year: 2015 end-page: 371 ident: bb0125 article-title: The contribution of outdoor air pollution sources to premature mortality on a global scale publication-title: Nature – volume: 50 start-page: 3695 year: 2016 end-page: 3705 ident: bb0060 article-title: Method for fusing observational data and chemical transport model simulations to estimate spatiotemporally resolved ambient air pollution publication-title: Environ. Sci. Technol. – volume: 53 start-page: 142 year: 2012 end-page: 155 ident: bb0020 article-title: Examination of the community multiscale air quality (CMAQ) model performance over the north American and European domains publication-title: Atmos. Environ. – start-page: 116 year: 2011 ident: bb0155 article-title: Multiangle implementation of atmospheric correction (MAIAC): 1 Radiative transfer basis and look-up tables publication-title: J. Geophys. Res.-Atmos. – volume: 39 start-page: 3269 year: 2005 end-page: 3278 ident: bb0145 article-title: Estimating ground-level PM2. 5 in the eastern United States using satellite remote sensing publication-title: Environ. Sci. Technol. – volume: 49 start-page: 8576 year: 2015 end-page: 8584 ident: bb0095 article-title: Using high-resolution satellite aerosol optical depth to estimate daily PM2. 5 geographical distribution in Mexico City publication-title: Environ. Sci. Technol. – volume: 50 start-page: 4752 year: 2016 end-page: 4759 ident: bb0150 article-title: Improving the accuracy of daily PM2.5 distributions derived from the fusion of ground-level measurements with aerosol optical depth observations, a case study in North China publication-title: Environ. Sci. Technol. – volume: 46 start-page: 11913 year: 2012 end-page: 11921 ident: bb0110 article-title: Incorporating local land use regression and satellite aerosol optical depth in a hybrid model of spatiotemporal PM2. 5 exposures in the Mid-Atlantic states publication-title: Environ. Sci. Technol. – volume: 15 start-page: 1347 year: 2015 end-page: 1356 ident: bb0135 article-title: Estimating ground-level pm 2.5 using fine-resolution satellite data in the megacity of Beijing, China publication-title: Aerosol Air Qual. Res. – volume: 124 year: 2016 ident: bb0210 article-title: Pediatric Emergency Visits and Short-Term Changes in PM2. 5 Concentrations in the US State of Georgia publication-title: Environ. Health Perspect. – volume: 73 start-page: 337 year: 2000 end-page: 349 ident: bb0200 article-title: Cloud-screening and quality control algorithms for the AERONET database publication-title: Remote Sens. Environ. – volume: 14 start-page: 6301 year: 2014 end-page: 6314 ident: bb0080 article-title: 10-year spatial and temporal trends of PM 2.5 concentrations in the southeastern US estimated using high-resolution satellite data publication-title: Atmos. Chem. Phys. – volume: 6 start-page: 563 year: 2013 end-page: 573 ident: bb0185 article-title: The effect of grid resolution on estimates of the burden of ozone and fine particulate matter on premature mortality in the USA publication-title: Air Qual. Atmos. Health – volume: 124 start-page: 232 year: 2016 end-page: 242 ident: bb0235 article-title: Estimating ground-level PM 2.5 concentrations over three megalopolises in China using satellite-derived aerosol optical depth measurements publication-title: Atmos. Environ. – volume: 1680 start-page: 7324 year: 2015 ident: bb0190 article-title: Multi-model evaluation of short-lived pollutant distributions over East Asia during summer 2008 publication-title: Atmos. Chem. Phys. – volume: 114 year: 2009 ident: bb0230 article-title: Probing into regional O3 