A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects
A convolutional neural network (CNN) is one of the most significant networks in the deep learning field. Since CNN made impressive achievements in many areas, including but not limited to computer vision and natural language processing, it attracted much attention from both industry and academia in...
Saved in:
Published in | IEEE transaction on neural networks and learning systems Vol. 33; no. 12; pp. 6999 - 7019 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.12.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A convolutional neural network (CNN) is one of the most significant networks in the deep learning field. Since CNN made impressive achievements in many areas, including but not limited to computer vision and natural language processing, it attracted much attention from both industry and academia in the past few years. The existing reviews mainly focus on CNN's applications in different scenarios without considering CNN from a general perspective, and some novel ideas proposed recently are not covered. In this review, we aim to provide some novel ideas and prospects in this fast-growing field. Besides, not only 2-D convolution but also 1-D and multidimensional ones are involved. First, this review introduces the history of CNN. Second, we provide an overview of various convolutions. Third, some classic and advanced CNN models are introduced; especially those key points making them reach state-of-the-art results. Fourth, through experimental analysis, we draw some conclusions and provide several rules of thumb for functions and hyperparameter selection. Fifth, the applications of 1-D, 2-D, and multidimensional convolution are covered. Finally, some open issues and promising directions for CNN are discussed as guidelines for future work. |
---|---|
AbstractList | A convolutional neural network (CNN) is one of the most significant networks in the deep learning field. Since CNN made impressive achievements in many areas, including but not limited to computer vision and natural language processing, it attracted much attention from both industry and academia in the past few years. The existing reviews mainly focus on CNN's applications in different scenarios without considering CNN from a general perspective, and some novel ideas proposed recently are not covered. In this review, we aim to provide some novel ideas and prospects in this fast-growing field. Besides, not only 2-D convolution but also 1-D and multidimensional ones are involved. First, this review introduces the history of CNN. Second, we provide an overview of various convolutions. Third, some classic and advanced CNN models are introduced; especially those key points making them reach state-of-the-art results. Fourth, through experimental analysis, we draw some conclusions and provide several rules of thumb for functions and hyperparameter selection. Fifth, the applications of 1-D, 2-D, and multidimensional convolution are covered. Finally, some open issues and promising directions for CNN are discussed as guidelines for future work. A convolutional neural network (CNN) is one of the most significant networks in the deep learning field. Since CNN made impressive achievements in many areas, including but not limited to computer vision and natural language processing, it attracted much attention from both industry and academia in the past few years. The existing reviews mainly focus on CNN's applications in different scenarios without considering CNN from a general perspective, and some novel ideas proposed recently are not covered. In this review, we aim to provide some novel ideas and prospects in this fast-growing field. Besides, not only 2-D convolution but also 1-D and multidimensional ones are involved. First, this review introduces the history of CNN. Second, we provide an overview of various convolutions. Third, some classic and advanced CNN models are introduced; especially those key points making them reach state-of-the-art results. Fourth, through experimental analysis, we draw some conclusions and provide several rules of thumb for functions and hyperparameter selection. Fifth, the applications of 1-D, 2-D, and multidimensional convolution are covered. Finally, some open issues and promising directions for CNN are discussed as guidelines for future work.A convolutional neural network (CNN) is one of the most significant networks in the deep learning field. Since CNN made impressive achievements in many areas, including but not limited to computer vision and natural language processing, it attracted much attention from both industry and academia in the past few years. The existing reviews mainly focus on CNN's applications in different scenarios without considering CNN from a general perspective, and some novel ideas proposed recently are not covered. In this review, we aim to provide some novel ideas and prospects in this fast-growing field. Besides, not only 2-D convolution but also 1-D and multidimensional ones are involved. First, this review introduces the history of CNN. Second, we provide an overview of various convolutions. Third, some classic and advanced CNN models are introduced; especially those key points making them reach state-of-the-art results. Fourth, through experimental analysis, we draw some conclusions and provide several rules of thumb for functions and hyperparameter selection. Fifth, the applications of 1-D, 2-D, and multidimensional convolution are covered. Finally, some open issues and promising directions for CNN are discussed as guidelines for future work. |
Author | Peng, Shouheng Li, Zewen Zhou, Jun Liu, Fan Yang, Wenjie |
Author_xml | – sequence: 1 givenname: Zewen orcidid: 0000-0001-6593-0987 surname: Li fullname: Li, Zewen email: servon@hhu.edu.cn organization: College of Computer and Information, Hohai University, Nanjing, China – sequence: 2 givenname: Fan orcidid: 0000-0001-8746-9845 surname: Liu fullname: Liu, Fan email: fanliu@hhu.edu.cn organization: College of Computer and Information, Hohai University, Nanjing, China – sequence: 3 givenname: Wenjie surname: Yang fullname: Yang, Wenjie email: vicent@hhu.edu.cn organization: College of Computer and Information, Hohai University, Nanjing, China – sequence: 4 givenname: Shouheng orcidid: 0000-0003-1963-7506 surname: Peng fullname: Peng, Shouheng email: shoehengpeng@hhu.edu.cn organization: College of Computer and Information, Hohai University, Nanjing, China – sequence: 5 givenname: Jun orcidid: 0000-0001-5822-8233 surname: Zhou fullname: Zhou, Jun email: jun.zhou@griffith.edu.au organization: School of Information and Communication Technology, Griffith University, Nathan, QLD, Australia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34111009$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1Lw0AQhhdRrFb_gIIEvHiwdb-z8VaKX1CqoIK3ZZNMIDXNxt2k0n_v9kMPPbiHnZnleWeZeY_Rfm1rQOiM4CEhOLl5m04nr0OKKRkyrLii8R46okTSAWVK7f_l8UcPnXo_w-FILCRPDlGPcRKa4OQIvYyi184tYBnZIhrbemGrri1tbapoCp1bh_bbuk9_G43C69KX_joaNU1VZmYFhsrUefTirG8ga_0JOihM5eF0G_vo_f7ubfw4mDw_PI1Hk0HGJWnDzVIZp6k0xgBnBREgucoJ5FxgDpyIUNCYcCaTXKZEZcIUUJBCMolVLFkfXW36Ns5-deBbPS99BlVlarCd11RwLChRfIVe7qAz27kwTKBiTmPMwjeButhSXTqHXDeunBu31L-7CoDaAFmY1TsodFa26x20zpSVJlivnNFrZ_TKGb11JkjpjvS3-7-i842oBIA_QcIFEZyzH_FHl2g |
CODEN | ITNNAL |
CitedBy_id | crossref_primary_10_1016_j_apt_2024_104761 crossref_primary_10_1109_TIM_2023_3328685 crossref_primary_10_1007_s00170_024_14689_z crossref_primary_10_1111_exsy_13539 crossref_primary_10_1016_j_eswa_2024_126208 crossref_primary_10_1109_JSEN_2022_3211874 crossref_primary_10_1007_s00521_022_07313_2 crossref_primary_10_1109_TSG_2024_3355805 crossref_primary_10_1016_j_dsp_2023_104205 crossref_primary_10_1080_10106049_2024_2375585 crossref_primary_10_1109_TFUZZ_2024_3388091 crossref_primary_10_51300_jidm_2022_58 crossref_primary_10_1371_journal_pone_0317999 crossref_primary_10_3390_biomedicines12071394 crossref_primary_10_1016_j_enganabound_2024_105826 crossref_primary_10_1016_j_jclepro_2024_144251 crossref_primary_10_1016_j_apenergy_2024_122821 crossref_primary_10_1016_j_eswa_2023_120624 crossref_primary_10_1007_s11760_024_03696_y crossref_primary_10_1109_JSTARS_2022_3155665 crossref_primary_10_1140_epjds_s13688_024_00502_0 crossref_primary_10_3390_f14091887 crossref_primary_10_1088_1361_6501_ace3e7 crossref_primary_10_3390_en17215417 crossref_primary_10_1002_for_3194 crossref_primary_10_1007_s10479_024_05902_z crossref_primary_10_1016_j_eswa_2024_123167 crossref_primary_10_1109_OJSP_2023_3344079 crossref_primary_10_1109_TII_2023_3269774 crossref_primary_10_1109_ACCESS_2023_3300034 crossref_primary_10_1109_OJCOMS_2024_3472094 crossref_primary_10_3390_met13061039 crossref_primary_10_1109_ACCESS_2022_3231446 crossref_primary_10_3390_electronics13071257 crossref_primary_10_35234_fumbd_1323422 crossref_primary_10_1063_5_0230525 crossref_primary_10_3390_jimaging11030091 crossref_primary_10_2118_221461_PA crossref_primary_10_1016_j_aquaculture_2024_741697 crossref_primary_10_1016_j_cja_2025_103466 crossref_primary_10_1142_S2737416524400052 crossref_primary_10_1109_LSP_2023_3346280 crossref_primary_10_2478_amns_2024_1542 crossref_primary_10_3390_su15129785 crossref_primary_10_1109_ACCESS_2024_3376441 crossref_primary_10_3390_pr12061075 crossref_primary_10_1016_j_bbe_2022_07_003 crossref_primary_10_1109_TVCG_2022_3165347 crossref_primary_10_3390_fi16060179 crossref_primary_10_1007_s11042_023_17457_5 crossref_primary_10_1016_j_frl_2023_104843 crossref_primary_10_1016_j_saa_2023_122617 crossref_primary_10_17721_2519_481X_2024_82_03 crossref_primary_10_3390_ani14010159 crossref_primary_10_1007_s11837_025_07278_2 crossref_primary_10_1186_s12938_023_01164_1 crossref_primary_10_3390_electronics13163271 crossref_primary_10_3390_pr12112534 crossref_primary_10_1109_ACCESS_2024_3429073 crossref_primary_10_1007_s10845_024_02402_6 crossref_primary_10_1016_j_combustflame_2025_113981 crossref_primary_10_3390_condmat9040046 crossref_primary_10_1109_TITS_2024_3422039 crossref_primary_10_3390_technologies12090152 crossref_primary_10_21597_jist_1223457 crossref_primary_10_1088_1402_4896_ad85aa crossref_primary_10_5194_amt_17_7109_2024 crossref_primary_10_1016_j_sysarc_2024_103186 crossref_primary_10_1109_TASE_2023_3309905 crossref_primary_10_3390_rs16183391 crossref_primary_10_3390_technologies12090157 crossref_primary_10_1109_TNNLS_2024_3357515 crossref_primary_10_1007_s41060_024_00652_4 crossref_primary_10_1109_JSEN_2024_3467162 crossref_primary_10_1016_j_fuel_2024_132273 crossref_primary_10_1016_j_ymssp_2023_111091 crossref_primary_10_1002_adfm_202420045 crossref_primary_10_1109_TLT_2024_3405966 crossref_primary_10_1016_j_apenergy_2025_125365 crossref_primary_10_3390_electronics13071236 crossref_primary_10_1016_j_aei_2025_103202 crossref_primary_10_1021_acs_jpclett_4c02129 crossref_primary_10_1016_j_atech_2024_100568 crossref_primary_10_1016_j_engappai_2024_109803 crossref_primary_10_1016_j_compstruct_2024_118727 crossref_primary_10_1007_s11042_023_17895_1 crossref_primary_10_3390_electronics13224514 crossref_primary_10_1109_TGRS_2025_3525582 crossref_primary_10_1016_j_optcom_2025_131702 crossref_primary_10_1109_ACCESS_2024_3491655 crossref_primary_10_3758_s13428_023_02335_7 crossref_primary_10_3390_math11183898 crossref_primary_10_1109_LAWP_2024_3390201 crossref_primary_10_3390_electronics12244911 crossref_primary_10_3390_s24020411 crossref_primary_10_1109_JIOT_2024_3358418 crossref_primary_10_3390_rs16050839 crossref_primary_10_1111_exsy_13736 crossref_primary_10_1007_s10570_023_05108_9 crossref_primary_10_1016_j_cnsns_2024_107911 crossref_primary_10_1109_TAI_2023_3322394 crossref_primary_10_3390_s24030899 crossref_primary_10_1016_j_isprsjprs_2023_10_014 crossref_primary_10_1109_TPAMI_2024_3376710 crossref_primary_10_3390_w16060813 crossref_primary_10_1016_j_jmsy_2024_12_005 crossref_primary_10_3390_axioms12121095 crossref_primary_10_3390_batteries10030099 crossref_primary_10_1016_j_cmpb_2025_108724 crossref_primary_10_1016_j_pmcj_2023_101874 crossref_primary_10_1073_pnas_2211406119 