A dinuclear cobalt cluster as electrocatalyst for oxygen reduction reaction
Dinuclear metal clusters as metalloenzymes execute efficient catalytic activities in biological systems. Enlightened by this, a dinuclear {Co II 2 } cluster was selected to survey its ORR (Oxygen Reduction Reaction) catalytic activities. The crystalline {Co II 2 } possesses defined structure and pot...
Saved in:
Published in | RSC advances Vol. 9; no. 72; pp. 42554 - 4256 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
23.12.2019
The Royal Society of Chemistry |
Subjects | |
Online Access | Get full text |
ISSN | 2046-2069 2046-2069 |
DOI | 10.1039/c9ra08068f |
Cover
Loading…
Abstract | Dinuclear metal clusters as metalloenzymes execute efficient catalytic activities in biological systems. Enlightened by this, a dinuclear {Co
II
2
} cluster was selected to survey its ORR (Oxygen Reduction Reaction) catalytic activities. The crystalline {Co
II
2
} possesses defined structure and potential catalytic active centers of {CoN
4
O
2
} sites, which was identified by X-ray single crystal diffraction, Raman and XPS. The appropriate supramolecular porosity combining abundant pyridinic-N and triazole-N sites of {Co
II
2
} catalyst synergistically benefit the ORR performance. As a result, this non-noble metal catalyst presents a nice ORR electrocatalytic activity and abides by a nearly 4-electron reduction pathway. Thus, this unpyrolyzed crystalline catalyst clearly provide precise active sites and the whole defined structural information, which can help researcher to design and fabricate efficient ORR catalysts to improve their activities. Considering the visible crystal structure, a single cobalt center-mediated catalytic mechanism was also proposed to elucidate the ORR process.
A Pt-free dinuclear {Co
II
2
} cluster was selected to research its ORR catalytic activities. The {Co
II
2
} possesses defined crystal structure and displays a nice ORR electrocatalytic performance by a nearly 4-electrons reduction pathway. |
---|---|
AbstractList | Dinuclear metal clusters as metalloenzymes execute efficient catalytic activities in biological systems. Enlightened by this, a dinuclear {CoII2} cluster was selected to survey its ORR (Oxygen Reduction Reaction) catalytic activities. The crystalline {CoII2} possesses defined structure and potential catalytic active centers of {CoN₄O₂} sites, which was identified by X-ray single crystal diffraction, Raman and XPS. The appropriate supramolecular porosity combining abundant pyridinic-N and triazole-N sites of {CoII2} catalyst synergistically benefit the ORR performance. As a result, this non-noble metal catalyst presents a nice ORR electrocatalytic activity and abides by a nearly 4-electron reduction pathway. Thus, this unpyrolyzed crystalline catalyst clearly provide precise active sites and the whole defined structural information, which can help researcher to design and fabricate efficient ORR catalysts to improve their activities. Considering the visible crystal structure, a single cobalt center-mediated catalytic mechanism was also proposed to elucidate the ORR process. Dinuclear metal clusters as metalloenzymes execute efficient catalytic activities in biological systems. Enlightened by this, a dinuclear {Co II 2 } cluster was selected to survey its ORR (Oxygen Reduction Reaction) catalytic activities. The crystalline {Co II 2 } possesses defined structure and potential catalytic active centers of {CoN 4 O 2 } sites, which was identified by X-ray single crystal diffraction, Raman and XPS. The appropriate supramolecular porosity combining abundant pyridinic-N and triazole-N sites of {Co II 2 } catalyst synergistically benefit the ORR performance. As a result, this non-noble metal catalyst presents a nice ORR electrocatalytic activity and abides by a nearly 4-electron reduction pathway. Thus, this unpyrolyzed crystalline catalyst clearly provide precise active sites and the whole defined structural information, which can help researcher to design and fabricate efficient ORR catalysts to improve their activities. Considering the visible crystal structure, a