and PM pollution in the US, Part I. A 1-year CMAQ simulation and evaluation using surface and satellite data publication-title: J. Geophys. Res. – volume: 66 start-page: 1 year: 1998 end-page: 16 ident: bb0070 article-title: AERONET—A federated instrument network and data archive for aerosol characterization publication-title: Remote Sens. Environ. – volume: 15 start-page: 958 year: 2015 end-page: 973 ident: bb0100 article-title: Correlation analysis between AOD and cloud parameters to study their relationship over China using MODIS data (2003 publication-title: Aerosol Air Qual. Res. – volume: 106 start-page: 23073 year: 2001 end-page: 23095 ident: bb0025 article-title: Global modeling of tropospheric chemistry with assimilated meteorology: model description and evaluation publication-title: J. Geophys. Res.-Atmos. – volume: 13 start-page: 136 year: 2013 ident: bb0030 article-title: Measurement error in time-series analysis: a simulation study comparing modelled and monitored data publication-title: BMC Med. Res. Methodol. – volume: 380 start-page: 2224 year: 2013 end-page: 2260 ident: bb0140 article-title: A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010 publication-title: Lancet – start-page: 116 year: 2011 ident: bb0055 article-title: High spatial resolution aerosol retrieval with MAIAC: application to mountain regions publication-title: J. Geophys. Res.-Atmos. – volume: 3 year: 2016 ident: bb0065 article-title: Hmisc: Harrell Miscellaneous. R Package Version – volume: 45 start-page: 6267 year: 2011 end-page: 6275 ident: bb0105 article-title: Assessing temporally and spatially resolved PM 2.5 exposures for epidemiological studies using satellite aerosol optical depth measurements publication-title: Atmos. Environ. – volume: 10 year: 2015 ident: bb0195 article-title: Air pollution in China: mapping of concentrations and sources publication-title: PLoS One – volume: 181 start-page: 250 year: 2016 end-page: 256 ident: bb0165 article-title: Can MODIS AOD be employed to derive PM2. 5 in Beijing-Tianjin-Hebei over China? publication-title: Atmos. Res. – volume: 42 start-page: 4567 year: 2008 end-page: 4588 ident: bb0205 article-title: A model inter-comparison study focussing on episodes with elevated PM10 concentrations publication-title: Atmos. Environ. – start-page: 116 year: 2011 ident: bb0160 article-title: Multiangle implementation of atmospheric correction (MAIAC): 2 Aerosol algorithm publication-title: J. Geophys. Res.-Atmos. – volume: 122 start-page: 409 year: 2015 end-page: 416 ident: bb0120 article-title: Estimating daily PM 2.5 and PM 10 across the complex geo-climate region of Israel using MAIAC satellite-based AOD data publication-title: Atmos. Environ. – volume: 42 start-page: 6057 year: 2008 end-page: 6066 ident: bb0015 article-title: Evaluation of the community multiscale air quality (CMAQ) model version 4.5: sensitivities impacting model performance; part II—particulate matter publication-title: Atmos. Environ. – start-page: 116 year: 2011 ident: 10.1016/j.rse.2017.07.023_bb0055 article-title: High spatial resolution aerosol retrieval with MAIAC: application to mountain regions publication-title: J. Geophys. Res.-Atmos. – volume: 122 start-page: 409 year: 2015 ident: 10.1016/j.rse.2017.07.023_bb0120 article-title: Estimating daily PM 2.5 and PM 10 across the complex geo-climate region of Israel using MAIAC satellite-based AOD data publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2015.10.004 – volume: 6 start-page: 563 year: 2013 ident: 10.1016/j.rse.2017.07.023_bb0185 article-title: The effect of grid resolution on estimates of the burden of ozone and fine particulate matter on premature mortality in the USA publication-title: Air Qual. Atmos. Health doi: 10.1007/s11869-013-0197-8 – volume: 50 start-page: 4712 year: 2016 ident: 10.1016/j.rse.2017.07.023_bb0045 article-title: Assessing PM2. 