crossref_primary_10_31763_ijrcs_v2i4_888 crossref_primary_10_1016_j_compbiolchem_2025_108417 crossref_primary_10_1109_ACCESS_2024_3368854 crossref_primary_10_1109_JSEN_2024_3471675 crossref_primary_10_1016_j_nanoen_2024_109327 crossref_primary_10_1186_s13640_023_00613_0 crossref_primary_10_3390_s21237852 crossref_primary_10_1007_s41939_024_00542_z crossref_primary_10_3390_s23187730 crossref_primary_10_1016_j_eswa_2025_126535 crossref_primary_10_61189_663074tcakcn crossref_primary_10_35377_saucis___1495856 crossref_primary_10_1109_JSTARS_2025_3543531 crossref_primary_10_3390_educsci13020194 crossref_primary_10_1049_cmu2_12784 crossref_primary_10_26634_jmat_12_1_19398 crossref_primary_10_1109_JLT_2024_3445641 crossref_primary_10_1007_s12596_023_01518_x crossref_primary_10_1109_JSTARS_2025_3528111 crossref_primary_10_1016_j_cmpb_2024_108452 crossref_primary_10_1109_ACCESS_2024_3467996 crossref_primary_10_5194_os_20_689_2024 crossref_primary_10_3233_IDT_240543 crossref_primary_10_1016_j_displa_2023_102464 crossref_primary_10_3390_app142210501 crossref_primary_10_1038_s41598_023_45936_0 crossref_primary_10_1016_j_jechem_2024_03_013 crossref_primary_10_3390_e25060909 crossref_primary_10_1016_j_foodcont_2024_110966 crossref_primary_10_1109_TMM_2023_3289765 crossref_primary_10_1038_s41467_024_54178_1 crossref_primary_10_3390_electronics12092138 crossref_primary_10_1007_s40815_023_01544_8 crossref_primary_10_1515_nanoph_2023_0527 crossref_primary_10_1016_j_envres_2024_120135 crossref_primary_10_3390_a15120466 crossref_primary_10_1007_s00521_023_08490_4 crossref_primary_10_1109_JAS_2023_124170 crossref_primary_10_3389_fpls_2024_1501043 crossref_primary_10_1016_j_aei_2025_103237 crossref_primary_10_3390_s23115272 crossref_primary_10_1016_j_engappai_2023_107514 crossref_primary_10_3390_s24030877 crossref_primary_10_3390_electronics13163233 crossref_primary_10_2478_amns_2023_2_00138 crossref_primary_10_1109_TII_2023_3253188 crossref_primary_10_29109_gujsc_1472209 crossref_primary_10_1016_j_patrec_2024_11_016 crossref_primary_10_1109_TII_2023_3253187 crossref_primary_10_1016_j_istruc_2024_107478 crossref_primary_10_3390_w16081135 crossref_primary_10_1016_j_trc_2024_104525 crossref_primary_10_4018_JOEUC_342092 crossref_primary_10_1002_dac_70023 crossref_primary_10_1007_s11219_025_09714_7 crossref_primary_10_1109_ACCESS_2024_3401744 crossref_primary_10_3390_s24216899 crossref_primary_10_4018_IJDWM_334024 crossref_primary_10_1016_j_tws_2024_112860 crossref_primary_10_3390_medicina60060972 crossref_primary_10_1007_s40747_023_01320_z crossref_primary_10_1109_TSG_2024_3458989 crossref_primary_10_3390_w16233503 crossref_primary_10_1038_s41598_024_65693_y crossref_primary_10_34133_plantphenomics_0199 crossref_primary_10_1109_JSTARS_2023_3348269 crossref_primary_10_3390_batteries10030071 crossref_primary_10_1007_s42979_024_03192_7 crossref_primary_10_1039_D4DD00013G crossref_primary_10_3390_eng5040172 crossref_primary_10_1016_j_infrared_2024_105402 crossref_primary_10_1364_OE_516195 crossref_primary_10_3390_geomatics3040027 crossref_primary_10_1371_journal_pone_0302664 crossref_primary_10_51865_JPGT_2024_01_12 crossref_primary_10_1007_s40747_023_01279_x crossref_primary_10_3390_app13085152 crossref_primary_10_21776_ub_jtsl_2025_012_1_2 crossref_primary_10_1109_TGRS_2024_3351636 crossref_primary_10_1109_TSE_2024_3509975 crossref_primary_10_1109_ACCESS_2024_3446613 crossref_primary_10_1364_OL_530189 crossref_primary_10_1063_5_0249560 crossref_primary_10_1109_JSEN_2024_3424832 crossref_primary_10_3390_electronics13091702 crossref_primary_10_1007_s10462_023_10630_0 crossref_primary_10_1016_j_jhydrol_2025_133086 crossref_primary_10_1016_j_tre_2023_103387 crossref_primary_10_1016_j_bpr_2024_100158 crossref_primary_10_1186_s12885_023_10598_8 crossref_primary_10_3934_math_2024156 crossref_primary_10_1007_s10236_023_01591_7 crossref_primary_10_3390_cancers17040700 crossref_primary_10_1007_s10589_024_00590_8 crossref_primary_10_3233_JIFS_212570 crossref_primary_10_1007_s44244_023_00008_0 crossref_primary_10_1109_ACCESS_2024_3379530 crossref_primary_10_3390_make6010024 crossref_primary_10_3390_molecules28020809 crossref_primary_10_1109_JIOT_2024_3430297 crossref_primary_10_1002_itl2_436 crossref_primary_10_1109_OJEMB_2024_3397208 crossref_primary_10_20295_2413_2527_2024_137_26_31 crossref_primary_10_1109_JSEN_2024_3507081 crossref_primary_10_1145_3695998 crossref_primary_10_1109_JSEN_2024_3492176 crossref_primary_10_3390_s25051401 crossref_primary_10_1016_j_jtbi_2024_111987 crossref_primary_10_3390_math12162529 crossref_primary_10_1109_ACCESS_2023_3280992 crossref_primary_10_1007_s11063_025_11728_y crossref_primary_10_1016_j_tifs_2025_104972 crossref_primary_10_1002_ese3_1405 crossref_primary_10_2514_1_I011445 crossref_primary_10_1016_j_jds_2023_08_002 crossref_primary_10_1007_s10462_024_10929_6 crossref_primary_10_1007_s10055_024_01044_6 crossref_primary_10_3390_medicina60091493 crossref_primary_10_1007_s42484_024_00183_y crossref_primary_10_3390_fi17030107 crossref_primary_10_1016_j_eswa_2025_126579 crossref_primary_10_3390_math12020296 crossref_primary_10_1177_20552076241272632 crossref_primary_10_3390_app15052574 crossref_primary_10_1007_s00521_024_10933_5 crossref_primary_10_4103_jmp_jmp_140_24 crossref_primary_10_3390_computers12080151 crossref_primary_10_3390_geosciences13120384 crossref_primary_10_1007_s00006_024_01350_x crossref_primary_10_1016_j_chip_2025_100132 crossref_primary_10_3390_biomedicines13020284 crossref_primary_10_1109_JSEN_2024_3512654 crossref_primary_10_1007_s10489_024_06125_2 crossref_primary_10_1007_s44196_025_00774_y crossref_primary_10_1016_j_asoc_2024_111512 crossref_primary_10_1016_j_ijepes_2024_110111 crossref_primary_10_3390_s23052658 crossref_primary_10_1109_ACCESS_2024_3450968 crossref_primary_10_3390_app14188283 crossref_primary_10_1002_cyto_a_24829 crossref_primary_10_1016_j_asoc_2023_110607 crossref_primary_10_1016_j_flowmeasinst_2024_102730 crossref_primary_10_59681_2175_4411_v16_iEspecial_2024_1279 crossref_primary_10_3390_app13063958 crossref_primary_10_1016_j_heliyon_2024_e39038 crossref_primary_10_1109_ACCESS_2023_3329565 crossref_primary_10_1364_OPTCON_485728 crossref_primary_10_1186_s12889_025_21618_6 crossref_primary_10_3390_app14135542 crossref_primary_10_3934_dcdss_2024210 crossref_primary_10_3390_su16156503 crossref_primary_10_1002_cpe_8056 crossref_primary_10_3390_diagnostics13243673 crossref_primary_10_1007_s44230_023_00041_3 crossref_primary_10_1093_nsr_nwad298 crossref_primary_10_1088_1742_6596_2885_1_012013 crossref_primary_10_1016_j_procs_2024_02_105 crossref_primary_10_1109_JSEN_2023_3260360 crossref_primary_10_3390_agriculture13091718 crossref_primary_10_1016_j_measurement_2024_116231 crossref_primary_10_1016_j_icheatmasstransfer_2023_107210 crossref_primary_10_54097_hset_v34i_5505 crossref_primary_10_3390_bioengineering10060690 crossref_primary_10_1007_s42421_023_00087_6 crossref_primary_10_1016_j_entcom_2024_100799 crossref_primary_10_1145_3656165 crossref_primary_10_3390_fractalfract6120706 crossref_primary_10_3390_land13122024 crossref_primary_10_1080_23249935_2024_2407076 crossref_primary_10_1007_s00521_022_07744_x crossref_primary_10_1088_1674_1056_ad95f1 crossref_primary_10_3390_app14188265 crossref_primary_10_3390_app15020741 crossref_primary_10_1016_j_jmapro_2024_09_067 crossref_primary_10_1093_petrology_egae036 crossref_primary_10_3390_app13095544 crossref_primary_10_1177_14759217241255042 crossref_primary_10_3389_frai_2024_1441934 crossref_primary_10_1016_j_engappai_2025_110494 crossref_primary_10_3390_app15062984 crossref_primary_10_1007_s00521_023_09017_7 crossref_primary_10_3390_math11071624 crossref_primary_10_1088_2632_2153_ad88d5 crossref_primary_10_1109_TNNLS_2023_3323131 crossref_primary_10_1016_j_patcog_2024_110334 crossref_primary_10_3390_computers13090237 crossref_primary_10_1016_j_bspc_2024_107186 crossref_primary_10_1186_s13634_025_01213_y crossref_primary_10_3390_computers13090239 crossref_primary_10_1007_s00521_024_10802_1 crossref_primary_10_3390_w15213864 crossref_primary_10_3389_feduc_2024_1453327 crossref_primary_10_1002_dac_5415 crossref_primary_10_3389_fphy_2024_1362690 crossref_primary_10_3390_computers13090230 crossref_primary_10_1016_j_jpowsour_2024_235674 crossref_primary_10_1016_j_jvcir_2024_104317 crossref_primary_10_1016_j_tsep_2025_103265 crossref_primary_10_1109_TNNLS_2023_3326648 crossref_primary_10_1186_s13075_022_02914_7 crossref_primary_10_1021_acs_jcim_4c01599 crossref_primary_10_3390_heritage8010012 crossref_primary_10_3390_rs15082183 crossref_primary_10_1088_1361_6587_ad6709 crossref_primary_10_3390_ma17010029 crossref_primary_10_3390_rs15215232 crossref_primary_10_1016_j_wasman_2024_08_015 crossref_primary_10_1109_ACCESS_2024_3484943 crossref_primary_10_3847_1538_4365_ad29ef crossref_primary_10_56294_dm2023153 crossref_primary_10_1016_j_apenergy_2024_125214 crossref_primary_10_1016_j_mineng_2024_108867 crossref_primary_10_3233_JIFS_235863 crossref_primary_10_1016_j_jksuci_2023_101904 crossref_primary_10_3390_app14083243 crossref_primary_10_3390_w16131771 crossref_primary_10_1109_TGRS_2024_3439333 crossref_primary_10_3390_app13158638 crossref_primary_10_1109_TNNLS_2023_3243666 crossref_primary_10_1038_s41598_024_61016_3 crossref_primary_10_1016_j_scitotenv_2024_176301 crossref_primary_10_1007_s10845_024_02372_9 crossref_primary_10_1007_s40747_023_01044_0 crossref_primary_10_1038_s41598_024_55864_2 crossref_primary_10_1016_j_solener_2024_113031 crossref_primary_10_32604_cmc_2024_057859 crossref_primary_10_1109_ACCESS_2024_3469537 crossref_primary_10_1109_ACCESS_2023_3316019 crossref_primary_10_3390_make6020045 crossref_primary_10_1109_TGRS_2023_3345645 crossref_primary_10_1007_s00034_024_02977_8 crossref_primary_10_1016_j_inffus_2023_01_015 crossref_primary_10_1587_transinf_2022EDP7155 crossref_primary_10_2478_amns_2024_2435 crossref_primary_10_3390_s23156821 crossref_primary_10_1016_j_saa_2024_124979 crossref_primary_10_1109_TCSI_2024_3395842 crossref_primary_10_1016_j_jprocont_2023_103034 crossref_primary_10_1109_ACCESS_2022_3166910 crossref_primary_10_1177_00037028241226732 crossref_primary_10_1088_1361_6501_ada39a crossref_primary_10_1007_s12206_024_1018_8 crossref_primary_10_1109_OJSP_2024_3362695 crossref_primary_10_3934_nhm_2023070 crossref_primary_10_3390_s23177514 crossref_primary_10_1016_j_commatsci_2024_113546 crossref_primary_10_1007_s41060_024_00547_4 crossref_primary_10_1016_j_cie_2024_110099 crossref_primary_10_1016_j_euromechsol_2025_105589 crossref_primary_10_1063_5_0257439 crossref_primary_10_1038_s41598_024_69890_7 crossref_primary_10_1016_j_fsidi_2024_301764 crossref_primary_10_1109_TNSM_2023_3251282 crossref_primary_10_3390_en17153747 crossref_primary_10_1016_j_ejrh_2024_102085 crossref_primary_10_3390_rs15030765 crossref_primary_10_1016_j_inffus_2023_101953 crossref_primary_10_1088_1742_6596_2261_1_012016 crossref_primary_10_1016_j_ijcce_2025_01_004 crossref_primary_10_7717_peerj_cs_1696 crossref_primary_10_1007_s10489_022_04414_2 crossref_primary_10_1016_j_ress_2024_110422 crossref_primary_10_3847_1538_3881_ad10ab crossref_primary_10_3390_app142310770 crossref_primary_10_1016_j_engappai_2024_109183 crossref_primary_10_1109_TMC_2024_3381952 crossref_primary_10_4108_eetiot_v7i28_445 crossref_primary_10_1109_ACCESS_2023_3268212 crossref_primary_10_1021_acs_jpclett_4c01911 crossref_primary_10_59313_jsr_a_1335276 crossref_primary_10_1007_s12008_024_01858_3 crossref_primary_10_1016_j_energy_2024_130866 crossref_primary_10_1016_j_eswa_2024_124913 crossref_primary_10_1109_JSAC_2024_3414582 crossref_primary_10_1111_jcmm_70220 crossref_primary_10_1109_TMC_2024_3461784 crossref_primary_10_1038_s41598_024_81181_9 crossref_primary_10_3390_s22249870 crossref_primary_10_1080_1475939X_2024_2402274 crossref_primary_10_1007_s10278_023_00825_w crossref_primary_10_1016_j_jmsy_2025_01_007 crossref_primary_10_1109_ACCESS_2023_3236402 crossref_primary_10_1109_ACCESS_2024_3468460 crossref_primary_10_1109_TIM_2023_3347799 crossref_primary_10_1007_s40808_023_01899_9 