single cobalt center-mediated catalytic mechanism was also proposed to elucidate the ORR process. A Pt-free dinuclear {Co II 2 } cluster was selected to research its ORR catalytic activities. The {Co II 2 } possesses defined crystal structure and displays a nice ORR electrocatalytic performance by a nearly 4-electrons reduction pathway. Dinuclear metal clusters as metalloenzymes execute efficient catalytic activities in biological systems. Enlightened by this, a dinuclear {CoII 2} cluster was selected to survey its ORR (Oxygen Reduction Reaction) catalytic activities. The crystalline {CoII 2} possesses defined structure and potential catalytic active centers of {CoN4O2} sites, which was identified by X-ray single crystal diffraction, Raman and XPS. The appropriate supramolecular porosity combining abundant pyridinic-N and triazole-N sites of {CoII 2} catalyst synergistically benefit the ORR performance. As a result, this non-noble metal catalyst presents a nice ORR electrocatalytic activity and abides by a nearly 4-electron reduction pathway. Thus, this unpyrolyzed crystalline catalyst clearly provide precise active sites and the whole defined structural information, which can help researcher to design and fabricate efficient ORR catalysts to improve their activities. Considering the visible crystal structure, a single cobalt center-mediated catalytic mechanism was also proposed to elucidate the ORR process.Dinuclear metal clusters as metalloenzymes execute efficient catalytic activities in biological systems. Enlightened by this, a dinuclear {CoII 2} cluster was selected to survey its ORR (Oxygen Reduction Reaction) catalytic activities. The crystalline {CoII 2} possesses defined structure and potential catalytic active centers of {CoN4O2} sites, which was identified by X-ray single crystal diffraction, Raman and XPS. The appropriate supramolecular porosity combining abundant pyridinic-N and triazole-N sites of {CoII 2} catalyst synergistically benefit the ORR performance. As a result, this non-noble metal catalyst presents a nice ORR electrocatalytic activity and abides by a nearly 4-electron reduction pathway. Thus, this unpyrolyzed crystalline catalyst clearly provide precise active sites and the whole defined structural information, which can help researcher to design and fabricate efficient ORR catalysts to improve their activities. Considering the visible crystal structure, a single cobalt center-mediated catalytic mechanism was also proposed to elucidate the ORR process. Dinuclear metal clusters as metalloenzymes execute efficient catalytic activities in biological systems. Enlightened by this, a dinuclear {CoII2} cluster was selected to survey its ORR (Oxygen Reduction Reaction) catalytic activities. The crystalline {CoII2} possesses defined structure and potential catalytic active centers of {CoN 4 O 2 } sites, which was identified by X-ray single crystal diffraction, Raman and XPS. The appropriate supramolecular porosity combining abundant pyridinic-N and triazole-N sites of {CoII2} catalyst synergistically benefit the ORR performance. As a result, this non-noble metal catalyst presents a nice ORR electrocatalytic activity and abides by a nearly 4-electron reduction pathway. Thus, this unpyrolyzed crystalline catalyst clearly provide precise active sites and the whole defined structural information, which can help researcher to design and fabricate efficient ORR catalysts to improve their activities. Considering the visible crystal structure, a single cobalt center-mediated catalytic mechanism was also proposed to elucidate the ORR process. Dinuclear metal clusters as metalloenzymes execute efficient catalytic activities in biological systems. Enlightened by this, a dinuclear {Co } cluster was selected to survey its ORR (Oxygen Reduction Reaction) catalytic activities. The crystalline {Co } possesses defined structure and potential catalytic active centers of {CoN O } sites, which was identified by X-ray single crystal diffraction, Raman and XPS. The appropriate supramolecular porosity combining abundant pyridinic-N and triazole-N sites of {Co } catalyst synergistically benefit the ORR performance. As a result, this non-noble metal catalyst presents a nice ORR electrocatalytic activity and abides by a nearly 4-electron reduction pathway. Thus, this unpyrolyzed crystalline catalyst clearly provide precise active sites and the whole defined structural information, which can help researcher to design and fabricate efficient ORR catalysts to improve their activities. Considering the visible crystal structure, a single cobalt center-mediated catalytic mechanism was also proposed to elucidate the ORR process. Dinuclear metal clusters as metalloenzymes execute efficient catalytic activities in biological systems. Enlightened by this, a dinuclear {Co2II} cluster was selected to survey its ORR (Oxygen Reduction Reaction) catalytic activities. The crystalline {Co2II} possesses defined structure and potential catalytic active centers of {CoN4O2} sites, which was identified by X-ray single crystal diffraction, Raman and XPS. The appropriate supramolecular porosity combining abundant pyridinic-N and triazole-N sites of {Co2II} catalyst synergistically benefit the ORR performance. As a result, this non-noble metal catalyst presents a nice ORR electrocatalytic activity and abides by a nearly 4-electron reduction pathway. Thus, this unpyrolyzed crystalline catalyst clearly provide precise active sites and the whole defined structural information, which can help researcher to design and fabricate efficient ORR catalysts to improve their activities. Considering the visible crystal structure, a single cobalt center-mediated catalytic mechanism was also proposed to elucidate the ORR process. |
Author | Zhang, Wen-Jie Gu, Lin Wang, Su-Na Li, Yun-Wu Ma, Hui-Yan Du, Hong-Mei Zhao, Jin-Sheng Li, Chun-Xia |
AuthorAffiliation | School of Chemistry and Chemical Engineering Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology Liaocheng University |
AuthorAffiliation_xml | – sequence: 0 name: Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology – sequence: 0 name: Liaocheng University – sequence: 0 name: School of Chemistry and Chemical Engineering |
Author_xml | – sequence: 1 givenname: Yun-Wu surname: Li fullname: Li, Yun-Wu – sequence: 2 givenname: Wen-Jie surname: Zhang fullname: Zhang, Wen-Jie – sequence: 3 givenname: Chun-Xia surname: Li fullname: Li, Chun-Xia – sequence: 4 givenname: Lin surname: Gu fullname: Gu, Lin – sequence: 5 givenname: Hong-Mei surname: Du fullname: Du, Hong-Mei – sequence: 6 givenname: Hui-Yan surname: Ma fullname: Ma, Hui-Yan – sequence: 7 givenname: Su-Na surname: Wang fullname: Wang, Su-Na – sequence: 8 givenname: Jin-Sheng surname: Zhao fullname: Zhao, Jin-Sheng |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35542840$$D View this record in MEDLINE/PubMed |
BookMark | eNqFktFrFDEQh4NUbK198V1Z8KUIpzNJNrt5KRxHq2JBEH0O2eykbsltapIV7793r1fPWgTzkoF88zHJL0_ZwRhHYuw5whsEod86nSy0oFr_iB1xkGrBQemDe_UhO8n5GualauQKn7BDUdeStxKO2Mdl1Q_j5ALZVLnY2VAqF6ZcKFU2VxTIlRSdLTZscql8TFX8ubmisUrUT64McVvZ2-IZe-xtyHRytx-zrxfnX1bvF5ef3n1YLS8XTiosCyecbzpsJAjitu8kl9IjUNcjQYcanMdWCu8Ja_RatNBybbGunbAIyoljdrbz3kzdmnpHY0k2mJs0rG3amGgH8_fJOHwzV_GH0dAo1chZcHonSPH7RLmY9ZAdhWBHilM2XCleS2ib5v9oPfsQG61m9NUD9DpOaZxfwnDBtWobjlvhy_vD76f-HckMvN4BLsWcE_k9gmC2kZuV_ry8jfxihuEB7IZit2HMFx_Cv1te7FpSdnv1n18kfgE_BrcR |
CitedBy_id | crossref_primary_10_1016_j_ica_2023_121497 crossref_primary_10_1039_C9RA09301J crossref_primary_10_1016_j_molstruc_2025_142048 crossref_primary_10_1016_j_electacta_2020_137280 crossref_primary_10_1021_acsami_0c11945 crossref_primary_10_3390_nano11123429 |