5 exposures with high spatiotemporal resolution across the continental United States publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b06121 – volume: 46 start-page: 11913 year: 2012 ident: 10.1016/j.rse.2017.07.023_bb0110 article-title: Incorporating local land use regression and satellite aerosol optical depth in a hybrid model of spatiotemporal PM2. 5 exposures in the Mid-Atlantic states publication-title: Environ. Sci. Technol. doi: 10.1021/es302673e – volume: 380 start-page: 2224 year: 2013 ident: 10.1016/j.rse.2017.07.023_bb0140 article-title: A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010 publication-title: Lancet doi: 10.1016/S0140-6736(12)61766-8 – volume: 124 start-page: 184 year: 2016 ident: 10.1016/j.rse.2017.07.023_bb0170 article-title: Satellite-based spatiotemporal trends in PM2. 5 concentrations: China 2004–2013 publication-title: Environ. Health Perspect. doi: 10.1289/ehp.1409481 – volume: 42 start-page: 6057 year: 2008 ident: 10.1016/j.rse.2017.07.023_bb0015 article-title: Evaluation of the community multiscale air quality (CMAQ) model version 4.5: sensitivities impacting model performance; part II—particulate matter publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2008.03.036 – volume: 15 start-page: 1347 year: 2015 ident: 10.1016/j.rse.2017.07.023_bb0135 article-title: Estimating ground-level pm 2.5 using fine-resolution satellite data in the megacity of Beijing, China publication-title: Aerosol Air Qual. Res. doi: 10.4209/aaqr.2015.01.0009 – start-page: 116 year: 2011 ident: 10.1016/j.rse.2017.07.023_bb0155 article-title: Multiangle implementation of atmospheric correction (MAIAC): 1 Radiative transfer basis and look-up tables publication-title: J. Geophys. Res.-Atmos. – volume: 121 start-page: 1 year: 2013 ident: 10.1016/j.rse.2017.07.023_bb0075 article-title: Estimating ground-level PM 2.5 concentrations in the southeastern U.S. using geographically weighted regression publication-title: Environ. Res. doi: 10.1016/j.envres.2012.11.003 – volume: 45 start-page: 6267 year: 2011 ident: 10.1016/j.rse.2017.07.023_bb0105 article-title: Assessing temporally and spatially resolved PM 2.5 exposures for epidemiological studies using satellite aerosol optical depth measurements publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2011.08.066 – volume: 124 issue: 690 year: 2016 ident: 10.1016/j.rse.2017.07.023_bb0210 article-title: Pediatric Emergency Visits and Short-Term Changes in PM2. 5 Concentrations in the US State of Georgia publication-title: Environ. Health Perspect. – start-page: 116 year: 2011 ident: 10.1016/j.rse.2017.07.023_bb0160 article-title: Multiangle implementation of atmospheric correction (MAIAC): 2 Aerosol algorithm publication-title: J. Geophys. Res.-Atmos. – volume: 107 start-page: 104 year: 2014 ident: 10.1016/j.rse.2017.07.023_bb0010 article-title: Variability of aerosol optical depth and their impact on cloud properties in Pakistan publication-title: J. Atmos. Sol. Terr. Phys. doi: 10.1016/j.jastp.2013.11.012 – volume: 1680 start-page: 7324 year: 2015 ident: 10.1016/j.rse.2017.07.023_bb0190 article-title: Multi-model evaluation of short-lived pollutant distributions over East Asia during summer 2008 publication-title: Atmos. Chem. Phys. – volume: 525 start-page: 367 year: 2015 ident: 10.1016/j.rse.2017.07.023_bb0125 