crossref_primary_10_1016_j_patter_2024_101046 crossref_primary_10_1111_1750_3841_17259 crossref_primary_10_3390_land13070915 crossref_primary_10_3390_electronics13122317 crossref_primary_10_1016_j_measurement_2024_115331 crossref_primary_10_1109_TAI_2024_3377147 crossref_primary_10_3390_rs15112776 crossref_primary_10_1016_j_engappai_2025_110217 crossref_primary_10_1016_j_engfailanal_2024_109028 crossref_primary_10_1016_j_tre_2025_104072 crossref_primary_10_1007_s10278_023_00947_1 crossref_primary_10_1063_5_0189564 crossref_primary_10_1007_s10489_023_04598_1 crossref_primary_10_1016_j_inffus_2025_102994 crossref_primary_10_1016_j_knosys_2024_111623 crossref_primary_10_3390_s23249795 crossref_primary_10_1080_03091902_2025_2462310 crossref_primary_10_1109_TGRS_2023_3306891 crossref_primary_10_1007_s11666_025_01965_x crossref_primary_10_1002_ima_70052 crossref_primary_10_1109_JIOT_2023_3347665 crossref_primary_10_1016_j_aej_2025_01_077 crossref_primary_10_1016_j_datak_2025_102417 crossref_primary_10_1049_cdt2_6214436 crossref_primary_10_1155_2022_2836486 crossref_primary_10_1016_j_asoc_2023_110794 crossref_primary_10_1177_14727978251318813 crossref_primary_10_3934_era_2023022 crossref_primary_10_3390_info15090557 crossref_primary_10_1002_ima_70059 crossref_primary_10_1109_TKDE_2023_3277839 crossref_primary_10_3390_buildings14072014 crossref_primary_10_3390_jmse12101862 crossref_primary_10_1109_ACCESS_2024_3406736 crossref_primary_10_1109_JBHI_2024_3519600 crossref_primary_10_1109_TCSVT_2024_3424776 crossref_primary_10_3390_machines11020297 crossref_primary_10_3390_app15010433 crossref_primary_10_1109_TASLP_2023_3288411 crossref_primary_10_1186_s12911_024_02600_5 crossref_primary_10_7717_peerj_cs_2362 crossref_primary_10_1007_s10489_024_06019_3 crossref_primary_10_1016_j_infrared_2023_104672 crossref_primary_10_3390_rs14236056 crossref_primary_10_3389_fpls_2024_1361309 crossref_primary_10_1109_TIM_2024_3372211 crossref_primary_10_1016_j_future_2024_04_047 crossref_primary_10_1145_3551486 crossref_primary_10_1109_ACCESS_2024_3429623 crossref_primary_10_1007_s10772_024_10134_4 crossref_primary_10_1016_j_cose_2024_103992 crossref_primary_10_1039_D4TC02884H crossref_primary_10_1016_j_igd_2024_100195 crossref_primary_10_1109_TSTE_2024_3459415 crossref_primary_10_1021_acsomega_4c11342 crossref_primary_10_3390_ijgi12070264 crossref_primary_10_1007_s11831_024_10216_1 crossref_primary_10_3934_era_2023251 crossref_primary_10_1038_s41597_024_03766_3 crossref_primary_10_1109_JSTARS_2024_3372138 crossref_primary_10_1109_TBDATA_2024_3378100 crossref_primary_10_3390_en17205191 crossref_primary_10_7717_peerj_cs_2594 crossref_primary_10_3390_electronics13020460 crossref_primary_10_1016_j_ymeth_2024_05_013 crossref_primary_10_1177_14727978251318805 crossref_primary_10_1016_j_eng_2023_11_020 crossref_primary_10_3390_ijgi12060245 crossref_primary_10_3280_ria2_2023oa15509 crossref_primary_10_3390_s24103215 crossref_primary_10_1007_s00530_024_01649_6 crossref_primary_10_1007_s11760_024_03526_1 crossref_primary_10_3390_sym17030410 crossref_primary_10_1007_s00521_023_08598_7 crossref_primary_10_3390_app15020699 crossref_primary_10_3390_fi16010030 crossref_primary_10_1063_5_0153106 crossref_primary_10_1109_TBDATA_2023_3327220 crossref_primary_10_1016_j_engappai_2024_108173 crossref_primary_10_1016_j_neunet_2024_106999 crossref_primary_10_1080_10589759_2024_2429691 crossref_primary_10_1016_j_ins_2024_121675 crossref_primary_10_1109_TNNLS_2023_3348657 crossref_primary_10_1007_s10766_025_00791_6 crossref_primary_10_1016_j_eswa_2023_122103 crossref_primary_10_1016_j_endeavour_2024_100967 crossref_primary_10_1109_ACCESS_2024_3472466 crossref_primary_10_1007_s00521_021_05952_5 crossref_primary_10_1038_s43856_024_00541_8 crossref_primary_10_1016_j_knosys_2024_112708 crossref_primary_10_3390_electronics13173500 crossref_primary_10_3390_sym17030427 crossref_primary_10_1007_s00366_024_02006_x crossref_primary_10_1109_MNET_2024_3401159 crossref_primary_10_3390_healthcare11202760 crossref_primary_10_3390_s24082484 crossref_primary_10_1016_j_knosys_2023_111315 crossref_primary_10_1021_acs_est_4c06093 crossref_primary_10_1016_j_buildenv_2023_110917 crossref_primary_10_3389_fnins_2024_1379495 crossref_primary_10_1002_admt_202401029 crossref_primary_10_1080_26889277_2024_2427401 crossref_primary_10_1109_ACCESS_2023_3336946 crossref_primary_10_1109_ACCESS_2024_3428553 crossref_primary_10_3390_electronics13214273 crossref_primary_10_1109_JLT_2023_3332484 crossref_primary_10_3390_app142210127 crossref_primary_10_1007_s12145_025_01819_8 crossref_primary_10_1109_ACCESS_2025_3545597 crossref_primary_10_1109_TGRS_2023_3339119 crossref_primary_10_32604_cmc_2023_044994 crossref_primary_10_1007_s13721_024_00450_9 crossref_primary_10_1016_j_ins_2024_121443 crossref_primary_10_1360_SST_2024_0181 crossref_primary_10_2478_jsiot_2024_0007 crossref_primary_10_3390_s24061844 crossref_primary_10_26634_jaim_2_1_20225 crossref_primary_10_1186_s41747_024_00428_2 crossref_primary_10_1016_j_engappai_2025_110535 crossref_primary_10_1088_1367_2630_acee19 crossref_primary_10_1016_j_patcog_2024_110853 crossref_primary_10_1109_TIM_2023_3308235 crossref_primary_10_1016_j_soh_2023_100045 crossref_primary_10_3390_rs16234367 crossref_primary_10_1016_j_cie_2024_110597 crossref_primary_10_1017_hpl_2024_60 crossref_primary_10_3390_s22208032 crossref_primary_10_1016_j_cosrev_2024_100689 crossref_primary_10_3390_ijgi13100341 crossref_primary_10_3390_rs15143539 crossref_primary_10_1007_s10661_024_12443_2 crossref_primary_10_1109_TASE_2024_3438190 crossref_primary_10_3390_rel15020234 crossref_primary_10_1021_acs_analchem_4c04786 crossref_primary_10_1109_ACCESS_2024_3386969 crossref_primary_10_1109_TGRS_2023_3321840 crossref_primary_10_1109_TGRS_2023_3303338 crossref_primary_10_25082_RIMA_2023_01_002 crossref_primary_10_3390_a16120542 crossref_primary_10_1007_s10278_024_01086_x crossref_primary_10_1109_TGRS_2024_3516840 crossref_primary_10_3390_bioengineering10091015 crossref_primary_10_1007_s12145_023_01210_5 crossref_primary_10_1186_s42400_024_00306_9 crossref_primary_10_1016_j_engstruct_2024_118431 crossref_primary_10_3390_electronics13183728 crossref_primary_10_34133_research_0176 crossref_primary_10_3390_ijgi13110378 crossref_primary_10_1115_1_4063954 crossref_primary_10_1109_JSTARS_2024_3396374 crossref_primary_10_3390_s25051330 crossref_primary_10_1021_acs_jcim_3c00688 crossref_primary_10_1080_10589759_2024_2395363 crossref_primary_10_3390_s23146507 crossref_primary_10_3390_drones8070320 crossref_primary_10_3390_telecom4030025 crossref_primary_10_1093_mnras_stad1842 crossref_primary_10_1016_j_knosys_2024_111446 crossref_primary_10_1007_s10796_024_10507_9 crossref_primary_10_1111_ibi_13357 crossref_primary_10_1007_s11042_023_15981_y crossref_primary_10_1016_j_microrel_2023_115188 crossref_primary_10_3390_rs16203880 crossref_primary_10_3390_virtualworlds3040025 crossref_primary_10_1109_ACCESS_2023_3307138 crossref_primary_10_1016_j_jlumin_2022_119637 crossref_primary_10_3390_bios12070494 crossref_primary_10_1007_s10489_023_04783_2 crossref_primary_10_1109_TCC_2024_3350561 crossref_primary_10_3390_ani13121957 crossref_primary_10_3934_mbe_2023368 crossref_primary_10_1016_j_mtcomm_2024_108834 crossref_primary_10_1109_ACCESS_2025_3544450 crossref_primary_10_3390_app13095634 crossref_primary_10_1109_LWC_2023_3275204 crossref_primary_10_1109_ACCESS_2024_3412192 crossref_primary_10_3390_electronics13112117 crossref_primary_10_1016_j_culher_2024_07_012 crossref_primary_10_3847_1538_4365_ada8ab crossref_primary_10_1007_s10846_023_01856_9 crossref_primary_10_3390_molecules28135169 crossref_primary_10_1016_j_snb_2024_136866 crossref_primary_10_1016_j_compstruc_2024_107592 crossref_primary_10_1016_j_jas_2024_106053 crossref_primary_10_3390_machines11070752 crossref_primary_10_3390_make5040075 crossref_primary_10_1016_j_bspc_2024_106128 crossref_primary_10_1162_neco_a_01744 crossref_primary_10_17798_bitlisfen_1214468 crossref_primary_10_1007_s00521_023_09092_w crossref_primary_10_1016_j_eswa_2024_125729 crossref_primary_10_26599_TST_2024_9010047 crossref_primary_10_1088_1361_6501_ad480c crossref_primary_10_5334_jcaa_163 crossref_primary_10_1007_s10462_024_10855_7 crossref_primary_10_1080_03081079_2024_2380917 crossref_primary_10_1080_17415977_2021_2009822 crossref_primary_10_1016_j_jksuci_2024_102009 crossref_primary_10_1109_ACCESS_2024_3388911 crossref_primary_10_1109_ACCESS_2025_3525721 crossref_primary_10_1016_j_aquatox_2024_107126 crossref_primary_10_1109_ACCESS_2024_3406748 crossref_primary_10_1007_s11831_023_10000_7 crossref_primary_10_1007_s44196_024_00431_w crossref_primary_10_3390_bioengineering11090936 crossref_primary_10_1016_j_anucene_2024_111151 crossref_primary_10_1109_TGRS_2024_3492008 crossref_primary_10_1109_TKDE_2024_3422484 crossref_primary_10_1016_j_surfin_2024_104854 crossref_primary_10_1093_ehjdh_ztae067 crossref_primary_10_32604_csse_2023_037761 crossref_primary_10_1039_D3TC02980H crossref_primary_10_1177_00368504221137461 crossref_primary_10_1115_1_4066575 crossref_primary_10_3390_app142210540 crossref_primary_10_1038_s41598_023_49337_1 crossref_primary_10_1016_j_envsoft_2024_106307 crossref_primary_10_3389_fnins_2024_1353257 crossref_primary_10_1057_s41599_024_04025_x crossref_primary_10_1007_s13246_024_01420_1 crossref_primary_10_1080_15376494_2023_2195417 crossref_primary_10_1109_ACCESS_2024_3381618 crossref_primary_10_1002_widm_1519 crossref_primary_10_1088_2516_1083_ad7220 crossref_primary_10_1109_ACCESS_2024_3451373 crossref_primary_10_3390_electronics13112191 crossref_primary_10_1007_s10207_024_00934_9 crossref_primary_10_1007_s10462_024_11093_7 crossref_primary_10_3390_ani14203017 crossref_primary_10_3390_forecast6030039 crossref_primary_10_1002_spe_3381 crossref_primary_10_1109_JSSC_2023_3318301 crossref_primary_10_1109_ACCESS_2024_3388490 crossref_primary_10_1109_ACCESS_2023_3258399 crossref_primary_10_1109_TR_2022_3148114 crossref_primary_10_1016_j_neunet_2024_106942 crossref_primary_10_1007_s11760_023_02934_z crossref_primary_10_1016_j_compbiomed_2023_107215 crossref_primary_10_1016_j_pacs_2025_100695 crossref_primary_10_3390_universe10050210 crossref_primary_10_1002_eng2_12652 crossref_primary_10_1038_s41598_023_45995_3 crossref_primary_10_1051_bioconf_202411701021 crossref_primary_10_1007_s10922_023_09790_9 crossref_primary_10_3390_app15042097 crossref_primary_10_1016_j_compag_2025_109940 crossref_primary_10_1016_j_microc_2025_112790 crossref_primary_10_1186_s12544_023_00600_6 crossref_primary_10_3390_e26080648 crossref_primary_10_3390_rs15184460 crossref_primary_10_1021_acsagscitech_4c00122 crossref_primary_10_3390_s23063340 crossref_primary_10_61186_seai_2409_1005 crossref_primary_10_1016_j_conengprac_2024_106020 crossref_primary_10_1016_j_patcog_2023_109765 crossref_primary_10_1088_1361_6501_ad8811 crossref_primary_10_1016_j_jag_2024_103781 crossref_primary_10_1038_s41598_025_87924_6 crossref_primary_10_1016_j_geoderma_2025_117222 crossref_primary_10_3390_math11061279 crossref_primary_10_3389_frai_2024_1479855 crossref_primary_10_1093_jnen_nlae120 crossref_primary_10_1109_TGRS_2024_3388426 crossref_primary_10_2478_amns_2023_2_00176 crossref_primary_10_1007_s10844_023_00792_2 crossref_primary_10_1177_14759217241240129 crossref_primary_10_1016_j_compag_2023_108263 crossref_primary_10_3390_rs16060979 crossref_primary_10_1109_TGRS_2023_3283508 crossref_primary_10_1016_j_knosys_2024_112787 crossref_primary_10_1088_1361_6501_ace5c7 crossref_primary_10_1209_0295_5075_acc88c crossref_primary_10_1109_ACCESS_2023_3244620 crossref_primary_10_1007_s10032_023_00436_9 crossref_primary_10_1109_TIV_2023_3332594 crossref_primary_10_1109_TVT_2024_3422680 crossref_primary_10_1007_s42979_024_02878_2 crossref_primary_10_1109_TCSII_2024_3395054 crossref_primary_10_1364_JOSAB_544692 crossref_primary_10_3390_ncrna9010010 crossref_primary_10_3390_f15122147 crossref_primary_10_5536_KJPS_2024_51_4_171 crossref_primary_10_1016_j_procs_2024_09_597 crossref_primary_10_3390_rs16203837 crossref_primary_10_26634_jse_18_1_20121 