Cites_doi | 10.1039/C4EE03869J 10.1016/j.electacta.2017.06.116 10.1002/adfm.201807340 10.1016/j.carbon.2016.07.051 10.1039/C4CP05595K 10.1021/acs.accounts.6b00346 10.1007/s10876-016-1058-z 10.1039/C7CC02113E 10.1002/anie.201709597 10.1002/adma.201705431 10.1016/j.electacta.2015.08.104 10.1002/anie.201811010 10.1039/C9DT02694K 10.1002/adma.201900843 10.1002/aenm.201602643 10.1002/adma.201802497 10.1002/adma.201602868 10.1002/aenm.201702734 10.1126/sciadv.aaw2322 10.1126/science.aah6133 10.1016/j.ijhydene.2018.09.147 10.1016/j.elecom.2017.07.028 10.1016/j.carbon.2017.10.004 10.1002/anie.201504830 10.1002/cssc.201801886 10.1016/j.cej.2017.02.016 10.1039/C9TA01234F 10.1016/j.jpowsour.2014.04.136 10.1002/anie.201509982 10.1002/cctc.201601207 10.1016/j.jcat.2018.09.012 10.1021/acsnano.5b05984 10.1126/science.1249061 10.1021/acsnano.9b02930 10.1039/C5CC05097A 10.1021/jacs.9b05576 10.1021/acsami.9b05655 10.1016/j.scib.2019.07.003 10.3390/catal8020053 10.1002/anie.201504707 10.1016/j.electacta.2015.08.120 10.1002/chem.201503567 10.1038/nature05118 10.1038/ncomms10942 10.1039/C8EE01419A 10.1021/acsomega.8b00088 10.1021/sc500589w 10.1039/C6TA07952K 10.1039/C6CC09923H 10.1039/C4TA05735J 10.1021/ar300359w 10.1016/j.electacta.2010.07.020 10.1021/ja405149m 10.3389/fchem.2019.00622 10.1002/adma.201606459 10.1002/anie.201702430 10.1002/anie.200702001 10.1002/anie.200907289 10.1021/jacs.6b00757 10.1002/anie.201610607 10.1002/anie.201503637 10.1039/C8QI00178B 10.1039/b808149m 10.1126/science.aam5852 10.1002/aenm.201801257 10.1039/C7EE01913K 10.1002/anie.201907002 10.1002/adma.201706758 10.1126/science.aab0801 10.1002/anie.201902588 10.1002/adma.201803800 10.1002/anie.201907136 10.1039/C6RA04078K |
ContentType | Journal Article |
Copyright | This journal is © The Royal Society of Chemistry. Copyright Royal Society of Chemistry 2019 This journal is © The Royal Society of Chemistry 2019 The Royal Society of Chemistry |
Copyright_xml | – notice: This journal is © The Royal Society of Chemistry. – notice: Copyright Royal Society of Chemistry 2019 – notice: This journal is © The Royal Society of Chemistry 2019 The Royal Society of Chemistry |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7S9 L.6 7X8 5PM |
DOI | 10.1039/c9ra08068f |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic CrossRef PubMed Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2046-2069 |
EndPage | 4256 |
ExternalDocumentID | PMC9076674 35542840 10_1039_C9RA08068F c9ra08068f |
Genre | Journal Article |
GrantInformation_xml | – fundername: ; grantid: ZR2017JL013 – fundername: ; grantid: 21571092; 21601079; 21771095 |
GroupedDBID | -JG 0-7 0R~ 53G AAFWJ AAHBH AAIWI AAJAE AARTK AAWGC AAXHV ABEMK ABGFH ABPDG ABXOH ACGFS ADBBV ADMRA AEFDR AENEX AESAV AFLYV AFVBQ AGEGJ AGRSR AGSTE AHGCF AKBGW ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV BCNDV BLAPV BSQNT C6K EBS EE0 EF- EJD GROUPED_DOAJ H13 HZ~ H~N J3I M~E O9- OK1 PGMZT R7C R7G RCNCU RPM RPMJG RRC RSCEA RVUXY SLH SMJ ZCN AAYXX ABIQK AFPKN CITATION NPM 7SR 8BQ 8FD JG9 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c461t-c3cf7b17403e2adb4244f10ebd1e0b190cf1843ffe151f9380829a155c3a106c3 |
ISSN | 2046-2069 |
IngestDate | Thu Aug 21 13:42:36 EDT 2025 Fri Jul 11 07:04:34 EDT 2025 Fri Jul 11 07:21:54 EDT 2025 Mon Jun 30 07:14:49 EDT 2025 Thu Jan 02 22:38:17 EST 2025 Tue Jul 01 04:25:12 EDT 2025 Thu Apr 24 23:07:15 EDT 2025 Tue Dec 17 20:58:50 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 72 |
Language | English |
License | This journal is © The Royal Society of Chemistry. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c461t-c3cf7b17403e2adb4244f10ebd1e0b190cf1843ffe151f9380829a155c3a106c3 |
Notes | 10.1039/c9ra08068f Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3791-1786 0000-0001-7673-7787 |
OpenAccessLink | http://dx.doi.org/10.1039/c9ra08068f |
PMID | 35542840 |
PQID | 2329687217 |
PQPubID | 2047525 |
PageCount | 7 |
ParticipantIDs | crossref_primary_10_1039_C9RA08068F proquest_miscellaneous_2574311796 proquest_journals_2329687217 crossref_citationtrail_10_1039_C9RA08068F rsc_primary_c9ra08068f pubmedcentral_primary_oai_pubmedcentral_nih_gov_9076674 proquest_miscellaneous_2662540877 pubmed_primary_35542840 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-December-23 |
PublicationDateYYYYMMDD | 2019-12-23 |
PublicationDate_xml | – month: 12 year: 2019 text: 2019-December-23 day: 23 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | RSC advances |
PublicationTitleAlternate | RSC Adv |
PublicationYear | 2019 |
Publisher | Royal Society of Chemistry The Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry – name: The Royal Society of Chemistry |