article-title: The contribution of outdoor air pollution sources to premature mortality on a global scale publication-title: Nature doi: 10.1038/nature15371 – volume: 133 start-page: 156 year: 2016 ident: 10.1016/j.rse.2017.07.023_bb0175 article-title: Satellite-derived high resolution PM2.5 concentrations in Yangtze River Delta region of China using improved linear mixed effects model publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2016.03.040 – volume: 14 start-page: 6301 year: 2014 ident: 10.1016/j.rse.2017.07.023_bb0080 article-title: 10-year spatial and temporal trends of PM 2.5 concentrations in the southeastern US estimated using high-resolution satellite data publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-14-6301-2014 – start-page: 107 year: 2002 ident: 10.1016/j.rse.2017.07.023_bb0040 article-title: Correlation between model-calculated anthropogenic aerosols and satellite-derived cloud optical depths: indication of indirect effect? publication-title: J. Geophys. Res.-Atmos. – volume: 50 start-page: 4752 year: 2016 ident: 10.1016/j.rse.2017.07.023_bb0150 article-title: Improving the accuracy of daily PM2.5 distributions derived from the fusion of ground-level measurements with aerosol optical depth observations, a case study in North China publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b05940 – volume: 15 start-page: 958 year: 2015 ident: 10.1016/j.rse.2017.07.023_bb0100 article-title: Correlation analysis between AOD and cloud parameters to study their relationship over China using MODIS data (2003−2013): impact on cloud formation and climate change publication-title: Aerosol Air Qual. Res. doi: 10.4209/aaqr.2014.08.0168 – volume: 10 year: 2015 ident: 10.1016/j.rse.2017.07.023_bb0195 article-title: Air pollution in China: mapping of concentrations and sources publication-title: PLoS One doi: 10.1371/journal.pone.0135749 – volume: 39 start-page: 3269 year: 2005 ident: 10.1016/j.rse.2017.07.023_bb0145 article-title: Estimating ground-level PM2. 5 in the eastern United States using satellite remote sensing publication-title: Environ. Sci. Technol. doi: 10.1021/es049352m – volume: 50 start-page: 3695 year: 2016 ident: 10.1016/j.rse.2017.07.023_bb0060 article-title: Method for fusing observational data and chemical transport model simulations to estimate spatiotemporally resolved ambient air pollution publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b05134 – volume: 102 start-page: 96 year: 2015 ident: 10.1016/j.rse.2017.07.023_bb0090 article-title: Imputation of missing data in time series for air pollutants publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2014.11.049 – volume: 13 start-page: 136 year: 2013 ident: 10.1016/j.rse.2017.07.023_bb0030 article-title: Measurement error in time-series analysis: a simulation study comparing modelled and monitored data publication-title: BMC Med. Res. Methodol. doi: 10.1186/1471-2288-13-136 – volume: 114 issue: D22304 year: 2009 ident: 10.1016/j.rse.2017.07.023_bb0230 article-title: Probing into regional O3 and PM pollution in the US, Part I. A 1-year CMAQ simulation and evaluation using surface and satellite data publication-title: J. Geophys. Res. – volume: 25 start-page: 457 year: 2015 ident: 10.1016/j.rse.2017.07.023_bb0225 article-title: Statistical evaluation of the feasibility of satellite-retrieved cloud parameters as indicators of PM2. 5 levels publication-title: J. Expo. Sci. Environ. Epidemiol. doi: 10.1038/jes.2014.49 – volume: 106 start-page: 23073 year: 2001 ident: 10.1016/j.rse.2017.07.023_bb0025 article-title: Global modeling of tropospheric chemistry with assimilated meteorology: model description and evaluation publication-title: J. Geophys. Res.