crossref_primary_10_3390_s23042032 crossref_primary_10_3390_data10040041 crossref_primary_10_1007_s00371_022_02730_9 crossref_primary_10_1016_j_neucom_2024_128216 crossref_primary_10_1007_s42979_024_02976_1 crossref_primary_10_3390_app14125298 crossref_primary_10_3390_s23136134 crossref_primary_10_3390_electronics13244988 crossref_primary_10_1007_s41365_024_01606_y crossref_primary_10_1038_s41598_025_88277_w crossref_primary_10_3390_s24113421 crossref_primary_10_1109_ACCESS_2022_3177209 crossref_primary_10_1016_j_aej_2025_02_037 crossref_primary_10_1016_j_renene_2023_119389 crossref_primary_10_3390_s23167050 crossref_primary_10_1109_ACCESS_2024_3393893 crossref_primary_10_1109_JSEN_2024_3351144 crossref_primary_10_1016_j_inffus_2025_102951 crossref_primary_10_1007_s40843_024_2851_9 crossref_primary_10_1109_ACCESS_2024_3425056 crossref_primary_10_32604_cmc_2024_050435 crossref_primary_10_3390_foods13020235 crossref_primary_10_3390_app14010251 crossref_primary_10_1080_21680566_2024_2358211 crossref_primary_10_1103_PhysRevD_110_063531 crossref_primary_10_1016_j_jds_2023_10_019 crossref_primary_10_1109_TEVC_2023_3324852 crossref_primary_10_1111_1365_2478_13606 crossref_primary_10_1007_s40899_023_00820_7 crossref_primary_10_21597_jist_1501787 crossref_primary_10_1088_1361_6463_ad80a5 crossref_primary_10_1109_ACCESS_2024_3521497 crossref_primary_10_1007_s10462_025_11117_w crossref_primary_10_1109_TNNLS_2023_3310985 crossref_primary_10_1109_JSEN_2024_3515173 crossref_primary_10_1007_s42484_024_00166_z crossref_primary_10_29375_25392115_5054 crossref_primary_10_1007_s12530_025_09659_z crossref_primary_10_1016_j_bspc_2024_106306 crossref_primary_10_1016_j_softx_2024_101917 crossref_primary_10_3390_jrfm17110485 crossref_primary_10_1109_ACCESS_2022_3174197 crossref_primary_10_1142_S0218126624501202 crossref_primary_10_3390_s23218685 crossref_primary_10_1080_17452759_2024_2412198 crossref_primary_10_3390_logistics8030073 crossref_primary_10_1109_TIM_2024_3509532 crossref_primary_10_1007_s11042_024_19782_9 crossref_primary_10_3103_S1060992X2305003X crossref_primary_10_1016_j_metrad_2025_100134 crossref_primary_10_1109_TPWRS_2024_3382266 crossref_primary_10_3390_app15010246 crossref_primary_10_1080_13682199_2023_2172525 crossref_primary_10_1093_ehjdh_ztae092 crossref_primary_10_1142_S0218194024500190 crossref_primary_10_3390_electronics14050913 crossref_primary_10_1038_s41467_023_40192_2 crossref_primary_10_1016_j_inffus_2025_102937 crossref_primary_10_1140_epjp_s13360_025_06138_x crossref_primary_10_1016_j_ins_2023_119029 crossref_primary_10_1016_j_device_2024_100651 crossref_primary_10_3390_en18030677 crossref_primary_10_3390_electronics13050905 crossref_primary_10_3390_electronics12173541 crossref_primary_10_1007_s00500_023_09496_9 crossref_primary_10_1007_s11518_024_5610_3 crossref_primary_10_1007_s11554_024_01451_7 crossref_primary_10_32604_cmc_2024_055906 crossref_primary_10_1109_ACCESS_2024_3445911 crossref_primary_10_1142_S0218127424501062 crossref_primary_10_1021_acsomega_3c05350 crossref_primary_10_1109_TIFS_2023_3265535 crossref_primary_10_3390_batteries10120434 crossref_primary_10_1007_s12161_024_02654_1 crossref_primary_10_1016_j_apenergy_2024_124901 crossref_primary_10_1016_j_nanoen_2023_108418 crossref_primary_10_1287_trsc_2023_0434 crossref_primary_10_3390_s23104781 crossref_primary_10_3390_biomimetics8070557 crossref_primary_10_1016_j_ast_2025_110045 crossref_primary_10_1088_1402_4896_ad8d17 crossref_primary_10_1016_j_physd_2024_134490 crossref_primary_10_1016_j_sab_2023_106852 crossref_primary_10_1109_TCASAI_2024_3520905 crossref_primary_10_1109_TGRS_2024_3438942 crossref_primary_10_1016_j_inffus_2024_102660 crossref_primary_10_1002_jim4_17 crossref_primary_10_1016_j_compeleceng_2025_110087 crossref_primary_10_1016_j_petlm_2025_03_002 crossref_primary_10_1109_TNNLS_2023_3244172 crossref_primary_10_1021_acs_nanolett_4c03957 crossref_primary_10_1016_j_envres_2025_120822 crossref_primary_10_3389_fmicb_2024_1467113 crossref_primary_10_3390_s24092923 crossref_primary_10_3390_rs15235610 crossref_primary_10_3390_s25020441 crossref_primary_10_3389_fphys_2023_1113524 crossref_primary_10_1007_s41348_024_00973_3 crossref_primary_10_1109_ACCESS_2024_3360528 crossref_primary_10_1109_ACCESS_2024_3474212 crossref_primary_10_1016_j_imavis_2023_104894 crossref_primary_10_1016_j_procs_2025_02_176 crossref_primary_10_1093_dmfr_twaf001 crossref_primary_10_1039_D4TA07127A crossref_primary_10_1109_ACCESS_2024_3511492 crossref_primary_10_3390_diagnostics13040689 crossref_primary_10_1002_mp_17482 crossref_primary_10_1016_j_dental_2024_10_016 crossref_primary_10_3390_batteries10070220 crossref_primary_10_1016_j_jhydrol_2023_130320 crossref_primary_10_1093_molbev_msae223 crossref_primary_10_3390_s25010137 crossref_primary_10_1007_s11831_023_09925_w crossref_primary_10_1016_j_autcon_2024_105548 crossref_primary_10_1109_TETCI_2024_3377683 crossref_primary_10_1142_S0218126624502682 crossref_primary_10_1016_j_ecoinf_2025_103109 crossref_primary_10_1021_acsami_4c12758 crossref_primary_10_3390_f15081380 crossref_primary_10_3390_machines10010028 crossref_primary_10_1039_D4CP04185B crossref_primary_10_1016_j_apenergy_2023_121576 crossref_primary_10_1038_s41598_023_47624_5 crossref_primary_10_1007_s13369_022_07412_1 crossref_primary_10_1016_j_optlastec_2025_112761 crossref_primary_10_1007_s11760_024_03707_y crossref_primary_10_1109_JSEN_2024_3457686 crossref_primary_10_1007_s11571_025_10232_2 crossref_primary_10_3390_en17246296 crossref_primary_10_1016_j_rcim_2024_102888 crossref_primary_10_1016_j_soildyn_2025_109240 crossref_primary_10_3390_s23073642 crossref_primary_10_1007_s10489_023_04878_w crossref_primary_10_1039_D4AY02098G crossref_primary_10_1016_j_aap_2023_107307 crossref_primary_10_1002_adfm_202401887 crossref_primary_10_1088_1367_2630_ad6f3d crossref_primary_10_1109_TNSRE_2023_3342331 crossref_primary_10_1109_ACCESS_2025_3544923 crossref_primary_10_1007_s00371_023_02988_7 crossref_primary_10_1109_JPROC_2022_3155904 crossref_primary_10_3390_s23187667 crossref_primary_10_1145_3654925 crossref_primary_10_3390_forecast4040051 crossref_primary_10_1016_j_seares_2024_102538 crossref_primary_10_54097_gpy08650 crossref_primary_10_1103_PhysRevApplied_22_034047 crossref_primary_10_12677_SEA_2023_123043 crossref_primary_10_1039_D3CP04960D crossref_primary_10_1007_s40843_024_3122_7 crossref_primary_10_1109_TIM_2025_3540128 crossref_primary_10_1109_ACCESS_2024_3476140 crossref_primary_10_1002_mp_17266 crossref_primary_10_1007_s42452_023_05277_z crossref_primary_10_3390_s25061946 crossref_primary_10_1063_5_0218516 crossref_primary_10_1109_TCAD_2024_3394372 crossref_primary_10_1016_j_engappai_2024_108848 crossref_primary_10_3390_app13179676 crossref_primary_10_3389_fgene_2022_896884 crossref_primary_10_3390_s23115346 crossref_primary_10_3390_agronomy14091998 crossref_primary_10_1016_j_eswa_2024_124161 crossref_primary_10_5187_jast_2025_e4 crossref_primary_10_1021_acs_jmedchem_3c01611 crossref_primary_10_1002_mp_17493 crossref_primary_10_3390_horticulturae9101134 crossref_primary_10_3389_fpsyg_2023_1029808 crossref_primary_10_3390_app14031005 crossref_primary_10_1109_ACCESS_2023_3328768 crossref_primary_10_1016_j_engappai_2023_106355 crossref_primary_10_4018_JOEUC_347217 crossref_primary_10_1016_j_eja_2024_127477 crossref_primary_10_3389_fpls_2024_1414849 crossref_primary_10_1142_S0218127423501973 crossref_primary_10_3389_fmars_2024_1370786 crossref_primary_10_1002_jeo2_12025 crossref_primary_10_3390_app12188967 crossref_primary_10_1016_j_eswa_2023_120978 crossref_primary_10_1016_j_actatropica_2024_107277 crossref_primary_10_1109_JBHI_2022_3153902 crossref_primary_10_3390_iot5040043 crossref_primary_10_1007_s12065_022_00780_5 crossref_primary_10_1007_s10618_024_01059_2 crossref_primary_10_1016_j_jestch_2024_101764 crossref_primary_10_1016_j_egyr_2025_02_002 crossref_primary_10_3389_frai_2024_1424012 crossref_primary_10_1007_s11219_024_09697_x crossref_primary_10_1016_j_autcon_2024_105342 crossref_primary_10_1016_j_eswa_2025_126402 crossref_primary_10_1109_ACCESS_2024_3515895 crossref_primary_10_1016_j_aei_2024_103095 crossref_primary_10_1016_j_rico_2023_100273 crossref_primary_10_1007_s11042_024_20199_7 crossref_primary_10_1109_JSTARS_2024_3357216 crossref_primary_10_1007_s10639_023_11831_4 crossref_primary_10_1016_j_fuel_2024_133427 crossref_primary_10_1049_ipr2_13183 crossref_primary_10_1109_TASLP_2022_3203907 crossref_primary_10_1109_LGRS_2024_3371675 crossref_primary_10_1038_s41598_024_67424_9 crossref_primary_10_1007_s00371_024_03774_9 crossref_primary_10_1080_08839514_2022_2058165 crossref_primary_10_3390_rs15225329 crossref_primary_10_7717_peerj_cs_1755 crossref_primary_10_3390_app14198860 crossref_primary_10_35970_jinita_v6i2_2446 crossref_primary_10_1007_s11282_025_00804_7 crossref_primary_10_1016_j_ijforecast_2025_02_004 crossref_primary_10_1109_TCYB_2022_3201686 crossref_primary_10_3390_app131810455 crossref_primary_10_1021_acs_jcim_3c02070 crossref_primary_10_1016_j_scs_2023_104935 crossref_primary_10_1007_s00521_024_10709_x crossref_primary_10_1049_ell2_13250 crossref_primary_10_1364_OE_522516 crossref_primary_10_1007_s00034_024_02898_6 crossref_primary_10_1080_08982112_2024_2336485 crossref_primary_10_1007_s10346_024_02352_3 crossref_primary_10_3847_1538_4357_ad8086 crossref_primary_10_3390_plants13223118 crossref_primary_10_1016_j_colsurfa_2024_136061 crossref_primary_10_1007_s44196_023_00363_x crossref_primary_10_1109_TGRS_2024_3370236 crossref_primary_10_1109_TNNLS_2023_3316551 crossref_primary_10_3390_su152316292 crossref_primary_10_1016_j_jwpe_2025_107299 crossref_primary_10_1109_ACCESS_2024_3468723 crossref_primary_10_3390_jpm13030413 crossref_primary_10_1002_int_23054 crossref_primary_10_1109_JBHI_2024_3431471 crossref_primary_10_1109_ACCESS_2025_3528215 crossref_primary_10_1364_OE_534734 crossref_primary_10_3390_su162210120 crossref_primary_10_3390_jimaging10120311 crossref_primary_10_1021_acs_energyfuels_4c03376 crossref_primary_10_1109_ACCESS_2023_3326528 crossref_primary_10_1109_TPAMI_2024_3417451 crossref_primary_10_1016_j_nanoen_2024_109435 crossref_primary_10_1109_JSTARS_2024_3422377 crossref_primary_10_1615_JFlowVisImageProc_2022043908 crossref_primary_10_3390_electronics12143099 crossref_primary_10_3389_fnbot_2024_1382305 crossref_primary_10_1007_s00138_023_01389_z crossref_primary_10_1007_s42452_025_06472_w crossref_primary_10_1109_ACCESS_2024_3429157 crossref_primary_10_3390_en17184731 crossref_primary_10_1016_j_jviromet_2023_114789 crossref_primary_10_1016_j_knosys_2025_113234 crossref_primary_10_1177_09544070231205063 crossref_primary_10_1111_2041_210X_14229 crossref_primary_10_1093_jamia_ocae144 crossref_primary_10_1016_j_ucl_2023_06_002 crossref_primary_10_1093_bib_bbae616 crossref_primary_10_3233_IDT_240656 crossref_primary_10_1177_18724981251319628 crossref_primary_10_1007_s00170_022_10355_4 crossref_primary_10_3390_agronomy13122976 crossref_primary_10_3390_jmse13030425 crossref_primary_10_3390_electronics13203985 crossref_primary_10_3390_bioengineering11060624 crossref_primary_10_21015_vtse_v12i4_1931 crossref_primary_10_3390_network3040024 crossref_primary_10_1002_adem_202401353 crossref_primary_10_1016_j_jksuci_2024_101959 crossref_primary_10_3390_nano14020165 crossref_primary_10_1093_bib_bbae601 crossref_primary_10_1016_j_nimb_2025_165682 crossref_primary_10_1016_j_comcom_2024_04_022 crossref_primary_10_18778_0208_6018_362_04 crossref_primary_10_3390_electronics12173711 crossref_primary_10_3390_math11071701 crossref_primary_10_1134_S0012501625600020 crossref_primary_10_3390_app13148092 crossref_primary_10_1109_ACCESS_2024_3517875 crossref_primary_10_1109_TAP_2024_3371645 crossref_primary_10_1016_j_bspc_2025_107540 crossref_primary_10_1016_j_jhydrol_2025_132909 crossref_primary_10_1109_TGRS_2023_3243954 crossref_primary_10_38016_jista_1401095 crossref_primary_10_1016_j_euromechsol_2025_105645 crossref_primary_10_1016_j_istruc_2025_108598 crossref_primary_10_1016_j_jmapro_2023_11_036 crossref_primary_10_3390_electronics12183964 crossref_primary_10_1109_ACCESS_2024_3401685 