References | Ren (C9RA08068F-(cit21a)/*[position()=1]) 2016; 6 Li (C9RA08068F-(cit21c)/*[position()=1]) 2018; 8 Zhou (C9RA08068F-(cit8b)/*[position()=1]) 2017; 7 Iwase (C9RA08068F-(cit25c)/*[position()=1]) 2015; 54 Zhong (C9RA08068F-(cit23d)/*[position()=1]) 2019; 58 Zhang (C9RA08068F-(cit3b)/*[position()=1]) 2015; 349 Shen (C9RA08068F-(cit15a)/*[position()=1]) 2018; 30 Huang (C9RA08068F-(cit6c)/*[position()=1]) 2019; 31 Devanathan (C9RA08068F-(cit1a)/*[position()=1]) 2008; 1 Yu (C9RA08068F-(cit2c)/*[position()=1]) 2017; 29 Kumar (C9RA08068F-(cit17b)/*[position()=1]) 2017; 246 Li (C9RA08068F-(cit23a)/*[position()=1]) 2010; 55 Li (C9RA08068F-(cit14b)/*[position()=1]) 2017; 53 Jia (C9RA08068F-(cit21d)/*[position()=1]) 2015; 9 Lai (C9RA08068F-(cit4b)/*[position()=1]) 2019; 29 Koshikawa (C9RA08068F-(cit17c)/*[position()=1]) 2015; 180 Hong (C9RA08068F-(cit5a)/*[position()=1]) 2015; 8 Shi (C9RA08068F-(cit15b)/*[position()=1]) 2018; 5 Li (C9RA08068F-(cit14a)/*[position()=1]) 2015; 51 Gu (C9RA08068F-(cit24b)/*[position()=1]) 2019; 7 Wang (C9RA08068F-(cit4d)/*[position()=1]) 2007; 46 Mao (C9RA08068F-(cit21b)/*[position()=1]) 2018; 367 Zhou (C9RA08068F-(cit23f)/*[position()=1]) 2019; 64 Miner (C9RA08068F-(cit9)/*[position()=1]) 2016; 7 Wang (C9RA08068F-(cit1b)/*[position()=1]) 2018; 30 Liu (C9RA08068F-(cit8d)/*[position()=1]) 2016; 4 Yan (C9RA08068F-(cit5b)/*[position()=1]) 2017; 29 Zhang (C9RA08068F-(cit8a)/*[position()=1]) 2018; 30 Liu (C9RA08068F-(cit7b)/*[position()=1]) 2018; 126 Qing (C9RA08068F-(cit16c)/*[position()=1]) 2014; 266 Wu (C9RA08068F-(cit3a)/*[position()=1]) 2013; 46 Qiu (C9RA08068F-(cit5c)/*[position()=1]) 2019; 31 Liu (C9RA08068F-(cit17a)/*[position()=1]) 2019; 7 Wu (C9RA08068F-(cit8c)/*[position()=1]) 2019; 58 Ma (C9RA08068F-(cit13)/*[position()=1]) 2016; 27 Cheng (C9RA08068F-(cit6b)/*[position()=1]) 2018; 8 Gartia (C9RA08068F-(cit16b)/*[position()=1]) 2015; 3 Zhang (C9RA08068F-(cit16a)/*[position()=1]) 2015; 3 Ouyang (C9RA08068F-(cit22a)/*[position()=1]) 2017; 56 Zhang (C9RA08068F-(cit14c)/*[position()=1]) 2019; 11 Zhao (C9RA08068F-(cit24c)/*[position()=1]) 2018; 8 Kato (C9RA08068F-(cit25d)/*[position()=1]) 2015; 17 Mani (C9RA08068F-(cit12)/*[position()=1]) 2018; 3 Xia (C9RA08068F-(cit5d)/*[position()=1]) 2016; 55 Ouyang (C9RA08068F-(cit22b)/*[position()=1]) 2018; 57 Yang (C9RA08068F-(cit19b)/*[position()=1]) 2019; 13 Bu (C9RA08068F-(cit4a)/*[position()=1]) 2016; 354 Lions (C9RA08068F-(cit23b)/*[position()=1]) 2017; 53 Han (C9RA08068F-(cit10)/*[position()=1]) 2015; 54 Chen (C9RA08068F-(cit4c)/*[position()=1]) 2014; 343 Ma (C9RA08068F-(cit14d)/*[position()=1]) 2019; 48 He (C9RA08068F-(cit24a)/*[position()=1]) 2017; 316 Sun (C9RA08068F-(cit23e)/*[position()=1]) 2017; 82 Liu (C9RA08068F-(cit18b)/*[position()=1]) 2010; 49 Sun (C9RA08068F-(cit20b)/*[position()=1]) 2016; 108 Jiang (C9RA08068F-(cit25b)/*[position()=1]) 2016; 138 Peng (C9RA08068F-(cit7c)/*[position()=1]) 2019; 5 Tong (C9RA08068F-(cit20a)/*[position()=1]) 2017; 56 Ramaswamy (C9RA08068F-(cit23g)/*[position()=1]) 2013; 135 Gür (C9RA08068F-(cit2a)/*[position()=1]) 2018; 11 Chu (C9RA08068F-(cit24e)/*[position()=1]) 2018; 43 Li (C9RA08068F-(cit7d)/*[position()=1]) 2019; 58 Hu (C9RA08068F-(cit6a)/*[position()=1]) 2016; 55 Liu (C9RA08068F-(cit7a)/*[position()=1]) 2018; 57 Gao (C9RA08068F-(cit19a)/*[position()=1]) 2017; 9 Giovanni (C9RA08068F-(cit11)/*[position()=1]) 2016; 22 Sun (C9RA08068F-(cit25e)/*[position()=1]) 2019; 141 Lu (C9RA08068F-(cit24d)/*[position()=1]) 2015; 180 Huang (C9RA08068F-(cit23c)/*[position()=1]) 2019; 12 Sun (C9RA08068F-(cit6d)/*[position()=1]) 2017; 356 Bashyam (C9RA08068F-(cit25a)/*[position()=1]) 2006; 443 Tan (C9RA08068F-(cit2b)/*[position()=1]) 2017; 10 Strasser (C9RA08068F-(cit18a)/*[position()=1]) 2016; 49 |
