A dinuclear cobalt cluster as electrocatalyst for oxygen reduction reaction

Dinuclear metal clusters as metalloenzymes execute efficient catalytic activities in biological systems. Enlightened by this, a dinuclear {Co II 2 } cluster was selected to survey its ORR (Oxygen Reduction Reaction) catalytic activities. The crystalline {Co II 2 } possesses defined structure and pot...

Full description

Saved in:
Bibliographic Details
Published inRSC advances Vol. 9; no. 72; pp. 42554 - 4256
Main Authors Li, Yun-Wu, Zhang, Wen-Jie, Li, Chun-Xia, Gu, Lin, Du, Hong-Mei, Ma, Hui-Yan, Wang, Su-Na, Zhao, Jin-Sheng
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 23.12.2019
The Royal Society of Chemistry
Subjects
Online AccessGet full text
ISSN2046-2069
2046-2069
DOI10.1039/c9ra08068f

Cover

Loading…
Abstract Dinuclear metal clusters as metalloenzymes execute efficient catalytic activities in biological systems. Enlightened by this, a dinuclear {Co II 2 } cluster was selected to survey its ORR (Oxygen Reduction Reaction) catalytic activities. The crystalline {Co II 2 } possesses defined structure and potential catalytic active centers of {CoN 4 O 2 } sites, which was identified by X-ray single crystal diffraction, Raman and XPS. The appropriate supramolecular porosity combining abundant pyridinic-N and triazole-N sites of {Co II 2 } catalyst synergistically benefit the ORR performance. As a result, this non-noble metal catalyst presents a nice ORR electrocatalytic activity and abides by a nearly 4-electron reduction pathway. Thus, this unpyrolyzed crystalline catalyst clearly provide precise active sites and the whole defined structural information, which can help researcher to design and fabricate efficient ORR catalysts to improve their activities. Considering the visible crystal structure, a single cobalt center-mediated catalytic mechanism was also proposed to elucidate the ORR process. A Pt-free dinuclear {Co II 2 } cluster was selected to research its ORR catalytic activities. The {Co II 2 } possesses defined crystal structure and displays a nice ORR electrocatalytic performance by a nearly 4-electrons reduction pathway.
AbstractList Dinuclear metal clusters as metalloenzymes execute efficient catalytic activities in biological systems. Enlightened by this, a dinuclear {CoII2} cluster was selected to survey its ORR (Oxygen Reduction Reaction) catalytic activities. The crystalline {CoII2} possesses defined structure and potential catalytic active centers of {CoN₄O₂} sites, which was identified by X-ray single crystal diffraction, Raman and XPS. The appropriate supramolecular porosity combining abundant pyridinic-N and triazole-N sites of {CoII2} catalyst synergistically benefit the ORR performance. As a result, this non-noble metal catalyst presents a nice ORR electrocatalytic activity and abides by a nearly 4-electron reduction pathway. Thus, this unpyrolyzed crystalline catalyst clearly provide precise active sites and the whole defined structural information, which can help researcher to design and fabricate efficient ORR catalysts to improve their activities. Considering the visible crystal structure, a single cobalt center-mediated catalytic mechanism was also proposed to elucidate the ORR process.
Dinuclear metal clusters as metalloenzymes execute efficient catalytic activities in biological systems. Enlightened by this, a dinuclear {Co II 2 } cluster was selected to survey its ORR (Oxygen Reduction Reaction) catalytic activities. The crystalline {Co II 2 } possesses defined structure and potential catalytic active centers of {CoN 4 O 2 } sites, which was identified by X-ray single crystal diffraction, Raman and XPS. The appropriate supramolecular porosity combining abundant pyridinic-N and triazole-N sites of {Co II 2 } catalyst synergistically benefit the ORR performance. As a result, this non-noble metal catalyst presents a nice ORR electrocatalytic activity and abides by a nearly 4-electron reduction pathway. Thus, this unpyrolyzed crystalline catalyst clearly provide precise active sites and the whole defined structural information, which can help researcher to design and fabricate efficient ORR catalysts to improve their activities. Considering the visible crystal structure, a single cobalt center-mediated catalytic mechanism was also proposed to elucidate the ORR process. A Pt-free dinuclear {Co II 2 } cluster was selected to research its ORR catalytic activities. The {Co II 2 } possesses defined crystal structure and displays a nice ORR electrocatalytic performance by a nearly 4-electrons reduction pathway.