crossref_primary_10_3390_app13084793 crossref_primary_10_1109_JIOT_2023_3253777 crossref_primary_10_1007_s11071_025_11048_9 crossref_primary_10_1016_j_cviu_2024_104261 crossref_primary_10_1109_TEM_2024_3399758 crossref_primary_10_1038_s41598_025_91412_2 crossref_primary_10_1021_prechem_4c00048 crossref_primary_10_1002_brx2_29 crossref_primary_10_34288_jri_v6i4_347 crossref_primary_10_1007_s00414_024_03162_x crossref_primary_10_1016_j_egyr_2024_07_030 crossref_primary_10_1016_j_jsb_2025_108170 crossref_primary_10_1021_acs_analchem_3c03968 crossref_primary_10_3390_foods12122402 crossref_primary_10_1038_s41598_024_81082_x crossref_primary_10_1002_cjce_25635 crossref_primary_10_1002_spy2_70011 crossref_primary_10_3390_electronics12224595 crossref_primary_10_3390_w15244202 crossref_primary_10_1364_OE_491301 crossref_primary_10_1002_cpe_8148 crossref_primary_10_1063_5_0246391 crossref_primary_10_1109_JBHI_2024_3390419 crossref_primary_10_1016_j_knosys_2025_113002 crossref_primary_10_1016_j_cej_2024_152477 crossref_primary_10_1016_j_fuel_2025_135073 crossref_primary_10_1016_j_chbr_2025_100600 crossref_primary_10_1109_TTE_2022_3200225 crossref_primary_10_1109_TGRS_2023_3339291 crossref_primary_10_3389_fpls_2023_1321877 crossref_primary_10_1016_j_microrel_2024_115323 crossref_primary_10_1134_S1054661824700159 crossref_primary_10_1080_10589759_2025_2468831 crossref_primary_10_1016_j_eswa_2024_126157 crossref_primary_10_1016_j_ymssp_2025_112473 crossref_primary_10_3390_app13095683 crossref_primary_10_1016_j_geoen_2024_212851 crossref_primary_10_1016_j_egyr_2025_01_037 crossref_primary_10_48084_etasr_6515 crossref_primary_10_1109_ACCESS_2023_3305432 crossref_primary_10_1007_s10462_023_10590_5 crossref_primary_10_1109_LSENS_2022_3209074 crossref_primary_10_3934_math_2024617 crossref_primary_10_3390_app12136414 crossref_primary_10_3390_en16237743 crossref_primary_10_3390_biomedinformatics3020031 crossref_primary_10_7717_peerj_cs_1535 crossref_primary_10_1002_prot_26763 crossref_primary_10_1007_s11760_024_03424_6 crossref_primary_10_3390_app14156566 crossref_primary_10_1016_j_eswa_2023_122982 crossref_primary_10_1063_5_0188603 crossref_primary_10_3390_app13042704 crossref_primary_10_1088_2051_672X_ac9492 crossref_primary_10_1016_j_phycom_2023_102055 crossref_primary_10_1007_s11831_024_10098_3 crossref_primary_10_1038_s41598_024_56706_x crossref_primary_10_3390_app132312734 crossref_primary_10_1016_j_measurement_2024_114398 crossref_primary_10_1109_TIM_2023_3298639 crossref_primary_10_1016_j_ast_2024_109760 crossref_primary_10_1016_j_heliyon_2024_e30590 crossref_primary_10_3390_s25030831 crossref_primary_10_3390_en17071662 crossref_primary_10_3390_fi16090331 crossref_primary_10_1038_s41598_022_06379_1 crossref_primary_10_1109_TGRS_2024_3462414 crossref_primary_10_3389_fmicb_2023_1245805 crossref_primary_10_1007_s41939_024_00612_2 crossref_primary_10_1007_s11760_022_02467_x crossref_primary_10_1016_j_neucom_2023_126897 crossref_primary_10_1109_JSTARS_2024_3479920 crossref_primary_10_1016_j_neucom_2023_126896 crossref_primary_10_1109_TGRS_2024_3496881 crossref_primary_10_1145_3644073 crossref_primary_10_1109_TSC_2023_3345952 crossref_primary_10_3390_su17072793 crossref_primary_10_1016_j_jcsr_2024_109113 crossref_primary_10_3390_jcm13010197 crossref_primary_10_1155_2022_6173981 crossref_primary_10_3390_diagnostics13122000 crossref_primary_10_3390_jcp4040045 crossref_primary_10_1049_ipr2_13103 crossref_primary_10_1051_itmconf_20246401003 crossref_primary_10_3390_app15052662 crossref_primary_10_1109_TIM_2024_3476595 crossref_primary_10_3390_s222410004 crossref_primary_10_1109_ACCESS_2022_3187718 crossref_primary_10_5582_irdr_2023_01091 crossref_primary_10_1111_exsy_13454 crossref_primary_10_1109_JSEN_2024_3496693 crossref_primary_10_1145_3711846 crossref_primary_10_1145_3711845 crossref_primary_10_1109_JSTARS_2024_3429395 crossref_primary_10_1016_j_cosrev_2024_100717 crossref_primary_10_1109_LCOMM_2024_3433517 crossref_primary_10_1039_D3AY00984J crossref_primary_10_1007_s11571_022_09886_z crossref_primary_10_1016_j_infsof_2024_107476 crossref_primary_10_1007_s00371_024_03541_w crossref_primary_10_3788_IRLA20240290 crossref_primary_10_3390_vehicles5040099 crossref_primary_10_1016_j_measurement_2024_114391 crossref_primary_10_1177_09670335231173140 crossref_primary_10_3390_agronomy14122909 crossref_primary_10_3389_ftox_2024_1401036 crossref_primary_10_1016_j_eswa_2025_127105 crossref_primary_10_3390_electronics13163161 crossref_primary_10_3390_s24010075 crossref_primary_10_1109_ACCESS_2023_3277029 crossref_primary_10_1007_s10489_022_03781_0 crossref_primary_10_1088_1361_6560_ad63ec crossref_primary_10_32604_jai_2024_054314 crossref_primary_10_3390_buildings14103299 crossref_primary_10_1109_TGRS_2024_3477969 crossref_primary_10_1016_j_aej_2024_03_031 crossref_primary_10_3389_fphar_2022_929755 crossref_primary_10_1016_j_snr_2025_100312 crossref_primary_10_1088_2632_2153_ad56fb crossref_primary_10_1109_ACCESS_2024_3418900 crossref_primary_10_1109_OJPEL_2024_3469231 crossref_primary_10_1016_j_apmt_2024_102579 crossref_primary_10_1007_s44211_024_00695_4 crossref_primary_10_1016_j_heliyon_2024_e35625 crossref_primary_10_1109_ACCESS_2024_3350190 crossref_primary_10_1109_TCAD_2024_3366025 crossref_primary_10_15803_ijnc_12_2_295 crossref_primary_10_3847_2041_8213_ad6b9b crossref_primary_10_1109_ACCESS_2023_3268797 crossref_primary_10_3233_JIFS_220233 crossref_primary_10_3390_ai5040105 crossref_primary_10_3233_JIFS_240044 crossref_primary_10_1016_j_bspc_2024_106195 crossref_primary_10_1109_JIOT_2024_3422969 crossref_primary_10_1371_journal_pone_0308934 crossref_primary_10_3390_rs16224267 crossref_primary_10_1007_s10586_024_04720_z crossref_primary_10_1080_10298436_2024_2414074 crossref_primary_10_1109_ACCESS_2023_3294617 crossref_primary_10_1109_TAES_2024_3373378 crossref_primary_10_1109_TASLP_2023_3336526 crossref_primary_10_1016_j_jpowsour_2024_234680 crossref_primary_10_1016_j_mlwa_2025_100629 crossref_primary_10_1007_s10462_022_10240_2 crossref_primary_10_1088_2631_7990_ad87cb crossref_primary_10_7717_peerj_cs_1571 crossref_primary_10_1016_j_aej_2024_11_063 crossref_primary_10_1016_j_epsr_2024_110115 crossref_primary_10_3390_s24010095 crossref_primary_10_1186_s12938_024_01297_x crossref_primary_10_3390_aerospace10020110 crossref_primary_10_1080_17538947_2024_2353166 crossref_primary_10_1080_15389588_2024_2378131 crossref_primary_10_3390_app14114934 crossref_primary_10_3390_diagnostics13020205 crossref_primary_10_3389_fpls_2024_1417912 crossref_primary_10_1038_s41598_025_90151_8 crossref_primary_10_1017_hpl_2023_1 crossref_primary_10_1109_ACCESS_2024_3425648 crossref_primary_10_1007_s10686_024_09950_y crossref_primary_10_3390_sym16010091 crossref_primary_10_3390_rs14164065 crossref_primary_10_3390_molecules29153512 crossref_primary_10_3390_en18071616 crossref_primary_10_3390_ma16175956 crossref_primary_10_3390_a18010023 crossref_primary_10_1016_j_mtcomm_2024_110634 crossref_primary_10_1103_PhysRevD_110_103047 crossref_primary_10_1364_OE_527353 crossref_primary_10_1016_j_hcc_2025_100313 crossref_primary_10_14801_jkiit_2024_22_10_61 crossref_primary_10_1038_s41598_024_83543_9 crossref_primary_10_1063_5_0187023 crossref_primary_10_1109_ACCESS_2025_3543027 crossref_primary_10_1016_j_saa_2024_124533 crossref_primary_10_3390_math10152819 crossref_primary_10_1109_JSTARS_2023_3333268 crossref_primary_10_1109_TCSVT_2024_3424651 crossref_primary_10_1016_j_jhydrol_2024_132349 crossref_primary_10_1016_j_foodchem_2023_136169 crossref_primary_10_1002_aff2_70036 crossref_primary_10_1007_s00138_023_01371_9 crossref_primary_10_1146_annurev_bioeng_103122_032652 crossref_primary_10_1016_j_rineng_2025_104652 crossref_primary_10_1002_jssc_202400051 crossref_primary_10_1016_j_mex_2024_102946 crossref_primary_10_1016_j_scs_2024_105821 crossref_primary_10_1016_j_jhazmat_2024_135517 crossref_primary_10_1007_s11004_024_10154_5 crossref_primary_10_3390_brainsci14070688 crossref_primary_10_2196_27363 crossref_primary_10_34133_plantphenomics_0204 crossref_primary_10_3390_rs16030583 crossref_primary_10_1016_j_jhydrol_2024_132599 crossref_primary_10_1016_j_apenergy_2024_124431 crossref_primary_10_1016_j_rineng_2025_104417 crossref_primary_10_1109_ACCESS_2024_3447158 crossref_primary_10_3389_fnbot_2024_1423848 crossref_primary_10_1371_journal_pone_0309674 crossref_primary_10_1007_s40846_024_00864_w crossref_primary_10_1016_j_entcom_2024_100817 crossref_primary_10_1109_JSTARS_2025_3530935 crossref_primary_10_1109_JSTARS_2025_3536487 crossref_primary_10_4018_JOEUC_355765 crossref_primary_10_1109_ACCESS_2025_3548720 crossref_primary_10_1109_TCYB_2024_3465213 crossref_primary_10_3390_rs15245780 crossref_primary_10_1016_j_jrras_2024_101141 crossref_primary_10_1145_3660804 crossref_primary_10_1007_s10462_024_10721_6 crossref_primary_10_1007_s10489_023_04914_9 crossref_primary_10_1109_TSUSC_2023_3278464 crossref_primary_10_23939_ujit2024_01_120 crossref_primary_10_3390_s24061972 crossref_primary_10_3389_fped_2023_1291804 crossref_primary_10_1016_j_addma_2024_104208 crossref_primary_10_1109_TIM_2023_3322485 crossref_primary_10_26467_2079_0619_2025_28_1_20_38 crossref_primary_10_1109_ACCESS_2024_3370238 crossref_primary_10_1109_TIM_2023_3265128 crossref_primary_10_1186_s12911_024_02756_0 crossref_primary_10_3390_su151914125 crossref_primary_10_1002_advs_202408069 crossref_primary_10_1109_TGRS_2024_3506749 crossref_primary_10_22630_MGV_2025_34_1_1 crossref_primary_10_5902_2179460X74615 crossref_primary_10_1109_TVT_2022_3231727 crossref_primary_10_1109_ACCESS_2024_3356122 crossref_primary_10_12677_CSA_2022_125132 crossref_primary_10_1109_TGRS_2025_3529134 crossref_primary_10_1007_s00034_024_02717_y crossref_primary_10_1016_j_ins_2024_121556 crossref_primary_10_1016_j_jprocont_2024_103221 crossref_primary_10_1080_15376494_2023_2227413 crossref_primary_10_1016_j_ins_2024_121317 crossref_primary_10_1109_TNNLS_2023_3265331 crossref_primary_10_1007_s10489_024_05885_1 crossref_primary_10_1371_journal_pone_0288311 crossref_primary_10_1016_j_advwatres_2023_104607 crossref_primary_10_1016_j_conengprac_2025_106275 crossref_primary_10_1029_2024SW004224 crossref_primary_10_1109_TAES_2024_3443014 crossref_primary_10_3390_s22197167 crossref_primary_10_1109_ACCESS_2024_3425166 crossref_primary_10_3390_app15031231 crossref_primary_10_1615_JMachLearnModelComput_2024053706 crossref_primary_10_3390_app15031470 crossref_primary_10_1007_s10586_022_03749_2 crossref_primary_10_1021_acs_chemrev_4c00049 crossref_primary_10_1038_s41746_024_01143_3 crossref_primary_10_3390_math13040605 crossref_primary_10_17780_ksujes_1391608 crossref_primary_10_1115_1_4066096 crossref_primary_10_3390_diagnostics15030381 crossref_primary_10_3390_s24175652 crossref_primary_10_1088_1361_6501_ad85f5 crossref_primary_10_3390_s23249658 crossref_primary_10_1007_s13132_024_02287_z crossref_primary_10_1007_s44196_024_00561_1 crossref_primary_10_1109_ACCESS_2024_3519216 crossref_primary_10_1002_jsfa_13853 crossref_primary_10_32782_2308_1988_2023_47_9 crossref_primary_10_47000_tjmcs_1423292 crossref_primary_10_1109_ACCESS_2024_3521537 crossref_primary_10_1109_JSTARS_2024_3471925 crossref_primary_10_1183_16000617_0251_2023 crossref_primary_10_1016_j_ejpb_2024_114529 crossref_primary_10_3390_rs16224201 crossref_primary_10_1134_S1062873824709905 crossref_primary_10_1038_s41598_025_92715_0 crossref_primary_10_1016_j_jare_2025_02_029 crossref_primary_10_3390_w15152707 crossref_primary_10_1145_3569935 crossref_primary_10_1088_1361_6501_adba7f crossref_primary_10_3390_app13021066 crossref_primary_10_1007_s42514_024_00186_y crossref_primary_10_1109_TIM_2023_3242018 crossref_primary_10_1021_acs_chemrev_3c00471 crossref_primary_10_1038_s41598_025_88668_z crossref_primary_10_1177_16878132241298373 crossref_primary_10_1007_s00371_022_02742_5 crossref_primary_10_1016_j_trac_2024_117852 crossref_primary_10_1016_j_eswa_2023_121199 crossref_primary_10_35940_ijese_I2584_12100924 crossref_primary_10_1038_s41598_024_84616_5 crossref_primary_10_1109_ACCESS_2024_3485888 