References_xml | – volume: 8 start-page: 1404 year: 2015 ident: C9RA08068F-(cit5a)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C4EE03869J – volume: 246 start-page: 1131 year: 2017 ident: C9RA08068F-(cit17b)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.06.116 – volume: 29 start-page: 1807340 year: 2019 ident: C9RA08068F-(cit4b)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201807340 – volume: 108 start-page: 541 year: 2016 ident: C9RA08068F-(cit20b)/*[position()=1] publication-title: Carbon doi: 10.1016/j.carbon.2016.07.051 – volume: 17 start-page: 8638 year: 2015 ident: C9RA08068F-(cit25d)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP05595K – volume: 49 start-page: 2658 year: 2016 ident: C9RA08068F-(cit18a)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.6b00346 – volume: 27 start-page: 1945 year: 2016 ident: C9RA08068F-(cit13)/*[position()=1] publication-title: J. Cluster Sci. doi: 10.1007/s10876-016-1058-z – volume: 53 start-page: 6496 year: 2017 ident: C9RA08068F-(cit23b)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C7CC02113E – volume: 57 start-page: 1204 year: 2018 ident: C9RA08068F-(cit7a)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201709597 – volume: 30 start-page: 1705431 year: 2018 ident: C9RA08068F-(cit8a)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201705431 – volume: 180 start-page: 86 year: 2015 ident: C9RA08068F-(cit24d)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.08.104 – volume: 57 start-page: 16480 year: 2018 ident: C9RA08068F-(cit22b)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201811010 – volume: 48 start-page: 13541 year: 2019 ident: C9RA08068F-(cit14d)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/C9DT02694K – volume: 31 start-page: 1900843 year: 2019 ident: C9RA08068F-(cit5c)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201900843 – volume: 7 start-page: 1602643 year: 2017 ident: C9RA08068F-(cit8b)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201602643 – volume: 30 start-page: 1802497 year: 2018 ident: C9RA08068F-(cit15a)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201802497 – volume: 29 start-page: 1602868 year: 2017 ident: C9RA08068F-(cit2c)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201602868 – volume: 8 start-page: 1702734 year: 2018 ident: C9RA08068F-(cit21c)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201702734 – volume: 5 start-page: eaaw2322 year: 2019 ident: C9RA08068F-(cit7c)/*[position()=1] publication-title: Sci. Adv. doi: 10.1126/sciadv.aaw2322 – volume: 354 start-page: 1410 year: 2016 ident: C9RA08068F-(cit4a)/*[position()=1] publication-title: Science doi: 10.1126/science.aah6133 – volume: 43 start-page: 21810 year: 2018 ident: C9RA08068F-(cit24e)/*[position()=1] publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2018.09.147 – volume: 82 start-page: 89 year: 2017 ident: C9RA08068F-(cit23e)/*[position()=1] publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2017.07.028 – volume: 126 start-page: 1 year: 2018 ident: C9RA08068F-(cit7b)/*[position()=1] publication-title: Carbon doi: 10.1016/j.carbon.2017.10.004 – volume: 55 start-page: 2650 year: 2016 ident: C9RA08068F-(cit5d)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201504830 – volume: 12 start-page: 200 year: 2019 ident: C9RA08068F-(cit23c)/*[position()=1] publication-title: ChemSusChem doi: 10.1002/cssc.201801886 – volume: 316 start-page: 680 year: 2017 ident: C9RA08068F-(cit24a)/*[position()=1] publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.02.016 – volume: 7 start-page: 14291 year: 2019 ident: C9RA08068F-(cit17a)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C9TA01234F – volume: 266 start-page: 88 year: 2014 ident: C9RA08068F-(cit16c)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.04.136 – volume: 55 start-page: 11736 year: 2016 ident: C9RA08068F-(cit6a)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201509982 – volume: 9 start-page: 1601 year: 2017 ident: C9RA08068F-(cit19a)/*[position()=1] publication-title: ChemCatChem doi: 10.1002/cctc.201601207 – volume: 367 start-page: 206 year: 2018 ident: C9RA08068F-(cit21b)/*[position()=1] publication-title: J. Catal. doi: 10.1016/j.jcat.2018.09.012 – volume: 9 start-page: 12496 year: 2015 ident: C9RA08068F-(cit21d)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.5b05984 – volume: 343 start-page: 1339 year: 2014 ident: C9RA08068F-(cit4c)/*[position()=1] publication-title: Science doi: 10.1126/science.1249061 – volume: 13 start-page: 8087 year: 2019 