Dinuclear metal clusters as metalloenzymes execute efficient catalytic activities in biological systems. Enlightened by this, a dinuclear {CoII 2} cluster was selected to survey its ORR (Oxygen Reduction Reaction) catalytic activities. The crystalline {CoII 2} possesses defined structure and potential catalytic active centers of {CoN4O2} sites, which was identified by X-ray single crystal diffraction, Raman and XPS. The appropriate supramolecular porosity combining abundant pyridinic-N and triazole-N sites of {CoII 2} catalyst synergistically benefit the ORR performance. As a result, this non-noble metal catalyst presents a nice ORR electrocatalytic activity and abides by a nearly 4-electron reduction pathway. Thus, this unpyrolyzed crystalline catalyst clearly provide precise active sites and the whole defined structural information, which can help researcher to design and fabricate efficient ORR catalysts to improve their activities. Considering the visible crystal structure, a single cobalt center-mediated catalytic mechanism was also proposed to elucidate the ORR process.Dinuclear metal clusters as metalloenzymes execute efficient catalytic activities in biological systems. Enlightened by this, a dinuclear {CoII 2} cluster was selected to survey its ORR (Oxygen Reduction Reaction) catalytic activities. The crystalline {CoII 2} possesses defined structure and potential catalytic active centers of {CoN4O2} sites, which was identified by X-ray single crystal diffraction, Raman and XPS. The appropriate supramolecular porosity combining abundant pyridinic-N and triazole-N sites of {CoII 2} catalyst synergistically benefit the ORR performance. As a result, this non-noble metal catalyst presents a nice ORR electrocatalytic activity and abides by a nearly 4-electron reduction pathway. Thus, this unpyrolyzed crystalline catalyst clearly provide precise active sites and the whole defined structural information, which can help researcher to design and fabricate efficient ORR catalysts to improve their activities. Considering the visible crystal structure, a single cobalt center-mediated catalytic mechanism was also proposed to elucidate the ORR process.
Dinuclear metal clusters as metalloenzymes execute efficient catalytic activities in biological systems. Enlightened by this, a dinuclear {CoII2} cluster was selected to survey its ORR (Oxygen Reduction Reaction) catalytic activities. The crystalline {CoII2} possesses defined structure and potential catalytic active centers of {CoN 4 O 2 } sites, which was identified by X-ray single crystal diffraction, Raman and XPS. The appropriate supramolecular porosity combining abundant pyridinic-N and triazole-N sites of {CoII2} catalyst synergistically benefit the ORR performance. As a result, this non-noble metal catalyst presents a nice ORR electrocatalytic activity and abides by a nearly 4-electron reduction pathway. Thus, this unpyrolyzed crystalline catalyst clearly provide precise active sites and the whole defined structural information, which can help researcher to design and fabricate efficient ORR catalysts to improve their activities. Considering the visible crystal structure, a single cobalt center-mediated catalytic mechanism was also proposed to elucidate the ORR process.
Dinuclear metal clusters as metalloenzymes execute efficient catalytic activities in biological systems. Enlightened by this, a dinuclear {Co } cluster was selected to survey its ORR (Oxygen Reduction Reaction) catalytic activities. The crystalline {Co } possesses defined structure and potential catalytic active centers of {CoN O } sites, which was identified by X-ray single crystal diffraction, Raman and XPS. The appropriate supramolecular porosity combining abundant pyridinic-N and triazole-N sites of {Co } catalyst synergistically benefit the ORR performance. As a result, this non-noble metal catalyst presents a nice ORR electrocatalytic activity and abides by a nearly 4-electron reduction pathway. Thus, this unpyrolyzed crystalline catalyst clearly provide precise active sites and the whole defined structural information, which can help researcher to design and fabricate efficient ORR catalysts to improve their activities. Considering the visible crystal structure, a single cobalt center-mediated catalytic mechanism was also proposed to elucidate the ORR process.
Dinuclear metal clusters as metalloenzymes execute efficient catalytic activities in biological systems. Enlightened by this, a dinuclear {Co2II} cluster was selected to survey its ORR (Oxygen Reduction Reaction) catalytic activities. The crystalline {Co2II} possesses defined structure and potential catalytic active centers of {CoN4O2} sites, which was identified by X-ray single crystal diffraction, Raman and XPS. The appropriate supramolecular porosity combining abundant pyridinic-N and triazole-N sites of {Co2II} catalyst synergistically benefit the ORR performance. As a result, this non-noble metal catalyst presents a nice ORR electrocatalytic activity and abides by a nearly 4-electron reduction pathway. Thus, this unpyrolyzed crystalline catalyst clearly provide precise active sites and the whole defined structural information, which can help researcher to design and fabricate efficient ORR catalysts to improve their activities. Considering the visible crystal structure, a single cobalt center-mediated catalytic mechanism was also proposed to elucidate the ORR process.