crossref_primary_10_1080_15435075_2025_2471983 crossref_primary_10_1145_3659610 crossref_primary_10_1109_TNNLS_2023_3245329 crossref_primary_10_3390_signals4030028 crossref_primary_10_1109_TCSVT_2024_3435977 crossref_primary_10_1007_s00521_024_09634_w crossref_primary_10_1109_LPT_2024_3458444 crossref_primary_10_3390_electronics13204134 crossref_primary_10_1007_s40820_024_01423_3 crossref_primary_10_1364_OE_506923 crossref_primary_10_1109_JBHI_2023_3334709 crossref_primary_10_1109_TSUSC_2024_3382157 crossref_primary_10_3390_electronics13183605 crossref_primary_10_23939_ujit2024_02_125 crossref_primary_10_1016_j_atmosres_2025_108037 crossref_primary_10_1016_j_phycom_2023_102158 crossref_primary_10_1109_ACCESS_2023_3290620 crossref_primary_10_3390_s23135980 crossref_primary_10_1007_s42493_022_00087_8 crossref_primary_10_1007_s00706_025_03293_w crossref_primary_10_1093_bjd_ljae142 crossref_primary_10_1007_s10489_024_06064_y crossref_primary_10_1117_1_JRS_18_016507 crossref_primary_10_3390_electronics12163460 crossref_primary_10_7717_peerj_cs_2031 crossref_primary_10_3390_computers12050091 crossref_primary_10_1007_s11760_024_03603_5 crossref_primary_10_1016_j_iswa_2023_200264 crossref_primary_10_17780_ksujes_1113669 crossref_primary_10_1007_s00371_023_02908_9 crossref_primary_10_1109_TNSE_2024_3432917 crossref_primary_10_1109_ACCESS_2024_3415349 crossref_primary_10_1088_1402_4896_ad7f10 crossref_primary_10_1016_j_measurement_2023_113477 crossref_primary_10_32604_csse_2023_037266 crossref_primary_10_1016_j_jobe_2025_112057 crossref_primary_10_1109_JBHI_2023_3296142 crossref_primary_10_1109_TIM_2023_3267347 crossref_primary_10_1007_s00521_024_10252_9 crossref_primary_10_1002_jbio_202400420 crossref_primary_10_1007_s11571_022_09927_7 crossref_primary_10_3390_electronics12122715 crossref_primary_10_1007_s11269_025_04120_x crossref_primary_10_1109_TASE_2023_3264556 crossref_primary_10_1109_ACCESS_2024_3496992 crossref_primary_10_3390_bioengineering10060639 crossref_primary_10_1007_s11042_020_09778_6 crossref_primary_10_1109_JSEN_2024_3451648 crossref_primary_10_3390_f14071472 crossref_primary_10_3390_medicina61040572 crossref_primary_10_1016_j_fusengdes_2025_114843 crossref_primary_10_1186_s13634_024_01187_3 crossref_primary_10_1109_ACCESS_2023_3323705 crossref_primary_10_1155_2022_6029245 crossref_primary_10_1016_j_csite_2024_105334 crossref_primary_10_1016_j_ensm_2024_103860 crossref_primary_10_1002_adma_202302530 crossref_primary_10_1109_JETCAS_2022_3227471 crossref_primary_10_1007_s10489_024_05449_3 crossref_primary_10_1111_1751_7915_70014 crossref_primary_10_1371_journal_pone_0311119 crossref_primary_10_25299_itjrd_2023_12690 crossref_primary_10_2139_ssrn_4692475 crossref_primary_10_2478_jaiscr_2025_0010 crossref_primary_10_3390_s23104800 crossref_primary_10_1007_s11517_023_02928_6 crossref_primary_10_3390_app14188500 crossref_primary_10_1007_s11277_022_09640_y crossref_primary_10_7409_rabdim_025_001 crossref_primary_10_1016_j_jhepr_2024_101209 crossref_primary_10_1190_tle44030187_1 crossref_primary_10_1631_FITEE_2400464 crossref_primary_10_3390_app13063939 crossref_primary_10_1016_j_jmrt_2024_02_067 crossref_primary_10_1109_ACCESS_2024_3496506 crossref_primary_10_3390_app13179802 crossref_primary_10_1109_JSTARS_2024_3459051 crossref_primary_10_1016_j_geoen_2024_212994 crossref_primary_10_1109_TGRS_2024_3520635 crossref_primary_10_1109_TNNLS_2024_3380827 crossref_primary_10_1109_JSEN_2023_3305024 crossref_primary_10_3390_make6040115 crossref_primary_10_1093_mnras_stae629 crossref_primary_10_26425_2658_3445_2022_5_3_73_82 crossref_primary_10_3390_healthcare12100994 crossref_primary_10_1007_s11042_024_20264_1 crossref_primary_10_3390_math11102375 crossref_primary_10_1109_JSTARS_2023_3336927 crossref_primary_10_1590_1678_992x_2024_0115 crossref_primary_10_3390_s24248148 crossref_primary_10_1109_LSP_2024_3365037 crossref_primary_10_1109_ACCESS_2023_3295434 crossref_primary_10_1007_s00500_023_08669_w crossref_primary_10_3390_ai5030074 crossref_primary_10_1109_TMTT_2023_3231371 crossref_primary_10_1080_17452759_2024_2429530 crossref_primary_10_1016_j_tust_2025_106377 crossref_primary_10_3390_app14010189 crossref_primary_10_1109_ACCESS_2024_3365274 crossref_primary_10_1109_ACCESS_2025_3549417 crossref_primary_10_1109_TITS_2024_3480359 crossref_primary_10_1007_s13369_023_08441_0 crossref_primary_10_1016_j_procs_2024_09_211 crossref_primary_10_1523_JNEUROSCI_0116_24_2024 crossref_primary_10_3390_e24121762 crossref_primary_10_1021_acs_analchem_4c02038 crossref_primary_10_1007_s10772_024_10166_w crossref_primary_10_3390_s24113564 crossref_primary_10_1016_j_inffus_2023_102217 crossref_primary_10_1016_j_iswa_2024_200339 crossref_primary_10_1038_s41598_023_47546_2 crossref_primary_10_3390_info16020111 crossref_primary_10_1016_j_jobe_2024_111046 crossref_primary_10_1016_j_esr_2024_101600 crossref_primary_10_1371_journal_pone_0288962 crossref_primary_10_1177_14759217241301288 crossref_primary_10_1007_s00466_023_02291_1 crossref_primary_10_3390_info16020112 crossref_primary_10_1109_TGRS_2024_3401130 crossref_primary_10_1190_geo2022_0247_1 crossref_primary_10_3390_f14122418 crossref_primary_10_14801_jkiit_2023_21_3_27 crossref_primary_10_1007_s42979_024_03345_8 crossref_primary_10_3390_electronics12010199 crossref_primary_10_1038_s41598_025_93418_2 crossref_primary_10_1145_3715104 crossref_primary_10_1016_j_jsb_2024_108118 crossref_primary_10_1109_TII_2024_3383459 crossref_primary_10_3390_signals5020018 crossref_primary_10_1109_ACCESS_2024_3522682 crossref_primary_10_1109_MPEL_2023_3328164 crossref_primary_10_1080_27669645_2023_2249645 crossref_primary_10_1016_j_trac_2025_118196 crossref_primary_10_1088_1361_6501_ad8947 crossref_primary_10_7554_eLife_73893 crossref_primary_10_1002_cyto_b_22177 crossref_primary_10_1155_2024_1119816 crossref_primary_10_1109_ACCESS_2023_3343189 crossref_primary_10_3390_app13085079 crossref_primary_10_1007_s11042_024_19981_4 crossref_primary_10_1016_j_ecoinf_2024_102923 crossref_primary_10_3390_s23136015 crossref_primary_10_1109_JSEN_2024_3400296 crossref_primary_10_1007_s10845_024_02434_y crossref_primary_10_1007_s44254_023_00047_x crossref_primary_10_5902_2448190485429 crossref_primary_10_1016_j_geoen_2024_213004 crossref_primary_10_7717_peerj_cs_2296 crossref_primary_10_3390_en18061463 crossref_primary_10_7717_peerj_cs_2052 crossref_primary_10_1016_j_fochx_2024_101981 crossref_primary_10_1038_s41598_025_94315_4 crossref_primary_10_1109_JSTARS_2024_3450429 crossref_primary_10_2339_politeknik_1509329 crossref_primary_10_3390_buildings15071053 crossref_primary_10_1016_j_inffus_2023_102037 crossref_primary_10_1109_TCSI_2022_3174531 crossref_primary_10_1109_ACCESS_2024_3406018 crossref_primary_10_1016_j_asoc_2024_112386 crossref_primary_10_1016_j_bspc_2023_105045 crossref_primary_10_3102_10769986241268907 crossref_primary_10_3390_en16124636 crossref_primary_10_1109_TCSI_2024_3384271 crossref_primary_10_1109_TWC_2022_3215666 crossref_primary_10_1007_s10443_023_10161_5 crossref_primary_10_3390_app14146294 crossref_primary_10_1016_j_aej_2021_04_072 crossref_primary_10_1109_TASE_2023_3263887 crossref_primary_10_1016_j_ufug_2023_127970 crossref_primary_10_3390_diagnostics13071305 crossref_primary_10_1109_ACCESS_2024_3474100 crossref_primary_10_1007_s13278_024_01304_y crossref_primary_10_1016_j_jclepro_2024_140809 crossref_primary_10_1049_cmu2_12824 crossref_primary_10_1051_bioconf_202414201004 crossref_primary_10_1016_j_rineng_2024_103086 crossref_primary_10_1039_D2CP03692D crossref_primary_10_1002_ajmg_b_32979 crossref_primary_10_1007_s10921_024_01143_z crossref_primary_10_1007_s11390_022_2030_z crossref_primary_10_1016_j_ces_2024_120460 crossref_primary_10_3390_s24124002 crossref_primary_10_1016_j_acalib_2023_102736 crossref_primary_10_3390_app14031061 crossref_primary_10_3390_app14125113 crossref_primary_10_3390_info14070410 crossref_primary_10_1140_epjs_s11734_024_01373_2 crossref_primary_10_1109_TNNLS_2024_3356512 crossref_primary_10_1007_s41347_024_00457_z crossref_primary_10_3389_frai_2022_1040295 crossref_primary_10_1109_TNNLS_2022_3210384 crossref_primary_10_3390_electronics13234605 crossref_primary_10_1007_s10836_024_06142_6 crossref_primary_10_3390_rs15235502 crossref_primary_10_1007_s13721_024_00495_w crossref_primary_10_1016_j_jechem_2024_12_063 crossref_primary_10_1109_ACCESS_2024_3522248 crossref_primary_10_1109_ACCESS_2023_3342064 crossref_primary_10_1109_TSP_2025_3525951 crossref_primary_10_23939_cds2024_03_001 crossref_primary_10_1016_j_measurement_2020_108634 crossref_primary_10_1109_JLT_2024_3417006 crossref_primary_10_3934_era_2024055 crossref_primary_10_1007_s40747_024_01550_9 crossref_primary_10_3390_electronics13152971 crossref_primary_10_1002_aisy_202400576 crossref_primary_10_1016_j_ymssp_2023_111035 crossref_primary_10_1007_s00521_024_10853_4 crossref_primary_10_1016_j_dsp_2024_104412 crossref_primary_10_3390_en15103758 crossref_primary_10_3390_jmse12111984 crossref_primary_10_1007_s00366_025_02113_3 crossref_primary_10_1016_j_compeleceng_2024_109926 crossref_primary_10_1007_s11042_022_12874_4 crossref_primary_10_1109_ACCESS_2024_3396818 crossref_primary_10_1016_j_trc_2024_104938 crossref_primary_10_3390_app14093950 crossref_primary_10_3390_electronics13010129 crossref_primary_10_1016_j_jechem_2024_11_011 crossref_primary_10_2197_ipsjtbio_15_1 crossref_primary_10_3390_fi14120375 crossref_primary_10_2514_1_J064808 crossref_primary_10_1016_j_compbiomed_2023_107153 crossref_primary_10_1016_j_ins_2024_120435 crossref_primary_10_1016_j_comcom_2024_107927 crossref_primary_10_1155_2023_6987708 |
Cites_doi | 10.1016/j.csl.2016.06.007 10.1177/1550147719832792 10.1109/CVPR.2017.690 10.1109/TIE.2018.2886789 10.1007/s13748-019-00203-0 10.1007/978-3-030-01264-9_8 10.1007/978-3-030-01249-6_18 10.1109/ICCV.2017.322 10.1145/2684746.2689060 10.1109/CVPR.2016.91 10.1109/CVPR.2015.7298965 10.1109/CVPR.2014.81 10.3346/jkms.2019.34.e64 10.1109/ACCESS.2018.2807385 10.1109/TPAMI.2006.244 10.1109/ACCESS.2017.2707460 10.1021/ci0342472 10.1109/CVPR.2005.177 10.1117/12.2293725 10.1109/CVPR.2005.202 10.1016/j.proeng.2017.09.594 10.1109/CVPR.2017.243 10.1109/CVPR.2009.5206848 10.1109/CVPR.2015.7298907 10.1109/CVPRW.2014.106 10.1109/IJCNN.2005.1555942 10.1109/TCAD.2017.2705069 10.1007/978-3-030-00470-5_13 10.1109/IJCNN.2019.8852059 10.1016/j.enconman.2019.05.007 10.1109/ASCC.2017.8287318 10.1109/CVPR.2015.7298682 10.5244/C.29.41 10.1016/0375-9601(90)90136-C 10.1109/CVPR.2018.00552 10.1109/TII.2018.2822828 10.1109/IROS.2015.7353481 10.1109/CVPR.2017.713 10.1109/CVPR.2014.220 10.1109/72.97934 10.1007/978-3-319-46448-0_2 10.4249/scholarpedia.10491 10.1109/CVPR.2018.00716 10.1109/CVPR.2016.90 10.1109/CVPR.2019.00482 10.1109/ICASSP.2016.7472620 10.1109/TPAMI.2015.2389824 10.1609/aaai.v31i1.11231 10.1109/AVSS.2017.8078501 10.1113/jphysiol.1962.sp006837 10.1109/5.726791 10.1109/ICCV.2015.169 10.21437/Interspeech.2019-2357 10.1109/ICCV.2017.324 10.1109/CVPR.2016.308 10.1109/ICARCV.2014.7064414 10.1007/978-3-319-70096-0_42 10.1109/CVPR.2017.106 10.1007/978-3-319-46493-0_32 10.3390/s19245356 10.1109/29.21701 10.1371/journal.pone.0219126 10.1038/s41598-018-21495-7 10.1109/CVPR.2018.00291 10.1109/CVPR.2015.7298594 10.1109/CVPR.2019.00963 10.1109/CVPR.2017.660 10.1162/neco.1989.1.4.541 10.1037/h0042519 10.1007/978-3-319-63309-1_7 10.1007/978-3-642-46466-9_18 10.1145/3293353.3293406 10.1109/SBR-LARS-R.2017.8215287 10.1016/j.patrec.2018.02.015 10.1109/ICCSP.2017.8286426 10.1109/ICCV.2019.00140 10.1109/CVPR42600.2020.00165 10.1007/978-3-319-46478-7_31 10.1109/TNN.2008.2010350 10.1109/CVPR.2019.00633 10.1609/aaai.v32i1.11691 10.1016/j.neunet.2017.07.017 10.1109/CVPR.2017.195 10.1016/S0893-6080(98)00116-6 10.1109/CVPR.2016.149 10.1109/ICCV.2017.37 10.1109/MLSP.2016.7738895 10.1371/journal.pone.0214587 10.1016/j.jsv.2016.10.043 10.1007/978-3-030-36808-1_7 10.1109/ICMLA.2019.00036 10.1109/TCSVT.2018.2870740 10.1109/CVPR.2018.00472 10.1038/323533a0 10.1109/CVPR.2019.00720 10.1109/CVPR.2017.634 10.1109/ICCV.2017.89 10.1109/BTAS.2017.8272706 10.1007/978-3-030-01264-9_45 10.21236/AD0256582 10.1162/neco_a_00990 10.1109/CVPR.2019.00293 10.5244/C.28.88 10.1109/CVPR.2018.00745 10.1109/TNN.2008.2005605 10.1109/ICCV.2015.123 10.5220/0007392506130620 10.1145/3136755.3143008 10.1007/BF02478259 10.1109/TIP.2018.2809606 10.1145/2934583.2934644 10.1109/CVPR.2014.244 10.1109/CVPRW.2015.7301342 10.1109/CVPR.2016.94 10.21437/Interspeech.2017-1067 10.1145/3178876.3186116 10.1109/CVPR.2019.00953 10.1109/FPL.2009.5272559 10.1109/ICCV.2019.00925 10.1109/ACCESS.2018.2810882 10.1109/TPAMI.2017.2699184 10.18653/v1/W18-2314 10.1109/CVPR.2018.00474 10.1109/CVPR.2006.100 10.1109/ICCV.2019.00364 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1109/TNNLS.2021.3084827 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2162-2388 |