ident: C9RA08068F-(cit19b)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.9b02930 – volume: 51 start-page: 14211 year: 2015 ident: C9RA08068F-(cit14a)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C5CC05097A – volume: 141 start-page: 12372 year: 2019 ident: C9RA08068F-(cit25e)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b05576 – volume: 11 start-page: 20104 year: 2019 ident: C9RA08068F-(cit14c)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b05655 – volume: 64 start-page: 1158 year: 2019 ident: C9RA08068F-(cit23f)/*[position()=1] publication-title: Sci. Bull. doi: 10.1016/j.scib.2019.07.003 – volume: 8 start-page: 53 year: 2018 ident: C9RA08068F-(cit24c)/*[position()=1] publication-title: Catalysts doi: 10.3390/catal8020053 – volume: 54 start-page: 12622 year: 2015 ident: C9RA08068F-(cit10)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201504707 – volume: 180 start-page: 173 year: 2015 ident: C9RA08068F-(cit17c)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.08.120 – volume: 22 start-page: 361 year: 2016 ident: C9RA08068F-(cit11)/*[position()=1] publication-title: Chem.–Eur. J. doi: 10.1002/chem.201503567 – volume: 443 start-page: 63 year: 2006 ident: C9RA08068F-(cit25a)/*[position()=1] publication-title: Nature doi: 10.1038/nature05118 – volume: 7 start-page: 10942 year: 2016 ident: C9RA08068F-(cit9)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms10942 – volume: 11 start-page: 2696 year: 2018 ident: C9RA08068F-(cit2a)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C8EE01419A – volume: 3 start-page: 3830 year: 2018 ident: C9RA08068F-(cit12)/*[position()=1] publication-title: ACS Omega doi: 10.1021/acsomega.8b00088 – volume: 3 start-page: 97 year: 2015 ident: C9RA08068F-(cit16b)/*[position()=1] publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/sc500589w – volume: 4 start-page: 18100 year: 2016 ident: C9RA08068F-(cit8d)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C6TA07952K – volume: 53 start-page: 2394 year: 2017 ident: C9RA08068F-(cit14b)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C6CC09923H – volume: 3 start-page: 3559 year: 2015 ident: C9RA08068F-(cit16a)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C4TA05735J – volume: 46 start-page: 1848 year: 2013 ident: C9RA08068F-(cit3a)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar300359w – volume: 55 start-page: 7346 year: 2010 ident: C9RA08068F-(cit23a)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2010.07.020 – volume: 135 start-page: 15443 year: 2013 ident: C9RA08068F-(cit23g)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja405149m – volume: 7 start-page: 622 year: 2019 ident: C9RA08068F-(cit24b)/*[position()=1] publication-title: Front. Chem. doi: 10.3389/fchem.2019.00622 – volume: 29 start-page: 1606459 year: 2017 ident: C9RA08068F-(cit5b)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201606459 – volume: 56 start-page: 7121 year: 2017 ident: C9RA08068F-(cit20a)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201702430 – volume: 46 start-page: 6333 year: 2007 ident: C9RA08068F-(cit4d)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200702001 – volume: 49 start-page: 2565 year: 2010 ident: C9RA08068F-(cit18b)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200907289 – volume: 138 start-page: 3570 year: 2016 ident: C9RA08068F-(cit25b)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b00757 – volume: 56 start-page: 738 year: 2017 ident: C9RA08068F-(cit22a)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201610607 – volume: 54 start-page: 11068 year: 2015 ident: C9RA08068F-(cit25c)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201503637 – volume: 5 start-page: 1329 year: 2018 ident: C9RA08068F-(cit15b)/*[position()=1] publication-title: Inorg. Chem. Front. doi: 10.1039/C8QI00178B – volume: 1 start-page: 101 year: 2008 ident: C9RA08068F-(cit1a)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/b808149m – volume: 356 start-page: 599 year: 2017 ident: C9RA08068F-(cit6d)/*[position()=1] publication-title: Science doi: 10.1126/science.aam5852 – volume: 8 start-page: 1801257 year: 2018 ident: C9RA08068F-(cit6b)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201801257 – volume: 10 start-page: 2056 year: 2017 ident: C9RA08068F-(cit2b)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C7EE01913K – volume: 58 start-page: 10677 year: 2019 ident: C9RA08068F-(cit23d)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201907002 – volume: 30 start-page: 1706758 year: 2018 ident: C9RA08068F-(cit1b)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201706758 – volume: 349 start-page: 412 year: 2015 ident: C9RA08068F-(cit3b)/*[position()=1] publication-title: Science doi: 10.1126/science.aab0801 – volume: 58 start-page: 7051 year: 2019 ident: C9RA08068F-(cit7d)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201902588 – volume: 31 start-page: 1803800 year: 2019 ident: C9RA08068F-(cit6c)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201803800 – volume: 58 start-page: 12185 year: 2019 ident: C9RA08068F-(cit8c)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201907136 – volume: 6 start-page: 33302 year: 2016 ident: C9RA08068F-(cit21a)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C6RA04078K |
SSID | ssj0000651261 |
Score | 2.313323 |
Snippet | Dinuclear metal clusters as metalloenzymes execute efficient catalytic activities in biological systems. Enlightened by this, a dinuclear {Co
II
2
} cluster... Dinuclear metal clusters as metalloenzymes execute efficient catalytic activities in biological systems. Enlightened by this, a dinuclear {CoII2} cluster was... Dinuclear metal clusters as metalloenzymes execute efficient catalytic activities in biological systems. Enlightened by this, a dinuclear {Co } cluster was... Dinuclear metal clusters as metalloenzymes execute efficient catalytic activities in biological systems. Enlightened by this, a dinuclear {Co2II} cluster was... Dinuclear metal clusters as metalloenzymes execute efficient catalytic activities in biological systems. Enlightened by this, a dinuclear {CoII 2} cluster was... |
SourceID | pubmedcentral proquest pubmed crossref rsc |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 42554 |
SubjectTerms | Catalysts Chemistry Cobalt Crystal structure Crystallinity electrochemistry Metal clusters Noble metals Oxygen reduction reactions Porosity researchers Single crystals Triazoles X ray photoelectron spectroscopy X-ray diffraction |
Title | A dinuclear cobalt cluster as electrocatalyst for oxygen reduction reaction |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35542840 https://www.proquest.com/docview/2329687217 https://www.proquest.com/docview/2574311796 https://www.proquest.com/docview/2662540877 https://pubmed.ncbi.nlm.nih.gov/PMC9076674 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbYeIAXxG0QGMgIXlCVkduc-LGKGNO4PMCmlafKdm2t0pSiNJG2_XqOr2lpQcBL1NqnUXU-x_6O4_MdhN5UvMwKnuQxjN0sLihjcaUkjQsJ0QOfEWjQycmfv5Djs-Jkcjjx5d1ddknHD8TN1ryS_0EV2gBXnSX7D8iGm0IDfAZ84QoIw_WvMB6PYOXRgsSsHQkt7NGNxGWvpQ90-RhX4cZs0FwvO3OgcHF1DXcbtVqw1SAPnFEEbLxQ97fanw0IjPuTeev_vW_i835js_lcNvHJXK7b1hdgPJmHaf9D7_YAVjcaUlMlweYCH0gzIWUQS4P_bWkVP3vSlUFii_C4qRAmAysP7dZV-E62ztlJriVPBW0ZsFdSqWFlCucFh84ddDuDgCBbCZ7tmgvEhaRefzan74afrDOOjTBi8zTsTuuLvxiScXof3XPRAR5bqB-gW7J5iO7UvijfI_RxjAPk2EKOHeSYLfEvkGOAHFvIcYAce8gfo7Oj96f1cezqYcSiIGkXi1yokkMImeQyYzOucxRVmkg-S2XCgdkJpav3KCWBximaVzpvmgFhFDmDyF_ke2i3WTTyKcK0YoQRKaFXFWmSMIjaVcppVQkIEAiJ0Fvvs6lwYvG6Zsnl1BxayOm0pl_Hxr9HEXodbH9YiZStVvve9VP3CC2nQOcpqUoIiyP0KnSDS_VbK9bIRQ82h5rkwrpB_mBDIIwvtLZlhJ5YNMNf0YQaOFgSoXIN52CgBdbXe5r5hRFap9oVZRGhPRgRwX4YWc9-1_Ec3R2eoH2027W9fAHkteMvzbj9CZbRnM0 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+dinuclear+cobalt+cluster+as+electrocatalyst+for+oxygen+reduction+reaction&rft.jtitle=RSC+advances&rft.au=Li%2C+Yun-Wu&rft.au=Zhang%2C+Wen-Jie&rft.au=Li%2C+Chun-Xia&rft.au=Gu%2C+Lin&rft.date=2019-12-23&rft.eissn=2046-2069&rft.volume=9&rft.issue=72&rft.spage=42554&rft.epage=4256&rft_id=info:doi/10.1039%2Fc9ra08068f&rft.externalDocID=c9ra08068f |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-2069&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-2069&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-2069&client=summon |