Author Zhang, Wen-Jie
Gu, Lin
Wang, Su-Na
Li, Yun-Wu
Ma, Hui-Yan
Du, Hong-Mei
Zhao, Jin-Sheng
Li, Chun-Xia
AuthorAffiliation School of Chemistry and Chemical Engineering
Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology
Liaocheng University
AuthorAffiliation_xml – sequence: 0
  name: Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology
– sequence: 0
  name: Liaocheng University
– sequence: 0
  name: School of Chemistry and Chemical Engineering
Author_xml – sequence: 1
  givenname: Yun-Wu
  surname: Li
  fullname: Li, Yun-Wu
– sequence: 2
  givenname: Wen-Jie
  surname: Zhang
  fullname: Zhang, Wen-Jie
– sequence: 3
  givenname: Chun-Xia
  surname: Li
  fullname: Li, Chun-Xia
– sequence: 4
  givenname: Lin
  surname: Gu
  fullname: Gu, Lin
– sequence: 5
  givenname: Hong-Mei
  surname: Du
  fullname: Du, Hong-Mei
– sequence: 6
  givenname: Hui-Yan
  surname: Ma
  fullname: Ma, Hui-Yan
– sequence: 7
  givenname: Su-Na
  surname: Wang
  fullname: Wang, Su-Na
– sequence: 8
  givenname: Jin-Sheng
  surname: Zhao
  fullname: Zhao, Jin-Sheng
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35542840$$D View this record in MEDLINE/PubMed
BookMark eNqFktFrFDEQh4NUbK198V1Z8KUIpzNJNrt5KRxHq2JBEH0O2eykbsltapIV7793r1fPWgTzkoF88zHJL0_ZwRhHYuw5whsEod86nSy0oFr_iB1xkGrBQemDe_UhO8n5GualauQKn7BDUdeStxKO2Mdl1Q_j5ALZVLnY2VAqF6ZcKFU2VxTIlRSdLTZscql8TFX8ubmisUrUT64McVvZ2-IZe-xtyHRytx-zrxfnX1bvF5ef3n1YLS8XTiosCyecbzpsJAjitu8kl9IjUNcjQYcanMdWCu8Ja_RatNBybbGunbAIyoljdrbz3kzdmnpHY0k2mJs0rG3amGgH8_fJOHwzV_GH0dAo1chZcHonSPH7RLmY9ZAdhWBHilM2XCleS2ib5v9oPfsQG61m9NUD9DpOaZxfwnDBtWobjlvhy_vD76f-HckMvN4BLsWcE_k9gmC2kZuV_ry8jfxihuEB7IZit2HMFx_Cv1te7FpSdnv1n18kfgE_BrcR
CitedBy_id crossref_primary_10_1016_j_ica_2023_121497
crossref_primary_10_1039_C9RA09301J
crossref_primary_10_1016_j_molstruc_2025_142048
crossref_primary_10_1016_j_electacta_2020_137280
crossref_primary_10_1021_acsami_0c11945
crossref_primary_10_3390_nano11123429
Cites_doi 10.1039/C4EE03869J
10.1016/j.electacta.2017.06.116
10.1002/adfm.201807340
10.1016/j.carbon.2016.07.051
10.1039/C4CP05595K
10.1021/acs.accounts.6b00346
10.1007/s10876-016-1058-z
10.1039/C7CC02113E
10.1002/anie.201709597
10.1002/adma.201705431
10.1016/j.electacta.2015.08.104
10.1002/anie.201811010
10.1039/C9DT02694K
10.1002/adma.201900843
10.1002/aenm.201602643
10.1002/adma.201802497
10.1002/adma.201602868
10.1002/aenm.201702734
10.1126/sciadv.aaw2322
10.1126/science.aah6133
10.1016/j.ijhydene.2018.09.147
10.1016/j.elecom.2017.07.028
10.1016/j.carbon.2017.10.004
10.1002/anie.201504830
10.1002/cssc.201801886
10.1016/j.cej.2017.02.016
10.1039/C9TA01234F
10.1016/j.jpowsour.2014.04.136
10.1002/anie.201509982
10.1002/cctc.201601207
10.1016/j.jcat.2018.09.012
10.1021/acsnano.5b05984
10.1126/science.1249061
10.1021/acsnano.9b02930
10.1039/C5CC05097A
10.1021/jacs.9b05576
10.1021/acsami.9b05655
10.1016/j.scib.2019.07.003
10.3390/catal8020053
10.1002/anie.201504707
10.1016/j.electacta.2015.08.120
10.1002/chem.201503567
10.1038/nature05118
10.1038/ncomms10942
10.1039/C8EE01419A
10.1021/acsomega.8b00088
10.1021/sc500589w
10.1039/C6TA07952K
10.1039/C6CC09923H
10.1039/C4TA05735J
10.1021/ar300359w
10.1016/j.electacta.2010.07.020
10.1021/ja405149m
10.3389/fchem.2019.00622
10.1002/adma.201606459
10.1002/anie.201702430
10.1002/anie.200702001
10.1002/anie.200907289
10.1021/jacs.6b00757
10.1002/anie.201610607
10.1002/anie.201503637
10.1039/C8QI00178B
10.1039/b808149m
10.1126/science.aam5852
10.1002/aenm.201801257
10.1039/C7EE01913K
10.1002/anie.201907002
10.1002/adma.201706758
10.1126/science.aab0801
10.1002/anie.201902588
10.1002/adma.201803800
10.1002/anie.201907136
10.1039/C6RA04078K
ContentType Journal Article
Copyright This journal is © The Royal Society of Chemistry.
Copyright Royal Society of Chemistry 2019
This journal is © The Royal Society of Chemistry 2019 The Royal Society of Chemistry
Copyright_xml – notice: This journal is © The Royal Society of Chemistry.
– notice: Copyright Royal Society of Chemistry 2019
– notice: This journal is © The Royal Society of Chemistry 2019 The Royal Society of Chemistry
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7S9
L.6
7X8
5PM
DOI 10.1039/c9ra08068f
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList AGRICOLA

MEDLINE - Academic

CrossRef
PubMed
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2046-2069
EndPage 4256
ExternalDocumentID PMC9076674
35542840
10_1039_C9RA08068F
c9ra08068f
Genre Journal Article
GrantInformation_xml – fundername: ;
  grantid: ZR2017JL013
– fundername: ;
  grantid: 21571092; 21601079; 21771095
GroupedDBID -JG
0-7
0R~
53G
AAFWJ
AAHBH
AAIWI
AAJAE
AARTK
AAWGC
AAXHV
ABEMK
ABGFH
ABPDG
ABXOH
ACGFS
ADBBV
ADMRA
AEFDR
AENEX
AESAV
AFLYV
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
BCNDV
BLAPV
BSQNT
C6K
EBS
EE0
EF-
EJD
GROUPED_DOAJ
H13
HZ~
H~N
J3I
M~E
O9-
OK1
PGMZT
R7C
R7G
RCNCU
RPM
RPMJG
RRC
RSCEA
RVUXY
SLH
SMJ
ZCN
AAYXX
ABIQK
AFPKN
CITATION
NPM
7SR
8BQ
8FD
JG9
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c461t-c3cf7b17403e2adb4244f10ebd1e0b190cf1843ffe151f9380829a155c3a106c3
ISSN 2046-2069
IngestDate Thu Aug 21 13:42:36 EDT 2025
Fri Jul 11 07:04:34 EDT 2025
Fri Jul 11 07:21:54 EDT 2025
Mon Jun 30 07:14:49 EDT 2025
Thu Jan 02 22:38:17 EST 2025
Tue Jul 01 04:25:12 EDT 2025
Thu Apr 24 23:07:15 EDT 2025
Tue Dec 17 20:58:50 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 72
Language English
License This journal is © The Royal Society of Chemistry.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c461t-c3cf7b17403e2adb4244f10ebd1e0b190cf1843ffe151f9380829a155c3a106c3
Notes 10.1039/c9ra08068f
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3791-1786
0000-0001-7673-7787
OpenAccessLink http://dx.doi.org/10.1039/c9ra08068f
PMID 35542840
PQID 2329687217
PQPubID 2047525
PageCount 7
ParticipantIDs crossref_primary_10_1039_C9RA08068F
proquest_miscellaneous_2574311796
proquest_journals_2329687217
crossref_citationtrail_10_1039_C9RA08068F
rsc_primary_c9ra08068f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9076674
proquest_miscellaneous_2662540877
pubmed_primary_35542840
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-December-23
PublicationDateYYYYMMDD 2019-12-23
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-December-23
  day: 23
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle RSC advances
PublicationTitleAlternate RSC Adv
PublicationYear 2019
Publisher Royal Society of Chemistry
The Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
– name: The Royal Society of Chemistry
References Ren (C9RA08068F-(cit21a)/*[position()=1]) 2016; 6
Li (C9RA08068F-(cit21c)/*[position()=1]) 2018; 8
Zhou (C9RA08068F-(cit8b)/*[position()=1]) 2017; 7
Iwase (C9RA08068F-(cit25c)/*[position()=1]) 2015; 54
Zhong (C9RA08068F-(cit23d)/*[position()=1]) 2019; 58
Zhang (C9RA08068F-(cit3b)/*[position()=1]) 2015; 349
Shen (C9RA08068F-(cit15a)/*[position()=1]) 2018; 30
Huang (C9RA08068F-(cit6c)/*[position()=1]) 2019; 31
Devanathan (C9RA08068F-(cit1a)/*[position()=1]) 2008; 1
Yu (C9RA08068F-(cit2c)/*[position()=1]) 2017; 29
Kumar (C9RA08068F-(cit17b)/*[position()=1]) 2017; 246
Li (C9RA08068F-(cit23a)/*[position()=1]) 2010; 55
Li (C9RA08068F-(cit14b)/*[position()=1]) 2017; 53
Jia (C9RA08068F-(cit21d)/*[position()=1]) 2015; 9
Lai (C9RA08068F-(cit4b)/*[position()=1]) 2019; 29
Koshikawa (C9RA08068F-(cit17c)/*[position()=1]) 2015; 180
Hong (C9RA08068F-(cit5a)/*[position()=1]) 2015; 8
Shi (C9RA08068F-(cit15b)/*[position()=1]) 2018; 5
Li (C9RA08068F-(cit14a)/*[position()=1]) 2015; 51
Gu (C9RA08068F-(cit24b)/*[position()=1]) 2019; 7
Wang (C9RA08068F-(cit4d)/*[position()=1]) 2007; 46
Mao (C9RA08068F-(cit21b)/*[position()=1]) 2018; 367
Zhou (C9RA08068F-(cit23f)/*[position()=1]) 2019; 64
Miner (C9RA08068F-(cit9)/*[position()=1]) 2016; 7
Wang (C9RA08068F-(cit1b)/*[position()=1]) 2018; 30
Liu (C9RA08068F-(cit8d)/*[position()=1]) 2016; 4
Yan (C9RA08068F-(cit5b)/*[position()=1]) 2017; 29
Zhang (C9RA08068F-(cit8a)/*[position()=1]) 2018; 30
Liu (C9RA08068F-(cit7b)/*[position()=1]) 2018; 126
Qing (C9RA08068F-(cit16c)/*[position()=1]) 2014; 266
Wu (C9RA08068F-(cit3a)/*[position()=1]) 2013; 46
Qiu (C9RA08068F-(cit5c)/*[position()=1]) 2019; 31
Liu (C9RA08068F-(cit17a)/*[position()=1]) 2019; 7
Wu (C9RA08068F-(cit8c)/*[position()=1]) 2019; 58
Ma (C9RA08068F-(cit13)/*[position()=1]) 2016; 27
Cheng (C9RA08068F-(cit6b)/*[position()=1]) 2018; 8
Gartia (C9RA08068F-(cit16b)/*[position()=1]) 2015; 3
Zhang (C9RA08068F-(cit16a)/*[position()=1]) 2015; 3
Ouyang (C9RA08068F-(cit22a)/*[position()=1]) 2017; 56
Zhang (C9RA08068F-(cit14c)/*[position()=1]) 2019; 11
Zhao (C9RA08068F-(cit24c)/*[position()=1]) 2018; 8
Kato (C9RA08068F-(cit25d)/*[position()=1]) 2015; 17
Mani (C9RA08068F-(cit12)/*[position()=1]) 2018; 3
Xia (C9RA08068F-(cit5d)/*[position()=1]) 2016; 55
Ouyang (C9RA08068F-(cit22b)/*[position()=1]) 2018; 57
Yang (C9RA08068F-(cit19b)/*[position()=1]) 2019; 13
Bu (C9RA08068F-(cit4a)/*[position()=1]) 2016; 354
Lions (C9RA08068F-(cit23b)/*[position()=1]) 2017; 53
Han (C9RA08068F-(cit10)/*[position()=1]) 2015; 54
Chen (C9RA08068F-(cit4c)/*[position()=1]) 2014; 343
Ma (C9RA08068F-(cit14d)/*[position()=1]) 2019; 48
He (C9RA08068F-(cit24a)/*[position()=1]) 2017; 316
Sun (C9RA08068F-(cit23e)/*[position()=1]) 2017; 82
Liu (C9RA08068F-(cit18b)/*[position()=1]) 2010; 49
Sun (C9RA08068F-(cit20b)/*[position()=1]) 2016; 108
Jiang (C9RA08068F-(cit25b)/*[position()=1]) 2016; 138
Peng (C9RA08068F-(cit7c)/*[position()=1]) 2019; 5
Tong (C9RA08068F-(cit20a)/*[position()=1]) 2017; 56
Ramaswamy (C9RA08068F-(cit23g)/*[position()=1]) 2013; 135
Gür (C9RA08068F-(cit2a)/*[position()=1]) 2018; 11
Chu (C9RA08068F-(cit24e)/*[position()=1]) 2018; 43
Li (C9RA08068F-(cit7d)/*[position()=1]) 2019; 58
Hu (C9RA08068F-(cit6a)/*[position()=1]) 2016; 55
Liu (C9RA08068F-(cit7a)/*[position()=1]) 2018; 57
Gao (C9RA08068F-(cit19a)/*[position()=1]) 2017; 9
Giovanni (C9RA08068F-(cit11)/*[position()=1]) 2016; 22
Sun (C9RA08068F-(cit25e)/*[position()=1]) 2019; 141
Lu (C9RA08068F-(cit24d)/*[position()=1]) 2015; 180
Huang (C9RA08068F-(cit23c)/*[position()=1]) 2019; 12
Sun (C9RA08068F-(cit6d)/*[position()=1]) 2017; 356
Bashyam (C9RA08068F-(cit25a)/*[position()=1]) 2006; 443
Tan (C9RA08068F-(cit2b)/*[position()=1]) 2017; 10
Strasser (C9RA08068F-(cit18a)/*[position()=1]) 2016; 49
References_xml – volume: 8
  start-page: 1404
  year: 2015
  ident: C9RA08068F-(cit5a)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE03869J
– volume: 246
  start-page: 1131
  year: 2017
  ident: C9RA08068F-(cit17b)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.06.116
– volume: 29
  start-page: 1807340
  year: 2019
  ident: C9RA08068F-(cit4b)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201807340
– volume: 108
  start-page: 541
  year: 2016
  ident: C9RA08068F-(cit20b)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2016.07.051
– volume: 17
  start-page: 8638
  year: 2015
  ident: C9RA08068F-(cit25d)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP05595K
– volume: 49
  start-page: 2658
  year: 2016
  ident: C9RA08068F-(cit18a)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.6b00346
– volume: 27
  start-page: 1945
  year: 2016
  ident: C9RA08068F-(cit13)/*[position()=1]
  publication-title: J. Cluster Sci.
  doi: 10.1007/s10876-016-1058-z
– volume: 53
  start-page: 6496
  year: 2017
  ident: C9RA08068F-(cit23b)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C7CC02113E
– volume: 57
  start-page: 1204
  year: 2018
  ident: C9RA08068F-(cit7a)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201709597
– volume: 30
  start-page: 1705431
  year: 2018
  ident: C9RA08068F-(cit8a)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705431
– volume: 180
  start-page: 86
  year: 2015
  ident: C9RA08068F-(cit24d)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2015.08.104
– volume: 57
  start-page: 16480
  year: 2018
  ident: C9RA08068F-(cit22b)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201811010
– volume: 48
  start-page: 13541
  year: 2019