EndPage | 7019 |
ExternalDocumentID | 34111009 10_1109_TNNLS_2021_3084827 9451544 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities grantid: B200202175 funderid: 10.13039/501100012226 – fundername: Natural Science Foundation of Jiangsu Province grantid: BK20191298 funderid: 10.13039/501100004608 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c461t-c43b67bb6aaae43f15e648d1ed4504e4158d12714369d6b18c5afef1f63608763 |
IEDL.DBID | RIE |
ISSN | 2162-237X 2162-2388 |
IngestDate | Fri Jul 11 09:11:45 EDT 2025 Mon Jun 30 02:17:50 EDT 2025 Thu Jan 02 22:53:12 EST 2025 Tue Jul 01 00:27:39 EDT 2025 Thu Apr 24 23:00:08 EDT 2025 Wed Aug 27 02:29:16 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 12 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c461t-c43b67bb6aaae43f15e648d1ed4504e4158d12714369d6b18c5afef1f63608763 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
ORCID | 0000-0001-5822-8233 0000-0003-1963-7506 0000-0001-6593-0987 0000-0001-8746-9845 |
OpenAccessLink | http://hdl.handle.net/10072/405164 |
PMID | 34111009 |
PQID | 2742703143 |
PQPubID | 85436 |
PageCount | 21 |
ParticipantIDs | pubmed_primary_34111009 crossref_citationtrail_10_1109_TNNLS_2021_3084827 proquest_journals_2742703143 ieee_primary_9451544 proquest_miscellaneous_2540521846 crossref_primary_10_1109_TNNLS_2021_3084827 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-01 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE transaction on neural networks and learning systems |
PublicationTitleAbbrev | TNNLS |
PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref58 ref53 ref52 ref55 ref201 ref54 ref202 micikevicius (ref172) 2017 sabour (ref198) 2017 rakhlin (ref96) 2016 zhao (ref200) 2016 krizhevsky (ref59) 2010; 40 hamidian (ref175) 2017; 10134 ref51 ref50 bhagoji (ref181) 2019 yu (ref23) 2016 weiler (ref32) 2019 ref48 ref47 ref42 radford (ref45) 2015 ref44 ref43 ref49 ref8 misra (ref62) 2019 ref7 ref9 ref4 ref3 ref5 ref100 redmon (ref131) 2018 ref101 ref40 jahanifar (ref108) 2018 ioffe (ref41) 2015 han (ref166) 2015 ref34 ref37 sun (ref86) 2014 bruna (ref35) 2013 ref33 ref38 amos (ref73) 2016 schindler (ref106) 2018 ref24 ref25 ref20 ref22 ref21 ref28 ref27 zhang (ref6) 1988 goodfellow (ref182) 2014 ref29 krizhevsky (ref64) 2009 ref128 ref129 ref126 ref127 wu (ref158) 2015 ref124 reddi (ref107) 2019 howard (ref46) 2017 ref125 hinton (ref97) 2012 pham (ref187) 2018 zeiler (ref93) 2012 ref133 ref95 ref132 ref130 ref91 ref90 monti (ref109) 2019 ref89 ref139 ref85 ref138 ref135 ref87 ref136 xiao (ref63) 2017 hermans (ref75) 2017 nesterov (ref88) 1983; 269 duchi (ref92) 2011; 12 ref82 ref144 ref145 ref142 ref83 ref143 ref80 ren (ref137) 2015 ref79 ref78 ref104 ref74 ref105 dozat (ref103) 2016 ref77 ref102 ref76 paszke (ref141) 2016 liu (ref113) 2017 chen (ref121) 2017 ajmal (ref16) 2018; 10649 ref71 ref72 drews (ref191) 2017 zhu (ref170) 2016 ref68 ref119 ref67 ref117 ref69 ref118 ref115 ref116 ref66 ref65 ref114 lin (ref169) 2017 dong (ref26) 2020 kingma (ref98) 2014 kosiorek (ref199) 2019 ref123 ref120 saad (ref84) 2009 law (ref134) 2019 ref168 sharma (ref99) 2015 krizhevsky (ref11) 2012; 25 ref177 ref178 ref176 ref173 chorowski (ref94) 2015 ref179 rapin (ref112) 2018 snoek (ref111) 2012 ref188 ref189 ref184 ref183 ronneberger (ref140) 2015 ref148 ref149 ref146 liu (ref110) 2018 ref147 choi (ref171) 2016 simonyan (ref39) 2014 itqan (ref174) 2016; 11 ref155 ref156 ref153 ref151 ref152 ref150 ref159 liao (ref180) 2018 azulay (ref193) 2018 kipf (ref36) 2016 hagan (ref57) 2002 nair (ref56) 2010 ref164 ref162 ref163 cao (ref154) 2016; 1 ref160 ref161 ref13 ref12 zoph (ref186) 2016 ref15 ref14 weiler (ref31) 2018 ref10 ref17 ref19 ref18 huang (ref157) 2018 ramachandran (ref61) 2017 sindhwani (ref165) 2015 ref2 ref1 ref192 clevert (ref60) 2015 jajodia (ref190) 2019; 6 cohen (ref30) 2016 cai (ref185) 2018 ref195 ref196 ref194 liu (ref81) 2016; 2 ovtcharov (ref197) 2015; 2 iandola (ref122) 2014 mao (ref167) 2017 sun (ref70) 2015 |
References_xml | – year: 2014 ident: ref182 article-title: Explaining and harnessing adversarial examples publication-title: arXiv 1412 6572 – ident: ref90 doi: 10.1016/j.csl.2016.06.007 – ident: ref116 doi: 10.1177/1550147719832792 – volume: 269 start-page: 543 year: 1983 ident: ref88 article-title: A method for unconstrained convex minimization problem with the rate of convergence O(1/k2) publication-title: Proc Doklady USSR – year: 2016 ident: ref186 article-title: Neural architecture search with reinforcement learning publication-title: arXiv 1611 01578 – ident: ref130 doi: 10.1109/CVPR.2017.690 – ident: ref119 doi: 10.1109/TIE.2018.2886789 – start-page: 1 year: 2018 ident: ref157 article-title: Human action recognition based on temporal pose CNN and multi-dimensional fusion publication-title: Proc Eur Conf Comput Vis (ECCV) Workshops – volume: 6 start-page: 570 year: 2019 ident: ref190 article-title: Image classification-cat and dog images publication-title: Image – year: 2015 ident: ref165 article-title: Structured transforms for small-footprint deep learning publication-title: arXiv 1510 01722 – ident: ref13 doi: 10.1007/s13748-019-00203-0 – ident: ref53 doi: 10.1007/978-3-030-01264-9_8 – year: 2019 ident: ref107 article-title: On the convergence of Adam and beyond publication-title: arXiv 1904 09237 – year: 2014 ident: ref122 article-title: DenseNet: Implementing efficient ConvNet descriptor pyramids publication-title: Arxiv 1404 1869 – ident: ref50 doi: 10.1007/978-3-030-01249-6_18 – year: 2018 ident: ref131 article-title: YOLOv3: An incremental improvement publication-title: arXiv 1804 02767 – year: 2015 ident: ref137 article-title: Faster R-CNN: Towards real-time object detection with region proposal networks publication-title: arXiv 1506 01497 – ident: ref145 doi: 10.1109/ICCV.2017.322 – start-page: 4095 year: 2018 ident: ref187 article-title: Efficient neural architecture search via parameters sharing publication-title: Proc Int Conf Mach Learn – year: 2019 ident: ref199 article-title: Stacked capsule autoencoders publication-title: arXiv 1906 06818 – ident: ref196 doi: 10.1145/2684746.2689060 – ident: ref129 doi: 10.1109/CVPR.2016.91 – start-page: 448 year: 2015 ident: ref41 article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift publication-title: Proc Int Conf Mach Learn – ident: ref139 doi: 10.1109/CVPR.2015.7298965 – year: 2009 ident: ref64 article-title: Learning multiple layers of features from tiny images – ident: ref135 doi: 10.1109/CVPR.2014.81 – ident: ref114 doi: 10.3346/jkms.2019.34.e64 – ident: ref184 doi: 10.1109/ACCESS.2018.2807385 – ident: ref19 doi: 10.1109/TPAMI.2006.244 – ident: ref117 doi: 10.1109/ACCESS.2017.2707460 – volume: 2 start-page: 7 year: 2016 ident: ref81 article-title: Large-margin softmax loss for convolutional neural networks publication-title: Proc ICML – ident: ref21 doi: 10.1021/ci0342472 – ident: ref18 doi: 10.1109/CVPR.2005.177 – ident: ref163 doi: 10.1117/12.2293725 – ident: ref67 doi: 10.1109/CVPR.2005.202 – ident: ref177 doi: 10.1016/j.proeng.2017.09.594 – ident: ref85 doi: 10.1109/CVPR.2017.243 – ident: ref65 doi: 10.1109/CVPR.2009.5206848 – year: 2016 ident: ref141 article-title: ENet: A deep neural network architecture for real-time semantic segmentation publication-title: ArXiv 1606 02147 – year: 2020 ident: ref26 article-title: CoDeNet: Efficient deployment of input-adaptive object detection on embedded FPGAs publication-title: arXiv 2006 08357 – ident: ref69 doi: 10.1109/CVPR.2015.7298907 – ident: ref195 doi: 10.1109/CVPRW.2014.106 – year: 2012 ident: ref111 article-title: Practical Bayesian optimization of machine learning algorithms publication-title: arXiv 1206 2944 – year: 2018 ident: ref185 article-title: ProxylessNAS: Direct neural architecture search on target task and hardware publication-title: arXiv 1812 00332 – ident: ref33 doi: 10.1109/IJCNN.2005.1555942 – ident: ref201 doi: 10.1109/TCAD.2017.2705069 – ident: ref183 doi: 10.1007/978-3-030-00470-5_13 – ident: ref76 doi: 10.1109/IJCNN.2019.8852059 – volume: 2 start-page: 1 year: 2015 ident: ref197 publication-title: Accelerating deep convolutional neural networks using specialized hardware – ident: ref115 doi: 10.1016/j.enconman.2019.05.007 – volume: 12 start-page: 1 year: 2011 ident: ref92 article-title: Adaptive subgradient methods for online learning and stochastic optimization publication-title: J Mach Learn Res – year: 2018 ident: ref193 article-title: Why do deep convolutional networks generalize so poorly to small image transformations? publication-title: arXiv 1805 12177 – year: 2017 ident: ref198 article-title: Dynamic routing between capsules publication-title: arXiv 1710 09829 – year: 2018 ident: ref110 article-title: Decompose to manipulate: Manipulable object synthesis in 3D medical images with structured image decomposition publication-title: arXiv 1812 01737 – ident: ref89 doi: 10.1109/ASCC.2017.8287318 – year: 2017 ident: ref121 article-title: Dual path networks publication-title: arXiv 1707 01629 – ident: ref71 doi: 10.1109/CVPR.2015.7298682 – ident: ref72 doi: 10.5244/C.29.41 – ident: ref8 doi: 10.1016/0375-9601(90)90136-C – ident: ref153 doi: 10.1109/CVPR.2018.00552 – year: 2012 ident: ref97 article-title: Neural networks for machine learning lecture 6a overview of mini-batch gradient descent – ident: ref192 doi: 10.1109/TII.2018.2822828 – ident: ref159 doi: 10.1109/IROS.2015.7353481 – ident: ref151 doi: 10.1109/CVPR.2017.713 – ident: ref150 doi: 10.1109/CVPR.2014.220 – ident: ref9 doi: 10.1109/72.97934 – ident: ref132 doi: 10.1007/978-3-319-46448-0_2 – year: 2017 ident: ref46 article-title: MobileNets: Efficient convolutional neural networks for mobile vision applications publication-title: arXiv 1704 04861 – year: 2015 ident: ref166 article-title: Deep compression: Compressing deep neural networks with pruning, trained quantization and Huffman coding publication-title: arXiv 1510 00149 [cs] – ident: ref17 doi: 10.4249/scholarpedia.10491 – ident: ref52 doi: 10.1109/CVPR.2018.00716 – ident: ref44 doi: 10.1109/CVPR.2016.90 – volume: 10134 year: 2017 ident: ref175 article-title: 3D convolutional neural network for automatic detection of lung nodules in chest CT publication-title: Proc SPIE – year: 2016 ident: ref170 article-title: Trained ternary quantization publication-title: arXiv 1612 01064 – ident: ref152 doi: 10.1109/CVPR.2019.00482 – year: 2017 ident: ref75 article-title: In defense of the triplet loss for person re-identification publication-title: arXiv 1703 07737 – year: 2013 ident: ref35 article-title: Spectral networks and locally connected networks on graphs publication-title: arXiv 1312 6203 – year: 2016 ident: ref96 publication-title: Convolutional neural networks for sentence classification – ident: ref95 doi: 10.1109/ICASSP.2016.7472620 – ident: ref120 doi: 10.1109/TPAMI.2015.2389824 – year: 2018 ident: ref31 article-title: 3D steerable CNNs: Learning rotationally equivariant features in volumetric data publication-title: arXiv 1807 02547 – year: 2018 ident: ref180 article-title: Backdoor embedding in convolutional neural network models via invisible perturbation publication-title: arXiv 1808 10307 – year: 2009 ident: ref84 publication-title: On-Line Learning in Neural Networks – volume: 25 start-page: 1097 year: 2012 ident: ref11 article-title: ImageNet