-Atmos. doi: 10.1029/2001JD000807 – volume: 3 year: 2016 ident: 10.1016/j.rse.2017.07.023_bb0065 – volume: 181 start-page: 250 year: 2016 ident: 10.1016/j.rse.2017.07.023_bb0165 article-title: Can MODIS AOD be employed to derive PM2. 5 in Beijing-Tianjin-Hebei over China? publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2016.06.018 – volume: 45 start-page: 6225 year: 2011 ident: 10.1016/j.rse.2017.07.023_bb0220 article-title: Satellite-based estimates of ground-level fine particulate matter during extreme events: a case study of the Moscow fires in 2010 publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2011.07.068 – volume: 66 start-page: 1 year: 1998 ident: 10.1016/j.rse.2017.07.023_bb0070 article-title: AERONET—A federated instrument network and data archive for aerosol characterization publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(98)00031-5 – volume: 59 start-page: 51 year: 2006 ident: 10.1016/j.rse.2017.07.023_bb0035 article-title: Review of the governing equations, computational algorithms, and other components of the models-3 community multiscale air quality (CMAQ) modeling system publication-title: Appl. Mech. Rev. doi: 10.1115/1.2128636 – start-page: 117 year: 2012 ident: 10.1016/j.rse.2017.07.023_bb0215 article-title: Satellite observation of regional haze pollution over the North China Plain publication-title: J. Geophys. Res.-Atmos. – volume: 53 start-page: 142 year: 2012 ident: 10.1016/j.rse.2017.07.023_bb0020 article-title: Examination of the community multiscale air quality (CMAQ) model performance over the north American and European domains publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2011.11.016 – volume: 66 start-page: 849 year: 2000 ident: 10.1016/j.rse.2017.07.023_bb0050 article-title: LandScan: a global population database for estimating populations at risk publication-title: Photogramm. Eng. Remote. Sens. – volume: 42 start-page: 4567 year: 2008 ident: 10.1016/j.rse.2017.07.023_bb0205 article-title: A model inter-comparison study focussing on episodes with elevated PM10 concentrations publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2008.01.068 – volume: 67 start-page: 1012 year: 2005 ident: 10.1016/j.rse.2017.07.023_bb0005 article-title: Working with missing values publication-title: J. Marriage Fam. doi: 10.1111/j.1741-3737.2005.00191.x – volume: 49 start-page: 8576 year: 2015 ident: 10.1016/j.rse.2017.07.023_bb0095 article-title: Using high-resolution satellite aerosol optical depth to estimate daily PM2. 5 geographical distribution in Mexico City publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b00859 – volume: 55 start-page: 1545 year: 2012 ident: 10.1016/j.rse.2017.07.023_bb0130 article-title: Retrieval of aerosol optical depth over bright targets in the urban areas of North China during winter publication-title: Sci. China Earth Sci. doi: 10.1007/s11430-012-4432-1 – volume: 7 start-page: 3081 year: 2007 ident: 10.1016/j.rse.2017.07.023_bb0180 article-title: Aerosol-cloud interaction inferred from MODIS satellite data and global aerosol models publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-7-3081-2007 – volume: 124 start-page: 232 year: 2016 ident: 10.1016/j.rse.2017.07.023_bb0235 article-title: Estimating ground-level PM 2.5 concentrations over three megalopolises in China using satellite-derived aerosol optical depth measurements publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2015.06.046 – volume: 29 start-page: 48 year: 2014 ident: 10.1016/j.rse.2017.07.023_bb0085 article-title: Statistical data fusion of multi-sensor AOD over the continental United States publication-title: Geocarto Int. doi: 10.1080/10106049.2013.827750 – volume: 73 start-page: 337 year: 2000 ident: 10.1016/j.rse.2017.07.023_bb0200 article-title: Cloud-screening and quality control algorithms for the AERONET database publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(00)00109-7 |
SSID | ssj0015871 |
Score | 2.6372337 |
Snippet | Satellite aerosol optical depth (AOD) has been used to assess population exposure to fine particulate matter (PM2.5). The emerging high-resolution satellite... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 437 |
SubjectTerms | Accuracy Aerosol effects Aerosol optical depth Aerosols Air pollution Atmospheric correction Atmospheric models Chemical transport Chemical transport model (CTM) China Cloud cover Cloud fraction Computer simulation exposure assessment Gap filling High resolution Land use MAIAC Mathematical models Meteorology monitoring Multiple imputation Optical analysis Particulate emissions Particulate matter particulates PM2.5 prediction Reflectance remote sensing river deltas Rivers Satellites Snow cover snowpack space and time Statistical models Studies Water depth Yangtze River |
Title | Full-coverage high-resolution daily PM2.5 estimation using MAIAC AOD in the Yangtze River Delta of China |
URI | https://dx.doi.org/10.1016/j.rse.2017.07.023 https://www.proquest.com/docview/1959202474 https://www.proquest.com/docview/2000572474 |
Volume | 199 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwED5NQwheEBQmysZkJJ6QvMWxUyePUbfRgToQYtJ4sq6OvXWq0mnNHroHfju-xCkCiT0g5SWxrVi-8_lO_u47gPczJbx0IToJ7TlXvig45lnCC1sJmQd3zmtKcJ6ejSbn6tNFdrEF4z4XhmCV0fZ3Nr211vHLYVzNw5v5nHJ8pSKNE0FJpWzzyJXSpOUHPzcwD5HluquaJxWn3v3NZovxul0RU6bQLX9nKv91Nv1lpduj5-Q5PIs-Iyu7ab2ALVcPYOf4d4paaIx7dDWAJ7Gu-dV6AI8_toV71y_himJNbgmwGSwII5ZiHiLtqHiswvlizb5O04OMEe9Gl9DICBV_yablaTlm5ZcjNq9ZcBjZD6wvm3vHvhGogx25RYNs6Vlbi_sVnJ8cfx9PeKyywK0aiYZbW4gMkRwVq0UlKkmBa6KkR-Fy9F7ISmdog2EQuc8VJrnXM5u6kcNs5BK5A9v1snavgRGRTWUx1ZSgKosZ6tSisIWSTqD1OISkX19jIwU5VcJYmB5rdm2CSAyJxCThSeUQPmyG3HT8Gw91Vr3QzB9KZML58NCwvV7AJu7glSHSnTQ4MFoN4d2mOew9ulDB2i3vVlTCM7i71OfN__15F57SG-FPRLYH283tnXsbnJxmtt9q8T48Kk8_T85-Aanj-cU |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NITReEBQmCgOMBC9I2eLYqZMHHqp1o2XrQGiTxpNxHXsrqtJpzYTKA_8U_yB3iVMEEntAmpSnnPOhu_N9yL-7A3g1kdwLh9kJ0rNI-jyPTJbGUW4LLjIM57yiAufxUW94It-fpqdr8LOthSFYZbD9jU2vrXW4sxO4uXMxnVKNr5CkcRyVVAjFA7LywC2_Yd62eDsaoJBfJ8n-3vHuMAqjBSIre7yKrM15agx5Z6t4wQtB2VoshTfcZcZ7LgqVGou7gWc-kybOvJrYxPWcSXsuFvjeW3BbormgsQnbP1a4Ep5mqhnTJ2REv9cepdagsssFtebkqm4Ymoh_OcO_3ELt6_bvw70QpLJ-w4cHsObKDmzu_a6JQ2IwCosObIRB6ufLDtx5V08KXj6Ec0puI0sIUTRZjNoiR5jaB01nhZnOluzjONlOGTX6aCooGcHwz9i4P-rvsv6HAZuWDCNU9tmUZ9V3xz4RioQN3KwybO5ZPfz7EZzcCO83Yb2cl-4xMOqcU1iTKKqIFfnEqMQabnMpHDfWmy7ELX-1DT3PafTGTLfgtq8aRaJJJDrGKxFdeLN65KJp-HHdYtkKTf-htRod0nWPbbUC1sFkLDR1-UkwYlKyCy9XZNzsdIJjSje_WtDMUIyvac2T__vyC9gYHo8P9eHo6OAp3CUKgV94ugXr1eWVe4YRVjV5Xms0gy83vYV-AW3aNXQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Full-coverage+high-resolution+daily+PM2.5+estimation+using+MAIAC+AOD+in+the+Yangtze+River+Delta+of+China&rft.jtitle=Remote+sensing+of+environment&rft.au=Xiao%2C+Qingyang&rft.au=Wang%2C+Yujie&rft.au=Chang%2C+Howard+H&rft.au=Meng%2C+Xia&rft.date=2017-09-15&rft.issn=0034-4257&rft_id=info:doi/10.1016%2Fj.rse.2017.07.023&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4257&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4257&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4257&client=summon |