  ident: C9RA08068F-(cit14d)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/C9DT02694K
– volume: 31
  start-page: 1900843
  year: 2019
  ident: C9RA08068F-(cit5c)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201900843
– volume: 7
  start-page: 1602643
  year: 2017
  ident: C9RA08068F-(cit8b)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201602643
– volume: 30
  start-page: 1802497
  year: 2018
  ident: C9RA08068F-(cit15a)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201802497
– volume: 29
  start-page: 1602868
  year: 2017
  ident: C9RA08068F-(cit2c)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201602868
– volume: 8
  start-page: 1702734
  year: 2018
  ident: C9RA08068F-(cit21c)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201702734
– volume: 5
  start-page: eaaw2322
  year: 2019
  ident: C9RA08068F-(cit7c)/*[position()=1]
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aaw2322
– volume: 354
  start-page: 1410
  year: 2016
  ident: C9RA08068F-(cit4a)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aah6133
– volume: 43
  start-page: 21810
  year: 2018
  ident: C9RA08068F-(cit24e)/*[position()=1]
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.09.147
– volume: 82
  start-page: 89
  year: 2017
  ident: C9RA08068F-(cit23e)/*[position()=1]
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2017.07.028
– volume: 126
  start-page: 1
  year: 2018
  ident: C9RA08068F-(cit7b)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2017.10.004
– volume: 55
  start-page: 2650
  year: 2016
  ident: C9RA08068F-(cit5d)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201504830
– volume: 12
  start-page: 200
  year: 2019
  ident: C9RA08068F-(cit23c)/*[position()=1]
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201801886
– volume: 316
  start-page: 680
  year: 2017
  ident: C9RA08068F-(cit24a)/*[position()=1]
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.02.016
– volume: 7
  start-page: 14291
  year: 2019
  ident: C9RA08068F-(cit17a)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA01234F
– volume: 266
  start-page: 88
  year: 2014
  ident: C9RA08068F-(cit16c)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.04.136
– volume: 55
  start-page: 11736
  year: 2016
  ident: C9RA08068F-(cit6a)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201509982
– volume: 9
  start-page: 1601
  year: 2017
  ident: C9RA08068F-(cit19a)/*[position()=1]
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201601207
– volume: 367
  start-page: 206
  year: 2018
  ident: C9RA08068F-(cit21b)/*[position()=1]
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2018.09.012
– volume: 9
  start-page: 12496
  year: 2015
  ident: C9RA08068F-(cit21d)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b05984
– volume: 343
  start-page: 1339
  year: 2014
  ident: C9RA08068F-(cit4c)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1249061
– volume: 13
  start-page: 8087
  year: 2019
  ident: C9RA08068F-(cit19b)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b02930
– volume: 51
  start-page: 14211
  year: 2015
  ident: C9RA08068F-(cit14a)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC05097A
– volume: 141
  start-page: 12372
  year: 2019
  ident: C9RA08068F-(cit25e)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b05576
– volume: 11
  start-page: 20104
  year: 2019
  ident: C9RA08068F-(cit14c)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b05655
– volume: 64
  start-page: 1158
  year: 2019
  ident: C9RA08068F-(cit23f)/*[position()=1]
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2019.07.003
– volume: 8
  start-page: 53
  year: 2018
  ident: C9RA08068F-(cit24c)/*[position()=1]
  publication-title: Catalysts
  doi: 10.3390/catal8020053
– volume: 54
  start-page: 12622
  year: 2015
  ident: C9RA08068F-(cit10)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201504707
– volume: 180
  start-page: 173
  year: 2015
  ident: C9RA08068F-(cit17c)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2015.08.120
– volume: 22
  start-page: 361
  year: 2016
  ident: C9RA08068F-(cit11)/*[position()=1]
  publication-title: Chem.–Eur. J.
  doi: 10.1002/chem.201503567
– volume: 443
  start-page: 63
  year: 2006
  ident: C9RA08068F-(cit25a)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature05118
– volume: 7
  start-page: 10942
  year: 2016
  ident: C9RA08068F-(cit9)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10942
– volume: 11
  start-page: 2696
  year: 2018
  ident: C9RA08068F-(cit2a)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE01419A
– volume: 3
  start-page: 3830
  year: 2018
  ident: C9RA08068F-(cit12)/*[position()=1]
  publication-title: ACS Omega
  doi: 10.1021/acsomega.8b00088
– volume: 3
  start-page: 97
  year: 2015
  ident: C9RA08068F-(cit16b)/*[position()=1]
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/sc500589w
– volume: 4
  start-page: 18100
  year: 2016
  ident: C9RA08068F-(cit8d)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA07952K
– volume: 53
  start-page: 2394
  year: 2017
  ident: C9RA08068F-(cit14b)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC09923H
– volume: 3
  start-page: 3559
  year: 2015
  ident: C9RA08068F-(cit16a)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA05735J
– volume: 46
  start-page: 1848
  year: 2013
  ident: C9RA08068F-(cit3a)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar300359w
– volume: 55
  start-page: 7346
  year: 2010
  ident: C9RA08068F-(cit23a)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2010.07.020
– volume: 135
  start-page: 15443
  year: 2013
  ident: C9RA08068F-(cit23g)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja405149m
– volume: 7
  start-page: 622
  year: 2019
  ident: C9RA08068F-(cit24b)/*[position()=1]
  publication-title: Front. Chem.
  doi: 10.3389/fchem.2019.00622
– volume: 29
  start-page: 1606459
  year: 2017
  ident: C9RA08068F-(cit5b)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606459
– volume: 56
  start-page: 7121
  year: 2017
  ident: C9RA08068F-(cit20a)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201702430
– volume: 46
  start-page: 6333
  year: 2007
  ident: C9RA08068F-(cit4d)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200702001
– volume: 49
  start-page: 2565
  year: 2010
  ident: C9RA08068F-(cit18b)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200907289
– volume: 138
  start-page: 3570
  year: 2016
  ident: C9RA08068F-(cit25b)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b00757
– volume: 56
  start-page: 738
  year: 2017
  ident: C9RA08068F-(cit22a)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201610607
– volume: 54
  start-page: 11068
  year: 2015
  ident: C9RA08068F-(cit25c)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201503637
– volume: 5
  start-page: 1329
  year: 2018
  ident: C9RA08068F-(cit15b)/*[position()=1]
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/C8QI00178B
– volume: 1
  start-page: 101
  year: 2008
  ident: C9RA08068F-(cit1a)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/b808149m
– volume: 356
  start-page: 599
  year: 2017
  ident: C9RA08068F-(cit6d)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aam5852
– volume: 8
  start-page: 1801257
  year: 2018
  ident: C9RA08068F-(cit6b)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201801257
– volume: 10
  start-page: 2056
  year: 2017
  ident: C9RA08068F-(cit2b)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE01913K
– volume: 58
  start-page: 10677
  year: 2019
  ident: C9RA08068F-(cit23d)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201907002
– volume: 30
  start-page: 1706758
  year: 2018
  ident: C9RA08068F-(cit1b)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201706758
– volume: 349
  start-page: 412
  year: 2015
  ident: C9RA08068F-(cit3b)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aab0801
– volume: 58
  start-page: 7051
  year: 2019
  ident: C9RA08068F-(cit7d)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201902588
– volume: 31
  start-page: 1803800
  year: 2019
  ident: C9RA08068F-(cit6c)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201803800
– volume: 58
  start-page: 12185
  year: 2019
  ident: C9RA08068F-(cit8c)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201907136
– volume: 6
  start-page: 33302
  year: 2016
  ident: C9RA08068F-(cit21a)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C6RA04078K
SSID ssj0000651261
Score 2.313323
Snippet Dinuclear metal clusters as metalloenzymes execute efficient catalytic activities in biological systems. Enlightened by this, a dinuclear {Co II 2 } cluster...
Dinuclear metal clusters as metalloenzymes execute efficient catalytic activities in biological systems. Enlightened by this, a dinuclear {CoII2} cluster was...
Dinuclear metal clusters as metalloenzymes execute efficient catalytic activities in biological systems. Enlightened by this, a dinuclear {Co } cluster was...
Dinuclear metal clusters as metalloenzymes execute efficient catalytic activities in biological systems. Enlightened by this, a dinuclear {Co2II} cluster was...
Dinuclear metal clusters as metalloenzymes execute efficient catalytic activities in biological systems. Enlightened by this, a dinuclear {CoII 2} cluster was...
SourceID pubmedcentral
proquest
pubmed
crossref
rsc
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 42554
SubjectTerms Catalysts
Chemistry
Cobalt
Crystal structure
Crystallinity
electrochemistry
Metal clusters
Noble metals
Oxygen reduction reactions
Porosity
researchers
Single crystals
Triazoles
X ray photoelectron spectroscopy
X-ray diffraction
Title A dinuclear cobalt cluster as electrocatalyst for oxygen reduction reaction
URI https://www.ncbi.nlm.nih.gov/pubmed/35542840
https://www.proquest.com/docview/2329687217
https://www.proquest.com/docview/2574311796
https://www.proquest.com/docview/2662540877
https://pubmed.ncbi.nlm.nih.gov/PMC9076674
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbYeIAXxG0QGMgIXlCVkduc-LGKGNO4PMCmlafKdm2t0pSiNJG2_XqOr2lpQcBL1NqnUXU-x_6O4_MdhN5UvMwKnuQxjN0sLihjcaUkjQsJ0QOfEWjQycmfv5Djs-Jkcjjx5d1ddknHD8TN1ryS_0EV2gBXnSX7D8iGm0IDfAZ84QoIw_WvMB6PYOXRgsSsHQkt7NGNxGWvpQ90-RhX4cZs0FwvO3OgcHF1DXcbtVqw1SAPnFEEbLxQ97fanw0IjPuTeev_vW_i835js_lcNvHJXK7b1hdgPJmHaf9D7_YAVjcaUlMlweYCH0gzIWUQS4P_bWkVP3vSlUFii_C4qRAmAysP7dZV-E62ztlJriVPBW0ZsFdSqWFlCucFh84ddDuDgCBbCZ7tmgvEhaRefzan74afrDOOjTBi8zTsTuuLvxiScXof3XPRAR5bqB-gW7J5iO7UvijfI_RxjAPk2EKOHeSYLfEvkGOAHFvIcYAce8gfo7Oj96f1cezqYcSiIGkXi1yokkMImeQyYzOucxRVmkg-S2XCgdkJpav3KCWBximaVzpvmgFhFDmDyF_ke2i3WTTyKcK0YoQRKaFXFWmSMIjaVcppVQkIEAiJ0Fvvs6lwYvG6Zsnl1BxayOm0pl_Hxr9HEXodbH9YiZStVvve9VP3CC2nQOcpqUoIiyP0KnSDS_VbK9bIRQ82h5rkwrpB_mBDIIwvtLZlhJ5YNMNf0YQaOFgSoXIN52CgBdbXe5r5hRFap9oVZRGhPRgRwX4YWc9-1_Ec3R2eoH2027W9fAHkteMvzbj9CZbRnM0
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+dinuclear+cobalt+cluster+as+electrocatalyst+for+oxygen+reduction+reaction&rft.jtitle=RSC+advances&rft.au=Li%2C+Yun-Wu&rft.au=Zhang%2C+Wen-Jie&rft.au=Li%2C+Chun-Xia&rft.au=Gu%2C+Lin&rft.date=2019-12-23&rft.eissn=2046-2069&rft.volume=9&rft.issue=72&rft.spage=42554&rft.epage=4256&rft_id=info:doi/10.1039%2Fc9ra08068f&rft.externalDocID=c9ra08068f
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-2069&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-2069&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-2069&client=summon