classification with deep convolutional neural networks publication-title: Proc Adv Neural Inf Process Syst – ident: ref43 doi: 10.1609/aaai.v31i1.11231 – volume: 1 start-page: 3 year: 2016 ident: ref154 article-title: Action recognition with joints-pooled 3D deep convolutional descriptors publication-title: Proc IJCAI – ident: ref178 doi: 10.1109/AVSS.2017.8078501 – ident: ref20 doi: 10.1113/jphysiol.1962.sp006837 – ident: ref10 doi: 10.1109/5.726791 – ident: ref136 doi: 10.1109/ICCV.2015.169 – year: 2018 ident: ref108 article-title: Segmentation of skin lesions and their attributes using multi-scale convolutional neural networks and domain specific augmentations publication-title: arXiv 1809 10243 – ident: ref83 doi: 10.21437/Interspeech.2019-2357 – ident: ref147 doi: 10.1109/ICCV.2017.324 – ident: ref42 doi: 10.1109/CVPR.2016.308 – ident: ref123 doi: 10.1109/ICARCV.2014.7064414 – year: 2016 ident: ref30 article-title: Steerable CNNs publication-title: arXiv 1612 08498 – ident: ref78 doi: 10.1007/978-3-319-70096-0_42 – year: 2014 ident: ref39 article-title: Very deep convolutional networks for large-scale image recognition publication-title: arXiv 1409 1556 – year: 2015 ident: ref60 article-title: Fast and accurate deep network learning by exponential linear units (ELUs) publication-title: arXiv 1511 07289 – ident: ref138 doi: 10.1109/CVPR.2017.106 – ident: ref168 doi: 10.1007/978-3-319-46493-0_32 – ident: ref162 doi: 10.3390/s19245356 – ident: ref5 doi: 10.1109/29.21701 – ident: ref105 doi: 10.1371/journal.pone.0219126 – ident: ref101 doi: 10.1038/s41598-018-21495-7 – ident: ref28 doi: 10.1109/CVPR.2018.00291 – ident: ref40 doi: 10.1109/CVPR.2015.7298594 – ident: ref148 doi: 10.1109/CVPR.2019.00963 – year: 2017 ident: ref63 article-title: Fashion-MNIST: A novel image dataset for benchmarking machine learning algorithms publication-title: ArXiv 1708 07747 – ident: ref142 doi: 10.1109/CVPR.2017.660 – start-page: 734 year: 1988 ident: ref6 article-title: Shift-invariant pattern recognition neural network and its optical architecture publication-title: Proc Annu Conf Jpn Soc Appl Phys – ident: ref7 doi: 10.1162/neco.1989.1.4.541 – ident: ref2 doi: 10.1037/h0042519 – ident: ref15 doi: 10.1007/978-3-319-63309-1_7 – volume: 11 start-page: 3316 year: 2016 ident: ref174 article-title: User identification system based on finger-vein patterns using convolutional neural network publication-title: ARPN J Eng Appl Sci – ident: ref22 doi: 10.1007/978-3-642-46466-9_18 – year: 2019 ident: ref134 article-title: CornerNet-lite: Efficient keypoint based object detection publication-title: arXiv 1904 08900 – start-page: 234 year: 2015 ident: ref140 article-title: U-Net: Convolutional networks for biomedical image segmentation publication-title: Proc Int Conf Med Image Comput Comput -Assist Intervent – ident: ref144 doi: 10.1145/3293353.3293406 – year: 2019 ident: ref62 article-title: Mish: A self regularized non-monotonic activation function publication-title: arXiv 1908 08681 – ident: ref125 doi: 10.1109/SBR-LARS-R.2017.8215287 – ident: ref173 doi: 10.1016/j.patrec.2018.02.015 – ident: ref12 doi: 10.1109/ICCSP.2017.8286426 – ident: ref48 doi: 10.1109/ICCV.2019.00140 – ident: ref54 doi: 10.1109/CVPR42600.2020.00165 – ident: ref77 doi: 10.1007/978-3-319-46478-7_31 – ident: ref55 doi: 10.1109/TNN.2008.2010350 – ident: ref149 doi: 10.1109/CVPR.2019.00633 – year: 2016 ident: ref73 article-title: OpenFace: A general-purpose face recognition library with mobile applications – ident: ref37 doi: 10.1609/aaai.v32i1.11691 – ident: ref128 doi: 10.1016/j.neunet.2017.07.017 – ident: ref49 doi: 10.1109/CVPR.2017.195 – volume: 40 start-page: 1 year: 2010 ident: ref59 article-title: Convolutional deep belief networks on CIFAR-10 publication-title: Unpublished manuscript – ident: ref87 doi: 10.1016/S0893-6080(98)00116-6 – year: 2019 ident: ref109 article-title: Fake news detection on social media using geometric deep learning publication-title: arXiv 1902 06673 – ident: ref74 doi: 10.1109/CVPR.2016.149 – year: 2017 ident: ref172 article-title: Mixed precision training publication-title: arXiv 1710 03740 – year: 2016 ident: ref171 article-title: Towards the limit of network quantization publication-title: arXiv 1612 01543 – year: 2018 ident: ref112 publication-title: Nevergrad-A Gradient-Free Optimization Platform Version 0 2 – year: 2017 ident: ref167 article-title: Exploring the regularity of sparse structure in convolutional neural networks publication-title: arXiv 1705 08922 – ident: ref102 doi: 10.1109/ICCV.2017.37 – ident: ref100 doi: 10.1109/MLSP.2016.7738895 – year: 2015 ident: ref45 article-title: Unsupervised representation learning with deep convolutional generative adversarial networks publication-title: arXiv 1511 06434 – ident: ref124 doi: 10.1371/journal.pone.0214587 – ident: ref118 doi: 10.1016/j.jsv.2016.10.043 – start-page: 1 year: 2016 ident: ref103 article-title: Incorporating Nesterov momentum into Adam publication-title: Proc ICLR – ident: ref179 doi: 10.1007/978-3-030-36808-1_7 – year: 2014 ident: ref98 article-title: Adam: A method for stochastic optimization publication-title: arXiv 1412 6980 – start-page: 634 year: 2019 ident: ref181 article-title: Analyzing federated learning through an adversarial lens publication-title: Proc Int Conf Mach Learn – ident: ref155 doi: 10.1109/ICMLA.2019.00036 – ident: ref156 doi: 10.1109/TCSVT.2018.2870740 – ident: ref161 doi: 10.1109/CVPR.2018.00472 – ident: ref4 doi: 10.1038/323533a0 – ident: ref189 doi: 10.1109/CVPR.2019.00720 – ident: ref27 doi: 10.1109/CVPR.2017.634 – ident: ref24 doi: 10.1109/ICCV.2017.89 – start-page: 807 year: 2010 ident: ref56 article-title: Rectified linear units improve restricted Boltzmann machines publication-title: Proc ICML – ident: ref79 doi: 10.1109/BTAS.2017.8272706 – year: 2015 ident: ref94 article-title: Attention-based models for speech recognition publication-title: arXiv 1506 07503 – ident: ref133 doi: 10.1007/978-3-030-01264-9_45 – ident: ref3 doi: 10.21236/AD0256582 – ident: ref14 doi: 10.1162/neco_a_00990 – ident: ref188 doi: 10.1109/CVPR.2019.00293 – ident: ref164 doi: 10.5244/C.28.88 – ident: ref51 doi: 10.1109/CVPR.2018.00745 – start-page: 9 year: 2002 ident: ref57 publication-title: Neural Network Design – start-page: 1912 year: 2015 ident: ref158 article-title: 3D ShapeNets: A deep representation for volumetric shapes publication-title: Proc IEEE Conf Comput Vis Pattern Recognit (CVPR) – ident: ref34 doi: 10.1109/TNN.2008.2005605 – ident: ref58 doi: 10.1109/ICCV.2015.123 – volume: 10649 year: 2018 ident: ref16 article-title: Convolutional neural network based image segmentation: A review publication-title: Proc SPIE – ident: ref126 doi: 10.5220/0007392506130620 – ident: ref82 doi: 10.1145/3136755.3143008 – ident: ref1 doi: 10.1007/BF02478259 – year: 2014 ident: ref86 article-title: Deep learning face representation by joint identification-verification publication-title: arXiv 1406 4773 – year: 2017 ident: ref61 article-title: Searching for activation functions publication-title: arXiv 1710 05941 – year: 2016 ident: ref23 article-title: Multi-scale context aggregation by dilated convolutions publication-title: arXiv 1511 07122 – ident: ref127 doi: 10.1109/TIP.2018.2809606 – year: 2017 ident: ref113 article-title: ZOOpt: Toolbox for derivative-free optimization publication-title: arXiv 1801 00329 – ident: ref202 doi: 10.1145/2934583.2934644 – ident: ref68 doi: 10.1109/CVPR.2014.244 – ident: ref91 doi: 10.1109/CVPRW.2015.7301342 – ident: ref160 doi: 10.1109/CVPR.2016.94 – year: 2012 ident: ref93 article-title: ADADELTA: An adaptive learning rate method publication-title: arXiv 1212 5701 – ident: ref80 doi: 10.21437/Interspeech.2017-1067 – ident: ref38 doi: 10.1145/3178876.3186116 – year: 2017 ident: ref191 article-title: Aggressive deep driving: Model predictive control with a CNN cost model publication-title: arXiv 1707 05303 – ident: ref25 doi: 10.1109/CVPR.2019.00953 – ident: ref194 doi: 10.1109/FPL.2009.5272559 – ident: ref146 doi: 10.1109/ICCV.2019.00925 – start-page: 107 year: 2016 ident: ref200 article-title: F-CNN: An FPGA-based framework for training convolutional neural networks publication-title: Proc IEEE 27th Int Conf Appl -Specific Syst Archit Processors (ASAP) – year: 2016 ident: ref36 article-title: Semi-supervised classification with graph convolutional networks publication-title: arXiv 1609 02907 – year: 2019 ident: ref32 article-title: General $E(2)$ -equivariant steerable CNNs publication-title: arXiv 1911 08251 – ident: ref176 doi: 10.1109/ACCESS.2018.2810882 – year: 2017 ident: ref169 article-title: Towards accurate binary convolutional neural network publication-title: arXiv 1711 11294 – year: 2018 ident: ref106 article-title: Multi-temporal resolution convolutional neural networks for acoustic scene classification publication-title: arXiv 1811 04419 – ident: ref143 doi: 10.1109/TPAMI.2017.2699184 – ident: ref104 doi: 10.18653/v1/W18-2314 – year: 2015 ident: ref70 article-title: DeepID3: Face recognition with very deep neural networks publication-title: arXiv 1502 00873 – ident: ref47 doi: 10.1109/CVPR.2018.00474 – year: 2015 ident: ref99 article-title: Action recognition using visual attention publication-title: arXiv 1511 04119 – ident: ref66 doi: 10.1109/CVPR.2006.100 – ident: ref29 doi: 10.1109/ICCV.2019.00364 |
SSID | ssj0000605649 |
Score | 2.7581697 |
SecondaryResourceType | review_article |
Snippet | A convolutional neural network (CNN) is one of the most significant networks in the deep learning field. Since CNN made impressive achievements in many areas,... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 6999 |
SubjectTerms | Artificial neural networks Computer vision Convolution Convolutional neural networks convolutional neural networks (CNNs) Deep learning deep neural networks Feature extraction Natural Language Processing Neural networks Neural Networks, Computer Neurons Reviews |
Title | A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects |
URI | https://ieeexplore.ieee.org/document/9451544 https://www.ncbi.nlm.nih.gov/pubmed/34111009 https://www.proquest.com/docview/2742703143 https://www.proquest.com/docview/2540521846 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PXGhQHmEFmQkbmy2ie14Y26riqpCdFWprbS3yHbGF1BS7W4qwa-vx3kIECAueSh2Hp5xZsYz8w3A-1rUSnCdp94pTKVGm1rlReoLaaURzpea8p0vV-riVn5eF-s9mE25MIgYg89wTofRl1-3rqOlslMtCwKP2Yf9YLj1uVrTekoW9HIVtV2eK55ysViPOTKZPr1Zrb5cB2uQ53NBCPKciu-FHzgBpulfRFKssfJ3dTOKnfNDuBxfuI82-TrvdnbufvyG5fi_X_QEHg_6J1v2DPMU9rB5BodjbQc2TPUjuFqy625zj99Z69lZ29wPLBr6Ep5H3MUA8u1HNgKbzNjyJ3f4jJmmZlebNiZzbp_D7fmnm7OLdKi-kDqp8l3YCqsW1ipjDErh8wKVLOsca1lkEoPgDyecyqcrXSubl64wHn3uCYGMcO5ewEHTNvgKmDXaZ9rroCyW0lkfhl-7BUpT8wVmrkwgHwlQuQGanCpkfKuiiZLpKtKvIvpVA_0S-DD1ueuBOf7Z-ogGf2o5jHsCJyOdq2HubityXkdUf5HAu-lymHXkSjENtl1oQ4ouWccqgZc9f0z3Htnq9Z-feQyPOKVQxJCYEzjYbTp8ExSbnX0bOfoBZJrw6A |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-N8QAvGzBggQ2MxBtNl9iOG_NWTUwF2mrSOqlvke3YL6AEtc0k-OvxOR-CiaG95EOx8-E75-58d78DeF-yUjAq09gZYWMurY61cCx2GddcMeNyifnOi6WYXfMv62y9B6MhF8ZaG4LP7BgPgy-_rE2DS2VnkmcIHvMAHnq5n9E2W2tYUUm8Zi6CvktTQWPKJus-SyaRZ6vlcn7l7UGajhliyFMsv-d_4QiZJv8SSqHKyt0KZxA8F4ew6F-5jTf5Nm52emx-3UJzvO83PYGDTgMl05ZlnsKerZ7BYV_dgXST_Qgup-Sq2dzYn6R25Lyubjom9X0R0SPsQgj59iPpoU1GZPqHQ3xEVFWSy00d0jm3z-H64tPqfBZ39Rdiw0W681umxURroZSynLk0s4LnZWpLniXcetHvTygWUBeyFDrNTaacdalDDDJEunsB-1Vd2WMgWkmXSCe9uphzo50ffmkmlquSTmxi8gjSngCF6cDJsUbG9yIYKYksAv0KpF_R0S-CD0OfHy00x39bH-HgDy27cY_gpKdz0c3ebYHu64DrzyJ4N1z28w6dKaqydePboKqL9rGI4GXLH8O9e7Z69e9nvoVHs9ViXsw_L7--hscUEypCgMwJ7O82jT31as5Ovwnc_Rsh2PQy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Survey+of+Convolutional+Neural+Networks%3A+Analysis%2C+Applications%2C+and+Prospects&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Li%2C+Zewen&rft.au=Liu%2C+Fan&rft.au=Yang%2C+Wenjie&rft.au=Peng%2C+Shouheng&rft.date=2022-12-01&rft.issn=2162-2388&rft.eissn=2162-2388&rft.volume=33&rft.issue=12&rft.spage=6999&rft_id=info:doi/10.1109%2FTNNLS.2021.3084827&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |